JP2004052103A - Steel sheet excellent in deep drawability, steel pipe excellent in workability, and manufacturing method - Google Patents
Steel sheet excellent in deep drawability, steel pipe excellent in workability, and manufacturing method Download PDFInfo
- Publication number
- JP2004052103A JP2004052103A JP2002368878A JP2002368878A JP2004052103A JP 2004052103 A JP2004052103 A JP 2004052103A JP 2002368878 A JP2002368878 A JP 2002368878A JP 2002368878 A JP2002368878 A JP 2002368878A JP 2004052103 A JP2004052103 A JP 2004052103A
- Authority
- JP
- Japan
- Prior art keywords
- steel sheet
- deep drawability
- steel
- value
- mass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Heat Treatment Of Sheet Steel (AREA)
Abstract
【課題】深絞り性に優れた鋼板と鋼管及びその製造方法を提供する。
【解決手段】所定のC,Mn量を含有し、平均r値が1.2以上の鋼板及び鋼管。熱延に際しては炭化物を微細化し、熱延組織を均一化するように条件を選択し、冷間圧延の圧下率を35〜85%未満とし、平均加熱速度4〜200℃/hrで加熱し、最高到達温度を600〜800℃とする焼鈍を行うことを特徴とする深絞り性に優れた鋼板と鋼管およびそれらの製造方法。
【選択図】 なしA steel sheet and a steel pipe excellent in deep drawability and a method for manufacturing the same are provided.
A steel sheet and a steel pipe containing predetermined amounts of C and Mn and having an average r value of 1.2 or more. At the time of hot rolling, conditions are selected so as to make carbide finer and to make the hot rolled structure uniform, to reduce the rolling reduction of cold rolling to 35 to less than 85%, and to heat at an average heating rate of 4 to 200 ° C / hr. A steel sheet and a steel pipe excellent in deep drawability, characterized by performing annealing at a maximum temperature of 600 to 800 ° C., and a method for producing them.
[Selection diagram] None
Description
【0001】
【発明の属する技術分野】
本発明は、例えば自動車のパネル類、足廻り、メンバーなどに用いられる鋼板と鋼管およびそれらの製造方法に関するものである。本発明の鋼板および鋼管は、表面処理をしないものと、防錆のために溶融めっき、電気めっきなどの表面処理を施したものの両方を含む。めっきとは、純亜鉛のほか、主成分が亜鉛である合金のめっきの他、AlやMgを主成分とするめっきなども含む。本発明によれば深絞り性に優れた高強度鋼板および鋼管を安価に得ることができるため地球環境保全に貢献しうるものと考えられる。また、ハイドロフォーム成形用としても好適である。
【0002】
【従来の技術】
自動車の軽量化ニーズに伴い、鋼板の高強度化が望まれている。高強度化することで板厚減少による軽量化や衝突時の安全性向上が可能となる。しかしながら高強度で成形性特に深絞り性が優れた鋼板を得ようとすると、たとえば特許文献1に開示されているように、C量を著しく減じた極低炭素鋼にSi,Mn,Pなどを添加して強化することが必須であった。C量を低減するためには製鋼工程で真空脱ガスを行わねばならず、製造過程でCO2を多量に発生することになり、地球環境保全の観点で必ずしも最適なものとは言い難い。これに対してC量が比較的多く、かつ深絞り性の良好な鋼板についても開示されている。特許文献2〜7などに開示されている。しかしながらこれらについてもC量は実質的に0.07%以下と低い。さらに特許文献8ではC量が0.14%でも比較的良好なr値が得られることが示されている。しかしながらこれにはPが多量に含有されており、2次加工性が劣化したり、溶接性や溶接後の疲労強度に問題を生ずる場合がある。本発明者らは、このような問題を解決するための技術を特許文献9に開示している。これに加えて、Mn量が多い場合には、良好な深絞り性を得るための特別な熱延条件が存在することを新たに見出した。
【0003】
【特許文献1】
特開昭56−139654号公報
【特許文献2】
特公昭57−47746号公報
【特許文献3】
特公平2−20695号公報
【特許文献4】
特公昭58−49623号公報
【特許文献5】
特公昭61−12983号公報
【特許文献6】
特公平1−37456号公報
【特許文献7】
特開昭59−13030号公報
【特許文献8】
特公昭61−10012号公報
【特許文献9】
特開平2002−206137号公報
【0004】
【発明が解決しようとする課題】
本発明は、C量とMn量が比較的多い鋼において深絞り性の良好な高強度鋼板および鋼管を高いコストをかけることなく、また、地球環境に過度の負荷をかけることなく得るものである。
【0005】
【課題を解決するための手段】
本発明者らは、上記のような課題を解決すべく鋭意検討を行い、熱延板中の炭化物を均一かつ微細に分散させ、さらに熱延組織を均一にすることが、C量やMn量の多い鋼における深絞り性向上に対して有用であるという従来にはない知見を得た。
【0006】
本発明の要旨とするところは、
(1)質量%で、
C :0.04〜0.25%
Si:0.001〜2.5%
Mn:0.8〜3.0%
P :0.001〜0.06%
S :0.03%以下
N :0.001〜0.015%
Al:0.008〜0.3%
を含有し、残部が鉄及び不可避的不純物からなり、平均r値が1.2以上であり、フェライトと析出物からなる組織で構成されることを特徴とする深絞り性に優れた鋼板。
(2)圧延方向のr値(rL)が1.1以上、圧延方向に対して45゜方向のr値(rD)が0.9以上、圧延方向と直角方向のr値(rC)が1.2以上であることを特徴とする(1)に記載の深絞り性に優れた鋼板。
(3)鋼板1/2板厚における板面の{111}、{100}の各X線反射面強度比がそれぞれ4.0以上、2.5以下であることを特徴とする(1)または(2)に記載の深絞り性に優れた鋼板。
(4)鋼板を構成する結晶粒の平均結晶粒径が15μm以上であることを特徴とする(1)〜(3)のいずれか1項に記載の深絞り性に優れた鋼板。
(5)鋼板を構成する結晶粒のアスペクト比の平均値が1.0以上5.0未満であることを特徴とする(1)〜(4)のいずれか1項に記載の深絞り性に優れた鋼板。
(6)0.2%耐力/引張最高強度で表される降伏比が0.7未満であることを特徴とする(1)〜(5)のいずれか1項に記載の深絞り性に優れた鋼板。
(7)Al/Nが3〜25であることを特徴とする(1)〜(6)のいずれか1項に記載の深絞り性に優れた鋼板。
(8)Bを0.0001〜0.01質量%含むことを特徴とする(1)〜(7)のいずれか1項に記載の深絞り性に優れた鋼板板。
(9)ZrおよびMgの1種または2種を合計で0.0001〜0.5質量%含むことを特徴とする(1)〜(8)のいずれか1項に記載の深絞り性に優れた鋼板板。
