[go: up one dir, main page]

JP2004051624A - Metal surface modifier and new sulfur-containing compound - Google Patents

Metal surface modifier and new sulfur-containing compound Download PDF

Info

Publication number
JP2004051624A
JP2004051624A JP2003105690A JP2003105690A JP2004051624A JP 2004051624 A JP2004051624 A JP 2004051624A JP 2003105690 A JP2003105690 A JP 2003105690A JP 2003105690 A JP2003105690 A JP 2003105690A JP 2004051624 A JP2004051624 A JP 2004051624A
Authority
JP
Japan
Prior art keywords
group
integer
metal surface
formula
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003105690A
Other languages
Japanese (ja)
Other versions
JP4376540B2 (en
Inventor
Kazuo Yamaguchi
山 口  和 夫
Kenji Watanabe
渡 邉  健 司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eiweiss KK
Original Assignee
Eiweiss KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eiweiss KK filed Critical Eiweiss KK
Priority to JP2003105690A priority Critical patent/JP4376540B2/en
Publication of JP2004051624A publication Critical patent/JP2004051624A/en
Application granted granted Critical
Publication of JP4376540B2 publication Critical patent/JP4376540B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technology in which a monomolecular film itself on a metal surface is used as a substrate and various functionalities are imparted to the monomolecular film and to provide a metal surface modifier used therein. <P>SOLUTION: The metal surface modifier is composed of a sulfur-containing compound expressed by either of formulas (1)-(3). In formulas (1)-(3), X is a group inducing an objective functional group; Y is a light eliminable protective group; and Z is a bivalent hydrocarbon group which may contain a heteroatom. In formula (2), a plurality of X, Y and Z may be the same or different from each other. In formula (3), (a) is an integer of 0-100. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【産業上の利用分野】
本発明は、金属表面修飾剤およびこれに好適に用いられる新規含硫黄化合物に関する。
【0002】
【従来の技術】
有機低分子や高分子の機能特性を究極のサイズ領域で発現させるべく、固体表面を単分子膜で被覆し、かつ、そのパターンを形成する手法ならびに材料に関する研究が活発になっている。
このような技術では、金属表面に自己組織化膜と呼ばれる単分子膜を形成し、自己組織化膜の物性に起因した種々の機能性の発現を検討している(非特許文献1)。
【0003】
上記のような単分子膜を金属材料上に形成することで、さまざまな物性の発現が期待されている。また、単分子膜を重合させ、金属表面上に任意の機能を有する重合膜を形成する研究もなされている。
しかし、このように形成された単分子膜自体を基体として、これに種々の機能性を付与する研究はあまり行われていない。単分子膜に光照射して発生させた様々な官能基を利用して、酵素などの生体分子で結合修飾させれば、金属に様々な機能性を付与できる可能性がある。また、特定の波長の光を用いて複数の官能基を特定の位置に発生させることにより、複数の生体分子を配列させた高次機能性表面を作成することも可能である。
【0004】
【非特許文献1】
高分子、51巻、3月号、143〜147頁
【0005】
【発明が解決しようとする課題】
本発明は、上記のような状況に鑑み、単分子膜自体を基体として、これに種々の機能性を付与する技術を提供することを目的としている。
【0006】
【課題を解決するための手段】
本発明に係る金属表面修飾剤は、
下記式(1)〜(3)の何れかで表される含硫黄化合物からなる。
【0007】
【化8】

