JP2003307139A - Valve train for internal combustion engine - Google Patents
Valve train for internal combustion engineInfo
- Publication number
- JP2003307139A JP2003307139A JP2003111114A JP2003111114A JP2003307139A JP 2003307139 A JP2003307139 A JP 2003307139A JP 2003111114 A JP2003111114 A JP 2003111114A JP 2003111114 A JP2003111114 A JP 2003111114A JP 2003307139 A JP2003307139 A JP 2003307139A
- Authority
- JP
- Japan
- Prior art keywords
- valve
- engine
- control mechanism
- low
- closing timing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 52
- 230000007246 mechanism Effects 0.000 claims abstract description 33
- 239000000446 fuel Substances 0.000 abstract description 27
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 3
- 239000003921 oil Substances 0.000 description 25
- 230000006835 compression Effects 0.000 description 21
- 238000007906 compression Methods 0.000 description 21
- 239000000203 mixture Substances 0.000 description 14
- 238000010586 diagram Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 230000006866 deterioration Effects 0.000 description 6
- 239000000498 cooling water Substances 0.000 description 5
- 230000009471 action Effects 0.000 description 4
- 230000003111 delayed effect Effects 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 102100036738 Guanine nucleotide-binding protein subunit alpha-11 Human genes 0.000 description 2
- 101100283445 Homo sapiens GNA11 gene Proteins 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 230000000979 retarding effect Effects 0.000 description 2
- 101150000715 DA18 gene Proteins 0.000 description 1
- 102100029777 Eukaryotic translation initiation factor 3 subunit M Human genes 0.000 description 1
- 101100321670 Fagopyrum esculentum FA18 gene Proteins 0.000 description 1
- 101001012700 Homo sapiens Eukaryotic translation initiation factor 3 subunit M Proteins 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 239000010687 lubricating oil Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Valve Device For Special Equipments (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Abstract
(57)【要約】
【目的】 低回転中負荷域における良好な燃焼状態を確
保しつつポンプ損失の低減化を図り燃費の向上を得る。
【構成】 バルブリフト制御機構とバルブタイミング制
御機構とを備えた動弁装置であって、コントロールユニ
ットは、まずセクション1で各センサ類から入力した情
報信号に基づいて機関運転状態を検出し、セクション2
で機関水温が所定値以上か否かを判断する。所定値以上
であれば、セクション3で機関回転数が所定値以下か否
かを判別する。所定値以下であれば、セクション4で今
度は中負荷域かを判別し、中負荷域である場合は、低速
用バルブリフト特性(小作動角)を進角側に制御する。
これによって、吸気弁の閉弁時期が下死点よりも十分手
前となるように制御する。
(57) [Summary] [Purpose] To achieve a good combustion state in a low-speed, medium-load region, reduce pump loss and improve fuel efficiency. The present invention relates to a valve train including a valve lift control mechanism and a valve timing control mechanism, wherein a control unit first detects an engine operation state based on an information signal input from each sensor in section 1; 2
It is determined whether or not the engine water temperature is equal to or higher than a predetermined value. If it is equal to or more than the predetermined value, it is determined in section 3 whether the engine speed is equal to or less than the predetermined value. If the value is equal to or less than the predetermined value, it is determined in the section 4 that the current time is in the middle load range.
Thereby, the closing timing of the intake valve is controlled to be sufficiently before the bottom dead center.
Description
【0001】[0001]
【産業上の利用分野】本発明は、バルブタイミングを可
変制御しつつバルブリフト特性を切り換えるようにした
内燃機関の動弁装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a valve operating system for an internal combustion engine in which valve lift characteristics are switched while variably controlling valve timing.
【0002】[0002]
【従来の技術】自動車用内燃機関にあっては、従来から
低中速運転時の燃費と高速運転時の出力トルクの向上を
両立する目的で、運転状態に応じて吸気弁または排気弁
のリフト特性を異ならせ、これによって吸排気のタイミ
ングあるいは吸排気量を制御するバルブリフト制御機構
を備えたものが知られている(例えば特開昭62−12
1811号公報等参照)。2. Description of the Related Art Conventionally, an internal combustion engine for an automobile has a lift of an intake valve or an exhaust valve depending on an operating state for the purpose of both improving fuel efficiency during low-medium speed operation and improving output torque during high-speed operation. It is known that a valve lift control mechanism is provided which controls the intake / exhaust timing or the intake / exhaust amount by varying the characteristics (for example, Japanese Patent Laid-Open No. 62-12).
1811, etc.).
【0003】これは、その揺動先端が例えば吸気弁に当
接する低速用ロッカアームと、この低速用ロッカアーム
の片側に隣接して吸気弁との当接部位を持たない高速用
ロッカアームとが共通のロッカシャフトに揺動可能に支
持されている。また、低速用ロッカアームには低速用カ
ムが、高速用ロッカアームには低速用カムよりも開弁角
度または弁リフト量が大きくなるプロフィールを有する
高速用カムがそれぞれ摺接している。This is a common rocker in which a rocking arm for low speed whose rocking tip abuts an intake valve, for example, and a rocker arm for high speed which is adjacent to one side of the low speed rocker arm and has no contact portion with the intake valve. It is swingably supported by the shaft. Further, a low speed cam is in sliding contact with the low speed rocker arm, and a high speed cam having a profile in which the valve opening angle or the valve lift amount is larger than the low speed cam is in sliding contact with the low speed rocker arm.
【0004】さらに、各ロッカアームには、該各ロッカ
アームを一体に連結あるいは連結を解除するプランジャ
やガイド孔等からなる連結切換手段が設けられている。Further, each rocker arm is provided with a connection switching means composed of a plunger, a guide hole or the like for integrally connecting or disconnecting the rocker arms.
【0005】そして、現在の機関運転状態に応じてコン
トローラからの出力信号に基づいて連結切換手段を制御
して、機関の低回転時には、各ロッカアームの連結を解
除して図11の実線で示すように低速側のバルブリフト
特性(小作動角)とし、高回転時には各ロッカアームを
一体に連結して図11の一点鎖線で示すように高速側の
バルブリフト特性(大作動角)に選択的に切り換えるよ
うになっている。これによって、低回転時には、吸気弁
のバルブリフト量を小さくすると共に、閉弁時期を下死
点より早くなるように制御して機関のポンプ損失やフリ
クション等の機械的損失を可及的に小さくして燃費等を
向上させる一方、高回転時には、吸気弁のバルブリフト
量を大きくかつ開弁時期を早めることによって吸気の充
填効率を向上させて十分な出力を確保するようになって
いる。Then, the connection switching means is controlled on the basis of the output signal from the controller according to the current engine operating state, and when the engine is at a low rotation speed, the connection of each rocker arm is released, as shown by the solid line in FIG. The valve lift characteristic (small operating angle) on the low speed side is set, and at the time of high rotation, the rocker arms are integrally connected to selectively switch to the valve lift characteristic (large operating angle) on the high speed side as shown by the alternate long and short dash line in FIG. It is like this. As a result, the valve lift of the intake valve is reduced and the valve closing timing is controlled to be earlier than the bottom dead center when the engine speed is low, and mechanical loss such as engine pump loss and friction is minimized. While improving the fuel efficiency and the like, at the time of high rotation, the intake valve charging efficiency is increased by increasing the valve lift amount of the intake valve and advancing the valve opening timing to ensure sufficient output.
【0006】[0006]
【発明が解決しようとする課題】然し乍ら、前記従来の
装置にあっては、機関低回転時にバルブリフト制御機構
により単にバルブリフト特性を固定的な小作動角に変換
して、吸気弁の開弁時期を遅角(遅らせる)制御と、閉
弁時期を進角(早める)制御を行うにすぎない。したが
って、様々な機関運転状態つまり回転数の他に負荷の変
化に応じた制御がなされないため、機関性能を十分に発
揮させることが困難である。However, in the above-mentioned conventional apparatus, the valve lift control mechanism simply converts the valve lift characteristic into a fixed small operating angle when the engine is running at low speed to open the intake valve. The timing is retarded (retarded) and the valve closing timing is advanced (advanced). Therefore, control is not performed in accordance with changes in the load in addition to various engine operating states, that is, the number of revolutions, and it is difficult to sufficiently exhibit engine performance.