(10)Ti,Nb,Vの1種又は2種以上を合計で0.001〜0.2質量%含むことを特徴とする(1)〜(9)のいずれか1項に記載の深絞り性に優れた鋼板。
(11)Sn、Cr、Cu、Ni、Co、WおよびMoの1種又は2種以上を合計で0.001〜2.5質量%含むことを特徴とする(1)〜(10)のいずれか1項に記載の深絞り性に優れた鋼板。
(12)Caを0.0001〜0.01質量%含むことを特徴とする(1)〜(11)のいずれか1項に記載の深絞り性に優れた鋼板。
(13)(1)〜(12)の何れか1項に記載の鋼板を製造する方法であって、請求項1または(7)〜(12)のいずれか1項に記載の化学成分を有する鋼をAr3変態点以上で熱間圧延を完了し、熱延仕上げ温度から550℃までを平均冷却速度で30℃/s以上で冷却し、550℃以下の温度で巻き取り、圧下率35%以上85%未満の冷間圧延を施し、平均加熱速度4〜200℃/hrで加熱し、最高到達温度を600〜800℃とする焼鈍を行い、5〜100℃/hrの速度で冷却することを特徴する深絞り性に優れた鋼板の製造方法。
(14)表面にメッキ層を有することを特徴とする(1)〜(12)の何れか1項に記載の深絞り性に優れた鋼板。
(15)(14)記載の鋼板を製造する方法であって、焼鈍、冷却後の鋼板の表面に溶融メッキまたは電気メッキを施すことを特徴する(13)記載の深絞り性に優れた鋼板の製造方法。
にある。
(16)鋼板が鋼管であることを特徴と有する上記(1)〜(12)、(14)のいずれか1項に記載の加工性に優れた鋼管。
(17) 上記(13)または(15)記載の方法にしたがって製造した鋼板を接合して鋼管とすることを特徴とする加工性に優れた鋼管の製造方法。
【0007】
【発明の実施の形態】
以下に本発明を詳細に説明する。
【0008】
先ず、本発明の鋼板の鋼成分について説明する。
【0009】
C:高強度化に有効で、また、C量を低減するためにはコストアップとなるので、0.04質量%以上の添加とするが、良好なr値を得るためには過度の添加は好ましいものではなく上限を0.25%とする。0.08超〜0.18%が望ましい範囲である。
【0010】
Si:安価に機械的強度を高めることが可能であり、要求される強度レベルに応じて添加する。また、Siは熱延板中の炭化物の微細化や組織の均一化に有用で、結果として深絞り性を向上させる効果を有するので0.2%以上の添加が好ましい。一方、過剰の添加はメッキのぬれ性、加工性さらには溶接性の劣化を招くので上限を2.5質量%とする。下限を0.001%としたのは、これ未満とするのが製鋼技術上困難なためである。2.0%以下がより好ましい上限である。
【0011】
Mn:Mnは一般にr値を低下せしめる元素として知られている。その低下代はC量が多い鋼ほど顕著になる。本発明においては、このようなMnによるr値の劣化を抑制し、良好なr値を得るという技術課題に立脚しているので、Mnの下限を0.8質量%とした。また、0.8質量%以上で強化効果が得られ易い。3.0質量%を上限としたのは、これを上回る添加は伸びやr値に悪影響を及ぼすためである。
【0012】
P:高強度化に有効な元素であるので0.001%以上添加する。0.06%超を添加すると溶接性や溶接部の疲労強度、さらには耐2次加工脆性が劣化するのでこれを上限とする。好ましくは0.04%未満である。
【0013】
S:不純物であり、低いほど好ましく、熱間割れを防止するために0.03%以下とする。好ましくは0.015%以下である。また、Mn量との関係において、Mn/S>10であることが好ましい。
【0014】
N:良好なr値を得るためには0.001%以上の添加が必須である。多すぎると時効性を劣化させたり、多量のAl添加が必要となるため上限を0.015%とする。0.002〜0.007%がより好ましい範囲である。
【0015】
Al:本発明において重要である。冷延後の徐加熱時にNとのクラスターや析出物を形成することによって集合組織を発達せしめ、深絞り性が向上する。また、脱酸元素としても有用であるので0.008質量%以上添加する。ただし、過度に添加するとコストアップとなり、表面欠陥を誘発し、r値も低下する。したがって上限を0.3質量%とする。好ましくは0.01〜0.10質量%とする。
【0016】
本発明によって得られる鋼板の平均r値は1.2以上である。1.3以上であればより好ましい。
【0017】
圧延方向のr値(rL)が1.1以上、圧延方向に対して45゜方向のr値(rD)が0.9以上、圧延方向に対して直角方向のr値(rC)が1.2以上であることが好ましい。好ましくは、それぞれ、1.3以上、1.0以上、1.3以上である。
【0018】
平均r値は、(rL+2×rD+rC)/4で与えられる。r値の測定はJIS13号B試験片を用いた引っ張り試験を行い、10%または15%引っ張り後の標点間距離の変化と板幅変化からr値の定義にしたがって算出すればよい。
【0019】
本発明の鋼板の組織はフェライトと析出物が主相でこれらによって99%以上の体積率が占められる。析出物とは主に炭化物(多くの場合、セメンタイト)であることが通常であるが、化学成分によっては窒化物、炭窒化物、硫化物なども析出する。本発明の鋼板の組織中のマルテンサイトやベイナイトなど鉄の低温変態生成相および残留オーステナイトの量は体積分率で1%以下である。
【0020】
本発明によって得られる鋼板は、少なくとも板厚中心における板面のX線反射面ランダム強度比が、{111}面、{100}面についてそれぞれ4.0以上、2.5以下である。ランダム強度比とはランダムサンプルのX線強度を基準としたときの相対的な強度である。板厚中心とは板厚の3/8〜5/8の範囲を指し、測定はこの範囲の任意の面で行えばよい。
【0021】
鋼板を構成する結晶粒の平均結晶粒径は、15μm以上である。これ以下の結晶粒経では良好なr値が得られない。また、これが100μm以上となると成形時に肌荒れ等の問題になる場合があるため、100μm未満であることが望ましい。結晶粒径は板面と垂直で圧延方向と平行な切断面(L断面)の板厚3/8〜5/8の範囲内について点算法などによって測定すればよい。なお、測定誤差を低減するためには結晶粒が100個以上存在する領域について測定しなくてはならない。エッチングはナイタールが好ましい。
【0022】
さらに鋼板を構成する結晶粒のアスペクト比の平均は、1.0以上5.0未満である。この範囲外であると良好なr値が得られない。アスペクト比とはJISG0552の方法によって測定される展伸度と同じである。すなわち、本発明の場合、板面と垂直で圧延方向と平行な切断面(L断面)における板厚3/8〜5/8の範囲内の圧延方向に垂直な一定長さの線分によって切断される結晶粒の数で圧延方向に平行な上記と同じ長さの線分によって切断される結晶粒の数を除したもので与えられる。好ましくは、1.5以上4.0未満である。
【0023】
本発明の鋼板の引張試験で評価される降伏比(0.2%耐力/最高引張強度)は通常は0.70未満である。形状凍結性の確保やプレス成形時の面歪みの発生を抑制する観点からは0.65以下であることが好ましい。本発明では降伏比が低いので、n値も良好である。特に低歪み域(10%以下)でのn値が高い。降伏比の下限は特に定めないが、たとえばハイドロフォーム成形時の座屈を防止するためには0.40以上であることが好ましい。
【0024】
Al/Nは3〜25の範囲であることが好ましい。この範囲外では良好なr値を得ることが困難となる。好ましくは5〜15の範囲である。
【0025】
Bはr値を向上させたり、耐2次加工性脆性の改善に有効であるので必要に応じて添加する。0.0001%未満ではその効果はわずかで、0.01%超添加しても格段の効果は得られない。0.0002〜0.0020%が好ましい範囲である。
【0026】
ZrとMgは脱酸元素として有効である。一方、過剰の添加は酸化物、硫化物や窒化物の多量の晶出や析出を招き清浄度が劣化して、延性を低下させてしまう上、メッキ性を損なう。したがって、必要に応じてこれらの1種または2種を合計で0.0001〜0.50質量%とする。
【0027】
Ti,Nb,Vも必要に応じて添加する。これらは、炭化物、窒化物もしくは炭窒化物を形成することによって鋼材を高強度化したり加工性を向上することができるので、1種又は2種以上を合計で0.001%以上添加する。その合計が0.2%を越えた場合には母相であるフェライト粒内もしくは粒界に多量の炭化物、窒化物もしくは炭窒化物として析出して、延性を低下させる。また、焼鈍中のAlNの析出を妨げ、本発明の特徴である深絞り性が損なわれることから、添加範囲を0.001〜0.2質量%とした。より好ましくは0.01〜0.03%である。