Figure 2004051624
【0008】
Xは、目的とする官能基を誘導する基であり、好ましくはカルバメート基、カルボン酸エステル基、カーボネート基、エーテル基、チオカーボネート基、チオエーテル基またはスルホン酸エステル基である。
Yは、光脱離性保護基であり、好ましくは下記式(4)にて示される光脱離性保護基である。
【0009】
【化9】
Figure 2004051624
【0010】
は、水素またはメチル基であり、
bは、1〜4の整数であり、
は、水素またはメトキシ基であり、bが2以上の場合は、2つのRは共同して酸素を含んでいてもよい環を形成してもよい。
Zは、ヘテロ原子を含有していてもよい二価の炭化水素基であり、好ましくは−(CH−、−(CH−CH−O)−、−(Ph)−、−(Ph−O)−(ただし、c、d、e、fはそれぞれ1〜30の整数、−Ph−はフェニレン基である)から選ばれる基、またはこれらの組み合わせ(ただし、c+d+e+fは1〜40)である。なお、式(2)において、複数のX、Y、Zはそれぞれ同一でも異なっていてもよい。また、式(3)において、aは0〜10の整数である。
【0011】
上記(1)式で示されるチオール系化合物の中でも、好ましい態様に係るチオール系化合物は新規化合物である。また、上記(2)式で示されるジスルフィド系化合物の中でも、好ましい態様に係るジスルフィド系化合物は新規化合物である。さらに上記(3)式で示される環状ジスルフィド系化合物の中でも、好ましい態様に係る環状ジスルフィド系化合物は新規化合物である。以下、これらの化合物を「含硫黄化合物」または「新規含硫黄化合物」と呼ぶことがある。
【0012】
このような本発明によれば、金属表面に、種々の機能性を有する単分子膜を形成するために用いられる金属表面修飾剤が提供される。また、本発明によれば、このような金属表面修飾剤として好ましく用いられる新規含硫黄化合物が提供される。
【0013】
【発明の実施の形態】
以下、本発明に係る金属表面修飾剤および新規含硫黄化合物について、具体的に説明する。
本発明に係る金属表面修飾剤は、
下記式(1)で表されるチオール系化合物、下記式(2)で表されるジスルフィド系化合物または下記式(3)で表される環状ジスルフィド系化合物からなる。
【0014】
【化10】
Figure 2004051624
【0015】
式中、Xは、目的とする官能基を誘導する基であり、好ましくはカルバメート基、カルボン酸エステル基、カーボネート基、エーテル基、チオカーボネート基、チオエーテル基またはスルホン酸エステル基である。
これらの基は、下記のような配置でチオール系化合物またはジスルフィド系化合物中に存在し、光脱離性保護基(Y)の脱離により、右欄に記載の官能基を誘導する。なお、下表において、zは、Zに結合する結合手を表し、yはYに結合する結合手を表す。
【0016】
【表1】
Figure 2004051624
【0017】
Yは、光脱離性保護基であり、所定の反応工程においてはXを保護し、光照射により脱離する性質を有する。ここで、光としては一般的には、紫外線が用いられるが、光脱離性保護基が脱離する程度のエネルギー線であれば、これに限定されない。
このような光脱離性保護基としては、好ましくは下記式(4)にて示される光脱離性保護基を例示できる。
【0018】
【化11】
Figure 2004051624
【0019】
は、水素またはメチル基であり、
bは、1〜4の整数、好ましくは1〜2の整数であり、
は、水素またはメトキシ基であり、bが2以上の場合は、2つのRは共同して酸素を含んでいてもよい環(たとえばメチレンジオキシ基)を形成してもよい。
【0020】
したがって、好ましい光脱離性保護基としては、下記構造のものを例示できる。
【0021】
【化12】
Figure 2004051624
【0022】
上記のような光脱離性保護基Yは、光照射によりXから脱離し、上記表に示した基を誘導する。なお、Yの脱離に際して、Xの一部もともに脱離する場合がある。たとえば、上記表において、カルバメート基からアミン基が誘導される際には、カルバメート基中のCOO基も光脱離性保護基Yとともに脱離する。
光脱離性保護基Yの脱離の条件は、XおよびYの種類により様々であり、一概には決定できないが、一般的には、室温程度の温度で、十分な光量の紫外線を照射することで脱離できる。
【0023】
Zは、ヘテロ原子を含有していてもよい二価の炭化水素基であり、単分子膜の形成を損なわない限り、特に限定はされないが、
好ましくは−(CH−、−(CH−CH−O)−、
【0024】
【化13】
Figure 2004051624
【0025】
から選ばれる。ここで、c、d、e、fは、それぞれ好ましくは1〜30の整数、さらに好ましくは1〜20の整数である。また、Zは、上記の基の組み合わせであってもよい。この場合、c+d+e+fは、好ましくは1〜40、さらに好ましくは1〜20程度である。
したがって、Zが、−(CH−単独で構成される場合には、cは、好ましくは1〜30の整数、さらに好ましくは1〜20の整数であり、
Zが、−(CH−CH−O)−単独で構成される場合には、dは、好ましくは1〜30の整数、さらに好ましくは1〜20の整数であり、
Zが、−(Ph)−単独で構成される場合には、eは、好ましく1〜30の整数、さらに好ましくは1〜20の整数であり、
Zが、−(Ph−O)−単独で構成される場合には、fは、好ましく1〜30の整数、さらに好ましくは1〜20の整数である。
【0026】
上記した構成単位は、上述したように、任意の組み合わせで2種以上含まれていてもよい。このようなZの構成例としては、下記の基を例示できる。
−(CHc1−(Ph)e1−(CHc2
(c1は、1〜20の整数、e1は1〜20の整数、c2は1〜20の整数であり、c1+e1+c2は40以下である)
−(CHc3−(Ph−O)f1
(c3は、1〜20の整数、f1は1〜20の整数、c3+f1は40以下である)
−(CHc4−(Ph−O)f2−(CH−CH−O)d1
(c4は、1〜20の整数、f2は1〜20の整数、d1は1〜20の整数であり、c4+f2+d1は40以下である)
なお、式(2)において、複数のX、Y、Zはそれぞれ同一でも異なっていてもよい。
【0027】
また、式(3)において、aは0〜10の整数、好ましくは0〜3の製数である。したがって、式(3)における好ましい環状スルフィド部分(S−S結合含有環)は、下記式にて示される。なお、下記式中zは、上記Zに結合する結合手を示す。
【0028】
【化14】
Figure 2004051624
【0029】
本発明に係る金属表面修飾剤は、上記の含硫黄化合物からなる。なお、上記含硫黄化合物のうち、Xが、カルバメート基、カルボン酸エステル基、カーボネート基、エーテル基、チオカーボネート基、チオエーテル基またはスルホン酸エステル基であり、
Yが、上記式(4)にて示される光脱離性保護基であり、
Zが、−(CH−、−(CH−CH−O)−、−(Ph)−、−(Ph−O)−から選ばれる基、またはこれらの組み合わせである化合物は新規化合物であり、金属表面修飾剤のみならず、種々の用途展開が期待できる。
【0030】
本発明の金属表面修飾剤は、上記の含硫黄化合物を主成分とし、必要に応じ、光非分解性のHS−Z−X−H、H−X−Z−S−S−Z−X−Hまたは(S−S結合含有環)−Z−X−H(ここで、Z、Xは上記と同様である)等を含有していてもよい。
この金属表面修飾剤を金属表面に適用すると、分子末端のチオール基(HS−)あるいは分子中央のジスルフィド結合部(−S−S−)が金属表面と反応し、金属−硫黄結合が形成され、下記のような単分子膜が得られる。金属材料としては、好ましくは金、銀、白金またはこれらを被覆した材料が用いられる。
【0031】
【化15】
Figure 2004051624
【0032】
金属表面修飾剤の金属表面への適用方法は特に限定はされず、種々の公知の手段により金属表面にチオール化合物の単分子膜を形成できる。また、この際、マスク等を用いることで、パターン化された単分子膜を形成することもできる。
本発明の金属表面修飾剤では、上記のような含硫黄化合物を用い、硫黄(S)を金属表面に結合させて、金属表面に単分子膜を形成している。硫黄は、金や銀、白金などの貴金属にも反応するため、本発明によれば、これら貴金属表面の修飾も容易となる。
【0033】
金属表面に単分子膜を形成した後、光照射によりYを脱離させると、前述したようにXの種類に応じて種々の機能性を有する官能基を誘導でき、かくして金属表面を修飾できる。さらに、光照射をパターン状に行なうことで、金属表面にパターン状の修飾部分を形成することもできる。
したがって、ナノレベルでの機能性制御の可能性が考えられ、ナノ金属錯体、金属ナノ粒子、機能性フォトニクス結晶、金−アルカンチオール系自己組織化膜などの様々な用途への応用が考えられる。
【0034】
本発明で用いるチオール系化合物および上記新規チオール系化合物は、末端にHS−基を有し、他端に反応性基Rを有する化合物(HS−Z−R;Zは上記と同様)と、光離脱性保護基Yを導く化合物とを反応させることで得られる。Rとしては、カルボン酸、アミンなどの種々の反応性基が適宜に用いられる。また、光離脱性保護基Yを導く化合物としては、分子内にニトロフェニル基を有する化合物や、Rとの反応により最終的にニトロフェニル基を導く化合物が用いられる。
【0035】
たとえば、Xがカルボン酸エステル基(−COO−)であるチオール系化合物は、下記反応式により形成される。
【0036】
【化16】
Figure 2004051624
【0037】
また、たとえば、Xがカルバメート基(−NH−COO−)であるチオール系化合物は、下記反応式により形成される。
【0038】
【化17】
Figure 2004051624
【0039】
また、たとえば、Xがエーテル基(−O−)であるチオール系化合物は、下記のようにアルキルチオアセティクアシッド−2−ニトロベンジルエーテルを、濃硫酸などによりチオール化することで得られる。
【0040】
【化18】
Figure 2004051624
【0041】
また、たとえば、Xがチオエーテル基(−S−)であるチオール系化合物は、下記反応式により形成される。
【0042】
【化19】
Figure 2004051624
【0043】
また、本発明で用いるジスルフィド系化合物および上記新規ジスルフィド系化合物は、分子内にジスルフィド結合(−S−S−)を有し、末端に反応性基Rを有する化合物(R−Z−S−S−Z−R;Zは上記と同様)、たとえばHOCO−(CH−S−S−(CH−COOH、HN−(CH−S−S−(CH−NH等を出発物質として用い、上記チオール系化合物と同様にして製造できる。
【0044】
また、チオール系化合物(HS−Z−X−Y)を製造した後、これを脱水素、二量化して、ジスルフィド系化合物(Y−X−Z−S−S−Z−X−Y)を得ることもできる。
さらにまた、上記ジスルフィド系化合物において、ジスルフィド結合(−S−S−)を切断することで、チオール系化合物を得ることもできる。
【0045】
また、本発明で用いる環状ジスルフィド系化合物および上記新規環状ジスルフィド系化合物は、前記チオール系化合物の製法に準じて製造することができる。すなわち、末端にS−S結合含有環を有し、他端に反応性基Rを有する化合物((S−S結合含有環)−Z−R;Z、Rは上記と同様)と、光離脱性保護基Yを導く化合物とを反応させることで得られる。
【0046】
反応条件は、反応物の種類により様々であり、一概には記述できないが、通常の有機合成の手法に準じて反応でき、また常法に従って、精製等を行っても良い。
【0047】
【発明の効果】
本発明によれば、金属表面に、種々の機能性を有する単分子膜を形成するために用いられる金属表面修飾剤が提供される。また、本発明によれば、このような金属表面修飾剤として好ましく用いられる新規含硫黄化合物が提供される。
【0048】
【実施例】
以下に本発明の内容を示す実施例を示す。本発明はこれにより限定されるものではない。
【0049】
【実施例1】200mlナスフラスコに1−(2−nitrophenyl)diazoethane chloroform溶液100ml(5.58mmol)入れ、滴下漏斗に3−mercaptopropionic acid 0.97g(6.97mmol)をChloroform 50mlに溶かした溶液に入れた。反応で発生する窒素を確認するためにしぼませた風船を取り付け、氷浴中で滴下しながら1時間攪拌し、室温で1時間攪拌した。反応後溶媒を留去し、粗生成物2.42g得た。これをカラムクロマトグラフィー(hexane−ethyl acetate=2:1)で精製し、黄色粘体の目的物0.91g(3.38mmol)得た。
【0050】
収率は60.6%であり、H−NMRおよびIR(NaCl)の結果は下記のとおりであった。
H−NMR(400MHz, CDCl/TMS);δ 7.4−7.9(m, 4H, aromatic), 6.3(q, J=6.4 Hz, 1H, methane), 2.6−2.7(m, 4H, methylene), 1.6(d, J=6.0 Hz, 3H, methyl)
IR(NaCl);2576 cm−1(S−H), 1733 cm−1(C=O), 1524 および 1352 cm−1(NO
この結果、反応は下記のように進行していることがわかった。
【0051】
【化20】
Figure 2004051624
【0052】
【実施例2】窒素置換した100mlナスフラスコに2−aminoetanethiol 0.25 g (3.24mmol)、1−(2−nitrophenyl)ethyl−N−hydroxysuccnimidyl carbonate 1.00 g (3.25mmol)入れ、乾燥DMF 30 ml加え、100℃で1時間加熱攪拌した。反応後、DMFを減圧留去し褐色粘体の粗生成物1.30g得た。これをカラムクロマトグラフィー(hexane−ethyl acetate=1:1)で精製し、黄色粘体の目的物0.69g(2.55mmol)得た。
【0053】
収率は78.7%であり、H−NMRおよびIR(NaCl)の結果は下記のとおりであった。
H−NMR(400MHz, CDCl/TMS);δ 7.93 (d, 1H, J=8.0 Hz, aromatic), 7.60−7.63(m, 4H, aromatic), 7.40−7.44 (m, 1H, aromatic), 6.25(q, J=6.4 Hz, 1H, methine), 5.16 (br, 1H, amine), 3.28−3.36(m, 2H, methylene), 2.63(q, 2H, J=6.4 Hz, methylene), 1.63(d, 3H, J=6.4 Hz, methyl)
IR(NaCl); 3339 cm−1(N−H), 2568 cm−1(S−H), 1717 cm−1(C=O), 1526 および 1353 cm−1(NO
この結果、反応は下記のように進行していることがわかった。
【0054】
【化21】
Figure 2004051624
【0055】
【実施例3】
金属表面修飾剤としての評価を以下のように行なった。
「試験金属板の作成」
50mlのナスフラスコに水15ml、30%過酸化水素3.0ml、25%アンモニア水3.0mlを入れ、軽く振り混ぜ、その中にシリコンウエハを入れて80℃で10分間加熱した。その後ウエハを取り出し、水で洗浄(3回)、水中で10分間超音波洗浄した。表面に付着した水を窒素気流で乾燥させた後、小型真空蒸着装置JEE−3X(JEOL製)を用い、金の真空蒸着を行なった。作成した試験金属板はメタノール中で数秒間超音波洗浄を行なった。洗浄後、金属板表面と水との接触角を測定したところ約56°であった。
「表面修飾」
100mlビーカーに、実施例2で作成した1−(2−ニトロフェニル)エチル 3−(メルカプト)エチルカルバメート約15mgを量り取りエタノール20mlに溶解させ、約25mMの1−(2−ニトロフェニル)エチル 3−(メルカプト)エチルカルバメートのエタノール溶液を調製した。これに前記試験金属板を入れ、空気中、室温で1時間放置放置した後、取り出し、金属板表面と水との接触角を測定したところ約64°であった。
「光照射」
300nm以下の波長の光を遮断するパイレックス(R)製水フィルターを用意し、表面修飾した試験金属板を、光照射条件の照度が当る試料台の位置に光が確実に当るように載せ、光照射した。その後、金属板表面をメタノールで洗い流し表面のメタノールを気化させた後、水との接触角を測定した。
【0056】
光照射後約5分で接触角は55°まで減少し、30分で52°、1時間で51°まで減少した。
光照射により、ニトロフェニル基が脱離し、アミノ基が形成された結果、上記のように接触角が減少したものと考えられる。
【0057】
【実施例4】
1−(2−ニトロフェニル)エチル11−メルカプトウンデカノエート(エステルタイプ)の合成
<ステップ1>11−メルカプトウンデカノイックアシッド の合成
チオウレア 1.05 g (24.0 mmol) を 90 % エタノール / 水 165 mL に溶解し、メチル11−ブロモウンデカノエート 3.36 g (12.0 mmol) を加え、四時間還流した。NaOH 1.20 g (30. 0 mmol) を加え二時間還流し、エタノールを除去した。反応物は、6 N 硫酸 100 mL によって酸性にし、エーテル (100 mL×3) で抽出、乾燥、濾過、濃縮し、7.35 g の粗生物を得た。残渣をエタノールから再結晶し、白色粉体 1.01 g (4.63 mmol, 53 %) を得た。
H−NMR (CDCl, 400 MHz) δ 2.51 (2H, t, J = 7.6 Hz, HS−C ), 2.36 (2H, t, J = 6.8 Hz, HOOC−C ), 1.54−1.64 (4H, m, C −(CH−C ), 1.26−1.37 (12H, s, CH−(C −CH);
IR (KBr) 1700 cm−1 (C=O), 2678 cm−1 (S−H), 3431 cm−1 (O−H)
<ステップ2>1−(2−ニトロフェニル)エチル 11−メルカプトウンデカノエートの合成
200 mL ナスフラスコに、2−ニトロアセトフェノンのヒドラゾン 1.00 g (5.58 mmol) をクロロホルム 70 mL に溶解し、二酸化マンガン 2.84 g (32.6 mmol) を少しずつ加え、室温で15 分間撹拌した。反応液をろ過し、0.1 M 炭酸水素ナトリウム水溶液で洗浄した。一方、クロロホルム50 mL に溶解した<ステップ1>で合成した11−メルカプトウンデカノイックアシッド 0.85 g (3.90 mmol) に氷冷下で、1−(2−ニトロフェニル)ジアゾエタンのクロロホルム溶液を滴下した。0 ℃で一時間撹拌し、更に室温で三時間撹拌したあと、濃縮した。これをシリカゲルカラムで分離精製 (ヘキサン : 酢酸エチル = 2 : 1) を行い、乾燥したところ、透明粘体 0.14 g (0.40 mmol, 10 %) を得た。H−NMR (CDCl, 400 MHz) δ 1.31−1.35 (15H, m, S−CH−(C ), 1.53−1.65 (5H, m, CH−C , HS−CH−C , 2.29−2.34 (2H, m, −C −COO), 2.52 (2H, t, J = 7.6 Hz, HS−C −), 6.32 (1H, q, J = 6.4 Hz, −C−COO), 7.43−7.95 (4H, m, Ar−H);
IR (NaCl) 1526および1351 cm−1 (NO), 1738 cm−1 (C=O), 2576 cm−1 (S−H)この結果、反応は下記のように進行していることがわかった。
【0058】
【化22】
Figure 2004051624
【0059】
【実施例5】
1−(2−ニトロベンジル) エチル 3−チオオクテート(エステルタイプ)の合成
200 mL ナスフラスコに、2−ニトロアセトフェノンのヒドラゾン 1.02 g (5.64 mmol) をクロロホルム 70 mL に溶解し、二酸化マンガン 2.85 g (32.7 mmol) を少しずつ加え、室温で15 分間撹拌した。反応液をろ過し、0.1 M 炭酸水素ナトリウム水溶液 100 mL で洗浄した。一方、クロロホルム50 mL に溶解した DL−α−チオオクチックアシッド 0.51 g (2.47 mmol) に氷冷下で、1−(2−ニトロフェニル)ジアゾエタンのクロロホルム溶液を滴下した。0 ℃で一時間撹拌し、更に室温で四時間撹拌したあと、抽出 (クロロホルム 100 mL × 3, 飽和炭酸ナトリウム水溶液) し、乾燥、濾過、濃縮した。これをシリカゲルカラムで分離精製 (ヘキサン : 酢酸エチル = 4 : 1) を行い、乾燥したところ、黄色粘体 0.32 g (0.90 mmol, 37 %) を得た。
H−NMR (CDCl, 400 MHz) δ 1.54 (2H, s), 1.60−1.70 (5H, m), 1.86−2.05 (1H, m), 2.32−2.37 (2H, m), 2.41−2.58 (1H, m), 3.07−3.19 (1H, m), 3.51−3.57 (1H, m), 6.30−6.35 (1H, q, J = 6.4 Hz), 7.41−7.94 (4H, m);
IR (NaCl) 1523および1351 cm−1 (NO), 1732 cm−1 (C=O)
この結果、反応は下記のように進行していることがわかった。
【0060】
【化23】
Figure 2004051624
【0061】
【実施例6】
3−メルカプトプロピル2−ニトロベンジルエーテル(エーテルタイプ)の合成<ステップ1>アリル2−ニトロベンジルエーテルの合成
窒素置換した 300 mL ナスフラスコに dry ヘキサン 100 mL, 水素化ナトリウム (60 %) 2.15 g (53.8 mmol) を入れ、十分間撹拌した。上澄み液を取り除き、乾燥ヘキサン 30 mL を加え、氷浴で冷却しながら アリルアルコール 35 mL を滴下した。更に、2−ニトロベンジルブロミド 7.01 g (32.4 mmol) を アリルアルコール 100 mL に溶解し、滴下した。滴下後、窒素気流下で一晩撹拌した。これを濃縮し、濃塩酸 20 mL, 水 100 mL を加え、抽出 (クロロホルム 100 mL×5) した。乾燥、濾過、濃縮し、減圧蒸留 (0.1 mmHg, 75 ℃) を行ったところ、淡黄色液体 5.03 g (26.0 mmol, 80 %) が得られた。
