[go: up one dir, main page]

JP2003314428A - Wind power generation equipment - Google Patents

Wind power generation equipment

Info

Publication number
JP2003314428A
JP2003314428A JP2002118782A JP2002118782A JP2003314428A JP 2003314428 A JP2003314428 A JP 2003314428A JP 2002118782 A JP2002118782 A JP 2002118782A JP 2002118782 A JP2002118782 A JP 2002118782A JP 2003314428 A JP2003314428 A JP 2003314428A
Authority
JP
Japan
Prior art keywords
impeller
wind
shaft
wind power
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002118782A
Other languages
Japanese (ja)
Inventor
Michihiro Oe
通博 大江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2002118782A priority Critical patent/JP2003314428A/en
Publication of JP2003314428A publication Critical patent/JP2003314428A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Landscapes

  • Wind Motors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide wind power generation equipment allowing wind force to be effectively utilized for the rotating force of an impeller, which copes with an increase in a power generating capacity, eliminates the necessity of increasing the support part of the impeller, easily facilitates an equipment maintenance, and suppresses a construction cost. <P>SOLUTION: This wind power generation equipment comprises the impeller 1 having a rotating shaft positioned in vertical direction and a generator 5 connected to the impeller 1. To effectively utilize the wind force, gutter-like members of chevron shape in cross section having one end part internal angle of generally 30° and the other end part internal angle of generally 30 to 45° are vertically disposed at the major part of the main wind receiving part 1b of the impeller 1 through the clearance thereof from a shaft part 1a. To hold the part 1b, a slender wind receiving material holding part 1c projected from the shaft part 1a is disposed at least near both end parts of the portion 1b. To rotatably self stand the impeller 1 only by the lower pivotally supporting of the shaft part 1a, the impeller is supported by the pivotally supporting part of the rotatable shaft part 1a and the outer annular pivotally supporting part of the outer side annular member 1d at a clearance from the shaft part 1a on the floor surface of a support frame 6 through a pivotally supporting material 4. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、風力により作動す
る回転軸が鉛直方向にある羽根車と該羽根車の回転力に
より作動する発電機とを具備した風力発電装置に関す
る。 【0002】 【従来の技術】従来からの風力発電装置としては、大別
して、羽根車の回転軸が水平方向にある方式のものと鉛
直方向にある方式のものが提案されている。羽根車の回
転軸が水平方向にある方式のいわゆるプロペラ方式のも
のの特徴としては、発電能力を大きくするためには羽根
車の回転半径を大きくすることに頼るしかなく支持する
支柱も羽根車の回転半径に連動して高くする必要がある
とともに羽根車の水平方向の回転にも支障を来さない範
囲内で支柱を高くする必要がある。このため、支柱の形
状は細長くなり支柱としての強度を確保するのも容易で
なく大規模の発電能力を確保するためには高さを非常に
高くする必要がありしかも建設費も高額になるとともに
羽根車部の保守は高所作業となる等の設備保全の観点か
らも解決すべき多くの課題点を残している。一方、羽根
車の回転軸が鉛直方向にある方式のものの特徴として
は、支持部の高さは羽根車の回転半径に連動しないので
低くすることが出来るが、羽根車の風受け面が風を背面
から受けることが出来るだけでなく前面から風を受ける
ことも均等に発生するとともに風受け面が軸部連続的に
跳ね出している場合には軸部近傍の風力は羽根車の回転
力に有効に寄与せず水平力のみが増加するため、背面か
らの風を回転力として有効に寄与させるとともに前面か
らの風の抵抗を低減させる様な形状工夫が必要となる。
また、羽根車の回転が速くなり主風受け面の速度が風速
を超える部分が生ずる場合には背面からの風も抵抗力と
なるため該羽根車の回転半径もむやみに拡大出来ないの
で、発電能力を大きくするためには、羽根車の主風受け
面を鉛直方向に面積を拡大して対応しなければならない
が羽根車にかかる水平力の増大ともに重心位置が上昇す
るために支持方法が課題となり、回転軸を上下から支承
することで課題の解決を図ろうとして回転体の外周部に
支持架構を備える場合には堅牢な架構が必要となるので
この面での建設コストの増大要因が発生することとな
る。この様なことから、風力発電において、風力を羽根
車の回転力に有効に利用出来て発電能力の増大にも対応
が出来うるとともに羽根車の支持部を高くする必要もな
く設備保全が容易で建設コストの抑制も図りうる風力発
電装置の提案が望まれている。 【0003】 【発明が解決しようとする課題】本発明は、前述の従来
技術に鑑みてなされたもので、風力発電において、風力
を羽根車の回転力に有効に利用出来て発電能力の増大に
も対応が出来うるとともに羽根車の支持部を高くする必
要もなく設備保全が容易で建設コストの抑制も図りうる
風力発電装置の提供を目的とする。 【0004】 【課題を解決するための手段】前記の目的を達成するた
め、本発明の風力発電装置は、風力により作動し回転軸
が鉛直方向にある羽根車と該羽根車の回転力により作動
する発電機とを具備する風力発電装置であって、前記羽
根車が追い風を有効に捉えるとともに向かい風の抵抗を
減ずるために、主風受け部位の主要部に一方の端部の内
角が略30度で他方の端部の内角が略30〜45度をな
した断面が山形状もしくは前記山形状の端部と頂部に接
する楕円の部分形状に類した断面形状の樋状部材を回転
軸との間に間隙を設けて鉛直方向に配設して用いるとと
もに前記主風受け部位を保持するために回転軸部から軸
方向に直行し放射状に突出する細長形状の風受け材保持
部位が少なくとも前記主風受け部位の両端部近傍に配設
され、前記羽根車が回転軸部の下方の支承のみで自立し