【0028】
Sn、Cr、Cu、Ni、Co、W、Moは強化元素であり必要に応じてこれらの1種又は2種以上を合計で必要に応じて質量%で0.001%以上添加する。特にCuはr値を向上せしめる効果を有するので、0.3%以上添加することが好ましい。過剰の添加は、コストアップや延性の低下を招くことから、2.5%以下とした。
【0029】
Ca:介在物制御のほか脱酸に有効な元素で、適量の添加は熱間加工性を向上させるが、過剰の添加は逆に熱間脆化を助長させるため、必要に応じて質量%で0.0001〜0.01%の範囲とする。
【0030】
また、不可避的不純物として、O(酸素)、Zn、Pb、As、Sbなどをそれぞれ0.02質量%以下の範囲で含んでも、本発明の効果を失するものではない。
【0031】
次に本発明による鋼板の製造条件について説明する。
【0032】
本発明鋼板の製造にあたっては、高炉、電炉等による溶製に続き各種の2次製錬を行いインゴット鋳造や連続鋳造を行い、連続鋳造の場合には室温付近まで冷却することなく熱間圧延するCC−DRなどの製造方法を組み合わせて製造してもかまわない。鋳造インゴットや鋳造スラブを再加熱して熱間圧延を行っても良いのは言うまでもない。熱間圧延の加熱温度は特に限定するものではないが、AlNを固溶状態とするために1100℃以上とすることが好ましい。熱延の仕上げ温度はAr3変態点以上で行う。熱延仕上げ温度がAr3点を下回ると、高温で変態した粗大なフェライト粒、さらにはそれが加工され再結晶や粒成長により粗大化したフェライトと比較的低温域で変態した微細フェライト粒とが混在し、不均一な組織となる。熱延仕上げ温度の上限は特に設けないが、熱延組織を均一にするためには(Ar3+100)℃以下とすることが好ましい。
【0033】
熱延後の冷却速度は重要である。すなわち熱延仕上げ後、巻き取り温度までの平均冷却速度を30℃/s以上とする。本発明においては、熱延板における炭化物をできるだけ微細に分散させ、かつ組織を均一にすることが冷延焼鈍後のr値の向上に対して極めて重要である。上記の熱延冷却条件はこの観点から決定される。冷却速度が30℃/s未満となると、結晶粒径が不均一になるばかりでなく、パーライト変態が促進され、炭化物が粗大となる。上限は特に設けないが、あまり大きいと極度に硬質となる可能性があるので100℃/s以下とすることが好ましい。
【0034】
熱延板の組織として最も好ましいのは97%以上のベイナイトによって構成される組織であり、下部ベイナイト組織であればさらに好ましい。ベイナイト単相であれば最良であることは言うまでもない。マルテンサイト単相組織でも良いが、硬質すぎて冷延が困難となる。フェライト単相またはフェライト、ベイナイト、マルテンサイト、残留オーステナイトのうちの2種類以上からなる複合組織を有する熱延板は冷延素材として好ましくない。
【0035】
巻き取り温度は550℃以下とする。巻き取り温度が550℃超となるとAlNの析出や粗大化、また炭化物が粗大化するため、r値が劣化する。好ましくは500℃未満である。熱間圧延の1パス以上について潤滑を施しても良い。また、粗圧延バーを互いに接合し、連続的に仕上げ熱延を行っても良い。粗圧延バーは一度巻き取って再度巻き戻してから仕上げ熱延に供してもかまわない。巻き取り温度の下限は特に設けないが、熱延板中の固溶Cを低減して、良好なr値を得るためには、100℃以上とすることが好ましい。
【0036】
熱間圧延後は酸洗することが望ましい。熱延後の冷間圧延の圧下率は高すぎても低すぎても良好な深絞り性を得るために好ましくないので35〜85%未満とする。50〜75%がより好ましい範囲である。
【0037】
焼鈍は箱焼鈍が基本であるが、下記の要件を満たせばこの限りではない。良好なr値を得るためには、加熱速度を4〜200℃/hrとする必要がある。さらには10〜40℃/hrが好ましい。最高到達温度もr値確保の観点から600〜800℃とすることが望ましい。600℃未満では再結晶が完了せず加工性が劣化する。一方、800℃超ではα+γ域のγ分率の高い側に入るため、加工性が劣化する場合がある。なお、最高到達温度での保持時間は特に指定するものではないが、(最高到達温度−20)℃以上での保持時間が2hr以上であることがr値向上の観点から好ましい。冷却速度は固溶Cを十分に低減する観点から決定される。すなわち、5〜100℃/hrの範囲とする。
【0038】
焼鈍後のスキンパスは形状強制や強度調整、さらには常温非時効性を確保する観点から必要に応じて行う。0.5〜5.0%が好ましい圧下率である。
【0039】
このようにして製造した鋼板表面に種々のメッキを施しても良い。溶融メッキ、電気メッキのいずれでも良く、その種類も亜鉛やアルミを主成分とするメッキであれば良い。
【0040】
このようにして製造された鋼板を接合して鋼管とすることができる。鋼板の圧延方向が管軸方向と一致することが望ましい。圧延方向以外、例えば、圧延方向と直角方向が管軸方向となるようにしてもハイドロフォーム用として特に劣るものではないが、鋼管製造の生産性が低下するためである。鋼管の製造にあたっては、通常は電縫溶接を用いるが、TIG、MIG、レーザー溶接、UOや鍛接等の溶接・造管手法等を用いることも出来る。これらの溶接鋼管製造に於いて溶接熱影響部は必要とする特性に応じて局部的な固溶化熱処理を単独あるいは複合して、場合によっては複数回重ねて行っても良く、本発明の効果をさらに高める。この熱処理は溶接部と溶接熱影響部のみに付加することが目的であって、製造時にオンラインであるいはオフラインで施行できる。
【0041】
鋼管のr値については鋼板のそれと同じ特徴を持つ。鋼管のr値の測定は、鋼管から試験片を切り出し、プレスによって平板とし、さらに引張試験片に加工して行う。鋼管の径や試験片の採取方向によってはJIS13号B試験片を採取することが困難な場合があるが、その際にはJIS6号やJIS14号B試験片等の小型試験片を用いて、均一伸びの範囲内で評価する。なお、鋼管から試験片を切り出す際には、鋼管の溶接部が引張試験片の平行部内に来ないように注意する。
【0042】
X線測定は鋼管そのものでは測定することができないので、次のようにして行う。まず、鋼管を適当に切断して、プレス等により板状とする。これを測定板厚まで機械研磨などによって減厚し、最終的には1平均結晶粒径以上を目安に30〜100μm程度減厚させるよう化学研磨によって仕上げる。
【0043】
本発明の鋼管は表面粗度が小さい。すなわち、JISB0601で規定されるRaが0.8μm以下であることが好ましい。高温縮経加工によって製造された鋼管が0.8μm超であるのとは対照的である。より好ましくは0.6μm以下である。
【0044】
【実施例】
表1に示す成分の各鋼を溶製して1250℃に加熱後、仕上げ温度をAr3〜(Ar3+50)℃とする熱間圧延を行った後、表2に示す条件で巻き取った。得られた熱延板の組織も表2に示す。さらに表2に示す圧下率で冷延されたのち加熱速度20℃/hr、最高到達温度を700℃とする焼鈍をおこない、5時間保持後、15℃/hrで冷却した。さらに1.0%のスキンパスを施した。
【0045】
得られた鋼板のr値をJIS13号試験片を用いた引張試験により評価した。その他の引張特性についてはJIS5号試験片を用いて評価した。ここでr値は10〜15%引張変形後の板幅変化を測定することによって求めた。また、機械研磨によって板厚中心付近まで減厚し、化学研磨によって仕上げ、X線測定に供した。X線ランダム強度比を合わせて表2に示す。
【0046】
この板を電縫溶接によって造管した。
【0047】
得られた鋼管の加工性の評価は以下の方法で行った。前もって鋼管に10mmφのスクライブドサークルを転写し、内圧と軸押し量を制御して、円周方向への張り出し成形を行った。バースト直前での最大拡管率を示す部位(拡管率=成形後の最大周長/母管の周長)の軸方向の歪εΦと円周方向の歪εθを測定した。この2つの歪の比ρ=εΦ/εθと最大拡管率をプロットし、ρ=−0.5となる拡管率Reをもってハイドロフォームの成形性指標とした。引張強度と伸びの評価はJIS12号弧状試験片を用いて行った。
【0048】
鋼管の機械的性質を表3に示す。
【0049】
表2、表3より明らかなとおり、本発明例では本発明外の例に比較して、良好な特性が得られた。なお、鋼管の組織、X線ランダム強度比は鋼板のものとほとんど同じであった。