H−NMR (CDCl, 400 MHz) δ 4.13−4.15 (2H, m, O−C CH), 4.91 (2H, s, Ar−C ), 5.23−5.38 (2H, m, −CH=C ), 5.94−6.01 (1H, m, −C=CH), 7.26−8.09 (4H, m, Ar−H);
IR (NaCl) 1344および1526 cm−1 (NO)
<ステップ2>プロピルチオアセティックアシッド2−ニトロベンジルエーテルの合成
窒素置換した 50 mL ナスフラスコに<ステップ1>で合成したアリル2−ニトロベンジルエーテル 0.960 g (4.97 mmol), AIBN 0.120 g (0.730 mmol) をメタノール 30 mL で溶解した。そこに チオアセティックアシッド 1.47 g (19.3 mmol) を加え、タングステンランプで照射しながら三時間撹拌した。反応液を濃縮し、残渣でシリカゲルカラム (ヘキサン : 酢酸エチル = 4 : 1) で分離精製し、黄色液体 1.36 g (5.50 mmol, 98 %) が得られた。
H−NMR (CDCl, 400 MHz) δ 1.91−1.98 (2H, m, CH−C −CH−), 2.33 (3H, s,−C ), 3.02 (2H, t, J = 6.8, S−C ), 3.63 (2H, t, J = 6.8, CH−O−), 4.88 (2H, s, Ar−CH), 7.44 (1H, t, Ar−H), 7.65 (1H, t, Ar−H), 7.80 (1H, d, Ar−H) , 8.06 (1H, d, Ar−H);
IR (NaCl) 1343および1526 cm−1 (NO)
<ステップ3>3−メルカプトプロピル2−ニトロベンジルエーテル
窒素置換した 50 mL ナスフラスコに、<ステップ2>で合成したプロピルチオアセティックアシッド2−ニトロベンジルエーテル 0.320 g (1.19 mmol), 濃塩酸 1mL, メタノール 30 mL を加え、六時間還流した後、抽出 (エーテル 50 mL×4) した。残渣をシリカゲルカラム (ヘキサン : 酢酸エチル = 8 : 1) で分離精製し、黄色液体 0.110 g (0.480 mmol, 40 %) が得られた。
H−NMR (CDCl, 400 MHz) δ 1.38 (1H, t, S−CH), 1.96 (2H, m, J = 6.8 Hz, HS−CH−CH), 2.68 (2H, q, J = 8.0, S−C ), 3.69 (2H, t, J = 6.0, C −O−), 4.88 (2H, s, Ar−C ), 7.42−8.07 (4H, m, Ar−H); IR (NaCl) 1343および1526 cm−1 (N−O), 2574 cm−1 (S−H)
この結果、反応は下記のように進行していることがわかった。
【0062】
【化24】
Figure 2004051624
【0063】
【実施例7】
3−メルカプトプロピル2−ニトロベンジルスルフィドの合成
窒素置換した 100 mL ナスフラスコに 60 % 水素化ナトリウム 0.090 g (2.25mmol) を入れ、氷浴上で dry THF 20 mL に溶解した 1,3−プロパンジチオール 0.750 g (6.93 mmol) を滴下し、室温で 2.5 時間撹拌した。反応液を濃縮し、2M 塩酸 10 mL と飽和食塩水 100 mL を加え、クロロホルムで抽出 (50 mL×3) した。有機層を乾燥、濾過、濃縮し粗生物を得た。残渣をシリカゲルカラムで分離精製 (ヘキサン : 酢酸エチル) したところ、目的物 0.39 g (1.60 mmol, 71 %) が得られた。
H−NMR (CDCl, 400 MHz) δ 1.31 (2H, t, J = 8.0 Hz, S−CHCH), 1.80−1.87 (2H, m, −CH −CH), 2.56−2.62 (4H, m, HS−C CH−, −CH −S−), 4.07 (2H, s, Ar−CH−), 7.40−7.49 (2H, m, Ar−H), 7.56 (1H, t, J = 7.2 Hz, Ar−H), 7.97 (1H, d, J = 8.4 Hz, Ar−H);
IR (NaCl) 1346および1528 cm−1 (NO), 2570 cm−1 (S−H)
この結果、反応は下記のように進行していることがわかった。
【0064】
【化25】
Figure 2004051624
【0065】
【実施例8】
3−メルカプトプロピル1−(2−ニトロフェニル)エチルスルフィドの合成
窒素置換した、100 mL 二口フラスコに 1,3−プロパンジチオール 0.71 g (3.60 mmol), dry アセトン 50 mL, 炭酸カリウム 0.500 g (3.60 mmol), 1−(2−ニトロフェニル)エチルp−トルエンスルホネート1.10 g (3.42 mmol) を入れ、八時間還流した。反応液を濃縮し、ヘキサン 20 mL を加え、沈殿した白色固体を濾別した。濾液を乾燥、濾過、濃縮し、残渣をシリカゲルカラムで分離精製 (ヘキサン : 酢酸エチル = 6 : 1) したところ、目的物 0.170 g (0.700 mmol, 20 %) が得られた。H−NMR (CDCl, 400 MHz) δ 1.25 (2H, t, J = 8.0 Hz,S−CHCH−), 1.61 (3H, d, J = 6.8 Hz, −CH −CH), 1.71−1.78 (2H, m, −CH −CH), 2.48−2.56 (4H, m, HS−C −, −CH −S), 4.07 (1H, m, Ar−CH),7.35 (1H, t, J = 9.2 Hz, Ar−H), 7.59 (1H, t, J = 8.0 Hz, Ar−H), 7.75 (1H, t, J = 8.0 Hz, Ar−H), 7.85 (1H, d, J = 8.4 Hz, Ar−H);
IR (NaCl) 1346および1528 cm−1 (NO), 2570 cm−1 (S−H)
この結果、反応は下記のように進行していることがわかった。
【0066】
【化26】
Figure 2004051624
【0067】
【実施例9】
1−(4,5−ジメトキシ−2−ニトロフェニル)エチル11−メルカプト−N−ウンデシル−カルバメートの合成
<ステップ1>N−(11−アセチルチオウンデシル) フタルイミドの合成
30 mL 二口フラスコに、窒素雰囲気下、N−(10−ウンデセニル)−1−フタルイミド0.770 g (2.57 mmol), チオアセティックアッシド 0.74 mL (10.9 mmol), AIBN0.050 g (0.270 mmol) をとり、メタノール 20 mL で溶解した。反応液を撹拌しながら三時間、150 W タングステンランプで照射した。これを濃縮し、シリカゲルカラムで分離精製 (ヘキサン : 酢酸エチル = 2 : 1) したところ白色粉体 0.95 g (2.53 mmol, 98.4 %) が得られた。
H−NMR (CDCl, 400 MHz) δ 1.25−1.32 (14H, s, −(CH−), 1.55 (2H, m, −C CH−S−), 1.68 (2H, m, −C CH−N−), 2.32 (3H, s, −CH), 2.86 (2H, t, J = 7.2 Hz, −CH−S−), 3.67 (2H, t, J = 7.2 Hz, =CH−N);
IR (KBr) 1697 cm−1 (C=O, succinyl), 1771 cm−1 (C=O);
<Reference> Panadda Chirakul, et. al, Langmuir, 18, 4324−4330 (2002)
<ステップ2>11−アミノウンデカンチオールの合成
<ステップ1>で合成したN−(11−アセチルチオウンデシル) フタルイミド 0.410 g (1.09 mmol) をメタノールに溶解し、濃塩酸 1 mL を加えた。これを穏やかに六時間還流した。更にヒドラジン一水和物を 0.90 mL (18.5 mmol) 加え、三時間還流した。冷却後、不溶物を濾過によって取り除いた。濾液を濃縮し、残渣に水 50 mL を加え、クロロホルムで抽出 (50 mL×3) した。有機層を飽和食塩水 150 mL で洗浄し、乾燥、濾過、濃縮、真空乾燥したところ、白色粉体 0.110 g (0.540 mmol, 49.5 %) が得られた。
H−NMR (CDCl, 400 MHz) δ 1.27−1.39 (14H, s, −(C −), 1.44 (1H, t, J = 6.6 Hz, −SH), 1.55−1.64 (4H, m, HS−CH N−CH −), 2.52 (2H, m, −C −SH), 2.68 (2H, t, J = 7.0 Hz, −CH−NH);
IR (KBr) 2560 cm−1 (S−H), 3332 cm−1 (−NH
<ステップ3>1−(4,5−ジメトキシ−2−ニトロフェニル) エチル 11−メルカプト)−N−ウンデシルカルバメートの合成
窒素気流下、1−(4,5−ジメトキシ−2−ニトロフェニル)エチル N−サクシンイミジルカーボネート 0.210 g (0.590 mmol) を THF 20 mL に溶解し<ステップ2>で合成した11−アミノウンデカンチオール0.120 g (0.590 mmol) を加え、室温で三時間撹拌した。反応液を濃縮し、シリカゲルカラム (ヘキサン : 酢酸エチル = 2 : 1) で分離精製し、オレンジ色液体 0.13 g (0.28 mmol, 47.5 %) が得られた。
H−NMR (CDCl, 400 MHz) δ 1.26 (18H, s, −(C −), 1.33 (1H, t, J = 8.0Hz, −SH), 1.61 (3H, d, J = 7.6 Hz, −CH), 2.52 (2H, q, J = 7.6 Hz, −C SH), 3.13 (2H, m, −C NH), 3.93 (3H, s, −C O), 3.97 (3H, s, −C O), 4.73 (1H, br, −NH), 6.37 (1H, q, J = 6.2 Hz, −CH), 7.00 (1H, s, Ar−H), 7.59(1H, s, Ar−H);
IR (NaCl) 1336および1520 cm−1 (NO), 1719 cm−1 (C=O), 2398 cm−1 (S−H), 3449 cm−1 (N−H)
この結果、反応は下記のように進行していることがわかった。
【0068】
【化27】
Figure 2004051624
【0069】
【実施例10】
1−(2−ニトロフェニル)エチル 11−(メルカプト)−N−ウンデシルカルバメートの合成
室温、窒素気流下で、1−(2−ニトロフェニル)エチル N−サクシンイミジルカーボネート 0.150 g (0.490 mmol) を、dry THF 20 mL に溶解し、11−アミノウンデカンチオール 0.10 g (0.490 mmol) を加えた。室温で三時間撹拌後濃縮し、残渣をシリカゲルカラムで分離精製 (ヘキサン : 酢酸エチル = 3 : 1) を行ったところ、黄色液体 0.150 g (0.380 mmol, 77.6 %) が得られた。
H−NMR (CDCl, 400 MHz) δ 1.25 (18H, s, −(CH−), 1.33 (1H, t, J = 7.6Hz, −SH), 1.61 (3H, d, J = 6.4 Hz, n−CH), 2.52 (2H, q, J = 7.2 Hz, S−CH), 3.11 (2H, m, NH−CH), 4.72 (1H, br, −NH), 6.23 (1H, q, J = 6.4 Hz, −CH), 7.41 (1H, m, Ar−H), 7.61 (2H, m, Ar−H), 7.92 (1H, d, J = 8.0 Hz, Ar−H);
IR (NaCl) 1350および1526 cm−1 (NO), 1705 cm−1 (C=O), 2567 cm−1 (S−H), 3343 cm−1 (N−H)
この結果、反応は下記のように進行していることがわかった。
【0070】
【化28】
Figure 2004051624
【0071】
【実施例11】
1−(4,5−ジメトキシ−2−ニトロフェニル)エチル 2−(メルカプト)−N−エチルカルバメートの合成
室温、窒素気流下、1−(4,5−ジメトキシ−2−ニトロフェニル)エチル N−サクシンイミジルカーボネート1.00 g (2.72 mmol) を DMF 50 mL に溶解し、2−アミノエタンチオール 0.25 g (3.24 mmol) を加えた。100 ℃で一時間撹拌した後、水 50 mL, 2 N 塩酸 16 mL を加え、酢酸エチルで抽出 (50 mL×3) した。有機層を飽和食塩水 100 mL で洗浄し、乾燥、濾過、濃縮したところ粗生物 2.10 g が得られた。残渣をシリカゲルカラムで分離精製 (ヘキサン : 酢酸エチル = 2 : 1)
したところ、黄色液体 0.820 g (2.48 mmol, 91.2 %) が得られた。
H−NMR (CDCl, 400 MHz) δ 1.32 (1H, t, J = 8.0 Hz, −SH), 1.61 (3H, d, J= 6.8 Hz, −CH), 2.64 (2H, q, J = 6.4 Hz, −CH−SH), 3.33 (2H, q, J = 6.4 Hz, −C −NH−), 3.94 (3H, s, −OCH), 3.98 (3H, s, −OCH), 5.21 (1H, br,−NH), 6.38 (1H, q, J = 6.4 Hz, −CH), 7.01 (1H, s, Ar−H), 7.59 (1H, s, Ar−H);
IR (NaCl) 1373および1519 cm−1 (NO), 1719 cm−1 (C=O), 2570 cm−1 (S−H), 3382 cm−1 (N−H)
この結果、反応は下記のように進行していることがわかった。
【0072】
【化29】
Figure 2004051624
[0001]
[Industrial applications]
The present invention relates to a metal surface modifier and a novel sulfur-containing compound suitably used for the same.
[0002]
[Prior art]
In order to express the functional characteristics of organic low molecules and high molecules in the ultimate size region, studies on techniques and materials for coating a solid surface with a monomolecular film and forming its pattern have been active.
In such a technique, a monomolecular film called a self-assembled film is formed on a metal surface, and the development of various functions due to the physical properties of the self-assembled film is being studied (Non-Patent Document 1).
[0003]
By forming such a monomolecular film on a metal material, expression of various physical properties is expected. Also, studies have been made on polymerizing a monomolecular film to form a polymer film having an arbitrary function on a metal surface.
However, little research has been done on using the thus formed monomolecular film itself as a substrate and imparting various functionalities thereto. If various functional groups generated by irradiating the monomolecular film with light are used to bond and modify with a biomolecule such as an enzyme, there is a possibility that various functions can be imparted to the metal. Further, by generating a plurality of functional groups at a specific position using light of a specific wavelength, it is also possible to create a high-order functional surface in which a plurality of biomolecules are arranged.
[0004]
[Non-patent document 1]
Polymers, Vol. 51, March, pp. 143-147
[0005]
[Problems to be solved by the invention]
The present invention has been made in view of the above circumstances, and has as its object to provide a technique in which a monomolecular film itself is used as a base and various functions are imparted thereto.
[0006]
[Means for Solving the Problems]
The metal surface modifier according to the present invention,
It comprises a sulfur-containing compound represented by any of the following formulas (1) to (3).
[0007]
Embedded image
Figure 2004051624
[0008]
X is a group for deriving a desired functional group, and is preferably a carbamate group, a carboxylate group, a carbonate group, an ether group, a thiocarbonate group, a thioether group or a sulfonate group.
Y is a photolabile protecting group, preferably a photolabile protecting group represented by the following formula (4).
[0009]
Embedded image
Figure 2004051624
[0010]
R1Is a hydrogen or methyl group;
b is an integer of 1 to 4,
R2Is hydrogen or a methoxy group, and when b is 2 or more, two R2May together form a ring that may contain oxygen.
Z is a divalent hydrocarbon group which may contain a hetero atom, preferably-(CH2)c-,-(CH2-CH2-O)d-,-(Ph)e-,-(Ph-O)f-(However, c, d, e, and f are each an integer of 1 to 30, and -Ph- is a phenylene group), or a combination thereof (where c + d + e + f is 1 to 40). In the formula (2), a plurality of X, Y, and Z may be the same or different. In the formula (3), a is an integer of 0 to 10.
[0011]
Among the thiol compounds represented by the above formula (1), the thiol compound according to a preferred embodiment is a novel compound. Further, among the disulfide compounds represented by the above formula (2), the disulfide compound according to a preferred embodiment is a novel compound. Further, among the cyclic disulfide compounds represented by the above formula (3), the cyclic disulfide compound according to a preferred embodiment is a novel compound. Hereinafter, these compounds may be referred to as “sulfur-containing compounds” or “new sulfur-containing compounds”.