【0007】即ち、例えば低回転低負荷域では、前述の
ような小作動角制御によって燃焼改善,ポンプ損失の低
下等の効果が得られるものの、高回転時において大作動
角に制御された場合に比較して夫々の吸気充填効率が著
しく相違するため、該大小作動角の切り換え時において
大きな出力変化、つまり大きなトルクショックが発生す
る。この結果、運転の不安定化を招く。したがって、バ
ルブリフト制御機構による小作動角制御だけでは、排気
弁とのオーバラップを単純に小さくしたり、吸気弁の閉
弁時期を進角するだけでは燃費を向上するための制御が
自ずと制約されてしまう。That is, for example, in the low rotation and low load region, although the effect of improving the combustion and reducing the pump loss can be obtained by the small operating angle control as described above, when the operating angle is controlled to the large operating angle at the high rotation speed, In comparison, the intake charging efficiencies are remarkably different from each other, so that a large output change, that is, a large torque shock occurs at the time of switching between the large and small operating angles. As a result, driving becomes unstable. Therefore, the small operating angle control by the valve lift control mechanism naturally limits the control for improving the fuel efficiency by simply reducing the overlap with the exhaust valve or advancing the closing timing of the intake valve. Will end up.
【0008】特に、低回転中負荷域では、小作動角制御
によって吸気弁の閉弁時期を大作動角時の閉弁時期より
も進角させることができるものの、その進角量は制限的
なものであって、下死点位置よりも若干進角されるにす
ぎず、十分に進角させることがっできない。したがっ
て、ポンプ損失の低減効果つまり燃費の向上が不十分に
なるといった問題がある。つまり、ポンプ損失は図12
に示すように吸気弁の閉弁時期が下死点(BDC)近傍
にあるときに最も大きくなるため、制限的な進角量では
ポンプ損失を十分に低減できない。In particular, in the low-rotation medium-load range, the valve closing timing of the intake valve can be advanced more than the valve closing timing at the large operating angle by the small operating angle control, but the advance amount is limited. However, it is only slightly advanced from the bottom dead center position, and cannot be fully advanced. Therefore, there is a problem that the effect of reducing the pump loss, that is, the improvement of fuel efficiency becomes insufficient. That is, the pump loss is as shown in FIG.
As shown in (4), since the intake valve closing time is maximized when the valve closing timing is near the bottom dead center (BDC), the pump loss cannot be sufficiently reduced with a limited advance amount.
【0009】[0009]
【課題を解決するための手段】本発明は、前記従来の問
題点に鑑みて案出されたもので、請求項1の発明は、機
関運転状態を検出するコントローラからの出力信号に基
づいて吸気弁のバルブリフト特性を機関低回転域では小
さな弁作動角に、高回転域では大きな弁作動角に夫々切
り換えるバルブリフト制御機構と、前記コントローラか
らの出力信号に基づいて前記弁作動角の位相を変換して
吸気弁の開閉時期を進角側あるいは遅角側に切り換える
バルブタイミング制御機構とを備えた動弁装置であっ
て、機関低回転時において前記バルブリフト制御機構に
より小作動角に制御された位相を、機関中負荷時には前
記バルブタイミング制御機構によって進角側に変換する
ことにより、吸気弁の閉弁時期を下死点位置よりも前に
設定すると共に、機関高負荷時には遅角側に変換するこ
とを特徴としている。The present invention has been devised in view of the above problems of the prior art. The invention of claim 1 is based on an output signal from a controller for detecting an engine operating state. A valve lift control mechanism that switches the valve lift characteristic of the valve to a small valve operating angle in the low engine speed range and a large valve operating angle in the high engine speed range, and the phase of the valve operating angle based on the output signal from the controller. A valve operating system including a valve timing control mechanism for converting the opening / closing timing of an intake valve to an advance side or a retard side by converting the intake valve to a small operating angle by the valve lift control mechanism at low engine speed. This phase is converted to the advanced side by the valve timing control mechanism when the engine is under medium load, so that the intake valve closing timing is set before the bottom dead center position, and The high load is characterized by converting retarded.
【0010】請求項2に記載の発明は、機関低回転時に
おいて前記バルブリフト制御機構により小作動角に制御
された際に、吸気弁の閉弁時期を下死点近傍となるよう
に設定したことを特徴としている。According to a second aspect of the present invention, the closing timing of the intake valve is set to be near the bottom dead center when the valve lift control mechanism controls the operating angle to a small angle during low engine speed. It is characterized by that.
【0011】[0011]
【作用】請求項1の発明によれば、機関低回転中負荷時
には、小作動角の位相を進角側に制御して、吸気弁の閉
弁時期を下死点位置よりも前になるように設定したた
め、機関のポンプ損失を低減させることが可能になる。
また、同時に吸気弁の開弁時期も早くなるため、排気弁
とのオーバーラップが大きくなり、気筒内の高温な残留
ガス割合が増加して吸入された混合気を暖めることがで
きる。したがって、前述のように吸気弁の閉弁時期の大
きな進角制御によって有効圧縮比が低下しても燃焼開始
時(圧縮行程終わり)の混合気温度が上昇して良好な燃
焼が得られる。According to the first aspect of the present invention, when the engine is operating at low engine speed and low load, the phase of the small operating angle is controlled to the advance side so that the intake valve closing timing comes before the bottom dead center position. Since it is set to, it becomes possible to reduce the pump loss of the engine.
At the same time, the opening timing of the intake valve is also advanced, so that the overlap with the exhaust valve is increased, and the proportion of high-temperature residual gas in the cylinder is increased, so that the intake air-fuel mixture can be warmed. Therefore, as described above, even if the effective compression ratio is lowered by the large advance control of the closing timing of the intake valve, the temperature of the air-fuel mixture at the start of combustion (the end of the compression stroke) rises and good combustion can be obtained.
【0012】すなわち、前記中負荷域で吸気弁の閉弁時
期を下死点よりも早めると、有効な圧縮比が低下して圧
縮後の混合気温度が低下し、燃焼の悪化を招く惧れがあ
る。しかし、この運転域では吸入混合気量も多く燃焼に
よる発熱量も高くなるため、燃焼室の壁温や残留ガス温
度等が上昇して圧縮後の混合気温度も高くなるので、燃
焼の悪化を十分に抑制できる。したがって、積極的に吸
気弁の閉弁時期を早めることによりポンプ損失を低減す
ることが可能になる。換言すれば、吸気弁の閉弁時期を
早めることを優先させてポンプ損失の低減化による燃費
の向上を図るものである。That is, if the closing timing of the intake valve is set earlier than the bottom dead center in the medium load range, the effective compression ratio is lowered and the temperature of the air-fuel mixture after compression is lowered, which may cause deterioration of combustion. There is. However, in this operating region, the intake air-fuel mixture amount is large and the heat generation amount due to combustion is also high, so that the wall temperature of the combustion chamber, the residual gas temperature, etc. rise and the air-fuel mixture temperature after compression also rises, so that the deterioration of combustion It can be suppressed sufficiently. Therefore, it is possible to reduce the pump loss by positively advancing the closing timing of the intake valve. In other words, the priority is given to advancing the closing timing of the intake valve to improve the fuel consumption by reducing the pump loss.
【0013】請求項2の発明によれば、アイドリング近
傍やアイドリング運転時などの低回転低負荷時などで
は、吸気弁の閉弁時期を下死点近傍となるように設定し
たため、圧縮比を高めることができる。このため、圧縮
行程終わりの燃焼温度を高めて良好な燃焼状態を得るこ
とが可能になる。つまり、アイドリング近傍の運転条件
では、混合気の流量が絞られるので、燃焼による発熱量
が少なくなり、また、燃焼室の壁温も低いため、燃焼速
度が遅く燃焼が不安定になり易いが、前述のように圧縮
比を高めることができるので、燃焼が改善され、燃費の
向上と回転の安定化等が図れる。According to the second aspect of the present invention, the compression ratio is increased because the intake valve closing timing is set near the bottom dead center when the engine is in the vicinity of idling or when the engine is operating at low speed and low load such as during idling. be able to. Therefore, it is possible to raise the combustion temperature at the end of the compression stroke and obtain a good combustion state. In other words, under operating conditions near idling, the flow rate of the air-fuel mixture is throttled, so the amount of heat generated by combustion is reduced, and since the wall temperature of the combustion chamber is also low, the combustion speed is slow and combustion tends to become unstable, Since the compression ratio can be increased as described above, combustion can be improved, and fuel consumption can be improved and rotation can be stabilized.