【0050】
【表1】
【0051】
【表2】
【0052】
【表3】
【0053】
【発明の効果】
本発明により、良好なr値を有する深絞り性に優れた高強度鋼板および鋼管が得られ、地球環境保全などに貢献するものである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a steel plate and a steel pipe used for, for example, a panel, a suspension, a member, and the like of an automobile, and a method of manufacturing the same. The steel sheet and the steel pipe of the present invention include both those not subjected to surface treatment and those subjected to surface treatment such as hot-dip plating and electroplating for rust prevention. The plating includes not only pure zinc, but also plating of an alloy whose main component is zinc, as well as plating whose main component is Al or Mg. According to the present invention, it is considered that a high-strength steel sheet and a steel pipe excellent in deep drawability can be obtained at low cost, which can contribute to global environmental conservation. It is also suitable for hydroform molding.
[0002]
[Prior art]
With the need to reduce the weight of automobiles, higher strength of steel sheets is desired. By increasing the strength, it is possible to reduce the weight by reducing the plate thickness and to improve the safety in the event of a collision. However, in order to obtain a steel sheet having high strength and excellent formability, especially deep drawability, for example, as disclosed in Patent Document 1, Si, Mn, P, etc. are added to an ultra-low carbon steel in which the amount of C is significantly reduced. It was essential to add and strengthen. In order to reduce the amount of carbon, vacuum degassing must be performed in the steel making process, and a large amount of CO 2 is generated in the manufacturing process, which is not always optimal from the viewpoint of global environmental protection. On the other hand, a steel sheet having a relatively large C content and good deep drawability is also disclosed. It is disclosed in Patent Documents 2 to 7 and the like. However, also in these, the C content is as low as substantially 0.07% or less. Further, Patent Document 8 shows that a relatively good r value can be obtained even when the C amount is 0.14%. However, this contains a large amount of P, which may deteriorate the secondary workability or cause problems in weldability and fatigue strength after welding. The present inventors have disclosed a technique for solving such a problem in Patent Document 9. In addition, it has been newly found that when the amount of Mn is large, there is a special hot rolling condition for obtaining good deep drawability.
[0003]
[Patent Document 1]
JP-A-56-139654 [Patent Document 2]
Japanese Patent Publication No. 57-47746 [Patent Document 3]
Japanese Patent Publication No. Hei 2-20695 [Patent Document 4]
JP-B-58-49623 [Patent Document 5]
JP-B-61-12983 [Patent Document 6]
Japanese Patent Publication No. 37456/1993 [Patent Document 7]
JP-A-59-13030 [Patent Document 8]
JP-B-61-10012 [Patent Document 9]
JP-A-2002-206137
[Problems to be solved by the invention]
The present invention is intended to obtain a high-strength steel sheet and a steel pipe having good deep drawability in a steel having a relatively large amount of C and Mn without increasing the cost and without imposing an excessive load on the global environment. .
[0005]
[Means for Solving the Problems]
The present inventors have conducted intensive studies in order to solve the above-mentioned problems, and uniformly and finely dispersing carbides in a hot-rolled sheet, and further uniforming the hot-rolled structure, the amount of C or Mn. Unconventional knowledge that it is useful for improving the deep drawability of steel with a lot of content was obtained.