[0012]
According to the present invention, there is provided a metal surface modifier used for forming a monomolecular film having various functions on a metal surface. Further, according to the present invention, there is provided a novel sulfur-containing compound preferably used as such a metal surface modifier.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the metal surface modifier and the novel sulfur-containing compound according to the present invention will be specifically described.
The metal surface modifier according to the present invention,
It comprises a thiol-based compound represented by the following formula (1), a disulfide-based compound represented by the following formula (2) or a cyclic disulfide-based compound represented by the following formula (3).
[0014]
Embedded image
Figure 2004051624
[0015]
In the formula, X is a group that induces a desired functional group, and is preferably a carbamate group, a carboxylate group, a carbonate group, an ether group, a thiocarbonate group, a thioether group, or a sulfonate group.
These groups are present in the thiol-based compound or disulfide-based compound in the following arrangement, and derive the functional groups described in the right column by elimination of the photolabile protecting group (Y). In the following table, z represents a bond bonded to Z, and y represents a bond bonded to Y.
[0016]
[Table 1]
Figure 2004051624
[0017]
Y is a photo-eliminable protecting group, which has the property of protecting X in a predetermined reaction step and being eliminated by light irradiation. Here, ultraviolet light is generally used as the light, but is not limited thereto as long as the energy ray is such that the photolabile protective group is eliminated.
As such a photolabile protecting group, a photolabile protecting group represented by the following formula (4) can be preferably exemplified.
[0018]
Embedded image
Figure 2004051624
[0019]
R1Is a hydrogen or methyl group;
b is an integer of 1 to 4, preferably an integer of 1 to 2,
R2Is hydrogen or a methoxy group, and when b is 2 or more, two R2May together form a ring that may contain oxygen (eg, a methylenedioxy group).
[0020]
Accordingly, preferred photo-labile protecting groups include those having the following structures.
[0021]
Embedded image
Figure 2004051624
[0022]
The photolabile protective group Y as described above is eliminated from X by irradiation with light to induce the groups shown in the above table. When Y is desorbed, a part of X may also be desorbed. For example, in the above table, when an amine group is derived from a carbamate group, the COO group in the carbamate group is also eliminated together with the photolabile protective group Y.
The conditions for elimination of the photolabile protecting group Y vary depending on the types of X and Y and cannot be determined unconditionally, but generally, a sufficient amount of ultraviolet light is applied at about room temperature. Can be detached.
[0023]
Z is a divalent hydrocarbon group which may contain a hetero atom, and is not particularly limited as long as formation of a monomolecular film is not impaired.
Preferably-(CH2)c-,-(CH2-CH2-O)d−,
[0024]
Embedded image
Figure 2004051624
[0025]
Selected from Here, c, d, e, and f are each preferably an integer of 1 to 30, and more preferably an integer of 1 to 20. Z may be a combination of the above groups. In this case, c + d + e + f is preferably about 1 to 40, and more preferably about 1 to 20.
Therefore, when Z is-(CH2)c-When constituted solely, c is preferably an integer of 1 to 30, more preferably an integer of 1 to 20,
Z is-(CH2-CH2-O)d-When constituted solely, d is preferably an integer of 1 to 30, more preferably an integer of 1 to 20,
Z is-(Ph)e-When constituted solely, e is preferably an integer of 1 to 30, more preferably an integer of 1 to 20,
Z is-(Ph-O)f-When constituted solely, f is preferably an integer of 1 to 30, more preferably an integer of 1 to 20.
[0026]
As described above, two or more types of the above structural units may be included in any combination. Examples of the configuration of Z include the following groups.
− (CH2)c1-(Ph)e1− (CH2)c2
(C1 is an integer of 1 to 20, e1 is an integer of 1 to 20, c2 is an integer of 1 to 20, and c1 + e1 + c2 is 40 or less.)
− (CH2)c3-(Ph-O)f1
(C3 is an integer of 1 to 20, f1 is an integer of 1 to 20, and c3 + f1 is 40 or less)
− (CH2)c4-(Ph-O)f2− (CH2-CH2-O)d1
(C4 is an integer of 1 to 20, f2 is an integer of 1 to 20, d1 is an integer of 1 to 20, and c4 + f2 + d1 is 40 or less.)
In the formula (2), a plurality of X, Y, and Z may be the same or different.
[0027]
In the formula (3), a is an integer of 0 to 10, preferably 0 to 3. Accordingly, a preferred cyclic sulfide moiety (SS bond-containing ring) in the formula (3) is represented by the following formula. In the following formula, z represents a bond bonded to Z.
[0028]
Embedded image
Figure 2004051624
[0029]
The metal surface modifier according to the present invention comprises the above sulfur-containing compound. X is a carbamate group, a carboxylate group, a carbonate group, an ether group, a thiocarbonate group, a thioether group or a sulfonate group,
Y is a photolabile protecting group represented by the above formula (4),
Z is-(CH2)c-,-(CH2-CH2-O)d-,-(Ph)e-,-(Ph-O)fThe compound selected from-or a combination thereof is a novel compound, and can be expected to be used in various applications as well as a metal surface modifier.
[0030]
The metal surface modifier of the present invention contains the above-mentioned sulfur-containing compound as a main component and, if necessary, non-photodegradable HS-ZXH, HXZSSSSZX-. H or (SS bond-containing ring) -ZXH (where Z and X are the same as described above) and the like.
When this metal surface modifier is applied to the metal surface, the thiol group (HS-) at the molecular end or the disulfide bond (-SS-) at the center of the molecule reacts with the metal surface to form a metal-sulfur bond, The following monomolecular film is obtained. As the metal material, gold, silver, platinum or a material coated with these is preferably used.
[0031]
Embedded image
Figure 2004051624
[0032]
The method for applying the metal surface modifier to the metal surface is not particularly limited, and a monomolecular film of a thiol compound can be formed on the metal surface by various known means. At this time, a patterned monomolecular film can be formed by using a mask or the like.
In the metal surface modifier of the present invention, the above sulfur-containing compound is used, and sulfur (S) is bonded to the metal surface to form a monomolecular film on the metal surface. Since sulfur also reacts with noble metals such as gold, silver and platinum, according to the present invention, modification of the surface of these noble metals becomes easy.
[0033]
When Y is eliminated by light irradiation after forming a monomolecular film on the metal surface, functional groups having various functions can be induced according to the type of X as described above, and thus the metal surface can be modified. Further, by performing light irradiation in a pattern, a pattern-shaped modified portion can be formed on the metal surface.
Therefore, the possibility of controlling the functionality at the nano level is conceivable, and application to various uses such as nanometal complexes, metal nanoparticles, functional photonic crystals, and gold-alkanethiol-based self-assembled films is conceivable.
[0034]
The thiol-based compound used in the present invention and the novel thiol-based compound include a compound having an HS- group at the terminal and a reactive group R at the other end (HS-ZR; Z is the same as described above), It is obtained by reacting with a compound that leads to a leaving protective group Y. As R, various reactive groups such as carboxylic acid and amine are appropriately used. As the compound for leading the photocleavable protective group Y, a compound having a nitrophenyl group in the molecule or a compound for finally leading a nitrophenyl group by reaction with R is used.
[0035]
For example, a thiol-based compound in which X is a carboxylic acid ester group (—COO—) is formed by the following reaction formula.
[0036]
Embedded image
Figure 2004051624
[0037]
Further, for example, a thiol-based compound in which X is a carbamate group (—NH—COO—) is formed by the following reaction formula.
[0038]
Embedded image
Figure 2004051624
[0039]
Further, for example, a thiol-based compound in which X is an ether group (-O-) can be obtained by thiolating alkylthioacetic acid-2-nitrobenzyl ether with concentrated sulfuric acid or the like as described below.
[0040]
Embedded image
Figure 2004051624
[0041]
Further, for example, a thiol-based compound in which X is a thioether group (-S-) is formed by the following reaction formula.
[0042]
Embedded image
Figure 2004051624
[0043]
Further, the disulfide compound used in the present invention and the above-mentioned novel disulfide compound are compounds having a disulfide bond (-SS-) in a molecule and having a reactive group R at a terminal (R-Z-S-S). -ZR; Z is as defined above), for example, HOCO- (CH2)2-SS- (CH2)2-COOH, H2N- (CH2)2-SS- (CH2)2-NH2Can be produced in the same manner as in the above-mentioned thiol-based compound using the above as a starting material.
[0044]
Further, after producing a thiol-based compound (HS-Z-X-Y), this is dehydrogenated and dimerized to give a disulfide-based compound (Y-X-Z-S-S-Z-X-Y). You can also get.
Furthermore, a thiol-based compound can be obtained by cleaving a disulfide bond (-SS-) in the disulfide-based compound.
[0045]
