[go: up one dir, main page]

JP2004052814A - Hydrogen storage device - Google Patents

Hydrogen storage device Download PDF

Info

Publication number
JP2004052814A
JP2004052814A JP2002207391A JP2002207391A JP2004052814A JP 2004052814 A JP2004052814 A JP 2004052814A JP 2002207391 A JP2002207391 A JP 2002207391A JP 2002207391 A JP2002207391 A JP 2002207391A JP 2004052814 A JP2004052814 A JP 2004052814A
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage device
hydrogen
container
carbonaceous material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002207391A
Other languages
Japanese (ja)
Inventor
Junji Katamura
片村 淳二
Hitoshi Ito
伊藤 仁
Mikio Kawai
川合 幹夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2002207391A priority Critical patent/JP2004052814A/en
Publication of JP2004052814A publication Critical patent/JP2004052814A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Abstract

【課題】設計上の制約が多い自動車搭載用とするのに好適なものとし、フィルタなどの飛び散り防止手段を省略ないし簡便化すると共に、車両の重心位置が移動するのを阻止する。
【解決手段】水素を吸着可能あるいは吸蔵可能な炭素質材料としての粉末状のカーボンナノチューブを薄膜状に成形してなる水素貯蔵部材2と、内部空間3aおよび水素流入孔3b,水素流出孔3cを有する容器3を備え、薄膜状の水素貯蔵部材2を容器3の内壁面3dに接触させて固定した。
【選択図】    図1
An object of the present invention is to be suitable for mounting on an automobile having many design restrictions, to omit or simplify a scattering prevention means such as a filter, and to prevent a position of a center of gravity of a vehicle from moving.
Kind Code: A1 A hydrogen storage member (2) formed by molding powdery carbon nanotubes as a carbonaceous material capable of adsorbing or storing hydrogen into a thin film, an internal space (3a), a hydrogen inlet (3b), and a hydrogen outlet (3c). The hydrogen storage member 2 in the form of a thin film was fixed in contact with the inner wall surface 3 d of the container 3.
[Selection diagram] Fig. 1

Description

【0001】
【発明の属する技術分野】
本発明は、水素を吸着したり吸蔵したりすることが可能な粉末状の炭素質材料からなる水素貯蔵部材を構成要素とした水素貯蔵装置に関するものである。
【0002】
【従来の技術】
従来、上記したような水素を貯蔵する水素吸蔵装置としては、例えば、LaNi5などに代表される水素貯蔵合金を用いた水素貯蔵装置がある。この水素貯蔵合金は、液体水素以上の高密度に水素を貯蔵することができる反面、燃料電池自動車の水素貯蔵装置として用いるには重量が嵩み過ぎるという欠点がある。
【0003】
これに対して、カーボンナノチューブやフラーレンやカーボンナノファイバーや活性炭のようなナノ構造を有する炭素質材料は、水素を大量に吸蔵あるいは吸着できるにもかかわらず、金属材料と比較して非常に軽量であるといった利点を有しており、これらの炭素質材料を容器内に充填すれば、軽量な水素貯蔵部材あるいは水素貯蔵装置を得ることができる。
【0004】
【発明が解決しようとする課題】
ところが、上記した炭素質材料を用いた水素貯蔵部材を構成要素とする水素貯蔵装置において、炭素質材料は、粉末状ネットワークあるいはフェルト状ネットワークを形成するために粉末状に合成される場合が多く、このような粉末状の炭素質材料にあっては、炭素粉末同士の距離が水素吸着のための細孔径に比べて著しく大きくなることから、デッドスペースが大きくなってしまい、すなわち、粉末状炭素質材料の見かけ体積あたりの水素貯蔵能が大幅に低くなってしまい、大量の水素を貯蔵するためには非常に大きな空間が必要となり、設計上大きさの制約を受ける自動車搭載用とするには無理があるという問題を有していた。
【0005】
また、試料形態が粉末状であると、水素の流入や流出に伴う気流によって試料が飛散してしまうことから、飛散した炭素質材料が容器外部に流出するのを抑制するための炭素質材料粉末の平均粒径よりも微細な孔を持つフィルタを設けるなどといった手段を講じる必要があるうえ、粉末状試料を容器内部で固定することができないため、車両の傾きに伴う粉末状炭素質材料の容器内での移動により、車両の重心が変動することが無いとは言えないといった問題があった。
【0006】
なお、水素を吸蔵することのできるあるいは吸着することのできる固体状の炭素質材料をコンパクトに車載する手法として、例えば、多孔質体の細孔内部に高密度な炭素質材料を合成するといった手法(特開2000−281324号)や、板状の基盤部材上に水素吸収層を形成させる手法(特開2001−254879号)があるが、いずれも基盤部材上に直接炭素質材料を合成させるプロセスを経ており、水素を吸蔵させることが可能な粉末状炭素質材料あるいは吸着させることが可能な粉末状炭素質材料を用いるものではなく、したがって、上記問題を解決することが従来の課題となっていた。
【0007】
【発明の目的】
本発明は、上記した従来の課題に着目してなされたもので、設計上の制約が多い自動車搭載用とするのに好適であり、フィルタなどの飛び散り防止手段を省略ないし簡便化することができると共に、車両の重心移動を阻止することが可能である水素貯蔵装置を提供することを目的としている。
【0008】
【課題を解決するための手段】
上記目的を達成するため、鋭意研究を重ねてきた結果、粉末状の炭素質材料を薄膜あるいは固形物に成形することで、自動車搭載用の水素貯蔵装置に用い得ることを見出すに至った。
【0009】
すなわち、本発明に係わる水素貯蔵装置は、水素を吸着可能あるいは吸蔵可能な粉末状の炭素質材料を薄膜あるいは固形物に成形してなる水素貯蔵部材と、内部空間および水素流通孔を有する容器を備え、水素貯蔵部材を容器の内壁面に接触させて固定してある構成としたことを特徴としており、この水素貯蔵装置の構成を前述した従来の課題を解決するための手段としている。
【0010】
【発明の効果】
本発明に係わる水素貯蔵装置によれば、上記した構成としているので、大きな空間を必要とすることなく大量の水素を貯蔵することができ、その結果、設計上大きさの制約を受ける自動車搭載用に適したものとなり、加えて、水素の流入や流出に伴う気流によって炭素質材料が飛散するようなことが無いので、従来必要としていたフィルタなどの飛び散り防止手段を省略したり簡便化することができると共に、炭素質材料の移動に伴う車両の重心位置の移動を防ぐことが可能であるという非常に優れた効果がもたらされる。
【0011】
【発明の実施の形態】
ここで、水素の貯蔵または吸蔵が可能な粉末状の炭素質材料を薄膜化する手法について説明する。
【0012】
粉末状の炭素質材料を薄膜化する手法としては、例えば、文献J.Liu et al.,Science,280[22],1253−1256,(1998) に示されているような、カーボンナノチューブを紙状(バッキーペーパ)にする方法がある。
【0013】
本発明において、HiPCO法で作製後、純度99.5%以上に精製された市販のカーボンナノチューブに対して、上記文献に記載されている処理を行って、ナノチューブを切断してバッキーペーパを作製した。
【0014】
すなわち、原料に用いたカーボンナノチューブは、見かけ上の相対密度が0.005程度のフェルト状ネットワークを有する粉末状の形態をなしている。そして、このカーボンナノチューブの粉末を濃硫酸および濃硝酸を3:1の比率で混合させた溶液中に浸漬させ、約65℃の温度で1時間の超音波処理を行った。その後、ポア孔0.1ミクロンのポリテトラフルオロエチレン製メンブレンフィルタを用いた吸引ろ過を行うのに続いて、pH=4以上になるまでイオン交換水を用いて洗浄し、その後、エタノールで置換、再度の吸引ろ過を行うことにより、バッキーペーパ状の炭素質材料を得た。
【0015】
得られたバッキーペーパ状の炭素質材料に対して真空乾燥を行い、試料中の残留エタノールを取り除いた。上記手法により薄膜化された粉末状の炭素質材料は、厚みが約100ミクロン、相対密度が約1.1以上となった。
【0016】
なお、粉末状の炭素質材料を薄膜化する手法は、上記バッキーペーパ状とすることに限定されることはなく、例えば、溶媒中にボールミル等で分散させた粉末状炭素質材料に対して、蒸発乾燥法を施す手法によって作製してもよいほか、容器内に直接堆積させてもよく、薄膜化された粉末状炭素質材料の強度を保つために、適当なバインダ材料を混合してもよい。
【0017】
また、粉末状の炭素質材料には、上記カーボンナノチューブのほかに、グラファイト,カーボンナノホーン,カーボンナノファイバー,フラーレン,バッキ−オニオン,活性炭,アモルファスカーボンのうちの少なくとも一つの材料から構成される材料を用いることができる。
【0018】
さらに、上記のようにして薄膜化した粉末状炭素質材料を収容する容器の形状は、単純な閉空間を有する直方体形状のほかに、内部にリブや柱を設けた補強型のものであってもよい。
【0019】
【実施例】
以下、本発明を図面に基づいて説明する。
【0020】
[実施例1]
図1は、本発明に係わる水素貯蔵装置の一実施例を示している。
【0021】
図1に示すように、この水素貯蔵装置1は、水素を吸着可能あるいは吸蔵可能な粉末状炭素質材料(カーボンナノチューブ)を上記のようにして薄膜化してなる水素貯蔵部材2を備えていると共に、内部空間3aを有しかつ水素流通孔としての水素流入孔3bおよび水素流出孔3cを有するステンレス製の容器3を備えており、薄膜状の水素貯蔵部材2は、容器3の内壁面3dに接触させた状態で固定してある。
【0022】
次に、図6に示す水素貯蔵装置1’を比較例として、すなわち、粉末状の炭素質材料2’を原材料の粉末状形態のまま容器3’内に充填した構成の水素貯蔵装置1’を比較例として、本実施例の作用効果について説明する。
【0023】
比較例では、試料形態が粉末状であるため、水素が流入あるいは流出する際の水素ガス気流Fにより、炭素質材料そのものが飛散し、容器外に飛び散る恐れがある。これを抑制するために、容器の水素流入孔3b’および水素流出孔3c’付近に炭素質材料粉末より微細な孔を有するフィルタ4’を設けるなどの手段を講じる必要がある。
【0024】
これに対して、本実施例による水素貯蔵装置1では、水素ガス気流Fの流入出に伴う炭素質材料の飛散を抑制することができるので、フィルタを省略または簡易なものにすることが可能になる。
【0025】
また、比較例において、炭素質材料を容器に固定することができないことから、自動車に搭載した場合には、車両の傾きに伴って炭素質材料が容器内で移動し、車両の重心位置が変動してしまう恐れがあるのに対して、本実施例による水素貯蔵装置1では、薄膜化した水素貯蔵部材2が容器3に対して固定されているため、上記車両の重心位置の移動を抑制することも可能となった。
【0026】
さらに、水素貯蔵部材2を容器3内から取り除く場合において、比較例では、水素貯蔵部材2’が粉末状の炭素質材料からなっていることで、容器2’や取り外し装置の汚染、あるいは、粉末状の炭素質材料が飛散することによる周辺装置の汚染が不可避となるのに対して、本実施例による水素貯蔵装置1では、薄膜状にした水素貯蔵部材2を容器3内から取り除くだけでよく、その結果、水素貯蔵部材2(炭素質材料)の取り外しの手間を大幅に低減することが可能になる。
【0027】
[実施例2]
図2は、本発明に係わる水素貯蔵装置の他の実施例を示している。
【0028】
図2に示すように、本実施例に係わる水素貯蔵装置21では、表面22aに複数の溝(凹凸)22bを具備した水素貯蔵部材22を容器23内に複数枚積層した構成をなしており、他の構成は、先の実施例による水素貯蔵装置1と同じである。
【0029】
この場合、水素貯蔵部材22の表面22aに位置する複数の溝22bは、粉末状炭素質材料(カーボンナノチューブ)を薄膜化する際の吸引ろ過時におけるろ過器にあらかじめパターンを入れておくことで形成するようにしてもよいし、平板状の薄膜とした後に研削加工することで形成するようにしてもよい。
【0030】
上記したように、本実施例に係わる水素貯蔵装置21では、水素貯蔵部材22の表面22aに複数の溝22bを設けたことにより、薄膜化した水素貯蔵部材22を積層させても、曝露面積の大幅な減少を抑えることができ、隣接する他の水素貯蔵部材22による水素の吸着や脱離の阻害を抑制することが可能になる。
【0031】
また、水素貯蔵部材22の表面22aにおける複数の溝22bが互いに同一方向を向くように形成することにより、水素ガス流Fを整えることが可能となり、効率よく水素を流入出させることが可能になる。
【0032】
加えて、見かけの相対密度が0.005の粉末状カーボンナノチューブをバッキーペーパ化して積層させると、見かけの相対密度を1まで上昇させることができ、これにより、単位体積あたりの水素貯蔵量を200倍程度増加させることが可能となった。
【0033】
[実施例3]
図3は、本発明に係わる水素貯蔵装置のさらに他の実施例を示している。
【0034】
図3に示すように、本実施例に係わる水素貯蔵装置31では、薄膜化した水素貯蔵部材32をステンレス製の板状支持部材34で挟み込んだ状態で容器33内に積層固定した構成をなしており、他の構成は、先の実施例による水素貯蔵装置1と同じである。
【0035】
薄膜化した水素貯蔵部材32を挟み込む板状支持部材34は、ボルト孔34aに挿通した図示しないボルトによって互いの締め付けがなされており、薄膜化した水素貯蔵部材32は容器33内において強固に固定されている。この際、水素貯蔵部材32の表面32aにも複数の溝(凹凸)32bが設けてあり、水素貯蔵部材32の曝露面積を確保している。
【0036】
つまり、本実施例に係わる水素貯蔵装置31では、上記した構成とすることにより、曝露面積を確保しつつ、接着等の締結手段を用いなくても、薄膜化した水素貯蔵部材32を容器33内部に固定することが可能になる。
【0037】
[実施例4]
図4は、本発明に係わる水素貯蔵装置のさらに他の実施例を示している。
【0038】
図4に示すように、本実施例に係わる水素貯蔵装置41では、薄膜化した水素貯蔵部材42を炭素質材料よりも熱伝導率の高い銅合金製の板状支持部材44に接触させた状態で固定し、この板状支持部材44を容器43に固定した構成をなしている。
【0039】
この場合、板状支持部材44の一部を容器43の外部に突出させており、この板状支持部材44の一部を容器43の外部に設けた吸熱容器45内の吸熱部46に接触させている。
【0040】
上記したように、本実施例に係わる水素貯蔵装置41では、水素貯蔵部材42に水素が吸着あるいは放出する際の発熱を板状支持部材44の熱伝導を利用して効率よく放出することが可能になる。
【0041】
[実施例5]
図5は、本発明に係わる水素貯蔵装置のさらに他の実施例を示している。
【0042】
図5に示すように、本実施例に係わる水素貯蔵装置51では、複数が絡み合った繊維質支持部材54の表面に水素貯蔵部材52を接触させて支持した構成をなしている。
【0043】
この場合、繊維質支持部材54は十分に荒くしてあり、面方向にも孔56を介して水素ガス流Fを透過させることが可能な部材となっている。このような繊維質支持部材54を複数積層して容器53内に固定することにより、水素貯蔵部材52を高密度に保ちつつ、曝露面積を広く保持することが可能になり、より効率よく水素の貯蔵および放出を行うことが可能になる。
【0044】
また、薄膜化した水素貯蔵部材52は、繊維状支持部材54によって強化されているため、水素貯蔵部材52自体の強度も高くなるといった利点もあるのに加えて、薄膜化した水素貯蔵部材52に対する支持部材54の質量を低くできるといった利点もある。
【図面の簡単な説明】
【図1】本発明に係わる水素貯蔵装置の一実施例を示す断面説明図である。
【図2】本発明に係わる水素貯蔵装置の他の実施例を示す水素貯蔵部材の斜視説明図(a)およびこの水素貯蔵部材を用いた水素貯蔵装置の断面説明図(b)である。
【図3】本発明に係わる水素貯蔵装置のさらに他の実施例を示す支持部材に固定した水素貯蔵部材の斜視説明図(a)およびこの水素貯蔵部材を用いた水素貯蔵装置の断面説明図(b)である。
【図4】本発明に係わる水素貯蔵装置のさらに他の実施例を示す断面説明図である。
【図5】本発明に係わる水素貯蔵装置のさらに他の実施例を示す支持部材に固定した水素貯蔵部材の斜視説明図(a)およびこの水素貯蔵部材を用いた水素貯蔵装置の断面説明図(b)である。
【図6】比較例に係わる水素貯蔵装置の断面説明図である。
【符号の説明】
1,21,31,41,51  水素貯蔵装置
2,22,32,42,52  水素貯蔵部材
3,23,33,43,53  容器
3a 内部空間
3b 水素流入孔(水素流通孔)
3c 水素流出孔(水素流通孔)
3d 内壁面
22a,32a 水素貯蔵部材の薄膜表面
22b,32b 溝(凹凸)
34,44 板状支持部材
46 吸熱部
54 繊維質支持部材
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a hydrogen storage device including a hydrogen storage member made of a powdery carbonaceous material capable of adsorbing and storing hydrogen.
[0002]
[Prior art]
Conventionally, as a hydrogen storage device for storing hydrogen as described above, for example, there is a hydrogen storage device using a hydrogen storage alloy represented by LaNi5 or the like. While this hydrogen storage alloy can store hydrogen at a higher density than liquid hydrogen, it has the disadvantage of being too bulky for use as a hydrogen storage device for fuel cell vehicles.
[0003]
In contrast, carbonaceous materials with nanostructures, such as carbon nanotubes, fullerenes, carbon nanofibers, and activated carbon, can absorb or adsorb large amounts of hydrogen, but are much lighter than metal materials. When such a carbonaceous material is filled in a container, a lightweight hydrogen storage member or hydrogen storage device can be obtained.
[0004]
[Problems to be solved by the invention]
However, in a hydrogen storage device having a hydrogen storage member using the above-described carbonaceous material as a component, the carbonaceous material is often synthesized in a powdery form to form a powdery network or a felt-like network, In such a powdery carbonaceous material, since the distance between carbon powders is significantly larger than the pore diameter for hydrogen adsorption, the dead space increases, that is, The hydrogen storage capacity per apparent volume of the material is greatly reduced, and a very large space is required to store a large amount of hydrogen. There was a problem that there is.
[0005]
When the sample is in a powder form, the sample is scattered by an air flow accompanying the inflow and outflow of hydrogen, and therefore, the carbonaceous material powder for suppressing the scattered carbonaceous material from flowing out of the container. It is necessary to take measures such as providing a filter with pores finer than the average particle size of the powder, and since the powdery sample cannot be fixed inside the container, the container of the powdery carbonaceous material accompanying the inclination of the vehicle There is a problem that it cannot be said that the center of gravity of the vehicle does not fluctuate due to the movement inside.
[0006]
As a method of compactly mounting a solid carbonaceous material capable of storing or adsorbing hydrogen on a vehicle, for example, a method of synthesizing a high-density carbonaceous material inside pores of a porous body. (JP-A-2000-281324) and a method of forming a hydrogen absorbing layer on a plate-shaped base member (JP-A-2001-254879). In both cases, a process of directly synthesizing a carbonaceous material on the base member is known. Therefore, a powdery carbonaceous material capable of absorbing hydrogen or a powdery carbonaceous material capable of absorbing hydrogen is not used. Therefore, it is a conventional problem to solve the above-described problem. Was.
[0007]
[Object of the invention]
The present invention has been made in view of the above-mentioned conventional problems, and is suitable for use in a vehicle having many design restrictions, and can eliminate or simplify a scattering prevention means such as a filter. It is another object of the present invention to provide a hydrogen storage device capable of preventing movement of the center of gravity of a vehicle.
[0008]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above object, the present inventors have found that a powdery carbonaceous material formed into a thin film or a solid can be used for a hydrogen storage device mounted on an automobile.
[0009]
That is, the hydrogen storage device according to the present invention includes a hydrogen storage member formed by molding a powdery carbonaceous material capable of adsorbing or occluding hydrogen into a thin film or a solid material, and a container having an internal space and hydrogen circulation holes. The hydrogen storage device is characterized in that the hydrogen storage member is in contact with and fixed to the inner wall surface of the container, and the configuration of this hydrogen storage device is a means for solving the above-mentioned conventional problems.
[0010]
【The invention's effect】
According to the hydrogen storage device according to the present invention, the above-described configuration enables a large amount of hydrogen to be stored without requiring a large space. In addition, since the carbonaceous material is not scattered by the air flow accompanying the inflow or outflow of hydrogen, it is possible to omit or simplify the conventionally required scattering prevention means such as a filter. In addition to this, there is provided a very excellent effect that it is possible to prevent the movement of the center of gravity of the vehicle due to the movement of the carbonaceous material.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Here, a method of thinning a powdery carbonaceous material capable of storing or storing hydrogen will be described.
[0012]
As a technique for making a powdery carbonaceous material into a thin film, see, for example, J. Literature Liu et al. , Science, 280 [22], 1253-1256, (1998), and a method of converting carbon nanotubes into paper (bucky paper).
[0013]
In the present invention, commercially available carbon nanotubes purified to a purity of 99.5% or more after production by the HiPCO method were subjected to the treatment described in the above-mentioned literature, and the nanotubes were cut to produce bucky paper. .
[0014]
That is, the carbon nanotube used as the raw material has a powdery form having a felt-like network with an apparent relative density of about 0.005. Then, the carbon nanotube powder was immersed in a solution in which concentrated sulfuric acid and concentrated nitric acid were mixed at a ratio of 3: 1 and subjected to ultrasonic treatment at a temperature of about 65 ° C. for 1 hour. Then, after performing suction filtration using a membrane filter made of polytetrafluoroethylene having a pore size of 0.1 micron, washing with ion-exchanged water until the pH becomes 4 or more, and then replacing with ethanol, By performing suction filtration again, a bucky paper-like carbonaceous material was obtained.
[0015]
Vacuum drying was performed on the obtained bucky paper-like carbonaceous material to remove residual ethanol in the sample. The powdery carbonaceous material thinned by the above method had a thickness of about 100 microns and a relative density of about 1.1 or more.
[0016]
The method of thinning the powdery carbonaceous material is not limited to the above-mentioned bucky paper shape.For example, for a powdery carbonaceous material dispersed in a solvent by a ball mill or the like, It may be produced by a method of performing an evaporative drying method, may be directly deposited in a container, or may be mixed with an appropriate binder material in order to maintain the strength of the thinned powdery carbonaceous material. .
[0017]
The powdery carbonaceous material may be a material composed of at least one of graphite, carbon nanohorn, carbon nanofiber, fullerene, bucky-onion, activated carbon, and amorphous carbon, in addition to the carbon nanotube. Can be used.
[0018]
Further, the shape of the container for accommodating the powdered carbonaceous material thinned as described above is not only a rectangular parallelepiped shape having a simple closed space, but also a reinforcing type in which ribs and columns are provided inside. Is also good.
[0019]
【Example】
Hereinafter, the present invention will be described with reference to the drawings.
[0020]
[Example 1]
FIG. 1 shows an embodiment of the hydrogen storage device according to the present invention.
[0021]
As shown in FIG. 1, the hydrogen storage device 1 includes a hydrogen storage member 2 formed by thinning a powdery carbonaceous material (carbon nanotube) capable of adsorbing or occluding hydrogen as described above. And a stainless steel container 3 having an internal space 3a and having a hydrogen inflow hole 3b and a hydrogen outflow hole 3c as hydrogen flow holes, and the thin film-shaped hydrogen storage member 2 is provided on an inner wall surface 3d of the container 3. It is fixed in contact.
[0022]
Next, a hydrogen storage device 1 'shown in FIG. 6 as a comparative example, that is, a hydrogen storage device 1' having a configuration in which a powdery carbonaceous material 2 'is filled in a container 3' in the form of a raw material in a powdery state. The operation and effect of the present embodiment will be described as a comparative example.
[0023]
In the comparative example, since the sample is in a powder form, the carbonaceous material itself may be scattered by the hydrogen gas flow F when hydrogen flows in or out, and may scatter outside the container. In order to suppress this, it is necessary to take measures such as providing a filter 4 'having holes finer than the carbonaceous material powder in the vicinity of the hydrogen inlet 3b' and the hydrogen outlet 3c 'of the container.
[0024]
On the other hand, in the hydrogen storage device 1 according to the present embodiment, since the scattering of the carbonaceous material due to the inflow and outflow of the hydrogen gas stream F can be suppressed, the filter can be omitted or simplified. Become.
[0025]
Further, in the comparative example, since the carbonaceous material cannot be fixed to the container, when mounted on an automobile, the carbonaceous material moves in the container with the inclination of the vehicle, and the position of the center of gravity of the vehicle fluctuates. In contrast, in the hydrogen storage device 1 according to the present embodiment, since the thinned hydrogen storage member 2 is fixed to the container 3, the movement of the center of gravity of the vehicle is suppressed. It became possible.
[0026]
Further, in the case where the hydrogen storage member 2 is removed from the inside of the container 3, in the comparative example, the hydrogen storage member 2 'is made of a powdery carbonaceous material. In contrast, the hydrogen storage device 1 according to the present embodiment only needs to remove the thin film-shaped hydrogen storage member 2 from the inside of the container 3, whereas the contamination of the peripheral device due to the scattering of the carbonaceous material in the shape becomes inevitable. As a result, the labor for removing the hydrogen storage member 2 (carbonaceous material) can be greatly reduced.
[0027]
[Example 2]
FIG. 2 shows another embodiment of the hydrogen storage device according to the present invention.
[0028]
As shown in FIG. 2, the hydrogen storage device 21 according to the present embodiment has a configuration in which a plurality of hydrogen storage members 22 each having a plurality of grooves (irregularities) 22 b on a surface 22 a are stacked in a container 23. Other configurations are the same as those of the hydrogen storage device 1 according to the previous embodiment.
[0029]
In this case, the plurality of grooves 22b located on the surface 22a of the hydrogen storage member 22 are formed by putting a pattern in a filter in advance at the time of suction filtration when thinning the powdery carbonaceous material (carbon nanotube). Alternatively, it may be formed by grinding after forming a flat thin film.
[0030]
As described above, in the hydrogen storage device 21 according to the present embodiment, by providing the plurality of grooves 22b on the surface 22a of the hydrogen storage member 22, even if the thinned hydrogen storage members 22 are stacked, the exposed area can be reduced. A large decrease can be suppressed, and it is possible to suppress the inhibition of the adsorption and desorption of hydrogen by another adjacent hydrogen storage member 22.
[0031]
In addition, by forming the plurality of grooves 22b on the surface 22a of the hydrogen storage member 22 so as to face in the same direction, the hydrogen gas flow F can be adjusted, and the hydrogen can efficiently flow in and out. .
[0032]
In addition, when powdered carbon nanotubes having an apparent relative density of 0.005 are formed into a bucky paper and laminated, the apparent relative density can be increased to 1, thereby increasing the hydrogen storage amount per unit volume by 200. It became possible to increase about twice.
[0033]
[Example 3]
FIG. 3 shows still another embodiment of the hydrogen storage device according to the present invention.
[0034]
As shown in FIG. 3, the hydrogen storage device 31 according to the present embodiment has a configuration in which the thinned hydrogen storage member 32 is stacked and fixed in a container 33 while being sandwiched by a stainless plate-like support member 34. The other configuration is the same as that of the hydrogen storage device 1 according to the previous embodiment.
[0035]
The plate-shaped support members 34 sandwiching the thinned hydrogen storage member 32 are mutually fastened by bolts (not shown) inserted into bolt holes 34a, and the thinned hydrogen storage member 32 is firmly fixed in the container 33. ing. At this time, a plurality of grooves (irregularities) 32b are also provided on the surface 32a of the hydrogen storage member 32 to secure an exposed area of the hydrogen storage member 32.
[0036]
That is, in the hydrogen storage device 31 according to the present embodiment, the above-described configuration ensures that the thinned hydrogen storage member 32 is kept inside the container 33 without using fastening means such as bonding while securing the exposed area. It can be fixed to
[0037]
[Example 4]
FIG. 4 shows still another embodiment of the hydrogen storage device according to the present invention.
[0038]
As shown in FIG. 4, in the hydrogen storage device 41 according to the present embodiment, a state in which the thinned hydrogen storage member 42 is brought into contact with a copper alloy plate-like support member 44 having higher thermal conductivity than the carbonaceous material. And the plate-shaped support member 44 is fixed to the container 43.
[0039]
In this case, a part of the plate-shaped support member 44 is projected outside the container 43, and a part of the plate-shaped support member 44 is brought into contact with a heat absorbing portion 46 in a heat absorbing container 45 provided outside the container 43. ing.
[0040]
As described above, in the hydrogen storage device 41 according to the present embodiment, heat generated when hydrogen is adsorbed or released to the hydrogen storage member 42 can be efficiently released using the heat conduction of the plate-shaped support member 44. become.
[0041]
[Example 5]
FIG. 5 shows still another embodiment of the hydrogen storage device according to the present invention.
[0042]
As shown in FIG. 5, the hydrogen storage device 51 according to the present embodiment has a configuration in which the hydrogen storage member 52 is brought into contact with and supported on the surface of the fibrous support member 54 in which a plurality of fibers are entangled.
[0043]
In this case, the fibrous support member 54 is sufficiently rough, and is a member capable of transmitting the hydrogen gas flow F also through the holes 56 in the surface direction. By laminating a plurality of such fibrous support members 54 and fixing them in the container 53, it is possible to keep the hydrogen storage member 52 at a high density and to keep the exposed area wide, and more efficiently store hydrogen. Storage and release can be performed.
[0044]
Further, since the thinned hydrogen storage member 52 is reinforced by the fibrous support member 54, the strength of the hydrogen storage member 52 itself is increased. There is also an advantage that the mass of the support member 54 can be reduced.
[Brief description of the drawings]
FIG. 1 is an explanatory sectional view showing one embodiment of a hydrogen storage device according to the present invention.
FIG. 2A is a perspective view of a hydrogen storage member showing another embodiment of the hydrogen storage device according to the present invention, and FIG. 2B is a sectional view of a hydrogen storage device using the hydrogen storage member.
FIG. 3A is a perspective view of a hydrogen storage member fixed to a support member, showing a further embodiment of the hydrogen storage device according to the present invention, and FIG. 3B is a sectional view of a hydrogen storage device using the hydrogen storage member. b).
FIG. 4 is an explanatory sectional view showing still another embodiment of the hydrogen storage device according to the present invention.
FIG. 5 is a perspective explanatory view of a hydrogen storage member fixed to a support member showing still another embodiment of the hydrogen storage device according to the present invention, and a sectional explanatory view of a hydrogen storage device using this hydrogen storage member ( b).
FIG. 6 is an explanatory sectional view of a hydrogen storage device according to a comparative example.
[Explanation of symbols]
1,21,31,41,51 Hydrogen storage device 2,22,32,42,52 Hydrogen storage member 3,23,33,43,53 Vessel 3a Internal space 3b Hydrogen inflow hole (hydrogen flow hole)
3c Hydrogen outflow holes (hydrogen flow holes)
3d Inner wall surface 22a, 32a Thin film surface 22b, 32b of hydrogen storage member Groove (unevenness)
34, 44 plate-shaped support member 46 heat absorbing portion 54 fibrous support member

Claims (10)

水素を吸着可能あるいは吸蔵可能な粉末状の炭素質材料を薄膜あるいは固形物に成形してなる水素貯蔵部材と、内部空間および水素流通孔を有する容器を備え、水素貯蔵部材を容器の内壁面に接触させて固定してあることを特徴とする水素貯蔵装置。A hydrogen storage member formed by molding a powdery carbonaceous material capable of adsorbing or occluding hydrogen into a thin film or a solid material, and a container having an internal space and hydrogen circulation holes are provided. The hydrogen storage member is provided on the inner wall surface of the container. A hydrogen storage device, which is fixed by contacting. 水素を吸着可能あるいは吸蔵可能な粉末状の炭素質材料を薄膜あるいは固形物に成形してなる水素貯蔵部材と、内部空間および水素流通孔を有する容器を備え、水素貯蔵部材を複数積層させて容器の内部空間に固定してあることを特徴とする水素貯蔵装置。A container comprising a hydrogen storage member formed by molding a powdery carbonaceous material capable of adsorbing or occluding hydrogen into a thin film or a solid material, and a container having an internal space and hydrogen circulation holes, wherein a plurality of hydrogen storage members are stacked. A hydrogen storage device fixed in an internal space of a hydrogen storage device. 水素を吸着可能あるいは吸蔵可能な粉末状の炭素質材料を薄膜あるいは固形物に成形してなる水素貯蔵部材と、内部空間および水素流通孔を有する容器と、水素貯蔵部材を接触させた状態で支持する支持部材を備え、この支持部材を介して水素貯蔵部材を容器の内部空間に固定してあることを特徴とする水素貯蔵装置。A hydrogen storage member formed by molding a powdery carbonaceous material capable of adsorbing or occluding hydrogen into a thin film or solid, a container having an internal space and hydrogen circulation holes, and a hydrogen storage member supported in contact with the hydrogen storage member A hydrogen storage device, comprising: a support member configured to fix a hydrogen storage member to an internal space of a container via the support member. 水素貯蔵部材の薄膜表面あるいは固形物表面に凹凸が形成してある請求項1ないし3のいずれかに記載の水素貯蔵装置。The hydrogen storage device according to any one of claims 1 to 3, wherein irregularities are formed on a thin film surface or a solid material surface of the hydrogen storage member. 粉末状の炭素質材料は、微細化したグラファイト,カーボンナノチューブ,カーボンナノホーン,カーボンナノファイバー,フラーレン,バッキーオニオン,活性炭およびアモルファスカーボンのうちの少なくとも一つの材料からなっている請求項1ないし4のいずれかに記載の水素貯蔵装置。The powdery carbonaceous material is made of at least one of finely divided graphite, carbon nanotube, carbon nanohorn, carbon nanofiber, fullerene, bucky onion, activated carbon, and amorphous carbon. A hydrogen storage device according to any one of the above. 支持部材を炭素質材料よりも高い熱伝導率の素材から形成した請求項3ないし5のいずれかに記載の水素貯蔵装置。6. The hydrogen storage device according to claim 3, wherein the support member is formed of a material having a higher thermal conductivity than the carbonaceous material. 容器の外部または内部に、支持部材の一部に接触する吸熱部を設けた請求項3ないし6のいずれかに記載の水素貯蔵装置。The hydrogen storage device according to any one of claims 3 to 6, wherein a heat absorbing portion that contacts a part of the support member is provided outside or inside the container. 水素貯蔵部材を支持部材で挟み込んで容器の内部空間に固定してある請求項3ないし7のいずれかに記載の水素貯蔵装置。The hydrogen storage device according to any one of claims 3 to 7, wherein the hydrogen storage member is sandwiched between support members and fixed in the inner space of the container. 支持部材は中実な棒状あるいは繊維状をなし、その表面に水素貯蔵部材を接触させて支持している請求項3ないし7のいずれかに記載の水素貯蔵装置。The hydrogen storage device according to any one of claims 3 to 7, wherein the support member has a solid rod shape or a fiber shape, and supports the hydrogen storage member by contacting the surface thereof. 車両に搭載される車両用の水素貯蔵装置とした請求項1ないし9のいずれかに記載の水素貯蔵装置。The hydrogen storage device according to any one of claims 1 to 9, wherein the hydrogen storage device is a vehicle hydrogen storage device mounted on a vehicle.
JP2002207391A 2002-07-16 2002-07-16 Hydrogen storage device Pending JP2004052814A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002207391A JP2004052814A (en) 2002-07-16 2002-07-16 Hydrogen storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002207391A JP2004052814A (en) 2002-07-16 2002-07-16 Hydrogen storage device

Publications (1)

Publication Number Publication Date
JP2004052814A true JP2004052814A (en) 2004-02-19

Family

ID=31931866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002207391A Pending JP2004052814A (en) 2002-07-16 2002-07-16 Hydrogen storage device

Country Status (1)

Country Link
JP (1) JP2004052814A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006011620A1 (en) * 2004-07-26 2006-02-02 Techno Bank Co., Ltd. Functional article, device for treating functional substance, device for application of functional article, and method for mounting functional article

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006011620A1 (en) * 2004-07-26 2006-02-02 Techno Bank Co., Ltd. Functional article, device for treating functional substance, device for application of functional article, and method for mounting functional article

Similar Documents

Publication Publication Date Title
Dillon et al. Hydrogen storage using carbon adsorbents: past, present and future
Nishihara et al. Zeolite-templated carbons–three-dimensional microporous graphene frameworks
Park et al. Further studies of the interaction of hydrogen with graphite nanofibers
Hu et al. Direct carbonization of Al-based porous coordination polymer for synthesis of nanoporous carbon
Zhang et al. Large-sized graphene oxide/modified tourmaline nanoparticle aerogel with stable honeycomb-like structure for high-efficiency PM 2.5 capture
Wang et al. Hydrogen storage in a Ni–B nanoalloy-doped three-dimensional graphene material
TWI668396B (en) Adsorption heat exchanger devices
US9656862B2 (en) High surface area nano-structured graphene composites and capacitive devices incorporating the same
Sano et al. Hydrogen storage in porous single-walled carbon nanohorns dispersed with Pd–Ni alloy nanoparticles
Banerjee et al. Hydrogen storage in carbon nanostructures: possibilities and challenges for fundamental molecular simulations
TW202112250A (en) Filter material and filter to retain polyaromatic hydrocarbons, carbonyl and other smoke compounds from tobacco products
US20170217841A1 (en) Porous material including carbon nanohorns and use thereof
Wang et al. Chemical vapor infiltration tailored hierarchical porous CNTs/C composite spheres fabricated by freeze casting and their adsorption properties
CN107230814B (en) Metal-air battery and method of making the same
Jung et al. Pd-doped double-walled silica nanotubes as hydrogen storage material at room temperature
JP2004211718A (en) Hydrogen storage material, hydrogen storage device, and method for producing hydrogen storage body
JP2004052814A (en) Hydrogen storage device
US20180194622A1 (en) Ammonia borane confinement in graphene oxide 3d structures
JP4691386B2 (en) Evaporative fuel processing apparatus and manufacturing method thereof
JP5028614B2 (en) A composite material for holding a carbon nanostructure and a method for producing the same.
JP2004352605A (en) Method for refining composition comprising carbon nanotube
Hammud et al. Lead uptake by new silica-carbon nanoparticles
Vermisoglou et al. Aligned carbon nanotubes with ferromagnetic behavior
JP2001316104A (en) Carbon material for hydrogen occlusion and its manufacturing method, hydrogen occluding carbon material and its manufacturing method, and cell using hydrogen occluding carbon material and fuel cell using hydrogen occluding carbon material
JP4049097B2 (en) Gas storage material and gas storage device