[0006]
The gist of the present invention is:
(1) In mass%,
C: 0.04 to 0.25%
Si: 0.001 to 2.5%
Mn: 0.8-3.0%
P: 0.001 to 0.06%
S: 0.03% or less N: 0.001 to 0.015%
Al: 0.008 to 0.3%
A steel sheet excellent in deep drawability, characterized in that the steel sheet contains iron and inevitable impurities, has an average r value of 1.2 or more, and has a structure composed of ferrite and precipitates.
(2) The r value (rL) in the rolling direction is 1.1 or more, the r value (rD) in the 45 ° direction relative to the rolling direction is 0.9 or more, and the r value (rC) in a direction perpendicular to the rolling direction is 1 2. The steel sheet excellent in deep drawability according to (1), which is not less than 2.
(3) Each of the {111} and {100} X-ray reflection surface intensity ratios of the plate surface at 1/2 steel plate thickness is 4.0 or more and 2.5 or less, respectively (1) or (2) A steel sheet excellent in deep drawability according to (2).
(4) The steel sheet excellent in deep drawability according to any one of (1) to (3), wherein the average grain size of the crystal grains constituting the steel sheet is 15 μm or more.
(5) The deep drawability according to any one of (1) to (4), wherein the average value of the aspect ratio of the crystal grains constituting the steel sheet is 1.0 or more and less than 5.0. Excellent steel plate.
(6) The deep drawability according to any one of (1) to (5), wherein the yield ratio represented by 0.2% proof stress / tensile maximum strength is less than 0.7. Steel plate.
(7) The steel sheet excellent in deep drawability according to any one of (1) to (6), wherein Al / N is 3 to 25.
(8) The steel sheet excellent in deep drawability according to any one of (1) to (7), containing B in an amount of 0.0001 to 0.01% by mass.
(9) Excellent deep drawability according to any one of (1) to (8), wherein one or two of Zr and Mg are contained in a total amount of 0.0001 to 0.5% by mass. Steel plate.
(10) The deep drawing described in any one of (1) to (9), wherein one or more of Ti, Nb, and V are contained in a total amount of 0.001 to 0.2% by mass. Steel sheet with excellent properties.
(11) Any of (1) to (10), wherein one or more of Sn, Cr, Cu, Ni, Co, W and Mo are contained in a total amount of 0.001 to 2.5% by mass. 4. The steel sheet having excellent deep drawability according to item 1.
(12) The steel sheet excellent in deep drawability according to any one of (1) to (11), which contains 0.0001 to 0.01% by mass of Ca.
(13) A method for producing the steel sheet according to any one of (1) to (12), comprising the chemical component according to any one of (1) or (7) to (12). Hot rolling of the steel is completed at the Ar 3 transformation point or higher, the temperature from the hot-rolling finishing temperature to 550 ° C. is cooled at an average cooling rate of 30 ° C./s or more, and the steel is taken up at a temperature of 550 ° C. or less, and the draft is 35% Cold rolling of not less than 85%, heating at an average heating rate of 4 to 200 ° C / hr, annealing at a maximum temperature of 600 to 800 ° C, and cooling at a rate of 5 to 100 ° C / hr. A method for producing a steel sheet having excellent deep drawability, characterized by the following.
(14) The steel sheet excellent in deep drawability according to any one of (1) to (12), having a plating layer on a surface.
(15) The method for producing a steel sheet according to (14), wherein hot-dip plating or electroplating is performed on the surface of the steel sheet after annealing and cooling. Production method.
It is in.
(16) The steel pipe excellent in workability according to any one of (1) to (12) and (14), wherein the steel sheet is a steel pipe.
(17) A method for producing a steel pipe excellent in workability, comprising joining steel sheets produced according to the method described in the above (13) or (15) to form a steel pipe.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
[0008]
First, the steel composition of the steel sheet of the present invention will be described.
[0009]
C: Addition of 0.04% by mass or more is effective for increasing the strength and increasing the cost to reduce the amount of C. However, excessive addition is required to obtain a good r value. It is not preferable and the upper limit is set to 0.25%. More than 0.08 to 0.18% is a desirable range.
[0010]
Si: The mechanical strength can be increased at low cost, and is added according to the required strength level. Further, Si is useful for refining carbides in a hot-rolled sheet and making the structure uniform, and as a result has an effect of improving the deep drawability. Therefore, the addition of 0.2% or more is preferable. On the other hand, an excessive addition causes deterioration of the wettability, workability and weldability of the plating, so the upper limit is set to 2.5% by mass. The lower limit is set to 0.001% because it is difficult to make the lower limit from the viewpoint of steelmaking technology. 2.0% or less is a more preferred upper limit.
[0011]
Mn: Mn is generally known as an element that lowers the r value. The decrease in the amount becomes more pronounced in steels with a higher C content. In the present invention, the lower limit of Mn is set to 0.8% by mass, since it is based on the technical problem of suppressing such deterioration of the r value due to Mn and obtaining a good r value. When the content is 0.8% by mass or more, the reinforcing effect is easily obtained. The reason why the upper limit was set to 3.0% by mass is that the addition exceeding the above limit adversely affects the elongation and the r value.
[0012]
P: 0.001% or more, which is an element effective for increasing the strength. If more than 0.06% is added, the weldability, the fatigue strength of the welded portion, and the resistance to secondary working brittleness will be deteriorated. Preferably it is less than 0.04%.
[0013]
S: It is an impurity, and the lower the better, the more preferable. Preferably it is 0.015% or less. Further, in relation to the amount of Mn, it is preferable that Mn / S> 10.
[0014]
N: Addition of 0.001% or more is essential to obtain a good r value. If the amount is too large, the aging property is degraded or a large amount of Al needs to be added, so the upper limit is made 0.015%. 0.002 to 0.007% is a more preferable range.
[0015]
Al: important in the present invention. By forming clusters and precipitates with N at the time of slow heating after cold rolling, a texture is developed and deep drawability is improved. Further, since it is also useful as a deoxidizing element, 0.008% by mass or more is added. However, excessive addition increases the cost, induces surface defects, and lowers the r value. Therefore, the upper limit is set to 0.3% by mass. Preferably it is 0.01 to 0.10% by mass.
[0016]
The average r value of the steel sheet obtained by the present invention is 1.2 or more. 1.3 or more is more preferable.
[0017]
The r value (rL) in the rolling direction is 1.1 or more, the r value (rD) in the 45 ° direction with respect to the rolling direction is 0.9 or more, and the r value (rC) in the direction perpendicular to the rolling direction is 1. It is preferably two or more. Preferably, they are 1.3 or more, 1.0 or more, and 1.3 or more, respectively.
[0018]
The average r value is given by (rL + 2 × rD + rC) / 4. The r value may be measured by performing a tensile test using a JIS No. 13B test piece and calculating from the change in gauge length and the change in plate width after 10% or 15% tension in accordance with the definition of the r value.
[0019]
The structure of the steel sheet of the present invention is mainly composed of ferrite and precipitates, and the main phase occupies 99% or more by volume. The precipitate is usually mainly a carbide (in many cases, cementite), but depending on a chemical component, a nitride, a carbonitride, a sulfide, and the like are also precipitated. The low-temperature transformation generation phase of iron such as martensite and bainite and the amount of retained austenite in the structure of the steel sheet of the present invention are 1% or less in volume fraction.
[0020]
In the steel sheet obtained by the present invention, the X-ray reflection surface random intensity ratio of the plate surface at least at the center of the plate thickness is 4.0 or more and 2.5 or less for the {111} plane and the {100} plane, respectively. The random intensity ratio is a relative intensity based on the X-ray intensity of a random sample. The plate thickness center indicates a range of 3/8 to 5/8 of the plate thickness, and the measurement may be performed on any surface in this range.
[0021]
The average crystal grain size of the crystal grains constituting the steel sheet is 15 μm or more. If the crystal grain size is smaller than this, a good r value cannot be obtained. Further, if the thickness is 100 μm or more, there may be a problem such as surface roughness at the time of molding. Therefore, the thickness is desirably less than 100 μm. The crystal grain size may be measured by a point calculation method or the like in a range of a sheet thickness of 切断 to / of a cut plane (L section) perpendicular to the sheet surface and parallel to the rolling direction. In order to reduce the measurement error, it is necessary to measure a region where 100 or more crystal grains exist. Etching is preferably performed with nital.
[0022]
Furthermore, the average of the aspect ratio of the crystal grain which comprises a steel plate is 1.0 or more and less than 5.0. Outside this range, a good r value cannot be obtained. The aspect ratio is the same as the elongation measured by the method of JIS G0552. That is, in the case of the present invention, cutting is performed by a line segment having a constant length perpendicular to the rolling direction within a range of a sheet thickness of 3/8 to 5/8 on a cutting plane (L section) perpendicular to the sheet surface and parallel to the rolling direction. It is obtained by dividing the number of crystal grains cut by a line segment having the same length parallel to the rolling direction by the number of crystal grains to be cut. Preferably, it is 1.5 or more and less than 4.0.
[0023]
The yield ratio (0.2% proof stress / maximum tensile strength) evaluated in the tensile test of the steel sheet of the present invention is usually less than 0.70. It is preferably 0.65 or less from the viewpoint of securing shape freezing properties and suppressing the occurrence of surface distortion during press molding. In the present invention, since the yield ratio is low, the n value is also good. In particular, the n value is high in a low distortion region (10% or less). Although the lower limit of the yield ratio is not particularly defined, it is preferably 0.40 or more, for example, in order to prevent buckling during hydroforming.
[0024]
Al / N is preferably in the range of 3 to 25. Outside this range, it is difficult to obtain a good r value. Preferably it is in the range of 5 to 15.
[0025]
B is added as necessary because it is effective for improving the r value and improving the resistance to secondary workability and brittleness. If it is less than 0.0001%, the effect is small, and even if it exceeds 0.01%, no remarkable effect can be obtained. 0.0002 to 0.0020% is a preferable range.
[0026]
Zr and Mg are effective as deoxidizing elements. On the other hand, excessive addition causes a large amount of crystallization or precipitation of oxides, sulfides or nitrides, deteriorating cleanliness, lowering ductility and impairing plating properties. Therefore, if necessary, one or two of these may be added in a total amount of 0.0001 to 0.50% by mass.
[0027]
Ti, Nb, and V are also added as needed. By forming carbides, nitrides or carbonitrides, it is possible to increase the strength of the steel material or to improve the workability. Therefore, one or more of these are added in a total amount of 0.001% or more. If the total exceeds 0.2%, a large amount of carbides, nitrides or carbonitrides precipitates in ferrite grains or grain boundaries, which are the parent phase, and reduces ductility. Further, the precipitation range of AlN during annealing is impaired, and the deep drawability characteristic of the present invention is impaired. Therefore, the addition range is set to 0.001 to 0.2% by mass. More preferably, it is 0.01 to 0.03%.
[0028]
Sn, Cr, Cu, Ni, Co, W, and Mo are strengthening elements, and one or more of these may be added, if necessary, in a total amount of 0.001% or more by mass% as needed. In particular, since Cu has an effect of improving the r value, it is preferable to add 0.3% or more. Excessive addition leads to an increase in cost and a reduction in ductility, so the content was made 2.5% or less.
[0029]
Ca: an element effective for deoxidation in addition to controlling inclusions. Addition of a proper amount improves hot workability, but excessive addition conversely promotes hot embrittlement. The range is 0.0001 to 0.01%.
[0030]
The effects of the present invention are not lost even if O (oxygen), Zn, Pb, As, Sb, and the like are contained as unavoidable impurities in a range of 0.02% by mass or less.
[0031]
Next, the manufacturing conditions of the steel sheet according to the present invention will be described.
[0032]
In the production of the steel sheet of the present invention, smelting by a blast furnace, an electric furnace, etc., followed by various secondary smelting, ingot casting or continuous casting, and in the case of continuous casting, hot rolling without cooling to around room temperature. It may be manufactured by combining manufacturing methods such as CC-DR. It goes without saying that hot rolling may be performed by reheating the cast ingot or cast slab. The heating temperature of the hot rolling is not particularly limited, but is preferably 1100 ° C. or higher in order to bring AlN into a solid solution state. The hot rolling is performed at a finishing temperature equal to or higher than the Ar 3 transformation point. When the hot rolling finish temperature is lower than the Ar 3 point, coarse ferrite grains transformed at high temperature, ferrite processed and coarsened by recrystallization or grain growth, and fine ferrite grains transformed at relatively low temperature range are formed. Mixed and non-uniform organization. The upper limit of the hot-rolling finishing temperature is not particularly set, but is preferably (Ar 3 +100) ° C. or lower in order to make the hot-rolled structure uniform.
[0033]
The cooling rate after hot rolling is important. That is, after the hot rolling finish, the average cooling rate up to the winding temperature is set to 30 ° C./s or more. In the present invention, it is extremely important to disperse the carbides in the hot-rolled sheet as finely as possible and to make the structure uniform to improve the r-value after cold rolling annealing. The above hot rolling cooling conditions are determined from this viewpoint. When the cooling rate is less than 30 ° C./s, not only the crystal grain size becomes non-uniform, but also the pearlite transformation is promoted, and the carbide becomes coarse. There is no particular upper limit, but if it is too large, it may be extremely hard, so it is preferably 100 ° C./s or less.
[0034]
The most preferred structure of the hot-rolled sheet is a structure constituted by 97% or more of bainite, and a lower bainite structure is more preferable. It goes without saying that a bainite single phase is the best. Although a martensitic single phase structure may be used, it is too hard to perform cold rolling. A hot rolled sheet having a ferrite single phase or a composite structure composed of two or more of ferrite, bainite, martensite, and retained austenite is not preferable as a cold rolled material.