The cyclic disulfide compound and the novel cyclic disulfide compound used in the present invention can be produced according to the method for producing the thiol compound. That is, a compound having an SS bond-containing ring at the terminal and a reactive group R at the other end ((SS bond-containing ring) -ZR; Z and R are the same as described above), It is obtained by reacting with a compound that leads to the protective group Y.
[0046]
The reaction conditions vary depending on the type of the reactants, and cannot be described unconditionally. However, the reaction can be carried out in accordance with a general organic synthesis technique, and purification and the like may be carried out according to a conventional method.
[0047]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the metal surface modifier used for forming the monomolecular film which has various functions on a metal surface is provided. Further, according to the present invention, there is provided a novel sulfur-containing compound preferably used as such a metal surface modifier.
[0048]
【Example】
Examples showing the contents of the present invention will be shown below. The present invention is not limited by this.
[0049]
Example 1 A 200 ml eggplant flask was charged with 100 ml (5.58 mmol) of a 1- (2-nitrophenyl) diazethanechloroform solution, and 0.97 g (6.97 mmol) of 3-mercaptopropionic acid was dissolved in 50 ml of chloroform in a dropping funnel. I put it. A deflated balloon was attached to confirm nitrogen generated in the reaction, and the mixture was stirred for 1 hour while dripping in an ice bath, and stirred for 1 hour at room temperature. After the reaction, the solvent was distilled off to obtain 2.42 g of a crude product. This was purified by column chromatography (hexane-ethyl @ acetate = 2: 1) to obtain 0.91 g (3.38 mmol) of the target substance as a yellow viscous substance.
[0050]
The yield is 60.6%,1The results of H-NMR and IR (NaCl) were as follows.
1H-NMR (400 MHz, @CDCl3/ TMS); δ 7.4-7.9 (m, 4H, aromatic), 6.3 (q, J = 6.4 Hz, 1H, methane), 2.6-2.7 (m, 4H, methyl), 1.6 (d, ΔJ = 6.0 Hz, 3H, methyl)
IR (NaCl); 2576 cm-1(SH), {1733} cm-1(C = O), {1524} and {1352} cm-1(NO2)
As a result, it was found that the reaction was proceeding as follows.
[0051]
Embedded image
Figure 2004051624
[0052]
Example 2 In a 100 ml eggplant flask purged with nitrogen, 2-aminoethanethiol 0.25 g (3.24 mmol), 1- (2-nitrophenyl) ethyl-N-hydroxysuccinimidyl carbonate 1.00 g (3.25 mmol), and dried. DMF (30 ml) was added, and the mixture was heated and stirred at 100 ° C. for 1 hour. After the reaction, DMF was distilled off under reduced pressure to obtain 1.30 g of a brown viscous crude product. This was purified by column chromatography (hexane-ethyl @ acetate = 1: 1) to obtain 0.69 g (2.55 mmol) of the target substance as a yellow viscous substance.
[0053]
The yield is 78.7%,1The results of H-NMR and IR (NaCl) were as follows.
1H-NMR (400 MHz, @CDCl3/ TMS); δ 7.93 (d, 1H, J = 8.0 Hz, aromatic), 7.60-7.63 (m, 4H, aromatic), 7.40-7.44 (m, 1H, aromatic), 6.25 (q, J = 6.4 Hz, 1H, methine), 5.16 (br, 1H, amine), 3.28-3.36 (m, 2H, methylene), 2.63. (Q, 2H, J = 6.4 Hz, methylene), 1.63 (d, 3H, J = 6.4 Hz, methyl)
IR (NaCl); {3339} cm-1(N-H), {2568} cm-1(SH), {1717} cm-1(C = O), {1526} and {1353} cm-1(NO2)
As a result, it was found that the reaction was proceeding as follows.
[0054]
Embedded image
Figure 2004051624
[0055]
Embodiment 3
The evaluation as a metal surface modifier was performed as follows.
"Creating a test metal plate"
15 ml of water, 3.0 ml of 30% hydrogen peroxide, and 3.0 ml of 25% aqueous ammonia were placed in a 50 ml eggplant flask, shaken gently, and a silicon wafer was placed therein and heated at 80 ° C. for 10 minutes. Thereafter, the wafer was taken out, washed with water (three times), and ultrasonically washed in water for 10 minutes. After water adhering to the surface was dried with a nitrogen stream, gold vacuum evaporation was performed using a small vacuum evaporation apparatus JEE-3X (manufactured by JEOL). The prepared test metal plate was subjected to ultrasonic cleaning in methanol for several seconds. After the washing, the contact angle between the surface of the metal plate and water was measured to be about 56 °.
"Surface modification"
In a 100 ml beaker, about 15 mg of 1- (2-nitrophenyl) ethyl {3- (mercapto) ethyl carbamate prepared in Example 2 is weighed and dissolved in 20 ml of ethanol, and about 25 mM of 1- (2-nitrophenyl) ethyl} 3. An ethanol solution of-(mercapto) ethyl carbamate was prepared. The test metal plate was put in the container, allowed to stand at room temperature in the air for one hour, taken out, and measured for a contact angle between the surface of the metal plate and water to be about 64 °.
`` Light irradiation ''
Prepare a Pyrex (R) water filter that blocks light with a wavelength of 300 nm or less, place a surface-modified test metal plate on the sample table where the illuminance of the light irradiation conditions is applied, and ensure that the light hits. Irradiated. Thereafter, the surface of the metal plate was rinsed with methanol to evaporate the methanol on the surface, and then the contact angle with water was measured.
[0056]
About 5 minutes after the light irradiation, the contact angle decreased to 55 °, and decreased to 52 ° in 30 minutes and 51 ° in 1 hour.
It is considered that the nitrophenyl group was eliminated by light irradiation and an amino group was formed, and as a result, the contact angle was reduced as described above.
[0057]
Embodiment 4
Synthesis of 1- (2-nitrophenyl) ethyl 11-mercaptoundecanoate (ester type)
<Step 1> Synthesis of 11-mercaptoundecanoic acid II
Thiourea {1.05 g} (24.0 mmol) was dissolved in {90}% {ethanol} / {water} 165 mL}, and methyl 11-bromoundecanoate {3.36 g} (12.0 mmol) was added and refluxed for 4 hours. NaOH {1.20 g} (30.0 mmol) was added and refluxed for 2 hours to remove ethanol. The reaction was acidified with 6N sulfuric acid {100mL}, extracted with ether {(100mL x 3)}, dried, filtered and concentrated to give 7.35g of crude product. The residue was recrystallized from ethanol to obtain a white powder {1.01 g} (4.63 mmol, {53%)}.
1H-NMR (CDCl3, {400} MHz) 2.51 (2H, t, J = 7.6 Hz, HS-CH 2 ), {2.36} (2H, {t, {J} = {6.8} Hz, {HOOC-CH 2 ), {1.54-1.64} (4H, Δm, ΔCH 2 − (CH2)6-CH 2 ), {1.26-1.37} (12H, Δs, ΔCH2− (CH 2 )6-CH2);
IR (KBr) 1700 cm-1(C = O), {2678} cm-1(SH), {3431} cm-1(O-H)
<Step 2> Synthesis of 1- (2-nitrophenyl) ethyl @ 11-mercaptoundecanoate
Dissolve hydrazone of 2-nitroacetophenone {1.00 g (5.58 mmol)} in 70 mL of chloroform and add manganese dioxide {2.84 g} (32.6 mmol) in small portions to a 200-mL eggplant flask at room temperature. Stirred for minutes. The reaction solution was filtered and washed with a 0.1 M sodium hydrogen carbonate aqueous solution. On the other hand, a solution of 1- (2-nitrophenyl) diazoethane in 11-mercaptoundecanoic acid (0.85 g (3.90 mmol)) synthesized in <Step 1> dissolved in 50 mL of chloroform was added thereto under ice-cooling. Was dropped. The mixture was stirred at 0 ° C. for 1 hour, further at room temperature for 3 hours, and concentrated. This was subjected to separation and purification {(hexane): {ethyl acetate} = {2}: {1}} by a silica gel column, and dried to obtain a transparent viscous substance {0.14 g} (0.40 mmol, {10}%).1H-NMR (CDCl3, {400} MHz) {δ} 1.31-1.35} (15H, {m,}HS-CH2− (CH 2 )7), {1.53-1.65} (5H, Δm, ΔCH-CH 3 , HS-CH2-CH 2 , {2.29-2.34} (2H, {m,}-CH 2 −COO), {2.52} (2H, {t, {J} = {7.6} Hz, {HS-CH 2 −), {6.32} (1H, {q, {J} = {6.4} Hz, Δ−CH-COO), {7.43-7.95} (4H, m, −Ar-H);
IR {(NaCl)} 1526 and 1351 cm-1(NO), 1738 cm-1(C = O), {2576} cm-1(SH) As a result, it was found that the reaction was proceeding as follows.
[0058]
Embedded image
Figure 2004051624
[0059]
Embodiment 5
Synthesis of 1- (2-nitrobenzyl) {ethyl} 3-thiooctate (ester type)
In a 200-mL {plant flask}, hydrazone of 2-nitroacetophenone {1.02 g} (5.64 mmol) was dissolved in chloroform {70} mL, and manganese dioxide 2.85 g (32.7 mmol) was added little by little. Stirred for minutes. The reaction solution was filtered and washed with 0.1 M {aqueous sodium hydrogen carbonate solution} 100 mL. On the other hand, a chloroform solution of 1- (2-nitrophenyl) diazoethane was added dropwise to {DL-α-thiooctic acid} (0.51 g) (2.47 mmol) dissolved in chloroform (50 mL) under ice cooling. After stirring at 0 ° C. for 1 hour and further at room temperature for 4 hours, the mixture was extracted {chloroform {100 mL} × 3, saturated aqueous sodium carbonate solution}, dried, filtered and concentrated. This was subjected to separation and purification {(hexane): {ethyl acetate} = {4}: {1}} using a silica gel column, and dried to obtain a yellow viscous substance {0.32} g (0.90 mmol, {37}%).
1H-NMR (CDCl3, {400} MHz) δ 1.54 (2H, s), 1.60-1.70 (5H, Hm), 1.86-2.05 (1H, m), 2.32-2.37 (2H, m), {2.41-2.58} (1H, m), {3.07-3.19} (1H, m), {3.51-3.57} (1H, m), {6.30-6.35} ( 1H, {q, {J} = {6.4} Hz), {7.41-7.94} (4H, {m);
IR {(NaCl)} 1523 and 1351 cm-1(NO), 1732 cm-1(C = O)
As a result, it was found that the reaction was proceeding as follows.
[0060]
Embedded image
Figure 2004051624
[0061]
Embodiment 6
Synthesis of 3-mercaptopropyl 2-nitrobenzyl ether (ether type) <Step 1> Synthesis of allyl 2-nitrobenzyl ether
{Dry} Hexane {100} mL, {Sodium hydride} (60%) {2.15g} (53.8mmol)} was placed in a {300} mL eggplant flask purged with nitrogen, and stirred for a sufficient time. The supernatant was removed, dry hexane (30 mL) was added, and {allyl alcohol (35 mL) was added dropwise while cooling in an ice bath. Further, 2-nitrobenzyl bromide {7.01 g} (32.4 mmol) was dissolved in {100 ml of allyl alcohol} and added dropwise. After the dropwise addition, the mixture was stirred overnight under a nitrogen stream. This was concentrated, concentrated hydrochloric acid (20 mL), and water (100 mL) were added, followed by extraction (chloroform (100 mL × 5)). Drying, filtration, concentration, and vacuum distillation {(0.1 mmHg, {75 ° C)}} gave a pale yellow liquid {5.03 {g} (26.0 mmol, {80%)).