【0014】[0014]
【実施例】以下、本発明の実施例を図面に基づいて詳述
する。尚、本実施例では、1気筒当たり2つの吸気弁を
備えた内燃機関に適用したものを示している。Embodiments of the present invention will now be described in detail with reference to the drawings. In this embodiment, the one applied to an internal combustion engine having two intake valves per cylinder is shown.
【0015】図1は本実施例の構成全体を示す概略図で
あって、図中Aはカムシャフト11に設けられたバルブ
リフト制御機構、Bはカムシャフト11の一端部に設け
られたバルブタイミング制御機構、Cはクランク角セン
サFやエアーフローメータG,油水温センサHおよびス
ロットル弁開度センサ等からの出力信号に基づいて検出
した現在の機関運転状態及び油水温に応じて油圧切換弁
D,Eを切り換えるコントロールユニットであって、前
記油圧切換弁Dは、バルブリフト制御機構Aの制御油圧
を低速側と高速側に切り換える一方、油圧切換弁Eは、
バルブタイミング制御機構Bの後述する圧力室に対する
油圧の供給をON−OFF的に切り換えるものである。FIG. 1 is a schematic view showing the overall construction of this embodiment, in which A is a valve lift control mechanism provided on the camshaft 11, and B is a valve timing provided on one end of the camshaft 11. The control mechanism C is a hydraulic switching valve D according to the current engine operating state and the oil / water temperature detected based on output signals from the crank angle sensor F, the air flow meter G, the oil / water temperature sensor H, the throttle valve opening sensor, and the like. , E, the hydraulic pressure switching valve D switches the control hydraulic pressure of the valve lift control mechanism A between a low speed side and a high speed side, while the hydraulic pressure switching valve E is
The supply of hydraulic pressure to the pressure chamber described later of the valve timing control mechanism B is switched ON / OFF.
【0016】前記バルブリフト制御機構Aは、図2〜図
5に示すように構成されている。即ち、各気筒には、2
本の吸気弁3,3に対応した単一のメインロッカアーム
1が設けられており、このメインロッカアーム1は、基
端部1aが各気筒に共通なメインロッカシャフト4を介
してシリンダヘッドに揺動自在に支持されている一方、
先端部1bが吸気弁3,3のステム頂部に当接してい
る。また、このメインロッカアーム1は、平面略矩形状
を呈し、一側部の長手方向に長方形状の開口5が切欠形
成されていると共に、他側部の長手方向にも前記開口5
よりも面積の大きな略長方形状の矩形孔6が切欠形成さ
れており、この矩形孔6の外側壁1Cの前端側には、該
矩形孔6を外部に臨ませる切欠窓7が形成されている。
そして、前記開口5には、図5にも示すようにシャフト
8にニードルベアリング9を介してローラ10が回転自
在に設けられている一方、矩形孔6内にサブロッカアー
ム2が配置されている。また、前記ローラ10は、図外
のクランクシャフトと同期回転するカムシャフト11に
有する低速用カム12が転接している。The valve lift control mechanism A is constructed as shown in FIGS. That is, 2 for each cylinder
A single main rocker arm 1 corresponding to the intake valves 3 and 3 of the book is provided, and the main rocker arm 1 swings to the cylinder head via a main rocker shaft 4 common to each cylinder. While being freely supported,
The tip portion 1b is in contact with the stem top portions of the intake valves 3 and 3. The main rocker arm 1 has a substantially rectangular shape in plan view, and a rectangular opening 5 is cut out in the longitudinal direction of one side portion, and the opening 5 is also formed in the longitudinal direction of the other side portion.
A rectangular hole 6 having a substantially rectangular shape having a larger area than that of the rectangular hole 6 is cut out, and a cutout window 7 for exposing the rectangular hole 6 to the outside is formed on the front end side of the outer wall 1C of the rectangular hole 6. .
As shown in FIG. 5, a roller 10 is rotatably provided on the shaft 8 via a needle bearing 9 in the opening 5, and a sub-rocker arm 2 is arranged in the rectangular hole 6. The roller 10 is in contact with a low speed cam 12 provided on a camshaft 11 that rotates in synchronization with a crankshaft (not shown).
【0017】前記サブロッカアーム2は、図4にも示す
ように基端がサブロッカシャフト13を介してメインロ
ッカアーム2に相対的に揺動自在に支持されていると共
に、吸気弁3に当接する部位を有さず、その先端には前
記低速用カム12と並設された高速用カム14に摺接す
るカムフォロア部15が円弧状に突出形成されている。
また、その下側には、カムフォロア部15を高速用カム
14に押し付けるコイル状のロストモーションスプリン
グ16が介装されている。前記サブロッカシャフト13
は、サブロッカアーム2の基端内部に形成された挿通孔
2aに摺動自在に挿通していると共に、その両端部13
a,13bが基端部1aの矩形孔6両対向位置に穿設さ
れた圧入用穴17,17に圧入固定されている。As shown in FIG. 4, the sub-rocker arm 2 has its base end supported by the main rocker arm 2 via a sub-rocker shaft 13 so as to be relatively swingable, and contacts the intake valve 3. And a cam follower portion 15 that is in sliding contact with the high-speed cam 14 that is juxtaposed with the low-speed cam 12 is formed at the tip thereof in an arc shape.
A coil-shaped lost motion spring 16 for pressing the cam follower portion 15 against the high speed cam 14 is interposed below the cam follower portion 15. The sub rocker shaft 13
Is slidably inserted into an insertion hole 2a formed inside the base end of the sub-rocker arm 2 and has both end portions 13 thereof.
a and 13b are press-fitted and fixed in press-fitting holes 17 and 17 which are formed in the base end portion 1a at positions facing both sides of the rectangular hole 6.
【0018】また、メインロッカアーム1には、図4に
も示すようにサブロッカアーム2の直下に位置してロス
トモーションスプリング16を保持する円柱状の凹部1
8が一体形成されている。ロストモーションスプリング
16は、下端が凹部18の底板18aに着座し、その上
端が凹部18に摺動自在に嵌合するリテーナ19を介し
てサブロッカアーム2に一体形成されたフォロア部20
を押圧している。Further, as shown in FIG. 4, the main rocker arm 1 has a cylindrical recess 1 which is located immediately below the sub rocker arm 2 and which holds the lost motion spring 16.
8 is integrally formed. The lost motion spring 16 has a lower end seated on the bottom plate 18a of the recess 18, and an upper end thereof is integrally formed with the sub-rocker arm 2 via a retainer 19 slidably fitted in the recess 18.
Is pressing.
【0019】図中21はメインロッカアーム1とサブロ
ッカアーム2を適宜連結,解除する連結切換手段であっ
て、この連結切換手段21は、図2及び図3に示すよう
に構成されている。即ち、メインロッカアーム1のロー
ラ10の側部内には、有底円筒状の第1ガイド孔23が
幅方向に形成され、この内部に円柱状の短尺なピストン
22が摺動自在に保持されていると共に、該ピストン2
2の背後に油室24が画成されている。一方、サブロッ
カアーム1には、第1ガイド孔23と同軸上でかつ同一
径の第2ガイド孔25が形成されており、この第2ガイ
ド孔25には、一端がリテーナ28により支持されたリ
ターンスプリング26を介して前記ピストン22を油室
24方向に付勢するプランジャ27が収納されている。Reference numeral 21 in the drawing denotes a connection switching means for connecting and disconnecting the main rocker arm 1 and the sub rocker arm 2 as appropriate, and the connection switching means 21 is constructed as shown in FIGS. 2 and 3. That is, in the side portion of the roller 10 of the main rocker arm 1, a bottomed cylindrical first guide hole 23 is formed in the width direction, and a cylindrical short piston 22 is slidably held therein. Together with the piston 2
An oil chamber 24 is defined behind the 2. On the other hand, the sub-rocker arm 1 is formed with a second guide hole 25 that is coaxial with the first guide hole 23 and has the same diameter. The second guide hole 25 has a return end supported at one end by a retainer 28. A plunger 27 for urging the piston 22 toward the oil chamber 24 via a spring 26 is housed.