[0035]
The winding temperature is 550 ° C. or less. If the winding temperature exceeds 550 ° C., the precipitation and coarsening of AlN and the coarsening of carbides cause the r value to deteriorate. Preferably it is less than 500 ° C. Lubrication may be performed for one or more passes of hot rolling. Further, the rough rolling bars may be joined to each other, and the hot rolling may be continuously performed. The rough rolling bar may be wound once, rewound again, and then subjected to finish hot rolling. Although the lower limit of the winding temperature is not particularly set, it is preferably 100 ° C. or higher in order to reduce the solid solution C in the hot-rolled sheet and obtain a good r value.
[0036]
After hot rolling, it is desirable to perform pickling. If the rolling reduction of the cold rolling after hot rolling is too high or too low, it is not preferable to obtain good deep drawability. 50-75% is a more preferred range.
[0037]
Annealing is basically box annealing, but is not limited to this if the following requirements are satisfied. In order to obtain a good r value, the heating rate needs to be 4 to 200 ° C./hr. Furthermore, 10 to 40 ° C./hr is preferable. It is desirable that the highest temperature be 600 to 800 ° C. from the viewpoint of securing the r value. If the temperature is lower than 600 ° C., recrystallization is not completed and workability deteriorates. On the other hand, if the temperature exceeds 800 ° C., the workability is sometimes deteriorated because the γ fraction in the α + γ region is higher. The holding time at the highest temperature is not particularly specified, but the holding time at (highest temperature -20) ° C. or more is preferably 2 hours or more from the viewpoint of improving the r value. The cooling rate is determined from the viewpoint of sufficiently reducing solid solution C. That is, the range is 5 to 100 ° C./hr.
[0038]
The skin pass after the annealing is performed as necessary from the viewpoint of forcing the shape, adjusting the strength, and further ensuring non-aging at room temperature. 0.5 to 5.0% is a preferable rolling reduction.
[0039]
Various platings may be applied to the surface of the steel sheet manufactured in this manner. Either hot-dip plating or electroplating may be used, and the type of plating may be zinc or aluminum as a main component.
[0040]
The steel plates manufactured in this manner can be joined to form a steel pipe. It is desirable that the rolling direction of the steel plate coincides with the tube axis direction. Although it is not particularly inferior for hydroforming even if the pipe axis direction is other than the rolling direction, for example, the direction perpendicular to the rolling direction is the pipe axis direction, it is because the productivity of steel pipe production decreases. In the production of steel pipes, usually, electric resistance welding is used, but welding and pipe forming techniques such as TIG, MIG, laser welding, UO, forging and the like can also be used. In the production of these welded steel pipes, the heat-affected zone of the weld may be subjected to local solution heat treatment alone or in combination depending on the required properties, and in some cases, may be performed a plurality of times. Further enhance. The purpose of this heat treatment is to add only to the weld and the weld heat affected zone, and can be performed online or offline at the time of manufacture.
[0041]
The r value of the steel pipe has the same characteristics as those of the steel sheet. The measurement of the r value of the steel pipe is performed by cutting a test piece from the steel pipe, forming a flat plate by pressing, and further processing the tensile test piece. Depending on the diameter of the steel pipe and the direction of specimen collection, it may be difficult to collect JIS No. 13 B test pieces. In this case, use a small test piece such as JIS No. 6 or JIS No. 14 B test piece to obtain a uniform Evaluate within the range of elongation. When cutting a test piece from a steel pipe, care is taken that the welded portion of the steel pipe does not come within the parallel part of the tensile test piece.
[0042]
Since the X-ray measurement cannot be performed with the steel pipe itself, it is performed as follows. First, a steel pipe is appropriately cut and formed into a plate shape by a press or the like. The thickness is reduced by mechanical polishing or the like to the thickness of the measurement plate, and is finally finished by chemical polishing so as to reduce the thickness by about 30 to 100 μm with the average crystal grain size not less than 1 as a standard.
[0043]
The steel pipe of the present invention has a small surface roughness. That is, Ra defined by JIS B0601 is preferably 0.8 μm or less. This is in contrast to steel pipes produced by high-temperature warping, which are larger than 0.8 μm. More preferably, it is 0.6 μm or less.
[0044]
【Example】
Each steel having the components shown in Table 1 was melted and heated to 1250 ° C., then subjected to hot rolling at a finishing temperature of Ar 3 to (Ar 3 +50) ° C., and then wound under the conditions shown in Table 2. . Table 2 also shows the structure of the obtained hot rolled sheet. Further, after being cold-rolled at the rolling reduction shown in Table 2, annealing was performed at a heating rate of 20 ° C./hr and a maximum temperature of 700 ° C. After holding for 5 hours, cooling was performed at 15 ° C./hr. Further, a 1.0% skin pass was applied.
[0045]
The r value of the obtained steel sheet was evaluated by a tensile test using a JIS No. 13 test piece. Other tensile properties were evaluated using JIS No. 5 test pieces. Here, the r value was determined by measuring a change in the sheet width after 10 to 15% tensile deformation. Further, the thickness was reduced to around the center of the plate thickness by mechanical polishing, finished by chemical polishing, and provided for X-ray measurement. Table 2 also shows the X-ray random intensity ratio.
[0046]
The plate was formed by electric resistance welding.
[0047]
The workability of the obtained steel pipe was evaluated by the following method. A scribed circle having a diameter of 10 mm was previously transferred to a steel pipe, and the inner pressure and the amount of axial pressing were controlled to perform overhang forming in the circumferential direction. The strain εΦ in the axial direction and the strain εθ in the circumferential direction of the portion showing the maximum expansion ratio immediately before the burst (expansion ratio = maximum perimeter after molding / perimeter of the mother pipe) were measured. The ratio ρ = εΦ / εθ of these two strains and the maximum expansion ratio were plotted, and the expansion ratio Re at which ρ = −0.5 was used as the formability index of the hydroform. Evaluation of tensile strength and elongation was performed using JIS No. 12 arc-shaped test pieces.
[0048]
Table 3 shows the mechanical properties of the steel pipe.
[0049]
As is clear from Tables 2 and 3, good characteristics were obtained in the examples of the present invention as compared with the examples other than the present invention. The structure of the steel pipe and the X-ray random strength ratio were almost the same as those of the steel sheet.
[0050]
[Table 1]
[0051]
[Table 2]
[0052]
[Table 3]
[0053]
【The invention's effect】
According to the present invention, a high-strength steel sheet and a steel pipe having a good r value and excellent in deep drawability can be obtained, which contributes to global environmental conservation and the like.