1H-NMR (CDCl3, {400} MHz) [delta] 4.13-4.15 (2H, m, OC)H 2 CH), {4.91} (2H, {s,} Ar-CH 2 ), {5.23-5.38} (2H, Δm, Δ-CH = CH 2 ), {5.94-6.01} (1H, m, -C)H= CH2), {7.26-8.09} (4H, m, Ar-H);
IR {(NaCl)} 1344 and 1526 cm-1(NO)
<Step 2> Synthesis of propylthioacetylic acid 2-nitrobenzyl ether
Allyl 2-nitrobenzyl ether (0.960 g (4.97 mmol), AIBN 0.120 g (0.730 mmol)) synthesized in <Step 1> was dissolved in methanol (30 mL) in a {50} mL eggplant flask purged with nitrogen. . {Thioacetic acid {1.47 g} (19.3 mmol)} was added thereto, and the mixture was stirred for 3 hours while irradiating with a tungsten lamp. The reaction solution was concentrated, and the residue was separated and purified on a silica gel column {(hexane}: {ethyl acetate} = {4}: 1}) to obtain a yellow liquid {1.36 g} (5.50 mmol, {98}%).
1H-NMR (CDCl3, {400} MHz) [delta] 1.91-1.98 (2H, m, CH2-CH 2 -CH2−), {2.33} (3H, Δs, −CH 3 ), {3.02} (2H, {t, {J} = {6.8, {SC}H 2 ), {3.63} (2H, {t, {J} = {6.8, {CH2-O-), {4.88} (2H, {s,} Ar-CH2), {7.44} (1H, t, Ar-H), {7.65} (1H, t, Ar-H), {7.80} (1H, d, Ar-H)}, 8.06 (1H, d, Ar). -H);
IR {(NaCl)} 1343 and 1526 cm-1(NO)
<Step 3> 3-mercaptopropyl 2-nitrobenzyl ether
To a {50} mL eggplant flask purged with nitrogen, add propylthioacetylic acid 2-nitrobenzyl ether (0.320 g) (1.19 mmol) synthesized in <Step 2>, concentrated hydrochloric acid 1 mL, methanol 30 mL, and reflux for 6 hours. After that, extraction (ether {50} mL × 4)} was performed. The residue was separated and purified through a silica gel column {(hexane}: {ethyl acetate} = {8}: {1}) to obtain a yellow liquid {0.110 g} (0.480 mmol, {40}%).
1H-NMR (CDCl3, {400} MHz) δ 1.38 (1H, t,HS-CH2), {1.96} (2H, {m, {J} = {6.8} Hz, {HS-CH}2-CH2), {2.68} (2H, {q, {J} = {8.0, {SC}H 2 ), {3.69} (2H, {t, {J} = {6.0, ΔC}H 2 -O-), {4.88} (2H, Δs, ΔAr-CH 2 ), {7.42-8.07} (4H, m, Ar-H); IR (NaCl) 1343 and 1526 cm.-1(NO), 2574 cm-1(SH)
As a result, it was found that the reaction was proceeding as follows.
[0062]
Embedded image
Figure 2004051624
[0063]
Embodiment 7
Synthesis of 3-mercaptopropyl 2-nitrobenzyl sulfide
Place {60}% {sodium hydride {0.090} g} (2.25mmol) in a {100} mL eggplant flask purged with nitrogen, and dissolve in {dry} THF {20} mL {1,3-propanedithiol {0.750} g} (6.93) on an ice bath. (mmol)} and the mixture was stirred at room temperature for {2.5} hours. The reaction mixture was concentrated, 2M hydrochloric acid (10 mL) and saturated saline (100 mL) were added, and the mixture was extracted with chloroform (50 mL × 3). The organic layer was dried, filtered and concentrated to obtain a crude product. The residue was separated and purified by silica gel column {hexane: ethyl acetate} to give the desired product {0.39 g} (1.60 mmol, {71}%).
1H-NMR (CDCl3, {400} MHz) {δ} 1.31} (2H, {t, {J} = {8.0} Hz,}HS-CH2CH2), {1.80-1.87} (2H, {m,}-CH2CH 2 -CH2), {2.56-2.62} (4H, m, HS-CH 2 CH2-, -CH2CH 2 -S-), {4.07} (2H, {s,} Ar-CH2−), {7.40-7.49} (2H, m, Ar-H), 7.56H (1H, t, J = 7.2 Hz, Ar-H), 7.97 (1H, d, J = 8.4 Hz, @ Ar-H);
IR {(NaCl)} 1346 and 1528 cm-1(NO), 2570 cm-1(SH)
As a result, it was found that the reaction was proceeding as follows.
[0064]
Embedded image
Figure 2004051624
[0065]
Embodiment 8
Synthesis of 3-mercaptopropyl 1- (2-nitrophenyl) ethyl sulfide
1,3-propanedithiol {0.71 g} (3.60 mmol), dry acetone 50 mL, potassium carbonate 0.500 g (3.60 mmol), {1- (2- Nitrophenyl) ethyl p-toluenesulfonate 1.10 g (3.42 mmol) was added and refluxed for 8 hours. The reaction solution was concentrated, hexane (20 mL) was added, and the precipitated white solid was separated by filtration. The filtrate was dried, filtered and concentrated, and the residue was separated and purified with a silica gel column (hexane: ethyl acetate = {6}: {1)} to obtain the desired product {0.170 g (0.700 mmol, {20}%).1H-NMR (CDCl3, {400} MHz) {δ} 1.25} (2H, {t, {J} = {8.0} Hz,HS-CH2CH2−), {1.61} (3H, {d, {J} = {6.8} Hz, Δ-CH2CH 2 -CH2), {1.71-1.78} (2H, {m,}-CH2CH 2 -CH2), {2.48-2.56} (4H, Δm, ΔHS-CH 2 -, -CH2CH 2 −S), {4.07} (1H, m, Ar-CH), 7.35 (1H, t, J = 9.2 Hz, Ar-H), 7.59 (1H, t, J = 8.0). Hz, {Ar-H), {7.75} (1H, {t, {J} = {8.0} Hz, {Ar-H),} 7.85} (1H, {d, {J} = {8.4} Hz, {Ar-H);
IR {(NaCl)} 1346 and 1528 cm-1(NO), 2570 cm-1(SH)
As a result, it was found that the reaction was proceeding as follows.
[0066]
Embedded image
Figure 2004051624
[0067]
Embodiment 9
Synthesis of 1- (4,5-dimethoxy-2-nitrophenyl) ethyl 11-mercapto-N-undecyl-carbamate
<Step 1> Synthesis of N- (11-acetylthioundecyl) @phthalimide
N- (10-undecenyl) -1-phthalimide 0.770 g (2.57 mmol), thioacetic acid 0.74 mL (10.9 mmol), AIBN0 in a 30-mL two-necked flask under a nitrogen atmosphere. 0.050 g (0.270 mmol) was dissolved in methanol (20 mL). The reaction solution was irradiated with a 150 W tungsten lamp for 3 hours while stirring. This was concentrated and separated and purified by a silica gel column (hexane: ethyl acetate = {2}: {1)} to give white powder {0.95 g} (2.53 mmol, {98.4%)}.
1H-NMR (CDCl3, {400} MHz) δ 1.25-1.32 (14H, s,-(CH2)7−), {1.55} (2H, Δm, Δ−CH 2 CH2−S−), {1.68} (2H, Δm, Δ−CH 2 CH2−N−), {2.32} (3H, Δs, Δ-CH3), {2.86} (2H, {t, {J} = {7.2} Hz, Δ-CH2−S−), {3.67} (2H, {t, {J} = {7.2} Hz, = CH2-N);
IR (KBr) 1697 cm-1(C = O, succinyl), 1771 cm-1(C = O);
<Reference> {Panadda} Chirakul, @et. Al, Langmuir, 18, 4324-4330 (2002)
<Step 2> Synthesis of 11-aminoundecanethiol
N- (11-acetylthioundecyl) {phthalimide} (0.410 g) (1.09 mmol) synthesized in <Step 1> was dissolved in methanol, and concentrated hydrochloric acid (1 mL) was added. This was refluxed gently for 6 hours. Further, hydrazine monohydrate was added {0.90 mL} (18.5 mmol), and the mixture was refluxed for 3 hours. After cooling, insolubles were removed by filtration. The filtrate was concentrated, water (50 mL) was added to the residue, and the mixture was extracted with chloroform (50 mL × 3). The organic layer was washed with saturated saline (150 mL), dried, filtered, concentrated, and vacuum dried to obtain a white powder (0.110 g (0.540 mmol, {49.5%)).
1H-NMR (CDCl3, {400} MHz) δ {1.27-1.39} (14H, s,-(CH 2 )7−), {1.44} (1H, {t, {J} = {6.6} Hz, Δ-SH), {1.55-1.64} (4H, Δm, {HS-CH)2CH 2 H2N-CH2CH 2 −), {2.52} (2H, Δm, Δ−CH 2 −SH), {2.68} (2H, {t, {J} = {7.0} Hz, Δ−CH2-NH2);
IR (KBr) 2560 cm-1(SH), 3332 cm-1(-NH2)
<Step 3> Synthesis of 1- (4,5-dimethoxy-2-nitrophenyl) {ethyl} 11-mercapto) -N-undecylcarbamate
In a nitrogen stream, 1- (4,5-dimethoxy-2-nitrophenyl) ethyl {N-succinimidyl carbonate} 0.210 g (0.590 mmol) was dissolved in 20 mL of THF and synthesized in <Step 2>. 0.120 g of aminoundecanethiol (0.590 mmol) was added, and the mixture was stirred at room temperature for 3 hours. The reaction solution was concentrated and separated and purified by a silica gel column {(hexane): {ethyl acetate} = {2}: {1}} to obtain an orange liquid {0.13 g} (0.28 mmol, {47.5%)}.
1H-NMR (CDCl3, 400 MHz) δ 1.26 (18H, s, − (CH 2 )9−), {1.33} (1H, t, J = Hz8.0 Hz, -SH), 1.61 (3H, d, J = 7.6 Hz, -CH3), {2.52} (2H, {q, {J} = {7.6} Hz, Δ-CH 2 SH), {3.13} (2H, m, -CH 2 NH), {3.93} (3H, {s,}-CH 3 O), {3.97} (3H, Δs, Δ-CH 3 O), {4.73} (1H, br, -NH), 6.37 (1H, q, J = 6.2 Hz, -CH), 7.00 (1H, s, Ar-H), 7.59. (1H, Δs, ΔAr-H);
IR {(NaCl)} 1336 and 1520 cm-1(NO), 1719 cm-1(C = O), {2398} cm-1(SH), 3449 cm-1(N−H)
As a result, it was found that the reaction was proceeding as follows.
[0068]
Embedded image
Figure 2004051624
[0069]
Embodiment 10
Synthesis of 1- (2-nitrophenyl) ethyl {11- (mercapto) -N-undecylcarbamate
1- (2-Nitrophenyl) ethyl {N-succinimidyl carbonate} 0.150 g (0.490 mmol) was dissolved in dry THF 20 mL at room temperature under a nitrogen stream, and 11-aminoundecanethiol 0.10 was dissolved. g (0.490 mmol) was added. After stirring at room temperature for 3 hours, the mixture was concentrated, and the residue was separated and purified with a silica gel column (hexane: {ethyl acetate} = {3}: {1)} to obtain a yellow liquid {0.150 g (0.380 mmol, {77.6%)}. Was done.
1H-NMR (CDCl3, {400} MHz) δ 1.25} (18H, s,-(CH2)9−), {1.33} (1H, t, J = 7.6 Hz, -SH), 1.61 (3H, d, J = 6.4 Hz, n-CH3), {2.52} (2H, {q, {J} = {7.2} Hz, {S-CH2), {3.11} (2H, m, NH-CH)2), {4.72} (1H, rbr, -NH), 6.23 (1H, q, J = 6.4 Hz, -CH), 7.41 (1H, m, Ar-H), 7.61 ( 2H, m, Ar-H), 7.92 (1H, d, J = 8.0 Hz, Ar-H);
IR {(NaCl)} 1350 and 1526 cm-1(NO), 1705 cm-1(C = O), {2567} cm-1(SH), 3343 cm-1(N−H)
As a result, it was found that the reaction was proceeding as follows.
[0070]
Embedded image
Figure 2004051624
[0071]
Embodiment 11
Synthesis of 1- (4,5-dimethoxy-2-nitrophenyl) ethyl {2- (mercapto) -N-ethylcarbamate
At room temperature under a nitrogen stream, 1- (4,5-dimethoxy-2-nitrophenyl) ethyl {N-succinimidyl carbonate 1.00 g (2.72 mmol)} was dissolved in DMF {50 mL} to give 2-aminoethanethiol. 0.25 g (3.24 mmol) was added. After stirring at 100 ° C. for 1 hour, water (50 mL) and {2N hydrochloric acid (16 mL) were added, followed by extraction with ethyl acetate (50 mL × 3). The organic layer was washed with saturated saline (100 mL), dried, filtered and concentrated to obtain a crude product (2.10 g). The residue is separated and purified with a silica gel column (hexane: ethyl acetate = 2: 1).
As a result, a yellow liquid {0.820 g} (2.48 mmol, {91.2%)} was obtained.
1H-NMR (CDCl3, {400} MHz) δ 1.33 (1H, t, J = 8.0 Hz, -SH), 1.61 (3H, d, J = 6.8 Hz, -CH)3), {2.64} (2H, {q, {J} = {6.4} Hz, {−CH2−SH), {3.33} (2H, {q, {J} = {6.4} Hz, Δ−CH 2 -NH-), {3.94} (3H, {s,}-OCH3), {3.98} (3H, {s,}-OCH3), {5.21} (1H, {br, -NH), {6.38} (1H, {q, {J} = {6.4} Hz, {-CH), {7.01} (1H, {s, {Ar-H), {7.59} ( 1H, s, Ar-H);
IR {(NaCl)} 1373 and 1519 cm-1(NO), 1719 cm-1(C = O), {2570} cm-1(SH), 382-1(N−H)
As a result, it was found that the reaction was proceeding as follows.
[0072]
Embedded image
Figure 2004051624