【0020】そして、油室24に導かれる作動油圧によ
りピストン22が第1,第2ガイド孔22,25に渡っ
て嵌合することによりメインロッカアーム1とサブロッ
カアーム2が一体に連結されるようになっている。一
方、油室24内に作動油圧が導入されない場合は、リタ
ーンスプリング26のばね力により、ピストン22がプ
ランジャ27を介して油室24側に押されて第1ガイド
孔23に収まった状態で両ロッカアーム1,2の連結が
解除されるようになっている。The piston 22 is fitted over the first and second guide holes 22 and 25 by the hydraulic pressure introduced into the oil chamber 24 so that the main rocker arm 1 and the sub rocker arm 2 are integrally connected. Has become. On the other hand, when the operating oil pressure is not introduced into the oil chamber 24, the piston 22 is pushed toward the oil chamber 24 via the plunger 27 by the spring force of the return spring 26 and is housed in the first guide hole 23. The rocker arms 1 and 2 are disconnected from each other.
【0021】また、前記油室24に作動油圧を導く油圧
回路29は、図2に示すようにメインロッカシャフト4
の内部軸方向に形成されたオイルギャラリ30と、メイ
ンロッカシャフト4の半径方向及びメインロッカアーム
1の内部を通って油室24とオイルギャラリ30とを連
通する油通路31とから構成されている。The hydraulic circuit 29 for guiding the working hydraulic pressure to the oil chamber 24 has a main rocker shaft 4 as shown in FIG.
The oil gallery 30 is formed in the inner axial direction of the above, and an oil passage 31 that communicates the oil chamber 24 and the oil gallery 30 through the radial direction of the main rocker shaft 4 and the inside of the main rocker arm 1.
【0022】オイルギャラリ30には、前記油圧切換弁
Dを介してオイルポンプの吐出油圧が所定の高速運転時
に導かれる。油圧切換弁Dは、3ポート2位置型の電磁
弁が用いられ、コントロールユニットCからの制御信号
によって作動が制御されるようになっている。The oil pressure discharged from the oil pump is guided to the oil gallery 30 through the oil pressure switching valve D during a predetermined high speed operation. The hydraulic switching valve D is a 3-port 2-position solenoid valve, and its operation is controlled by a control signal from the control unit C.
【0023】前記低速用カム12とこれに隣接する高速
用カム14は、それぞれ共通のカムシャフト11に一体
形成され、機関の低回転時と高回転時において要求され
る弁リフト特性を満足するように異なる形状(大きさが
異なる相似形も含む)に形成されている。つまり、高速
用カム14は、低速用カム12と比べ、弁リフト量と開
弁期間の両方を大きくするプロフィールを有している。The low-speed cam 12 and the high-speed cam 14 adjacent to the low-speed cam 12 are integrally formed on a common cam shaft 11 so as to satisfy the valve lift characteristics required at low engine speed and high engine speed. Are formed in different shapes (including similar shapes having different sizes). That is, the high speed cam 14 has a profile that makes both the valve lift amount and the valve opening period larger than the low speed cam 12.
【0024】したがって、このバルブリフト制御機構A
によれば、機関低回転運転時には、メインロッカアーム
1が低速用カム12のプロフィールに従って揺動し、各
吸気弁3を開閉駆動し、弁の開き角度及びリフト量が図
9のX1のように共に小さくなる。Therefore, this valve lift control mechanism A
According to the above, during low engine speed operation, the main rocker arm 1 swings according to the profile of the low speed cam 12 to drive each intake valve 3 to open and close, and the valve opening angle and lift amount are both set as shown by X1 in FIG. Get smaller.
【0025】尚、このとき、サブロッカアーム2は、高
速用カム14によって揺動されるものの、リターンスプ
リング26の付勢力により各ピストン22及びプランジ
ャ27が各ガイド孔23,25に夫々収まってメインロ
ッカアーム1の動きを妨げることはない。At this time, although the sub-rocker arm 2 is swung by the high speed cam 14, the pistons 22 and the plungers 27 are housed in the guide holes 23 and 25, respectively, by the urging force of the return spring 26, and the main rocker arm 2 is moved. It does not prevent the movement of 1.
【0026】これに対して、機関の高回転運転時(約4
000〜5000rpm)には、オイルポンプ32から圧
送された作動油圧がオイルギャラリ30および油通路3
1を介して油室24に導かれると、各ピストン22,プ
ランジャ27は、リターンスプリング26に抗して移動
し、ピストン22が各ガイド孔23,25に渡って嵌合
する。これによって、両ロッカアーム1,2が一体とな
って揺動する。ここで、高速用カム14は、低速用カム
12に比較して、弁の開き角度およびリフト量が共に大
となるように形成されているから、サブロッカアーム2
と一体化した揺動時はメインロッカアーム1のローラ1
0が低速用カム12から浮き上がり、各吸気弁3は高速
用カム14のプロフィールに従って開閉駆動され、弁の
開き角度およびリフト量が図9のX2のように共に大き
くなる。On the other hand, when the engine is operating at high speed (approximately 4
000 to 5000 rpm), the operating oil pressure fed from the oil pump 32 is applied to the oil gallery 30 and the oil passage 3.
When guided to the oil chamber 24 via 1, the piston 22 and the plunger 27 move against the return spring 26, and the piston 22 is fitted over the guide holes 23 and 25. As a result, both rocker arms 1 and 2 swing together. Here, since the high-speed cam 14 is formed so that both the valve opening angle and the lift amount are larger than the low-speed cam 12, the sub-rocker arm 2
Roller 1 of the main rocker arm 1 when swinging together with
0 floats from the low speed cam 12, each intake valve 3 is opened and closed according to the profile of the high speed cam 14, and the valve opening angle and the lift amount both increase as indicated by X2 in FIG.
【0027】一方、機関運転状態が高回転域から再び低
回転域に移行すると、油圧切換弁Dの作動により油室2
4に導かれる油圧が低下し、リターンスプリング26の
弾性復元力によりピストン22及びプランジャ27が元
の位置に移動して、メインロッカアーム1の拘束が解除
される。On the other hand, when the operating state of the engine shifts from the high speed region to the low speed region again, the hydraulic pressure switching valve D is actuated to cause the oil chamber 2 to move.
The hydraulic pressure guided to 4 decreases, the elastic restoring force of the return spring 26 moves the piston 22 and the plunger 27 to their original positions, and the restraint of the main rocker arm 1 is released.
【0028】これにより、第9図に示すように、低速用
カム12のプロフィールに基づくバルブリフト特性(小
作動角)X1と高速用カム14のプロフィールに基づく
バルブリフト特性(大作動角)X2が合成される。ま
た、低速用バルブリフト特性X1における各吸気弁3の
閉弁時期は下死点近傍に設定されている。As a result, as shown in FIG. 9, a valve lift characteristic (small operating angle) X1 based on the profile of the low speed cam 12 and a valve lift characteristic (large operating angle) X2 based on the profile of the high speed cam 14 are obtained. Is synthesized. The closing timing of each intake valve 3 in the low-speed valve lift characteristic X1 is set near the bottom dead center.
【0029】一方、前記バルブタイミング制御機構B
は、図6に示すように、シリンダヘッドにブラケット4
0を介して軸支されたカムシャフト11と、クランクシ
ャフトから駆動力が伝達されるスプロケット41との間
に設けられており、前記カムシャフト11の前端部11
aにスリーブ42が取付ボルト43によって設けられて
いる。このスリーブ42は、外周にアウタ歯42aが形
成されていると共に、端部のフランジ部44外周面で前
記スプロケット41を回転自在に支持している。On the other hand, the valve timing control mechanism B
As shown in FIG. 6, the bracket 4 is attached to the cylinder head.
It is provided between a cam shaft 11 which is rotatably supported by a shaft 0 and a sprocket 41 to which a driving force is transmitted from a crank shaft, and a front end portion 11 of the cam shaft 11 is provided.
A sleeve 42 is provided on a by a mounting bolt 43. Outer teeth 42a are formed on the outer periphery of the sleeve 42, and the outer peripheral surface of the flange portion 44 at the end portion rotatably supports the sprocket 41.
【0030】前記スプロケット41は、スリーブ42の
外周に被嵌した筒状本体45の内周にインナ歯45aが
形成されていると共に、該筒状本体45の外端部開口が
円環状のカバー部46によって閉塞されている。また、
この筒状本体45とスリーブ42との間には軸方向へ移
動自在な筒状歯車47が介装されている。In the sprocket 41, inner teeth 45a are formed on the inner circumference of a cylindrical main body 45 fitted on the outer circumference of a sleeve 42, and the outer end opening of the cylindrical main body 45 has an annular cover portion. It is blocked by 46. Also,
A tubular gear 47, which is movable in the axial direction, is interposed between the tubular body 45 and the sleeve 42.
【0031】この筒状歯車47は、前後2個の歯車構成
部からなり、夫々の内外周面には前記アウタ歯42aと
インナ歯45aが噛合する両方がはす歯の内外歯47
a,47bが形成されている。さらに、この筒状歯車4
7は、後側の歯車構成部とフランジ部44との間に弾持
された圧縮スプリング48のばね力で前側歯車構成部が
カバー部46に突き当たるまで前方に付勢されていると
共に、カバー部46と前側歯車構成部との間に形成され
た圧力室49内の油圧によって後側歯車構成部がフラン
ジ部44に突き当たるまで後方移動するようになってい
る。This cylindrical gear 47 is composed of two front and rear gear components, and the inner and outer teeth 47 of the outer and outer teeth 42a and 45a of the inner and outer surfaces thereof are both helical and inner and outer teeth 47, respectively.
a and 47b are formed. Furthermore, this cylindrical gear 4
7 is biased forward by the spring force of the compression spring 48 elastically held between the rear gear forming portion and the flange portion 44 until the front gear forming portion abuts the cover portion 46, and the cover portion By the hydraulic pressure in the pressure chamber 49 formed between 46 and the front gear component, the rear gear component is moved rearward until it abuts the flange portion 44.
【0032】前記圧力室49には、油圧回路50を介し
て前記油圧切換弁Eによりオイルポンプ32からの油圧
が給・排されるようになっている。前記油圧切換弁E
は、バルブリフト制御機構Aの油圧切換弁Dと同様に3
ポート2位置型電磁弁で構成され、コントロールユニッ
トCからの出力信号によって作動が制御されるようにな
っている。The hydraulic pressure from the oil pump 32 is supplied to and discharged from the pressure chamber 49 by the hydraulic pressure switching valve E via the hydraulic circuit 50. The hydraulic pressure switching valve E
Is the same as the hydraulic switching valve D of the valve lift control mechanism A.
It is composed of a port 2 position type solenoid valve, and its operation is controlled by an output signal from the control unit C.
【0033】該コントロールユニットCは、機関の回転
数だけではなく負荷及び冷却水温度をも制御要素として
前記油圧切換弁EをON−OFF制御しており、前述の
機関低回転域においてバルブリフト制御機構Aが小作動
角X1制御を行っている場合に油圧切換弁Eを制御する
ようになっている。The control unit C controls ON / OFF of the hydraulic pressure switching valve E by using not only the engine speed but also the load and cooling water temperature as control elements, and the valve lift control in the engine low speed range. The hydraulic pressure switching valve E is controlled when the mechanism A is performing the small operating angle X1 control.
【0034】以下、このコントロールユニットCによる
油圧切換弁Eの制御を図7のフローチャートに基づいて
説明する。The control of the hydraulic pressure switching valve E by the control unit C will be described below with reference to the flowchart of FIG.
【0035】まず、セクション1で前述のように各セン
サ類からの情報信号に基づいて現在の機関運転状態を検
出する。セクション2では、現在の冷却水温度Tが所定
値TW以上か否かを判別し、所定値以上と判別した場合
はセクション3に進む。このセクション3では、クラン
ク角センサFからの信号に基づいて現在の機関回転数が
所定回転数(例えば約3,500rpm)以下か否かを判別
し、所定回転数以下であれば、セクション4に移行す
る。ここでは、図8の特性図で示すようにスロットルバ
ルブの開度量に基づいて現在の機関負荷が中負荷域か否
かを判別する。ここで、中負荷域であると判別した場合
は、セクション5に移行する。このセクション5では、
前記油圧切換弁EのソレノイドにON信号(通電)を出
力して、油圧回路50の供給通路を開成する。これによ
って、後述する各吸気弁3の開閉時期の進角制御を行
う。この進角量は、図9のX3(破線)で示すように吸
気弁3の閉弁時期が下死点位置よりも十分手前に設定さ
れ、開弁時期が高速側バルブリフト特性X2時の開弁時
期よりもα分さらに進角した位置に設定されている。First, in Section 1, the current engine operating state is detected based on the information signal from each sensor as described above. In section 2, it is determined whether or not the current cooling water temperature T is equal to or higher than the predetermined value TW. In this section 3, it is determined based on the signal from the crank angle sensor F whether or not the current engine speed is equal to or lower than a predetermined speed (for example, about 3,500 rpm). Transition. Here, as shown in the characteristic diagram of FIG. 8, it is determined whether or not the current engine load is in the medium load range based on the opening amount of the throttle valve. If it is determined that the load is in the medium load range, the process proceeds to section 5. In this section 5,
An ON signal (energization) is output to the solenoid of the hydraulic pressure switching valve E to open the supply passage of the hydraulic circuit 50. In this way, advance control of the opening / closing timing of each intake valve 3 described later is performed. As shown by X3 (broken line) in FIG. 9, the advance amount is set such that the closing timing of the intake valve 3 is set sufficiently before the bottom dead center position, and the opening timing is the opening time when the high-speed side valve lift characteristic is X2. It is set to a position advanced by α from the valve timing.
【0036】一方、前記セクション2で冷却水温が所定
値以下(例えば60℃以下)と判断した場合は、セクシ
ョン6に進み、ここでは油圧切換弁EのソレノイドにO
FF信号(非通電)を出力して油圧回路50の供給通路
を閉成する。また、セクション3で機関回転数が所定回
転数以上であると判別した場合及びセクション4で中負
荷以外の低負荷あるいは高負荷域であると判断した場合
は、セクション6に進んで、油圧切換弁EにOFF信号
を出力して供給通路を閉成する。これによって、吸気弁
3の開閉時期の進角制御を行わずに遅角制御を行う。On the other hand, when the cooling water temperature is judged to be below a predetermined value (for example, 60 ° C. or less) in the section 2, the process proceeds to section 6, in which the solenoid of the hydraulic switching valve E is turned on.
An FF signal (non-energized) is output to close the supply passage of the hydraulic circuit 50. When it is determined in Section 3 that the engine speed is equal to or higher than the predetermined engine speed, and when it is determined in Section 4 that the engine is in a low load or a high load range other than the medium load, the process proceeds to Section 6 and the hydraulic switching valve is operated. An OFF signal is output to E to close the supply passage. As a result, the retard control is performed without performing the advance control of the opening / closing timing of the intake valve 3.
【0037】即ち、アイドリング時やアイドリング近傍
の低速低負荷域では、供給通路が閉成されるため、オイ
ルポンプ32から圧力室49へ作動油圧が供給されな
い。したがって、筒状歯車47は、図6に示すように圧
縮スプリング48のばね力によって最大前方向位置(図
示位置)に付勢され、カムシャフト11をスプロケット
41に対して回転方向と逆の方向へ相対回動させる。依
って、バルブリフト制御機構Aによって小作動角に制御
されたバルブリフト特性X3を、図9X1に示すように
遅れ側に制御する。That is, during idling or in the low speed and low load region near idling, the supply passage is closed, so that the hydraulic pressure is not supplied from the oil pump 32 to the pressure chamber 49. Therefore, as shown in FIG. 6, the tubular gear 47 is biased to the maximum forward position (illustrated position) by the spring force of the compression spring 48, and moves the camshaft 11 in the direction opposite to the rotational direction with respect to the sprocket 41. Rotate relatively. Accordingly, the valve lift characteristic X3 controlled to the small operating angle by the valve lift control mechanism A is controlled to the delay side as shown in FIG. 9X1.
【0038】したがって、各吸気弁3の閉弁時期Y1を
従来のものよりも下死点近傍としたため、圧縮比を高め
ることができる。このため、圧縮行程終わりの燃焼温度
を高めて良好な燃焼状態を得ることが可能になる。つま
り、アイドリング近傍の運転条件では、混合気の流量が
絞られるので、燃焼による発熱量が少なくなり、また、
燃焼室の壁温も低いため、燃焼速度が遅く燃焼が不安定
になり易いが、前述のように圧縮比を高めることができ
るので、燃焼が改善され、燃費の向上と回転の安定化等
が図れる。Therefore, since the closing timing Y1 of each intake valve 3 is closer to the bottom dead center than the conventional one, the compression ratio can be increased. Therefore, it is possible to raise the combustion temperature at the end of the compression stroke and obtain a good combustion state. In other words, under operating conditions near idling, the flow rate of the air-fuel mixture is reduced, so the amount of heat generated by combustion is reduced, and
Since the wall temperature of the combustion chamber is also low, the combustion speed is slow and combustion tends to become unstable.However, since the compression ratio can be increased as described above, combustion is improved, fuel consumption is improved and rotation is stabilized. Can be achieved.
【0039】また、吸気弁3,3の開弁時期は遅らせる
ため、排気弁とのオーバーラップが小さくなり、燃焼室
内に排気ポートから逆流して残留する既燃ガス量を減ら
すことができる。したがって、この点でも燃焼の改善が
図れる。Further, since the opening timing of the intake valves 3 and 3 is delayed, the overlap with the exhaust valve is reduced, and the amount of burned gas that flows back from the exhaust port into the combustion chamber and remains can be reduced. Therefore, also in this respect, the combustion can be improved.
【0040】一方、前記低回転中負荷域では、前述のよ
うに供給通路が開成されるため、圧力室49に作動油圧
が供給されて高圧になる。したがって、筒状歯車47
は、圧縮スプリング48のばね力に抗して最大後方向位
置(図中右方向)に移動し、カムシャフト11を回転方
向と同方向に相対回動させる。依って、バルブリフト
は、前述のように図9のX3(破線)で示すように小作
動角制御の状態のまま進角側に制御され、各吸気弁3の
閉弁時期と開弁時期を十分に早めることができる。した
がって、良好な燃焼状態を確保しつつポンプ損失の低減
化が図れる。On the other hand, in the low-rotation medium-load range, the supply passage is opened as described above, so that the working hydraulic pressure is supplied to the pressure chamber 49 and becomes high. Therefore, the cylindrical gear 47
Moves to the maximum rearward position (rightward in the figure) against the spring force of the compression spring 48, and relatively rotates the camshaft 11 in the same direction as the rotation direction. Therefore, as described above, the valve lift is controlled to the advance side while maintaining the small operating angle control state as indicated by X3 (broken line) in FIG. 9, and the valve closing timing and the valve opening timing of each intake valve 3 are controlled. You can get it fast enough. Therefore, it is possible to reduce the pump loss while ensuring a good combustion state.
【0041】即ち、斯かる中負荷域で各吸気弁3の閉弁
時期を早めると、有効な圧縮比が低下して圧縮後の混合
気温度が低下し、燃焼の悪化を招く惧れがある。しか
し、この運転域では吸入混合気量も多く燃焼による発熱
量も高くなるため、燃焼室の壁温や残留ガス温度等が上
昇して圧縮後の混合気温度も高くなるので、燃焼の悪化
を十分に抑制できる。したがって、積極的に各吸気弁3
の閉弁時期を早めることによりポンプ損失を低減するこ
とが可能になる。換言すれば、各吸気弁3の閉弁時期を
早めることを優先させてポンプ損失の低減化による燃費
の向上を図るものである。That is, if the closing timing of each intake valve 3 is advanced in such a medium load range, the effective compression ratio is lowered and the temperature of the air-fuel mixture after compression is lowered, possibly causing deterioration of combustion. . However, in this operating region, the intake air-fuel mixture amount is large and the heat generation amount due to combustion is also high, so that the wall temperature of the combustion chamber, the residual gas temperature, etc. rise and the air-fuel mixture temperature after compression also rises, so that the deterioration of combustion It can be suppressed sufficiently. Therefore, each intake valve 3
It is possible to reduce the pump loss by advancing the valve closing timing of. In other words, priority is given to advancing the closing timing of each intake valve 3 to improve fuel efficiency by reducing pump loss.
【0042】但し、各吸気弁3の閉弁時期を早めすぎる
と、やがて圧縮温度が低下して燃焼の悪化を招来する。
そこで、前述のように、吸気弁3の開弁時期も早めて、
排気弁とのオーバーラップを大きくする制御を行った。
これにより、燃焼室内の残留ガス割合を増加させて該残
留ガスの熱で混合気を暖めることができるので、閉弁時
期を早めることによる有効圧縮比の低下が生じても燃焼
開始時の燃焼状態が良好になり、燃焼悪化を防止しつつ
ポンプ損失の低減化が図れるのである。However, if the closing timing of each intake valve 3 is advanced too early, the compression temperature will eventually drop and combustion will be deteriorated.
Therefore, as described above, the opening timing of the intake valve 3 is also advanced,
Control was performed to increase the overlap with the exhaust valve.
As a result, the proportion of residual gas in the combustion chamber can be increased and the air-fuel mixture can be warmed by the heat of the residual gas, so even if the effective compression ratio decreases due to the earlier valve closing timing, the combustion state at the start of combustion Is improved, and it is possible to reduce pump loss while preventing deterioration of combustion.
【0043】さらに、残留ガスを増加させるので、その
分、気筒内の吸気行程時における負圧が小さくなり(圧
力が上昇する)、この点からもポンプ損失の低減化が図
れる。Further, since the residual gas is increased, the negative pressure during the intake stroke in the cylinder is reduced (the pressure is increased) correspondingly, and the pump loss can be reduced also from this point.
【0044】次に、低回転高負荷域では、前記低回転無
負荷域と同じ制御を行い、吸気弁3の閉時期を遅らせて
下死点近傍とするため、有効な吸気行程を長くすること
ができ、これによって吸気充填効率の向上が図れ、出力
トルクを高めることが可能になる。Next, in the low rotation and high load region, the same control as in the low rotation and no load region is performed, and the closing timing of the intake valve 3 is delayed so as to be near the bottom dead center, so that the effective intake stroke is lengthened. As a result, the intake charging efficiency can be improved and the output torque can be increased.
【0045】また、各吸気弁3の開弁時期も遅らせたた
め、排気弁とのオーバーラップが小さくなり、残留ガス
の減少化によってノッキングの発生を防止することがで
きる。Further, since the opening timing of each intake valve 3 is also delayed, the overlap with the exhaust valve is reduced and knocking can be prevented by reducing the residual gas.
【0046】しかも、本実施例では、前述のように低回
転中負荷域における進角制御は、冷却水温度TWが所定
値以下(例えば60℃)の場合は行わないようにしたた
め、燃焼の悪化を防止できる。Moreover, in the present embodiment, as described above, the advance angle control in the low rotation medium load range is not performed when the cooling water temperature TW is equal to or lower than a predetermined value (for example, 60 ° C.), so that the combustion is deteriorated. Can be prevented.
【0047】また、前記進角制御における各吸気弁3の
開弁時期を高速用バルブリフトの開弁時期よりも進角さ
せたため、各吸気弁3の早閉じとオーバーラップ大によ
る効果を従来よりもさらに大きくすることができる。即
ち、従来では、構造上の点(バルブリフト制御機構Aの
メインロッカアーム1とサブロッカアーム2が高回転,
低回転運転を問わず常に揺動している構造のもの)から
低速用バルブリフトを高速用バルブリフトの前後へはみ
出させることはできないが、本実施例では高低バルブリ
フトの切り換えと位相の変換とを夫々別個に制御するこ
とができるため、前述のような進角制御が可能になり、
より高いレベルの効果を得ることができるのである。Further, since the opening timing of each intake valve 3 in the advance control is advanced more than the opening timing of the high speed valve lift, the effect of the early closing of each intake valve 3 and the large overlap is larger than that of the conventional one. Can be even larger. That is, in the related art, the structural point (the main rocker arm 1 and the sub-rocker arm 2 of the valve lift control mechanism A rotate at high speed,
It is not possible to extend the low-speed valve lift to the front and back of the high-speed valve lift from the structure that constantly swings regardless of the low-speed operation), but in this embodiment, switching between the high-low valve lift and phase conversion is performed. Can be controlled separately, the advance angle control as described above is possible,
It is possible to obtain a higher level of effect.
【0048】尚、低回転中負荷域では、図9に示す高速
用バルブリフト特性X2に制御することにより各吸気弁
3の閉弁時期を通常機関の吸気弁閉時期よりもさらに遅
らせることによってポンプ損失の低減効果が得られると
共に、吸気弁3の開弁時期が通常機関の閉弁時期より進
み側となって排気弁とのバルブオーバーラップ量が大き
くなって残留ガスによる混合気の加熱作用が一層向上す
るが、バルブリフト量が大きくなるため、動弁駆動損失
つまり摺動摩擦抵抗が大きくなってしまい、出力トルク
が低下する惧れがある。In the low-rotation medium-load region, the pump is controlled by controlling the high-speed valve lift characteristic X2 shown in FIG. 9 to delay the closing timing of each intake valve 3 further than the intake valve closing timing of the normal engine. In addition to the effect of reducing loss, the valve opening timing of the intake valve 3 is on the advance side of the valve closing timing of the normal engine, and the amount of valve overlap with the exhaust valve becomes large and the heating effect of the air-fuel mixture due to residual gas Although it is further improved, since the valve lift amount is increased, the valve drive loss, that is, the sliding friction resistance is increased, which may reduce the output torque.
【0049】これに対し、本実施例では、低速用バルブ
リフト特性X3を選択するため、各吸気弁3の小さな開
口部によって混合気が絞られ、燃焼室内でのスワールが
強化され、燃焼が良好になると共に、小バルブリフトに
より動弁駆動損失が小さくなり、出力トルクを向上させ
ることができる。また、各吸気弁3の閉弁時期を進ませ
る方が気筒内断熱膨張作用により一時的に大きな負圧に
なるため、燃料の気化が促進されて燃焼が良好になると
いった種々の利点がある。On the other hand, in this embodiment, since the low speed valve lift characteristic X3 is selected, the air-fuel mixture is throttled by the small openings of each intake valve 3, the swirl in the combustion chamber is strengthened, and combustion is good. At the same time, a small valve lift reduces the valve drive loss and improves the output torque. Further, advancing the closing timing of each intake valve 3 has various advantages that the vaporization of the fuel is promoted and the combustion is improved because the negative pressure is temporarily increased due to the adiabatic expansion effect in the cylinder.
【0050】図10は、本発明を排気弁に適用したバル
ブリフト特性を示しており、一点鎖線は高速用バルブリ
フト特性XE3を、実線は低速用バルブリフト特性XE
4、二点鎖線は低速用バルブリフト特性の閉弁時期を進
角側(進み側)に制御した進角側低バルブリフト特性X
E1、破線は低速用バルブリフト特性の閉弁時期を遅角
側(遅れ側)に制御した遅角側低バルブリフト特性XE
2をそれぞれ示している。即ち、アイドリングやアイド
リング近傍の機関の低速低負荷域(バルブリフト制御)
では、機構Aによって低速用カムのプロフィールに基づ
く低速用バルブリフト特性XE4に切り換わり、さらに
バルブタイミング制御機構BによってXE4をさらにX
E1に示すように進角側(進み側)に制御する。したが
って、排気弁は、下死点位置近傍で開弁し、上死点位置
近傍で閉弁するので膨張行程が長くなると共に、吸気弁
3とのオーバラップ量も少なくなるので燃焼の悪化が防
止されて、燃費の向上が図れる。FIG. 10 shows a valve lift characteristic in which the present invention is applied to an exhaust valve. A one-dot chain line shows a high-speed valve lift characteristic XE3, and a solid line shows a low-speed valve lift characteristic XE.
4, the two-dot chain line indicates the low valve lift characteristic X on the advance side which controls the closing timing of the valve lift characteristic for low speed to the advance side (advance side).
E1, the broken line is the retarding side low valve lift characteristic XE in which the valve closing timing of the low speed valve lift characteristic is controlled to the retarding side (delay side).
2 are shown respectively. That is, the low speed and low load range (valve lift control) of the engine near idling or idling.
Then, the mechanism A switches to the low speed valve lift characteristic XE4 based on the profile of the low speed cam, and the valve timing control mechanism B further changes the XE4 to X.
As shown by E1, control is performed on the advance side (advance side). Therefore, since the exhaust valve opens near the bottom dead center position and closes near the top dead center position, the expansion stroke becomes longer and the overlap amount with the intake valve 3 becomes smaller, which prevents deterioration of combustion. As a result, fuel efficiency can be improved.
【0051】次に、機関の低回転中負荷域では、低速用
バルブリフト特性XE4をバルブタイミング制御機構B
によってXE2に示すように遅角側(遅れ側)に制御す
る。したがって、排気弁の閉弁時期を高速用カムのカム
プロフィールに基づいた高速用バルブリフト特性XE3
の閉弁時期より遅らせることができるので、吸気管に逆
流した既燃ガス(残留ガス)を燃焼室内に吸い戻す作用
が大きくなる。このため、該残留ガスの加熱作用により
混合気が暖められ燃焼効率が良好となる。Next, in the low engine speed and low load region of the engine, the low speed valve lift characteristic XE4 is set to the valve timing control mechanism B.
Is controlled to the retard side (lag side) as indicated by XE2. Therefore, the valve closing timing of the exhaust valve is determined by the valve lift characteristic XE3 for high speed based on the cam profile of the high speed cam.
Since the valve closing timing can be delayed, the action of sucking back the burned gas (residual gas) that has flowed back into the intake pipe into the combustion chamber becomes large. Therefore, the air-fuel mixture is warmed by the heating action of the residual gas, and the combustion efficiency is improved.
【0052】尚、排気弁の閉弁時期を上死点前まで進角
(進み側)させることにより、前記残留ガスの加熱作用
を行うことができる。即ち、この場合は既燃ガス(残留
ガス)を燃焼室内に封じ込めるようにしている(図10
のXE1参照)。以上説明した封じ込め作用及び吸い戻
し作用は、機関の排気行程終期のHC濃度の濃い排気を
燃焼室内に封じ込めあるいは吸い戻して次の行程で再燃
焼させることができるので、HCの低減化が図れる。ま
た、小バルブリフトにより動弁駆動損失が小さくなり、
出力トルクを向上させることができる。By advancing the closing timing of the exhaust valve to the point before the top dead center (advancing side), the heating operation of the residual gas can be performed. That is, in this case, burned gas (residual gas) is confined in the combustion chamber (see FIG. 10).
XE1). With the containment action and the suction return action described above, exhaust gas having a high HC concentration at the end of the exhaust stroke of the engine can be contained or sucked back into the combustion chamber and re-combusted in the next stroke, so HC can be reduced. In addition, the small valve lift reduces the valve drive loss,
The output torque can be improved.
【0053】本発明は、前記実施例に限定されるもので
はなく、制御要素としての機関温度は冷却水温以外に潤
滑油温であってもよい。また、制御要素の機関回転数上
限値は機関の仕様等によって任意に設定することができ
る。The present invention is not limited to the above embodiment, and the engine temperature as a control element may be a lubricating oil temperature other than the cooling water temperature. Further, the engine speed upper limit value of the control element can be arbitrarily set according to the specifications of the engine and the like.
【0054】[0054]
【発明の効果】以上の説明で明らかなように、請求項1
の発明によれば、低回転中負荷域において吸気弁の閉弁
時期を下死点よりも前としたことにより、良好な燃焼状
態を確保しつつポンプ損失の低減化が図れる。この結
果、運転性の安定化と燃費の大巾な向上が図れる。As is apparent from the above description, claim 1
According to the invention, the closing timing of the intake valve is set to be before the bottom dead center in the low rotation medium load range, so that the pump loss can be reduced while ensuring a good combustion state. As a result, it is possible to stabilize drivability and greatly improve fuel efficiency.
【0055】また、請求項2の発明によれば、低回転低
負荷域において吸気弁の閉弁時期を下死点近傍としたこ
とにより、圧縮比を高めることができ、したがって、圧
縮行程終わりの燃焼温度を高めて良好な燃焼状態を得る
ことが可能になる。この結果、燃費の向上と機関回転の
安定化などが図れる。Further, according to the second aspect of the present invention, the compression ratio can be increased by setting the closing timing of the intake valve near the bottom dead center in the low rotation and low load region, and therefore, at the end of the compression stroke. It becomes possible to raise the combustion temperature and obtain a good combustion state. As a result, it is possible to improve fuel efficiency and stabilize engine rotation.
【図1】本発明の一実施例を示す全体構成図。FIG. 1 is an overall configuration diagram showing an embodiment of the present invention.
【図2】本実施例のバルブリフト制御機構を示す平面
図。FIG. 2 is a plan view showing a valve lift control mechanism of this embodiment.
【図3】図2のI−I線断面図。FIG. 3 is a sectional view taken along line I-I of FIG.
【図4】図2のJ−J線断面図。FIG. 4 is a sectional view taken along line JJ of FIG.
【図5】図2のK−K線断面図。5 is a sectional view taken along line KK of FIG.
【図6】本実施例のバルブタイミング制御機構を示す断
面図。FIG. 6 is a sectional view showing a valve timing control mechanism of the present embodiment.
【図7】本実施例の制御態様を示すフローチャート図。FIG. 7 is a flowchart showing a control mode of this embodiment.
【図8】スロットル開度と負荷との関係を示す特性図。FIG. 8 is a characteristic diagram showing the relationship between throttle opening and load.
【図9】本実施例におけるバルブリフトとバルブタイミ
ング特性を示す図。FIG. 9 is a diagram showing valve lift and valve timing characteristics in the present embodiment.
【図10】排気弁側に適用した実施例におけるバルブリ
フトとバルブタイミング特性を示す図。FIG. 10 is a diagram showing valve lift and valve timing characteristics in the embodiment applied to the exhaust valve side.
【図11】従来のバルブリフト特性図。FIG. 11 is a conventional valve lift characteristic diagram.
【図12】クランク角とポンプ損失の関係を示す説明
図。FIG. 12 is an explanatory diagram showing the relationship between crank angle and pump loss.
A…バルブリフト制御機構 B…バルブタイミング制御機構 C…コントロールユニット(コントローラ) D・E…油圧切換弁 3…吸気弁 11…カムシャフト A: Valve lift control mechanism B: Valve timing control mechanism C ... Control unit (controller) D / E ... hydraulic switching valve 3 ... Intake valve 11 ... Cam shaft
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F02D 41/04 320 F02D 41/04 320 45/00 312 45/00 312H Fターム(参考) 3G018 AA01 AB04 BA12 CB02 CB06 DA14 DA18 DA28 DA83 EA00 EA03 EA04 EA14 EA35 FA01 FA03 FA06 FA07 GA07 3G084 BA23 CA03 CA04 CA09 DA02 FA18 FA33 3G092 AA11 BA01 DA01 DA04 EA03 EA04 EA11 EA27 FA24 GA03 GA05 GA06 GA17 GA18 HA11Z HE01Z 3G301 HA19 JA02 JA04 KA06 KA08 KA09 KA24 KA25 LA07 LC08 NC02 NE11 NE12 PA17Z PE01Z ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) F02D 41/04 320 F02D 41/04 320 45/00 312 45/00 312H F term (reference) 3G018 AA01 AB04 BA12 CB02 CB06 DA14 DA18 DA28 DA83 EA00 EA03 EA04 EA14 EA35 FA01 FA03 FA06 FA07 GA07 3G084 BA23 CA03 CA04 CA09 DA02 FA18 FA33 3G092 AA11 BA01 DA01 DA04 KA03 KA04 JA25 KA04 JA01 GA02 GA01 GA01 GA17 GA18 GA11 HA11 HA18 GA11 HA18 HA11 LA07 LC08 NC02 NE11 NE12 PA17Z PE01Z
Claims (2)
らの出力信号に基づいて吸気弁のバルブリフト特性を機
関低回転域では小さな弁作動角に、高回転域では大きな
弁作動角に夫々切り換えるバルブリフト制御機構と、 前記コントローラからの出力信号に基づいて前記弁作動
角の位相を変換して吸気弁の開閉時期を進角側あるいは
遅角側に切り換えるバルブタイミング制御機構とを備え
た動弁装置であって、 機関低回転時において前記バルブリフト制御機構により
小作動角に制御された位相を、機関中負荷時には前記バ
ルブタイミング制御機構によって進角側に変換すること
により、吸気弁の閉弁時期を下死点位置よりも前に設定
すると共に、機関高負荷時には遅角側に変換することを
特徴とする内燃機関の動弁装置。1. A valve lift for switching a valve lift characteristic of an intake valve to a small valve operating angle in a low engine speed range and a large valve operating angle in a high engine speed range based on an output signal from a controller that detects an engine operating state. A valve operating device comprising a control mechanism and a valve timing control mechanism for converting the phase of the valve operating angle based on an output signal from the controller to switch the opening / closing timing of the intake valve to an advance side or a retard side. Therefore, by changing the phase controlled to a small operating angle by the valve lift control mechanism at the time of low engine speed to the advance side by the valve timing control mechanism at the time of medium load of the engine, the closing timing of the intake valve can be changed. A valve operating system for an internal combustion engine, which is set before the bottom dead center position and is converted to a retard side when the engine is under high load.
制御機構により小作動角に制御された際に、吸気弁の閉
弁時期を下死点近傍となるように設定したことを特徴と
する請求項1に記載の内燃機関の動弁装置。2. The valve closing timing of the intake valve is set to be near the bottom dead center when the valve lift control mechanism controls the operating angle to a small angle when the engine is running at low speed. 1. A valve train for an internal combustion engine according to item 1.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2003111114A JP3909299B2 (en) | 2003-04-16 | 2003-04-16 | Valve operating device for internal combustion engine |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2003111114A JP3909299B2 (en) | 2003-04-16 | 2003-04-16 | Valve operating device for internal combustion engine |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP04023994A Division JP3889063B2 (en) | 1994-03-11 | 1994-03-11 | Valve operating device for internal combustion engine |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2003307139A true JP2003307139A (en) | 2003-10-31 |
| JP3909299B2 JP3909299B2 (en) | 2007-04-25 |
Family
ID=29398259
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2003111114A Expired - Fee Related JP3909299B2 (en) | 2003-04-16 | 2003-04-16 | Valve operating device for internal combustion engine |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP3909299B2 (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7707988B2 (en) | 2005-03-11 | 2010-05-04 | Toyota Jidosha Kabushiki Kaisha | Engine |
| JP2010138898A (en) * | 2008-11-12 | 2010-06-24 | Mitsubishi Motors Corp | Variable valve gear |
-
2003
- 2003-04-16 JP JP2003111114A patent/JP3909299B2/en not_active Expired - Fee Related
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7707988B2 (en) | 2005-03-11 | 2010-05-04 | Toyota Jidosha Kabushiki Kaisha | Engine |
| JP2010138898A (en) * | 2008-11-12 | 2010-06-24 | Mitsubishi Motors Corp | Variable valve gear |
| US8205585B2 (en) | 2008-11-12 | 2012-06-26 | Mitsubishi Jidosha Kogyo Kabushiki Kaisha | Variable valve gear for internal combustion engine |
Also Published As
| Publication number | Publication date |
|---|---|
| JP3909299B2 (en) | 2007-04-25 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP4516401B2 (en) | Engine start control device | |
| JP3979081B2 (en) | Combustion control system for internal combustion engine | |
| US7789051B2 (en) | Variable valve actuating apparatus for internal combustion engine | |
| JP3912147B2 (en) | Variable valve operating device for internal combustion engine | |
| JP4931740B2 (en) | Control device for internal combustion engine | |
| KR100935708B1 (en) | Start control device and start control method for restarting engine | |
| JP2002106312A (en) | Variable valve train for internal combustion engines | |
| US9068483B2 (en) | Variable valve actuating apparatus for internal combustion engine, and controller for variable valve actuating apparatus | |
| US20090159027A1 (en) | Variable valve actuating apparatus for internal combustion engine, and controller for variable valve actuating apparatus | |
| JP2001355469A (en) | Variable valve train for internal combustion engine | |
| JP2002089303A (en) | Control device for internal combustion engine for vehicles | |
| JP3829629B2 (en) | Combustion control device for internal combustion engine | |
| JP4345197B2 (en) | Knocking control device for internal combustion engine | |
| JP2888075B2 (en) | Variable valve gear of engine | |
| JP5515793B2 (en) | Variable mechanism control system for internal combustion engine | |
| JP4166132B2 (en) | Valve operating device for internal combustion engine | |
| JP3876087B2 (en) | Variable valve operating device for internal combustion engine | |
| JPH07247815A (en) | Valve drive for internal combustion engine | |
| JP2003307139A (en) | Valve train for internal combustion engine | |
| JP4433591B2 (en) | Variable valve operating device for internal combustion engine | |
| JP2750800B2 (en) | Intake valve control device for internal combustion engine | |
| JP4604358B2 (en) | Internal combustion engine and control system thereof | |
| JP4085886B2 (en) | Variable valve operating device for internal combustion engine | |
| JP2002295274A (en) | Variable valve train for internal combustion engine | |
| JP3294287B2 (en) | Valve train for internal combustion engine |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20041217 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060919 |
|
| A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061120 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070109 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070122 |
|
| R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100126 Year of fee payment: 3 |
|
| S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100126 Year of fee payment: 3 |
|
| R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100126 Year of fee payment: 3 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110126 Year of fee payment: 4 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120126 Year of fee payment: 5 |
|
| LAPS | Cancellation because of no payment of annual fees |