回動可能とするために、回動可能な回転軸部の軸支承部
と回転軸部から間隔をおいて外側に環状をなす環状部位
の下部の外環支承部により支承支持部材を介して支持架
台の床面上で支持されたことを特徴とする。 【0005】 【発明の実施の形態】本発明の風力発電装置の実施の形
態を以下に図面を参照して説明する。図1は本発明の風
力発電装置を説明する模式的斜視図、図2は本風力発電
装置の羽根車部の一例の平断面図、図3は本風力発電装
置の主風受け部の形状例の断面図、図4は本風力発電装
置の羽根車の回転支承部の一例の断面図、図5は本風力
発電装置の羽根車の回転力の発電機への伝達機構例の側
面図を示す。 【0006】本発明の風力発電装置は、図1に示す様
に、架台等6の床上に回動可能な状態に設置され風力に
より作動し回転軸が鉛直方向にある羽根車1と羽根車1
の回転力により作動する発電機5とを具備する風力発電
装置である。そして、羽根車1は羽根部を3枚以上を有
し、羽根車1が追い風を有効に捉えるとともに向かい風
の抵抗を減ずるために、図3に示す様な一方の端部内角
が略30度で他方の端部内角が略30〜45度をなした
断面が山形状もしくは前記山形状の端部と頂部に接する
楕円の部分形状に類した断面形状の樋状部材である主風
受け部位1bを、図2に示す様に、回転軸との間に間隙
を設け前記断面が山形状において内角が略30度側の端
部を軸側になる様にして鉛直方向に配設する。尚、前記
隙間寸法については20mm以上かつ主風受け部位幅の
略1/3〜1/4の寸法を目処に設定される。また、該
部位1bの裏面に補強のために鉛直方向の端部に鉛直補
強部位1eとともに水平方向の端部および中間部の適宜
な位置に水平水平補強部位1fを付設させることが好ま
しい。そして、図1〜2に示す様に、主風受け部位1b
を保持するために回転軸部1aから軸方向に直行し放射
状に突出する細長形状の風受け材保持部位1cが少なく
とも主風受け部位1bの両端部近傍には配設される。ま
た、羽根車1が回転軸部1aの下方の支承のみで自立し
回動可能とするために、図3に示す様に、回動可能な回
転軸部1aの軸支承部2と回転軸部1aから間隔をおい
て外側に環状をなす環状部位1dの下部の外環支承部3
により支承支持部材4を介して支持架台6の床面上で支
持される。以下に本風力発電装置に連関する主な部位、
機器等に関し付加して特記すべき詳細について説明す
る。 【0007】羽根車1は、用いられる主要部材の材質と
しては、例えば、鉄、ステンレス、チタン等の金属また
は合金、ポリカーボネート、エポキシ、ポリアミド等の
高強度プラスチックならびに炭素繊維等の繊維補強プラ
スチック等の高強度材料が用いられ、本発明の目的を達
成出来うる限り上記の例に限定されない。また、規模お
よび詳細寸法については求められる発電能力をもとに適
宜設定される。 【0008】回転軸部1aは可能な限り内部を中空にし
軽量化を図ることが好ましく、下方支承部近傍は材質が
金属であることが好ましい。そして、主風受け部位1b
は図3に示す形状の樋状部材を複数個並べて用いてもよ
いがその場合には隣接する部材間に隙間を設ける必要が
あり該隙間は20mm以上かつ主風受け部位幅の略1/
3〜1/4の寸法を目処に設定される。また、高強度で
薄板化および軽量化を図れる材質のものが好ましく、風
受け材保持部位1cへの固着方法は例えば溶接、溶着、
接着、リベット接合等が考えられるが固着し目的を達成
出来うる限り限定されない。また、風受け材保持部位1
cにおいては回転軸部1aへの固着方法は例えば回転軸
部との一体成形、もしくは、溶接、溶着、接着、リベッ
ト接合等が考えられるが固着し目的を達成出来うる限り
限定されず、可能な限り細くすることが好ましく更には
向かい風を受ける面は空気抵抗を低減させる形状を勘案
することが更に好ましい。そして、環状部位1dは風受
け材保持部位1cの下部の範囲において適宜な位置に配
置され、最下方の部位1cに接合されるとともに軸部1
aと連結部材を介して連結されている。前記連結部材に
おいては目的を達成出来うる連結強度を確保して軽量化
が図れる部材および形状ならびに連結方法が用いること
が好ましい。また、主風受け部位1bの鉛直補強部位1
eおよび水平補強部位1fは補強目的を達成する条件の
もとで極力薄板化することが好ましい。 【0009】軸支承部2および外環支承部3に用いる支
承方法は、下方からの支承のみならず水平方向および浮
き上がり防止対応を考慮した支承方法が用いられ、円滑
な回動を可能とするために支承部部の摩擦抵抗を低減さ
せる機構として、例えば、ボールベアリングに類する機
構、ポリテトラルフルオロエチレン、フッ素樹脂、グラ
ファイト、二硫化モリブデン等を他のプラスチック材料
に混合して摩擦抵抗を低減させた部材を摺動部材として
組み込む機構ならびにオイル等の潤滑剤を利用した機構
が考えられるが、摩擦抵抗を低減し円滑な回動と上部の
支持強度が確保され本発明の目的を達成出来うる限りに
おいて限定されない。また、支承支持部材4は耐久性お
よび支持強度を向上させるためにも材質が金属であるこ
とが好ましく、支持架台6への固着方法は例えばボルト
・ナット等7にて固着される。 【0010】発電機5は従来から風力発電等に用いられ
ている発電機を用いることが出来て羽根車1に連結出来
て発電機能を発揮出来うる限り限定はされず、発電機5
と羽根車1の連結方法は軸部に直結する方法の他、例え
ば、図5に示すような歯車機構8を組み込んで回転力を
伝達させる方法も考えられ、羽根車1の回転力を発電に
供することが出来うる限りにおいて連結方法は限定され
ない。また、発電機5には従来からの風力発電装置に具
備または付設されている機器および装置が具備または付
設される。そして、支持架台6は、例えば、鉄骨構造、
鉄筋コンクリート構造等の構造により本風力発電装置の
発電能力および設置する場所等を勘案し構造および規模
ならびに詳細仕様は適宜設定される。 【0011】 【発明の効果】本発明によれば、風力発電において、羽
根車の支持部を高くする必要もなく設備保全が容易で、
発電能力の増大にも対応が可能で建設コストの抑制も出
来うるので、エネルギー資源の枯渇の恐れや地球環境の
悪化に伴い、発電においても現状大きく依存している火
力発電や原子力発電に代わる地球環境に優しい自然エネ
ルギーである風を利用した発電装置の普及に寄与するこ
とによりエネルギー資源の枯渇および地球環境の悪化を
抑制することに貢献し得る。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention comprises an impeller having a rotating shaft which is operated by wind power and having a vertical axis, and a generator which is operated by the rotating force of the impeller. It relates to a wind power generator. 2. Description of the Related Art Conventionally, wind power generators are roughly classified into a type in which a rotating shaft of an impeller is in a horizontal direction and a type in which a rotating shaft of an impeller is in a vertical direction. The characteristic of the so-called propeller type, in which the rotating shaft of the impeller is in the horizontal direction, is that in order to increase the power generation capacity, it is necessary to rely on a large rotating radius of the impeller. It is necessary to increase the height in conjunction with the radius and also to increase the height of the support within a range that does not hinder the horizontal rotation of the impeller. For this reason, the shape of the pillars is elongated and it is not easy to secure the strength as the pillars, and it is necessary to make the height very high to secure large-scale power generation capacity, and the construction cost is also high and The maintenance of the impeller has many problems to be solved from the viewpoint of equipment maintenance such as work at a high place. On the other hand, as a feature of the system in which the rotation axis of the impeller is in the vertical direction, the height of the support portion can be reduced because it does not link with the rotation radius of the impeller, but the wind receiving surface of the impeller can reduce the wind. Not only can it be received from the back, it also receives wind from the front evenly and when the wind receiving surface is continuously projecting from the shaft, the wind force near the shaft is effective for the rotating force of the impeller Since only the horizontal force increases without contributing to the wind, it is necessary to devise a shape that effectively contributes the wind from the back as a rotational force and reduces the resistance of the wind from the front.
Also, when the rotation of the impeller becomes faster and the speed of the main wind receiving surface exceeds the wind speed occurs, the wind from the back also becomes a resistive force, so the rotation radius of the impeller cannot be expanded unnecessarily. In order to increase the capacity, it is necessary to increase the area of the main wind receiving surface of the impeller in the vertical direction to cope with it. In order to solve the problem by supporting the rotating shaft from above and below, if a supporting frame is provided on the outer periphery of the rotating body, a robust frame is required, which causes an increase in construction cost in this aspect Will be done. For this reason, in wind power generation, wind power can be effectively used for the rotational force of the impeller, which can cope with an increase in power generation capacity, and equipment maintenance can be easily performed without the need to increase the support of the impeller. There is a need for a proposal of a wind power generator that can also reduce construction costs. [0003] The present invention has been made in view of the above-mentioned prior art, and in wind power generation, wind power can be effectively used for the rotation force of an impeller to increase the power generation capacity. It is an object of the present invention to provide a wind power generator that can cope with the problem, does not require a high support portion of the impeller, facilitates equipment maintenance, and can reduce construction costs. [0004] In order to achieve the above object, a wind power generator of the present invention is operated by wind power and has an impeller whose rotation axis is in a vertical direction, and is operated by the rotational force of the impeller. A wind power generator comprising: a main wind receiving portion having an inner angle of about 30 degrees at a main portion of a main wind receiving portion so that the impeller effectively captures a tail wind and reduces a resistance of a head wind. A gutter-like member having a cross-section similar to a mountain-shaped section or an elliptical part-shaped section in contact with the mountain-shaped end and the apex is formed between the other end and the rotation axis. The elongate wind receiving material holding portion, which is disposed in the vertical direction with a gap provided therebetween and is radially protruded in a direction perpendicular to the axial direction from the rotary shaft portion to hold the main wind receiving portion, is at least the main wind. Located near both ends of the receiving part In order to allow the impeller to be self-supporting and rotatable only by the support below the rotating shaft, an annular ring is formed outside the rotating shaft at a distance from the shaft bearing and the rotating shaft. It is characterized in that it is supported on the floor of the support gantry via a bearing support member by an outer ring bearing at the lower part of the part. An embodiment of a wind turbine generator according to the present invention will be described below with reference to the drawings. FIG. 1 is a schematic perspective view illustrating a wind power generator according to the present invention, FIG. 2 is a plan sectional view of an example of an impeller of the present wind power generator, and FIG. 3 is an example of a shape of a main wind receiver of the wind power generator. , FIG. 4 is a cross-sectional view of an example of a rotary bearing of the impeller of the present wind power generator, and FIG. 5 is a side view of an example of a transmission mechanism of the rotational force of the impeller of the present wind power generator to the generator. . As shown in FIG. 1, the wind power generator of the present invention is installed on a floor of a gantry 6 and the like so as to be rotatable, is operated by wind power, and has a rotating shaft in a vertical direction.
And a generator 5 operated by the rotational force of the wind turbine. The impeller 1 has three or more blade portions, and the impeller 1 has an inner angle of about 30 degrees at one end as shown in FIG. 3 in order to effectively catch the tailwind and reduce the resistance of the headwind. The main wind receiving portion 1b, which is a gutter-shaped member having a cross-section similar to a mountain-shaped portion or an elliptical portion in contact with the mountain-shaped end and the apex, has a cross section having an inner angle of about 30 to 45 degrees at the other end. As shown in FIG. 2, a gap is provided between the rotary shaft and the shaft. The gap size is set to be about 20 mm or more and about 1/3 to 1/4 of the width of the main wind receiving portion. In addition, it is preferable to provide a horizontal horizontal reinforcing portion 1f at an appropriate position at a horizontal end portion and an intermediate portion together with a vertical reinforcing portion 1e at a vertical end portion for reinforcement on the back surface of the portion 1b. Then, as shown in FIGS.
In order to hold the main wind receiving portion 1b, at least near both ends of the main wind receiving portion 1b, an elongated wind receiving material holding portion 1c which is orthogonal to the rotating shaft portion 1a in the axial direction and protrudes radially is provided. In addition, as shown in FIG. 3, the impeller 1 and the shaft support 2 of the rotatable rotating shaft 1a are rotatable only by the support below the rotating shaft 1a. Outer ring support 3 at the lower portion of annular portion 1d that forms an outer ring at an interval from 1a
Thus, it is supported on the floor of the support base 6 via the support member 4. The main parts related to this wind turbine are
Details that should be particularly noted in addition to the devices and the like will be described. The impeller 1 may be made of a material such as a metal or alloy such as iron, stainless steel, or titanium, a high-strength plastic such as polycarbonate, epoxy, or polyamide, or a fiber-reinforced plastic such as carbon fiber. It is not limited to the above examples as long as a high-strength material is used and the object of the present invention can be achieved. Further, the scale and detailed dimensions are appropriately set based on the required power generation capacity. It is preferable to reduce the weight of the rotating shaft 1a by hollowing the inside as much as possible, and it is preferable that the material in the vicinity of the lower bearing is metal. And the main wind receiving part 1b
May be used by arranging a plurality of gutter-like members having the shape shown in FIG. 3, but in this case, it is necessary to provide a gap between adjacent members, and the gap is 20 mm or more and approximately 1/1 / of the width of the main wind receiving portion.
The size is set to approximately 3 to 1/4. Further, a material having high strength and capable of achieving a reduction in thickness and weight is preferable.
Adhesion, rivet bonding, and the like are conceivable, but are not limited as long as they can be fixed and the object can be achieved. In addition, wind receiving material holding portion 1
In the case of c, the method of fixing to the rotating shaft portion 1a may be, for example, integral molding with the rotating shaft portion, or welding, welding, bonding, rivet joining, etc., but is not limited as long as it can be fixed and the object can be achieved. It is preferable to make it as narrow as possible, and it is more preferable that the surface receiving the head wind considers a shape that reduces air resistance. The annular portion 1d is disposed at an appropriate position in a range below the wind receiving material holding portion 1c, and is joined to the lowermost portion 1c and the shaft portion 1d.
a through a connecting member. As the connecting member, it is preferable to use a member, a shape, and a connecting method capable of securing the connecting strength capable of achieving the object and reducing the weight. In addition, the vertical reinforcement part 1 of the main wind receiving part 1b
e and the horizontal reinforcing portion 1f are preferably made as thin as possible under the conditions for achieving the reinforcing purpose. As a bearing method used for the shaft bearing portion 2 and the outer ring bearing portion 3, not only a bearing from below but also a bearing method taking into account the horizontal direction and prevention of floating is used, and smooth rotation is possible. As a mechanism for reducing the frictional resistance of the bearing part, for example, a mechanism similar to a ball bearing, polytetrafluoroethylene, fluororesin, graphite, molybdenum disulfide, etc. are mixed with other plastic materials to reduce the frictional resistance. A mechanism that incorporates the sliding member as a sliding member and a mechanism that uses a lubricant such as oil are conceivable. Is not limited. The support member 4 is preferably made of metal in order to improve durability and support strength. The support member 6 is fixed to the support base 6 with, for example, bolts and nuts 7. The generator 5 is not limited as long as it can use a generator conventionally used for wind power generation or the like, and can be connected to the impeller 1 so as to exhibit a power generation function.
In addition to the method of directly connecting the shaft and the impeller 1, for example, a method of transmitting the rotational force by incorporating a gear mechanism 8 as shown in FIG. 5 may be considered, and the rotational force of the impeller 1 is used for power generation. The connection method is not limited as long as it can be provided. Further, the generator 5 is provided with or provided with devices and devices provided or attached to a conventional wind power generator. And the support base 6 is, for example, a steel structure,
The structure, scale, and detailed specifications are appropriately set in consideration of the power generation capacity of the wind turbine generator and the place where the wind turbine generator is to be installed by using a structure such as a reinforced concrete structure. According to the present invention, in wind power generation, it is not necessary to raise the support of the impeller, and facility maintenance is easy,
It is possible to respond to the increase in power generation capacity and to curb construction costs.Therefore, with the fear of depletion of energy resources and the deterioration of the global environment, there is a global By contributing to the spread of power generation devices using wind, which is environmentally friendly natural energy, it can contribute to suppressing the depletion of energy resources and the deterioration of the global environment.

【図面の簡単な説明】 【図1】本発明の風力発電装置を説明する模式的斜視図 【図2】本発明の風力発電装置の一例の羽根車部の平断
面図 【図3】本発明の風力発電装置の主風受け部の形状例の
断面図であり、A図は両端部の内角が30度の形状例
図、B図は他方の端部の内角が45度の形状例図、C図
はA図の山形状の3点に接する楕円の部分形状に類した
形状例図、D図はB図の山形状の3点に接する楕円の部
分形状に類した形状例図である。 【図4】本発明の風力発電装置の羽根車の回転支承部の
一例の断面図 【図5】本発明の風力発電装置の羽根車の回転力の発電
機への伝達機構例の側面図であり、A図は平歯車の例
図、B図は笠歯車の例図である。 【符号の説明】 1 ;羽根車 1a;回転軸部 1b;主風受け部位 1c;風受け材保持部位 1d;環状部位 1e;1bの鉛直補強部位 1f;1bの水平補強部位 2 ;軸支承部 3 ;外環支承部 4 ;支承支持部材 5 ;発電機 6 ;支持架台 7 ;ボルト・ナット等 8 ;歯車機構
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic perspective view illustrating a wind turbine generator according to the present invention. FIG. 2 is a cross-sectional plan view of an impeller of an example of the wind turbine generator according to the present invention. It is sectional drawing of the example of a shape of the main wind receiving part of the wind power generator of FIG. 1, A figure is the example of a shape in which the internal angle of both ends is 30 degrees, B is the example of the shape in which the internal angle of the other end is 45 degrees, FIG. C is an example of a shape similar to an elliptical partial shape in contact with the three points of the mountain shape in FIG. A, and FIG. D is an example of a shape similar to an elliptical partial shape in contact with the three points of the mountain shape in FIG. FIG. 4 is a cross-sectional view of an example of a rotary bearing portion of an impeller of the wind turbine generator of the present invention. FIG. 5 is a side view of an example of a transmission mechanism of the rotational force of the impeller of the wind turbine generator of the present invention to the generator. FIG. A is an example of a spur gear, and FIG. B is an example of a bevel gear. DESCRIPTION OF SYMBOLS 1; impeller 1a; rotating shaft 1b; main wind receiving portion 1c; wind receiving material holding portion 1d; annular portion 1e; vertical reinforcing portion 1f of 1b; horizontal reinforcing portion 2 of 1b; Reference Signs List 3 outer ring support portion 4 support support member 5 generator 6 support base 7 bolts and nuts 8 gear mechanism

Claims (1)

【特許請求の範囲】 【請求項1】 風力により作動し回転軸が鉛直方向にあ
る羽根車と該羽根車の回転力により作動する発電機とを
具備する風力発電装置であって、前記羽根車が追い風を
有効に捉えるとともに向かい風の抵抗を減ずるために、
主風受け部位の主要部に一方の端部の内角が略30度で
他方の端部の内角が略30〜45度をなした断面が山形
状もしくは前記山形状の端部と頂部に接する楕円の部分
形状に類した断面形状の樋状部材を回転軸との間に間隙
を設けて鉛直方向に配設して用いるとともに前記主風受
け部位を保持するために回転軸部から軸方向に直行し放
射状に突出する細長形状の風受け材保持部位が少なくと
も前記主風受け部位の両端部近傍に配設され、前記羽根
車が回転軸部の下方の支承のみで自立し回動可能とする
ために、回動可能な回転軸部の軸支承部と回転軸部から
間隔をおいて外側に環状をなす環状部位の下部の外環支
承部により支承支持部材を介して支持架台の床面上で支
持されたことを特徴とする風力発電装置。
Claims 1. A wind turbine generator comprising an impeller operated by wind power and having a rotating shaft extending in a vertical direction, and a generator operated by the rotational force of the impeller. In order to effectively capture the tailwind and reduce the resistance of the headwind,
The cross-section of the main part of the main wind receiving portion having one end having an interior angle of about 30 degrees and the other end having an interior angle of about 30 to 45 degrees has a mountain-shaped cross section or an ellipse contacting the mountain-shaped end and the top. A gutter-like member having a cross-sectional shape similar to that of the partial shape is provided in the vertical direction with a gap provided between the rotary shaft and the rotary shaft, and the shaft is perpendicular to the rotary shaft portion in the axial direction to hold the main wind receiving portion. An elongated wind receiving material holding portion that protrudes radially is disposed at least near both ends of the main wind receiving portion, and the impeller is allowed to stand alone and rotate only by a support below a rotating shaft portion. On the floor surface of the support base via the support member by the outer ring support part of the lower part of the annular part that forms an outer ring at a distance from the shaft support part of the rotatable rotary shaft part and the rotary shaft part A wind power generator that is supported.
JP2002118782A 2002-04-22 2002-04-22 Wind power generation equipment Pending JP2003314428A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002118782A JP2003314428A (en) 2002-04-22 2002-04-22 Wind power generation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002118782A JP2003314428A (en) 2002-04-22 2002-04-22 Wind power generation equipment

Publications (1)

Publication Number Publication Date
JP2003314428A true JP2003314428A (en) 2003-11-06

Family

ID=29535526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002118782A Pending JP2003314428A (en) 2002-04-22 2002-04-22 Wind power generation equipment

Country Status (1)

Country Link
JP (1) JP2003314428A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100750540B1 (en) 2006-09-30 2007-08-23 유형주 Wind Power System Base Support Structure
KR100816804B1 (en) 2007-04-20 2008-03-25 (주)티넷 Wind turbine blade
KR100977305B1 (en) 2009-12-30 2010-08-23 김덕보 Power generation system of wind and health tool
KR101062190B1 (en) 2009-07-07 2011-09-05 허정 Horizontal rotors of hydro or wind turbines
KR101071582B1 (en) * 2009-08-20 2011-10-10 (주)흥일엔지니어링 Apparatus for supporting of floating type wind power generator
JP2013517421A (en) * 2010-01-14 2013-05-16 コフィー,ダニエル,ピー. Wind energy conversion device
KR101386010B1 (en) 2011-12-06 2014-04-16 (주)케이비친환경 Wind power generator

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100750540B1 (en) 2006-09-30 2007-08-23 유형주 Wind Power System Base Support Structure
KR100816804B1 (en) 2007-04-20 2008-03-25 (주)티넷 Wind turbine blade
KR101062190B1 (en) 2009-07-07 2011-09-05 허정 Horizontal rotors of hydro or wind turbines
KR101071582B1 (en) * 2009-08-20 2011-10-10 (주)흥일엔지니어링 Apparatus for supporting of floating type wind power generator
KR100977305B1 (en) 2009-12-30 2010-08-23 김덕보 Power generation system of wind and health tool
JP2013517421A (en) * 2010-01-14 2013-05-16 コフィー,ダニエル,ピー. Wind energy conversion device
JP2016053372A (en) * 2010-01-14 2016-04-14 コフィー,ダニエル,ピー. Wind power energy conversion device
US9453495B2 (en) 2010-01-14 2016-09-27 Daniel P. Coffey Wind energy conversion devices
US10253755B2 (en) 2010-01-14 2019-04-09 Daniel P. Coffey Wind energy conversion devices
KR101386010B1 (en) 2011-12-06 2014-04-16 (주)케이비친환경 Wind power generator

Similar Documents

Publication Publication Date Title
JP5079001B2 (en) Wind power generator
EP2045464B2 (en) Pitch bearing for wind turbine rotor blades
JP5211241B2 (en) Pitch driving device for wind turbine blade, wind turbine rotor equipped with the same, and wind power generator
US20100133838A1 (en) Turbine rotor and power plant
US20080197639A1 (en) Bi-directional wind turbine
EP2504573B1 (en) Nacelle shell structure
CN109072869B (en) Rotor blade for a wind energy installation and wind energy installation having a rotor blade for a wind energy installation
US20140377078A1 (en) Root stiffener for a wind turbine rotor blade
CN109469593B (en) Wind turbine
JP2003314428A (en) Wind power generation equipment
JP6145056B2 (en) Wind turbine tower and wind power generator
KR101612238B1 (en) Spiral blade unit and wind generator
JP4173727B2 (en) Wind turbine blades
JP2005226588A (en) Wind power generation device
JP5200117B2 (en) Wind turbine rotor design method, wind turbine rotor design support device, wind turbine rotor design support program, and wind turbine rotor
JP4322845B2 (en) Tapered Savonius vertical axis wind turbine, gyromill vertical axis wind turbine and wind power generator using it
JP2006029226A (en) Wind power generation device and lighting system
CN112145340A (en) System and method for pitching of rotor blades
JP2020525709A (en) Rotational coupling mechanism for wind turbine generator and wind turbine generator equipped with rotational coupling mechanism for wind turbine generator
JP2010071237A (en) Wind turbine generator
GB2413367A (en) Wind turbine
JP6657488B2 (en) Windmill with blade elbow bend
US9938959B2 (en) Hub and bearing system and a turbine comprising the hub and bearing system
JP4685379B2 (en) Wind power generator
CN221074509U (en) Steady flow structure and wind turbine