Claims (7)

下記式(1)〜(3)の何れかで表される含硫黄化合物からなる金属表面修飾剤。
Figure 2004051624
式中、Xは、目的とする官能基を誘導する基であり、
Yは、光脱離性保護基であり、
Zは、ヘテロ原子を含有していてもよい二価の炭化水素基であり、式(2)において、複数のX、Y、Zはそれぞれ同一でも異なっていてもよく、また式(3)において、aは0〜10の整数である。
A metal surface modifier comprising a sulfur-containing compound represented by any of the following formulas (1) to (3).
Figure 2004051624
In the formula, X is a group for deriving a desired functional group,
Y is a photolabile protecting group,
Z is a divalent hydrocarbon group which may contain a hetero atom. In the formula (2), a plurality of X, Y and Z may be the same or different, and in the formula (3) , A is an integer of 0 to 10.
Xが、カルバメート基、カルボン酸エステル基、カーボネート基、エーテル基、チオカーボネート基、チオエーテル基またはスルホン酸エステル基である請求項1に記載の金属表面修飾剤。The metal surface modifier according to claim 1, wherein X is a carbamate group, a carboxylate group, a carbonate group, an ether group, a thiocarbonate group, a thioether group or a sulfonate group. Yが、下記式(4)にて示される光脱離性保護基である請求項1または2に記載の金属表面修飾剤。
Figure 2004051624
は、水素またはメチル基であり、
bは、1〜4の整数であり、
は、水素またはメトキシ基であり、bが2以上の場合は、2つのRは共同して酸素を含んでいてもよい環を形成してもよい。
The metal surface modifier according to claim 1, wherein Y is a photolabile protective group represented by the following formula (4).
Figure 2004051624
R 1 is hydrogen or a methyl group,
b is an integer of 1 to 4,
R 2 is hydrogen or a methoxy group, and when b is 2 or more, two R 2 may together form a ring that may contain oxygen.
Zが、−(CH−、−(CH−CH−O)−、−(Ph)−、−(Ph−O)−(ただし、c、d、e、fはそれぞれ1〜30の整数、−Ph−はフェニレン基である)から選ばれる基、またはこれらの組み合わせ(ただし、c+d+e+fは1〜40)である請求項1〜3の何れかに記載の金属表面修飾剤。Z is-(CH 2 ) c -,-(CH 2 -CH 2 -O) d -,-(Ph) e -,-(Ph-O) f- (where c, d, e, and f are The metal surface modification according to any one of claims 1 to 3, wherein each of the groups is an integer of 1 to 30, and -Ph- is a phenylene group), or a combination thereof (where c + d + e + f is 1 to 40). Agent. 下記式(1)で表されるチオール系化合物。
HS−Z−X−Y    (1)
式中、Xは、目的とする官能基を誘導する基であり、
Yは、下記式(4)にて示される光脱離性保護基であり、
Figure 2004051624
は、水素またはメチル基であり、
bは、1〜4の整数であり、
は、水素またはメトキシ基であり、bが2以上の場合は、2つのRは共同して酸素を含んでいてもよい環を形成してもよく、
Zは−(CH−、−(CH−CH−O)−、−(Ph)−、−(Ph−O)−(ただし、c、d、e、fはそれぞれ1〜30の整数、−Ph−はフェニレン基である)から選ばれる基、またはこれらの組み合わせ(ただし、c+d+e+fは1〜40)である。
A thiol compound represented by the following formula (1).
HS-Z-XY (1)
In the formula, X is a group for deriving a desired functional group,
Y is a photolabile protecting group represented by the following formula (4),
Figure 2004051624
R 1 is hydrogen or a methyl group,
b is an integer of 1 to 4,
R 2 is hydrogen or a methoxy group, and when b is 2 or more, two R 2 may together form a ring that may contain oxygen;
Z is-(CH 2 ) c -,-(CH 2 -CH 2 -O) d -,-(Ph) e -,-(Ph-O) f- (where c, d, e, and f are An integer of 1 to 30, and -Ph- is a phenylene group) or a combination thereof (provided that c + d + e + f is 1 to 40).
下記式(2)で表されるジスルフィド系化合物。
Figure 2004051624
式中、Xは、目的とする官能基を誘導する基であり、
Yは、下記式(4)にて示される光脱離性保護基であり、
Figure 2004051624
は、水素またはメチル基であり、
bは、1〜4の整数であり、
は、水素またはメトキシ基であり、bが2以上の場合は、2つのRは共同して酸素を含んでいてもよい環を形成してもよく、
Zは、−(CH−、−(CH−CH−O)−、−(Ph)−、−(Ph−O)−(ただし、c、d、e、fはそれぞれ1〜30の整数、−Ph−はフェニレン基である)から選ばれる基、またはこれらの組み合わせ(ただし、c+d+e+fは1〜40)であり、
複数のX、Y、Zはそれぞれ同一でも異なっていてもよい。
A disulfide compound represented by the following formula (2).
Figure 2004051624
In the formula, X is a group for deriving a desired functional group,
Y is a photolabile protecting group represented by the following formula (4),
Figure 2004051624
R 1 is hydrogen or a methyl group,
b is an integer of 1 to 4,
R 2 is hydrogen or a methoxy group, and when b is 2 or more, two R 2 may together form a ring that may contain oxygen;
Z represents-(CH 2 ) c -,-(CH 2 -CH 2 -O) d -,-(Ph) e -,-(Ph-O) f- (where c, d, e, and f are Each is an integer of 1 to 30, -Ph- is a phenylene group), or a combination thereof (provided that c + d + e + f is 1 to 40);
A plurality of X, Y, Z may be the same or different.
下記式(3)で表される環状ジスルフィド系化合物。
Figure 2004051624
式中、aは0〜10の整数であり、
Xは、目的とする官能基を誘導する基であり、
Yは、下記式(4)にて示される光脱離性保護基であり、
Figure 2004051624
は、水素またはメチル基であり、
bは、1〜4の整数であり、
は、水素またはメトキシ基であり、bが2以上の場合は、2つのRは共同して酸素を含んでいてもよい環を形成してもよく、
Zは、−(CH−、−(CH−CH−O)−、−(Ph)−、−(Ph−O)−(ただし、c、d、e、fはそれぞれ1〜30の整数、−Ph−はフェニレン基である)から選ばれる基、またはこれらの組み合わせ(ただし、c+d+e+fは1〜40)である。
A cyclic disulfide compound represented by the following formula (3).
Figure 2004051624
In the formula, a is an integer of 0 to 10,
X is a group for deriving a desired functional group,
Y is a photolabile protecting group represented by the following formula (4),
Figure 2004051624
R 1 is hydrogen or a methyl group,
b is an integer of 1 to 4,
R 2 is hydrogen or a methoxy group, and when b is 2 or more, two R 2 may together form a ring that may contain oxygen;
Z represents-(CH 2 ) c -,-(CH 2 -CH 2 -O) d -,-(Ph) e -,-(Ph-O) f- (where c, d, e, and f are Each is an integer of 1 to 30, and -Ph- is a phenylene group), or a combination thereof (provided that c + d + e + f is 1 to 40).
JP2003105690A 2002-05-31 2003-04-09 Metal surface modifiers and new sulfur-containing compounds Expired - Fee Related JP4376540B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003105690A JP4376540B2 (en) 2002-05-31 2003-04-09 Metal surface modifiers and new sulfur-containing compounds