Claims (17)
C :0.04〜0.25%
Si:0.001〜2.5%
Mn:0.8〜3.0%
P :0.001〜0.06%
S :0.03%以下
N :0.001〜0.015%
Al:0.008〜0.3%
を含有し、残部が鉄及び不可避的不純物からなり、平均r値が1.2以上であり、フェライトと析出物からなる組織で構成されることを特徴とする深絞り性に優れた鋼板。In mass%,
C: 0.04 to 0.25%
Si: 0.001 to 2.5%
Mn: 0.8-3.0%
P: 0.001 to 0.06%
S: 0.03% or less N: 0.001 to 0.015%
Al: 0.008 to 0.3%
A steel sheet excellent in deep drawability, characterized in that the steel sheet contains iron and inevitable impurities, has an average r value of 1.2 or more, and has a structure composed of ferrite and precipitates.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2002368878A JP4171296B2 (en) | 2002-05-27 | 2002-12-19 | Steel sheet excellent in deep drawability, manufacturing method thereof and steel pipe manufacturing method excellent in workability |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2002153030 | 2002-05-27 | ||
| JP2002368878A JP4171296B2 (en) | 2002-05-27 | 2002-12-19 | Steel sheet excellent in deep drawability, manufacturing method thereof and steel pipe manufacturing method excellent in workability |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2004052103A true JP2004052103A (en) | 2004-02-19 |
| JP4171296B2 JP4171296B2 (en) | 2008-10-22 |
Family
ID=31948948
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2002368878A Expired - Fee Related JP4171296B2 (en) | 2002-05-27 | 2002-12-19 | Steel sheet excellent in deep drawability, manufacturing method thereof and steel pipe manufacturing method excellent in workability |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP4171296B2 (en) |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2006219737A (en) * | 2005-02-14 | 2006-08-24 | Nippon Steel Corp | High-strength cold-rolled steel sheet excellent in deep drawability and manufacturing method thereof |
| JP2012031469A (en) * | 2010-07-30 | 2012-02-16 | Nippon Steel Corp | High-strength cold rolled steel sheet excellent in deep drawability, method of manufacturing the same |
| JP2013119635A (en) * | 2011-12-06 | 2013-06-17 | Nippon Steel & Sumitomo Metal Corp | Steel sheet and manufacturing method therefor |
| KR101585739B1 (en) | 2013-12-25 | 2016-01-14 | 주식회사 포스코 | Cold rolled steel sheet having high yield ratio and excelent impact property and method for manufacturing the same |
| KR101611762B1 (en) | 2014-12-12 | 2016-04-14 | 주식회사 포스코 | Cold rolled steel sheet having excellent bendability and crash worthiness and method for manufacturing the same |
| KR20160077595A (en) * | 2014-12-23 | 2016-07-04 | 주식회사 포스코 | Cold rolled steel sheet having excellent resistance delamination and crash worthiness and method for manufacturing the same |
-
2002
- 2002-12-19 JP JP2002368878A patent/JP4171296B2/en not_active Expired - Fee Related
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2006219737A (en) * | 2005-02-14 | 2006-08-24 | Nippon Steel Corp | High-strength cold-rolled steel sheet excellent in deep drawability and manufacturing method thereof |
| JP2012031469A (en) * | 2010-07-30 | 2012-02-16 | Nippon Steel Corp | High-strength cold rolled steel sheet excellent in deep drawability, method of manufacturing the same |
| JP2013119635A (en) * | 2011-12-06 | 2013-06-17 | Nippon Steel & Sumitomo Metal Corp | Steel sheet and manufacturing method therefor |
| KR101585739B1 (en) | 2013-12-25 | 2016-01-14 | 주식회사 포스코 | Cold rolled steel sheet having high yield ratio and excelent impact property and method for manufacturing the same |
| KR101611762B1 (en) | 2014-12-12 | 2016-04-14 | 주식회사 포스코 | Cold rolled steel sheet having excellent bendability and crash worthiness and method for manufacturing the same |
| KR20160077595A (en) * | 2014-12-23 | 2016-07-04 | 주식회사 포스코 | Cold rolled steel sheet having excellent resistance delamination and crash worthiness and method for manufacturing the same |
| KR101657820B1 (en) | 2014-12-23 | 2016-09-20 | 주식회사 포스코 | Cold rolled steel sheet having excellent resistance delamination and crash worthiness and method for manufacturing the same |
Also Published As
| Publication number | Publication date |
|---|---|
| JP4171296B2 (en) | 2008-10-22 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US8052807B2 (en) | Steel sheet excellent in workability | |
| US6632296B2 (en) | Steel pipe having high formability and method for producing the same | |
| JP5344100B2 (en) | Hot-dip galvanized steel sheet and manufacturing method thereof | |
| JP5582274B2 (en) | Cold-rolled steel sheet, electrogalvanized cold-rolled steel sheet, hot-dip galvanized cold-rolled steel sheet, alloyed hot-dip galvanized cold-rolled steel sheet, and production methods thereof | |
| CN104284995B (en) | High-strength steel sheet and manufacture method thereof | |
| EP2589678A1 (en) | High-strength steel sheet with excellent processability and process for producing same | |
| JP2007277661A (en) | High Young's modulus thin steel sheet with excellent burring workability and manufacturing method thereof | |
| JP4280078B2 (en) | High-strength cold-rolled steel sheet and plated steel sheet excellent in deep drawability, steel pipes excellent in workability, and production methods thereof | |
| KR20220073804A (en) | Ferritic stainless steel sheet, manufacturing method thereof, and ferritic stainless steel member | |
| JPH10130776A (en) | High ductility type high tensile cold rolled steel sheet | |
| WO2024053736A1 (en) | Steel sheet and manufacturing method therefor | |
| JP7036274B2 (en) | Steel plate | |
| JPH0657375A (en) | Ultra high strength cold rolled steel sheet and method for producing the same | |
| KR102463485B1 (en) | Ferritic stainless steel sheet, manufacturing method thereof, and ferritic stainless steel member | |
| JP2521553B2 (en) | Method for producing cold-rolled steel sheet for deep drawing having bake hardenability | |
| JP4102206B2 (en) | High-strength steel pipe with excellent workability and its manufacturing method | |
| JP4171296B2 (en) | Steel sheet excellent in deep drawability, manufacturing method thereof and steel pipe manufacturing method excellent in workability | |
| JP4171281B2 (en) | Steel plate excellent in workability and method for producing the same | |
| JP2018003114A (en) | High strength steel sheet and manufacturing method therefor | |
| JP3549483B2 (en) | Hydroform forming steel pipe excellent in processability and manufacturing method | |
| JP3887155B2 (en) | Steel pipe excellent in formability and manufacturing method thereof | |
| JP2018003115A (en) | High strength steel sheet and manufacturing method therefor | |
| WO2022054221A1 (en) | Steel sheet and method for manufacturing same | |
| JP4133003B2 (en) | High-strength steel sheet with excellent formability and its manufacturing method | |
| JP3742559B2 (en) | Steel plate excellent in workability and manufacturing method |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040901 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060317 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080513 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080707 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080729 |
|
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080808 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110815 Year of fee payment: 3 |
|
| R151 | Written notification of patent or utility model registration |
Ref document number: 4171296 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110815 Year of fee payment: 3 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120815 Year of fee payment: 4 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130815 Year of fee payment: 5 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130815 Year of fee payment: 5 |
|
| S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130815 Year of fee payment: 5 |
|
| R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130815 Year of fee payment: 5 |
|
| S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130815 Year of fee payment: 5 |
|
| R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
| S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
| R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
| LAPS | Cancellation because of no payment of annual fees |