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002159637 2002-05-31
JP2003105690A JP4376540B2 (en) 2002-05-31 2003-04-09 Metal surface modifiers and new sulfur-containing compounds

Publications (2)

Publication Number Publication Date
JP2004051624A true JP2004051624A (en) 2004-02-19
JP4376540B2 JP4376540B2 (en) 2009-12-02

Family

ID=31949172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003105690A Expired - Fee Related JP4376540B2 (en) 2002-05-31 2003-04-09 Metal surface modifiers and new sulfur-containing compounds

Country Status (1)

Country Link
JP (1) JP4376540B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006160715A (en) * 2004-11-12 2006-06-22 Institute Of Physical & Chemical Research Azobenzene derivative compound, particle and method for producing the same
US7479362B2 (en) 2004-04-29 2009-01-20 Seiko Epson Corporation UV decomposable molecules and a photopatternable monomolecular film formed therefrom
WO2009113322A1 (en) * 2008-03-11 2009-09-17 国立大学法人奈良先端科学技術大学院大学 Photodissociable protective group
US7928067B2 (en) 2009-05-14 2011-04-19 Ischemix Llc Compositions and methods for treating ischemia and ischemia-reperfusion injury
US8815937B2 (en) 2010-11-18 2014-08-26 Ischemix Llc Lipoyl compounds and their use for treating ischemic injury
JP2016210778A (en) * 2015-05-11 2016-12-15 学校法人神奈川大学 Compound, surface treatment agent, and surface treatment method
US10744115B2 (en) 2017-04-25 2020-08-18 Ischemix Llc Compositions and methods for treating traumatic brain injury

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7479362B2 (en) 2004-04-29 2009-01-20 Seiko Epson Corporation UV decomposable molecules and a photopatternable monomolecular film formed therefrom
JP2006160715A (en) * 2004-11-12 2006-06-22 Institute Of Physical & Chemical Research Azobenzene derivative compound, particle and method for producing the same
US8222429B2 (en) 2008-03-11 2012-07-17 National University Corporation NARA Institute of Science and Technology Photodissociable protective group
WO2009113322A1 (en) * 2008-03-11 2009-09-17 国立大学法人奈良先端科学技術大学院大学 Photodissociable protective group
US8772249B2 (en) 2009-05-14 2014-07-08 Ischemix, LLC Compositions and methods for treating ischemia and ischemia-reperfusion injury
US8772250B2 (en) 2009-05-14 2014-07-08 Ischemix, LLC Compositions and methods for treating ischemia and ischemia-reperfusion injury
US7928067B2 (en) 2009-05-14 2011-04-19 Ischemix Llc Compositions and methods for treating ischemia and ischemia-reperfusion injury
US9540417B2 (en) 2009-05-14 2017-01-10 Ischemix Llc Compositions and methods for treating ischemia and ischemia-reperfusion injury
US8815937B2 (en) 2010-11-18 2014-08-26 Ischemix Llc Lipoyl compounds and their use for treating ischemic injury
US9359325B2 (en) 2010-11-18 2016-06-07 Ischemix Llc Lipoyl compounds and methods for treating ischemic injury
JP2016210778A (en) * 2015-05-11 2016-12-15 学校法人神奈川大学 Compound, surface treatment agent, and surface treatment method
US10744115B2 (en) 2017-04-25 2020-08-18 Ischemix Llc Compositions and methods for treating traumatic brain injury
US11213509B2 (en) 2017-04-25 2022-01-04 Ischemix, LLC Compositions and methods for treating traumatic brain injury

Also Published As

Publication number Publication date
JP4376540B2 (en) 2009-12-02

Similar Documents

Publication Publication Date Title
TWI507429B (en) Polymer-bound bisacylphosphine oxides
CA2959081C (en) Stimuli-switchable moieties, monomers and polymers incorporating stimuli-switchable moieties, and methods of making and using same
JP4642860B2 (en) Novel monomer substituted with photoacid generator of fluoroalkyl sulfone and polymer thereof
US8227171B2 (en) Photosensitive self-assembled monolayer for selective placement of hydrophilic structures
WO2006093050A1 (en) Hyper-branched polymer and process for production of the same
JP2008050321A (en) Photodegradable coupling agent
JP4376540B2 (en) Metal surface modifiers and new sulfur-containing compounds
TWI613206B (en) Photodecomposition material, substrate and patterning method thereof
JP7031903B2 (en) Eugenol derivative
JP5557229B2 (en) Photodegradable heterobivalent crosslinking agent
US20100256251A1 (en) Process for modifying substrates with grafted polymers
Ruderisch et al. Synthesis of an enantiomerically pure resorcinarene with pendant L-valine residues and its attachment to a polysiloxane (Chirasil-Calix)
KR100252553B1 (en) Disulfides, process for their preparation and their use
EP3177667B1 (en) Polymer having adherence properties
JP5385538B2 (en) O-Nitrobenzyl group-containing silazane compound, its production method and use
JP2007291005A (en) Photodegradable coupling agent
JPH01103611A (en) Organometal-containing polymer and its use for forming image
JP4200212B2 (en) Azoaryl mercaptoalkyl polyethylene glycol
JP2002363154A (en) Protected thiol compound and protected disulfide compound
JPH03160086A (en) Thin polypeptide film
US7173156B1 (en) Thioacetate deprotection
JP4841551B2 (en) Coupling agents containing photosensitive protecting groups and their use, such as for the functionalization of solid supports
JP5347359B2 (en) O-nitrobenzyl group-containing silazane compounds and uses
JP2004033824A (en) UV-resistant self-assembled monolayer with polyaromatic compounds
JP4217794B2 (en) probe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090901

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090909

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150918

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees