[go: up one dir, main page]

JP2004072846A - Rectifier - Google Patents

Rectifier Download PDF

Info

Publication number
JP2004072846A
JP2004072846A JP2002226500A JP2002226500A JP2004072846A JP 2004072846 A JP2004072846 A JP 2004072846A JP 2002226500 A JP2002226500 A JP 2002226500A JP 2002226500 A JP2002226500 A JP 2002226500A JP 2004072846 A JP2004072846 A JP 2004072846A
Authority
JP
Japan
Prior art keywords
diode
switching element
power supply
series
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002226500A
Other languages
Japanese (ja)
Other versions
JP4096656B2 (en
Inventor
Kazuaki Mino
三野 和明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2002226500A priority Critical patent/JP4096656B2/en
Publication of JP2004072846A publication Critical patent/JP2004072846A/en
Application granted granted Critical
Publication of JP4096656B2 publication Critical patent/JP4096656B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
    • H02M7/02Conversion of AC power input into DC power output without possibility of reversal
    • H02M7/04Conversion of AC power input into DC power output without possibility of reversal by static converters
    • H02M7/12Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)

Abstract

【課題】装置の起動時や停電からの復電時、直流平滑用コンデンサに大きな突入電流が流れ、過電流耐量の小さい高速ダイオードやスイッチング素子の寄生ダイオードなどの逆導通機能部が破壊されることのない整流装置を提供する。
【解決手段】スイッチング素子とダイオードとの逆並列接続回路からなるスイッチングアームおよび逆導通機能を有するスイッチング素子の何れかとダイオードを直列接続した直列接続回路、およびダイオード2個を直列接続した直列接続回路の中から、スイッチング素子を含む形で同じもの同士も含めて複数の直列接続回路を並列接続し、該複数の直列接続回路の並列接続点間に並列にコンデンサと負荷を、該複数の直列接続回路のそれぞれの内部接続点と交流電源との間にリアクトルを、交流電源とリアクトルとの接続点と前記複数の直列接続回路の並列接続点の一方または双方との間にダイオードを、それぞれ接続する。
【選択図】 図1
A large inrush current flows into a DC smoothing capacitor when a device is started or power is restored after a power failure, and a reverse conducting function unit such as a high-speed diode having a small overcurrent capability and a parasitic diode of a switching element is destroyed. To provide a rectifying device without the need.
A switching arm comprising a switching element and a diode in an anti-parallel connection circuit and a switching element having a reverse conduction function are connected in series with a diode, and a series connection circuit in which two diodes are connected in series. From the inside, a plurality of series connection circuits including the same ones including the switching elements are connected in parallel, and a capacitor and a load are connected in parallel between the parallel connection points of the plurality of series connection circuits, and the plurality of series connection circuits are connected. And a diode between the connection point between the AC power supply and the reactor and one or both of the parallel connection points of the plurality of series connection circuits.
[Selection diagram] Fig. 1

Description

【0001】
【発明の属する技術分野】
本発明はスイッチング素子とダイオードを用いて交流電源から直流を作り出す、いわゆる整流回路に関し、特に交流電源が停電し復電した時や電源起動時に過大な突入電流がスイッチング素子やダイオードに流れ、素子が破壊するのを防止するための技術に関する。
【0002】
【従来の技術】
図10から図13に、従来の回路方式として単相整流回路の例を示す。図10と図11は請求項に示す第2の直列接続回路を2個並列接続した構成、図12は第1の直列接続回路と第3の直列接続回路を並列接続した構成、図13は第1の直列接続回路を2個並列接続した構成である。いずれもスイッチング素子としてMOSFETを用いた構成例であり、図示のスイッチング素子と逆並列接続したダイオードはMOSFETの内部の寄生ダイオードでも代用できる。
【0003】
図10において、整流回路20は、スイッチング素子201とダイオード205を逆並列接続したスイッチングアームとダイオード207を直列接続した直列接続回路と、スイッチング素子202とダイオード206を逆並列接続したスイッチングアームとダイオード208を直列接続した直列接続回路とを並列接続し、並列接続点213を正極直流出力端子、並列接続点214を負極直流出力端子とし、スイッチング素子201とダイオード205を逆並列接続したスイッチングアームとダイオード207直列接続回路の内部接続点にリアクトル209の一端を、該リアクトルの他端は交流入力端子211に、スイッチング素子202とダイオード206を逆並列接続したスイッチングアームとダイオード208を直列接続した直列接続回路の内部接続点は交流入力端子212に、各々接続された構成であり、さらに正極直流出力端子213と負極直流出力端子214との間にはコンデンサ6と負荷7が、交流入力端子211と212との間には交流電源1が接続されている。
【0004】
この構成における動作を以下に説明する。交流電源が正の電圧(図で端子211の電圧が端子212の電圧よりも大の時)の場合、スイッチング素子201をオンすると電流は交流電源1→リアクトル209→スイッチング素子201→ダイオード206→交流電源1の経路で流れて増加する。ここで、スイッチング素子201がオフするとリアクトル209に流れている電流はリアクトル209→ダイオード207→コンデンサ6→ダイオード206→交流電源1→リアクトル209の経路に転流し、負荷にエネルギーが供給される。
【0005】
一方、交流電源1が負の電圧(図で端子212の電圧が端子211の電圧よりも大きい時)の場合は、スイッチング素子202をスイッチングすることによって同様の動作となる。従って、交流電源1が正の時にはスイッチング素子201をスイッチングし、交流電源1が負の時にはスイッチング素子202をスイッチングする。このように、スイッチング素子201またはスイッチング素子202を制御することにより、入力電流を高力率に制御しながら、交流電源から任意の直流(交流電源電圧の最大値以上)得ることができる。
【0006】
図11は第2の従来技術を示す回路図である。図10との違いは、スイッチング素子とダイオードを逆並列接続したスイッチングアームとダイオードを直列接続した直列接続回路の構成が上下アーム逆にしてある点である。
【0007】
図11の回路方式における動作原理を説明する。交流電源1が正の電圧の場合、スイッチング素子302をオンすると交流電源1→リアクトル309→ダイオード305→スイッチング素子302→交流電源1の経路で電流が増加する。ここで、スイッチング素子302をオフさせるとリアクトル309に流れている電流はリアクトル309→ダイオード305→コンデンサ6→ダイオード308→交流電源1→リアクトル309の経路に転流し、負荷7にエネルギーが供給される。
【0008】
一方、交流電源1の電圧が負の場合、スイッチング素子301をスイッチングすることによって同様の動作となる。従って、交流電源1が正のときにはスイッチング素子302をスイッチングし、交流電源1が負のときにはスイッチング素301をスイッチングする。このように、スイッチング素子302またはスイッチング素子301を制御することにより、入力電流を高力率に制御しながら、交流電源から任意の直流(交流電源電圧の最大値以上)を得ることができる。
【0009】
図12は第3の従来技術を示す回路図である。整流回路40は、スイッチング素子401とダイオード405を逆並列接続したスイッチングアームとスイッチング素子402とダイオード406を逆並列接続したスイッチングアームとを直列接続した直列接続回路と、ダイオード415とダイオード416を直列接続した直列接続回路とを並列接続し、並列接続点413を正極直流出力端子、並列接続点414を負極直流出力端子とし、スイッチング素子401とダイオード405を逆並列接続したスイッチングアームとスイッチング素子402とダイオード406を逆並列接続したスイッチングアームとの直列接続回路の内部接続点にリアクトル409の一端を、該リアクトルの他端は交流入力端子411に、ダイオード415とダイオード416を直列接続した直列接続回路の内部接続点は交流入力端子412に、各々接続された構成であり、さらに正極直流出力端子413と負極直流出力端子414との間にはコンデンサ6と負荷7が、交流入力端子411と412との間には交流電源1が、各々接続されている。
【0010】
図12の回路構成における動作を説明する。交流電源1が正の電圧の場合、スイッチング素子402がオンすると電流は交流電源1→リアクトル409→スイッチング素子402→ダイオード416→交流電源1の経路で流れて増加する。ここで、スイッチング素子402がオフするとリアクトル409に流れていた電流はリアクトル409→ダイオード405→コンデンサ6→ダイオード416→交流電源1→リアクトル409の経路に転流し、負荷にエネルギーが供給される。
【00011】
一方、交流電源1の電圧が負の場合、スイッチング素子401をスイッチングすることによって同様の動作となる。よって、交流電源1が正のときにはスイッチング素子402をスイッチングし、交流電源1が負のときにはスイッチング素子401をスイッチングすることにより、入力電流を高力率に制御しながら交流電源から任意の直流(交流電源電圧の最大値以上)を得ることができる。
【00012】
図13は第4の従来技術を示す回路図である。整流回路50は、スイッチング素子501とダイオード505を逆並列接続したスイッチングアームとスイッチング素子502とダイオード506を逆並列接続したスイッチングアームとを直列接続した直列接続回路と、スイッチング素子503とダイオード507を逆並列接続したスイッチングアームとスイッチング素子504とダイオード508を逆並列接続したスイッチングアームとを直列接続した直列接続回路とを並列接続し、並列接続点513を正極直流出力端子、並列接続点514を負極直流出力端子とし、スイッチング素子501とダイオード505を逆並列接続したスイッチングアームとスイッチング素子502とダイオード506を逆並列接続したスイッチングアームとの直列接続回路の内部接続点にリアクトル509の一端を、該リアクトルの他端は交流入力端子511に、スイッチング素子503とダイオード507を逆並列接続したスイッチングアームとスイッチング素子504とダイオード508を逆並列接続したスイッチングアームとを直列接続した直列接続回路の内部接続点は交流入力端子512に、各々接続された構成であり、さらに正極直流出力端子513と負極直流出力端子514との間にはコンデンサ6と負荷7が、交流入力端子511と512との間には交流電源1が接続されている。
【0013】
以下に図13における動作例を説明する。交流電源1が正の電圧の場合、スイッチング素子503オフ、504オンの状態で、スイッチング素501オフ、502オンとすると、電流は交流電源1→リアクトル509→スイッチング素子502→ダイオード508→交流電源1の経路で流れて増加する。ここで、スイッチング素子502をオフ、501オンとするとリアクトル509に流れていた電流はリアクトル509→ダイオード505→コンデンサ6→ダイオード508→交流電源1→リアクトル509の経路に転流し、負荷にエネルギーが供給される。
【0014】
一方、交流電源1の電圧が負の場合、スイッチング素子502オン、501オフの状態で、スイッチング素子503と504をスイッチングすることによって同様の動作となる。よって、交流電源1が正の時にはスイッチング素子502をスイッチングし、交流電源1が負の時にはスイッチング素子501をスイッチングする。このように、スイッチング素子502またはスイッチング素子501を制御することによって、入力電流を高力率に制御しながら、交流電圧を任意の直流電圧(交流電源電圧の最大値以上)に変換することができる。図10〜図12との違いは、リアクトルの電流をコンデンサに放出する時でも放出経路にあるダイオードと逆並列接続されたスイッチング素子がオンしているため、負荷から電力が回生される場合、この回生電力を交流電源1に回生できる点である。
【0015】
【発明が解決しようとする課題】
従来技術において、起動時や停電後に復電した場合、コンデンサ6の電圧よりも交流電源1の電圧の方が大きくなる場合がある。このとき、例えば交流電源1が正の電圧ならば、図10の回路方式では、交流電源1→リアクトル209→ダイオード207→コンデンサ6→ダイオード206→交流電源1の経路で、図11の回路方式では、交流電源1→リアクトル309→ダイオード305→コンデンサ6→ダイオード308→交流電源1の経路で、図12の回路方式では、交流電源1→リアクトル409→ダイオード405→コンデンサ6→ダイオード416→交流電源1の経路で、図13の回路方式では、交流電源1→リアクトル509→ダイオード505→コンデンサ6→ダイオード508→交流電源1の経路で、それぞれ突入電流が流れ、過大な電流がダイオードやスイッチング素子内部(寄生ダイオードなど)に、流れることになる。
【0016】
ここで、図10および図11に示す整流回路ではスイッチング素子がオンした場合にダイオードが逆回復するので、ダイオード207、208、307および308は高速ダイオードが必要である。また、図12と図13の回路方式でも同様に、スイッチング素子と逆並列に接続されたダイオード405,406、505〜508は逆回復動作となるため、高速ダイオードが必要である。
【0017】
高速ダイオードやスイッチング素子内部の寄生ダイオードなどの逆導通機能部は過大電流に対する電流耐量が小さく、ダイオードやスイッチング素子が破損してしまう恐れがある。そこで本提案では、高速ダイオードやスイッチング素子内部の寄生ダイオードなどの逆導通機能部に過大電流を流さない小形低価格の整流回路を提供し、装置を安全に動作させることを目的としている。ここで、図10と図11に示すダイオード205、206、305、306と図12に示すダイオード415、416は交流電流の半波波形がそれぞれ流れるので、逆回復することがなく、高速ダイオードを適用する必要はない。
【0018】
また、ここでは交流電源が単相の場合を例に説明したが、三相の場合も同様に回路構成の違いにより、高速ダイオードが必要な場合とそうでない場合、素子内部の寄生ダイオードなどの逆導通部を使用する場合などがあり、単相と同様の課題があることは言うまでもない。
【0019】
【課題を解決するための手段】
このような課題を解決するため、請求項1の発明では、スイッチング動作により交流電源から直流を作り出す整流装置において、スイッチング素子とダイオードとの逆並列接続回路からなるスイッチングアームおよび逆導通機能を有するスイッチング素子の中から同じもの同士も含めて何れか二つを直列接続した第1の直列接続回路、スイッチング素子とダイオードとの逆並列接続回路からなるスイッチングアームおよび逆導通機能を有するスイッチング素子の何れかとダイオードを直列接続した第2の直列接続回路、およびダイオード2個を直列接続した第3の直列接続回路の中から、スイッチング素子を含む形で同じもの同士も含めて複数の直列接続回路を並列接続し、該複数の直列接続回路の並列接続点間に並列にコンデンサと負荷を、該複数の直列接続回路のそれぞれの内部接続点と交流電源との間にリアクトルを、交流電源とリアクトルとの接続点と前記複数の直列接続回路の並列接続点の一方または双方との間にダイオードを、それぞれ接続する。
【0020】
請求項2の発明では、スイッチング動作により交流電源から直流を作り出す整流装置において、スイッチング素子とダイオードとの逆並列接続回路からなるスイッチングアームおよび逆導通機能を有するスイッチング素子の中から同じもの同士も含めて何れか二つを直列接続した第1の直列接続回路、スイッチング素子とダイオードとの逆並列接続回路からなるスイッチングアームおよび逆導通機能を有するスイッチング素子の何れかとダイオードを直列接続した第2の直列接続回路、およびダイオード2個を直列接続した第3の直列接続回路の中から、スイッチング素子を含む形で同じもの同士も含めて複数の直列接続回路を並列接続し、該複数の直列接続回路の並列接続点間に並列にコンデンサと負荷を、該複数の直列接続回路のそれぞれの内部接続点と交流電源との間にリアクトルを、交流電源とリアクトルとの接続点と前記複数の直列接続回路の並列接続点の一方または双方との間にスイッチング素子を、それぞれ接続する。
【0021】
請求項3の発明では、スイッチング動作により交流電源から直流を作り出す整流装置において、スイッチング素子とダイオードとの逆並列接続回路からなるスイッチングアームおよび逆導通機能を有するスイッチング素子の中から同じもの同士も含めて何れか二つを直列接続した第1の直列接続回路、スイッチング素子とダイオードとの逆並列接続回路からなるスイッチングアームおよび逆導通機能を有するスイッチング素子の何れかとダイオードを直列接続した第2の直列接続回路、およびダイオード2個を直列接続した第3の直列接続回路の中から、スイッチング素子を含む形で同じもの同士も含めて複数の直列接続回路を並列接続し、該複数の直列接続回路の並列接続点間に並列にコンデンサと負荷を、該複数の直列接続回路のそれぞれの内部接続点と交流電源との間にリアクトルを、交流電源とリアクトルとの接続点と前記複数の直列接続回路の並列接続点の一方との間にダイオードを、他方との間にスイッチング素子を、それぞれ接続する。
【0022】
また、請求項4の発明では、請求項1から3に使用する複数の直列接続回路の内部接続点と交流電源との間にそれぞれ接続した複数のリアクトルとして、一つのコアに複数の巻線を備えた構成とする。
【0023】
【発明の実施の形態】
図1から図3は、本発明の請求項1に基づく実施例を示す回路図である。図1と図2は請求項に示す第2の直列接続回路を2個並列接続した構成、図3は第1の直列接続回路と第3の直列接続回路を並列接続した構成である。いずれもスイッチング素子としてMOSFETを用いた構成例であり、図示のスイッチング素子と逆並列接続したダイオードはMOSFETの内部の寄生ダイオードでも代用できる。また、スイッチング素子としてはIGBTなど他の素子を適用できることは言うまでもない。
【0024】
図1において、整流回路2は、スイッチング素子201とダイオード205を逆並列接続したスイッチングアームとダイオード207を直列接続した直列接続回路と、スイッチング素子202とダイオード206を逆並列接続したスイッチングアームとダイオード208を直列接続した直列接続回路とを並列接続し、並列接続点213を正極直流出力端子、並列接続点214を負極直流出力端子とし、スイッチング素子201とダイオード205を逆並列接続したスイッチングアームとダイオード207を直列接続した直列接続回路の内部接続点にリアクトル209の一端を、該リアクトルの他端は交流入力端子211に、スイッチング素子202とダイオード206を逆並列接続したスイッチングアームとダイオード208を直列接続した直列接続回路の内部接続点にリアクトル210の一端を、該リアクトルの他端は交流入力端子212に、各々接続された構成であり、さらに正極直流出力端子213と負極直流出力端子214との間には並列にコンデンサ6と負荷7が、交流入力端子211と212との間には交流電源1が、交流入力端子211と正極直流出力端子213との間にはダイオード8が、交流入力端子212と正極直流出力端子213との間にはダイオード9が、それぞれ接続されている。
【0025】
起動時や停電からの復電時のように、コンデンサ6の電圧が交流電源1の電圧よりも低い状態から交流電源が立ち上がった場合、交流電源1の電圧が正の時は、交流電源1→ダイオード8→コンデンサ6→ダイオード206→リアクトル210→交流電源1の経路で突入電流が流れ、従来のようにダイオード207には突入電流が流れない。また、交流電源1の電圧が負の場合には、交流電源1→ダイオード9→コンデンサ6→ダイオード205→リアクトル209→交流電源1の経路で突入電流が流れ、従来のようにダイオード208には突入電流が流れない。
【0026】
図2における図1との違いは、スイッチング素子とダイオードを逆並列接続したスイッチングアームとダイオードを直列接続した直列接続回路の構成が上下アーム逆にしてある点と、交流入力端子311と負極直流出力端子314間にダイオード8が、交流入力端子312と負極直流出力端子314間にダイオード9がそれぞれ接続されている点である。起動時や停電からの復電時のように、コンデンサ6の電圧が交流電源1の電圧よりも低い状態から交流電源が立ち上がった場合、交流電源1の電圧が正ならば交流電源1→リアクトル309→ダイオード305→コンデンサ6→ダイオード9→交流電源1の経路で突入電流が流れ、従来のようにダイオード308には突入電流が流れない。また、交流電源1の電圧が負の場合には、交流電源1→リアクトル310→ダイオード306→コンデンサ6→ダイオード8→交流電源1の経路で突入電流が流れ、従来のようにダイオード307には突入電流が流れない。
【0027】
図3において、整流回路4は、スイッチング素子401とダイオード405を逆並列接続したスイッチングアームとスイッチング素子402とダイオード406を逆並列接続したスイッチングアームを直列接続した直列接続回路と、ダイオード415とダイオード416を直列接続した直列接続回路とを並列接続し、並列接続点413を正極直流出力端子、並列接続点414を負極直流出力端子とし、スイッチング素子401とダイオード405を逆並列接続したスイッチングアームとスイッチング素子402とダイオード406を逆並列接続したスイッチングアームを直列接続した直列接続回路の内部接続点にリアクトル409の一端を、該リアクトルの他端は交流入力端子411に、ダイオード415とダイオード416を直列接続した直列接続回路の内部接続点にリアクトル410の一端を、該リアクトルの他端は交流入力端子412に、各々接続した構成であり、さらに正極直流出力端子413と負極直流出力端子414の間には並列にコンデンサ6と負荷7が、交流入力端子411と412との間には交流電源1が、交流入力端子411と正極直流出力端子413との間にはダイオード8が、交流入力端子411と負極直流出力端子との間にはダイオード9が、それぞれ接続されている。
【0028】
このような構成において、起動時や停電からの復電時のように、コンデンサ6の電圧が交流電源1の電圧よりも低い状態から交流電源が立ち上がった場合、交流電源1の電圧が正ならば交流電源1→ダイオード8→コンデンサ6→ダイオード416→リアクトル410→交流電源1の経路で突入電流が流れ、従来のようにダイオード405には突入電流が流れない。また、交流電源1の電圧が負の場合には、交流電源1→リアクトル410→ダイオード415→コンデンサ6→ダイオード9→交流電源1の経路で突入電流が流れ、従来のようにダイオード406には突入電流が流れない。
【0029】
図4から図6は、本発明の請求項2に基づく実施例を示す回路図である。図4と図5は請求項に示す第2の直列接続回路を2個並列接続した構成、図6は第1の直列接続回路を2個並列接続した構成である。いずれもスイッチング素子としてMOSFETを用いた構成例であり、図示のスイッチング素子と逆並列接続したダイオードはMOSFETの内部の寄生ダイオードなどの逆導通機能でも代用できる。また、請求項記載の交流電源とリアクトルとの接続点と前記複数の直列接続回路の並列接続点との間に接続するスイッチング素子としてはサイリスタを用いた実施例である。スイッチング素子としてはIGBTなど他の素子をダイオードとの複合回路で適用できることは言うまでもない。
【0030】
図4において、整流回路2は、スイッチング素子201とダイオード205を逆並列接続したスイッチングアームとダイオード207を直列接続した直列接続回路と、スイッチング素子202とダイオード206を逆並列接続したスイッチングアームとダイオード208を直列接続した直列接続回路とを並列接続し、並列接続点213を正極直流出力端子、並列接続点214を負極直流出力端子とし、スイッチング素子201とダイオード205を逆並列接続したスイッチングアームとダイオード207を直列接続した直列接続回路の内部接続点にリアクトル209の一端を、該リアクトルの他端は交流入力端子211に、スイッチング素子202とダイオード206を逆並列接続したスイッチングアームとダイオード208を直列接続した直列接続回路の内部接続点にリアクトル210の一端を、該リアクトルの他端は交流入力端子212に、各々接続された構成であり、さらに正極直流出力端子213と負極直流出力端子214との間には並列にコンデンサ6と負荷7が、交流入力端子211と212との間には交流電源1が、交流入力端子211と負極直流出力端子214との間にはサイリスタ10が、交流入力端子212と負極直流出力端子214との間にはサイリスタ11が、それぞれ接続されている。
【0031】
起動時や停電からの復電時のように、コンデンサ6の電圧が交流電源1の電圧よりも低い状態から交流電源が立ち上がった場合、交流電源1の電圧が正ならばサイリスタ11を点弧させることにより、交流電源1→リアクトル209→ダイオード207→コンデンサ6→サイリスタ11→交流電源1の経路で突入電流が流れ、従来のようにダイオード206には突入電流が流れない。また、交流電源1の電圧が負の場合には、サイリスタ10を点弧させることにより、交流電源1→リアクトル210→ダイオード208→コンデンサ6→サイリスタ10→交流電源1の経路で突入電流が流れ、従来のようにダイオード205には突入電流が流れない。また、通常動作状態においては、サイリスタ10,11をオフさせることにより、従来と同様の動作となる。
【0032】
図5における図4との違いは、スイッチング素子とダイオードを逆並列接続したスイッチングアームとダイオードを直列接続した直列接続回路の構成が上下アーム逆にしてある点と、交流入力端子311と正極直流出力端子313との間にサイリスタ10が、交流入力端子312と正極直流出力端子313との間にサイリスタ11がそれぞれ接続されている点である。
【0033】
起動時や停電からの復電時のように、コンデンサ6の電圧が交流電源1の電圧よりも低い状態から交流電源が立ち上がった場合、交流電源1の電圧が正ならばサイリスタ10を点弧させることにより、交流電源1→サイリスタ10→コンデンサ6→ダイオード308→リアクトル310→交流電源1の経路で突入電流が流れ、従来のようにダイオード305には突入電流が流れない。また、交流電源1の電圧が負の場合には、サイリスタ11を点弧させることにより、交流電源1→サイリスタ11→コンデンサ6→ダイオード307→リアクトル309→交流電源1の経路で突入電流が流れ、従来のようにダイオード306には突入電流が流れない。また、通常動作状態においては、サイリスタ10,11をオフさせることにより、従来と同様の動作となる。
【0034】
図6において、整流回路5は、スイッチング素子501とダイオード505を逆並列接続したスイッチングアームとスイッチング素子502とダイオード506を逆並列接続したスイッチングアームを直列接続した直列接続回路と、スイッチング素子503とダイオード507を逆並列接続したスイッチングアームとスイッチング素子504とダイオード508を逆並列接続したスイッチングアームを直列接続した直列接続回路とを並列接続し、並列接続点513を正極直流出力端子、並列接続点514を負極直流出力端子とし、スイッチング素子501とダイオード505を逆並列接続したスイッチングアームとスイッチング素子502とダイオード506を逆並列接続したスイッチングアームを直列接続した直列接続回路の内部接続点にリアクトル509の一端を、該リアクトルの他端は交流入力端子511に、スイッチング素子503とダイオード507を逆並列接続したスイッチングアームとスイッチング素子504とダイオード508を逆並列接続したスイッチングアームを直列接続した直列接続回路の内部接続点にリアクトル510の一端を、該リアクトルの他端は交流入力端子512に、各々接続された構成であり、さらに正極直流出力端子513と負極直流出力端子514の間には並列にコンデンサ6と負荷7が、交流入力端子511と512との間には交流電源1が、交流入力端子511と正極直流出力端子513との間にはサイリスタ10が、交流入力端子511と負極直流出力端子514との間にはサイリスタ12が、交流入力端子512と正極直流出力端子513との間にはサイリスタ11が、交流入力端子512と負極直流出力端子514との間にはサイリスタ13が、それぞれ接続されている。
【0035】
このような構成において、起動時や停電からの復電時のように、コンデンサ6の電圧が交流電源1の電圧よりも低い状態から交流電源が立ち上がった場合、交流電源1の電圧が正ならばサイリスタ10とサイリスタ13を点弧させることにより、交流電源1→サイリスタ10→コンデンサ6→サイリスタ13→交流電源1の経路で突入電流が流れ、従来のようにダイオード505、508には突入電流が流れない。また、交流電源1の電圧が負の場合には、サイリスタ11と12を点弧させることにより、交流電源1→サイリスタ11→コンデンサ6→サイリスタ12→交流電源1の経路で突入電流が流れ、従来のように高速のダイオード507、506には突入電流が流れない。また、通常動作状態においては、サイリスタ10〜13をオフさせることにより、従来と同様の動作となる。
【0036】
図7と図8は請求項3に基づいた実施例である。
図7において、整流回路2は、スイッチング素子201とダイオード205を逆並列接続したスイッチングアームとダイオード207を直列接続した直列接続回路と、スイッチング素子202とダイオード206を逆並列接続したスイッチングアームとダイオード208を直列接続した直列接続回路とを並列接続し、並列接続点213を正極直流出力端子、並列接続点214を負極直流出力端子とし、スイッチング素子201とダイオード205を逆並列接続したスイッチングアームとダイオード207を直列接続した直列接続回路の内部接続点にリアクトル209の一端を、該リアクトルの他端は交流入力端子211に、スイッチング素子202とダイオード206を逆並列接続したスイッチングアームとダイオード208を直列接続した直列接続回路の内部接続点にリアクトル210の一端を、該リアクトルの他端は交流入力端子212に、各々接続された構成であり、さらに正極直流出力端子213と負極直流出力端子214との間には並列にコンデンサ6と負荷7が、交流入力端子211と212との間には交流電源1が、交流入力端子211と正極直流出力端子213との間にはダイオード8が、交流入力端子212と正極直流出力端子213との間にはダイオード9が、交流入力端子211と負極直流出力端子214との間にはサイリスタ10が、交流入力端子212と負極直流出力端子214との間にはサイリスタ11が、それぞれ接続されている。
【0037】
起動時や停電からの復電時のように、コンデンサ6の電圧が交流電源1の電圧よりも低い状態から交流電源が立ち上がった場合、交流電源1の電圧が正の時は、サイリスタ11を点弧することにより、交流電源1→ダイオード8→コンデンサ6→サイリスタ11→交流電源1の経路で突入電流が流れ、従来のようにダイオード207、206には突入電流が流れない。また、交流電源1の電圧が負の場合には、サイリスタ10を点弧させることにより、交流電源1→ダイオード9→コンデンサ6→サイリスタ10→交流電源1の経路で突入電流が流れ、従来のようにダイオード208、205には突入電流が流れない。また、通常動作状態においては、サイリスタ10,11をオフさせることにより、従来と同様の動作となる。
【0038】
図8における図7との違いは、スイッチング素子とダイオードを逆並列接続したスイッチングアームとダイオードを直列接続した直列接続回路の構成が上下アーム逆にしてある点と、交流入力端子311と正極直流出力端子313との間にサイリスタ10が、交流入力端子312と正極直流出力端子313との間にサイリスタ11が、交流入力端子311と負極直流出力端子314との間にダイオード8が、交流入力端子312と負極直流出力端子314の間にダイオード9が、それぞれ接続されている点である。
【0039】
起動時や停電からの復電時のように、コンデンサ6の電圧が交流電源1の電圧よりも低い状態から交流電源が立ち上がった場合、交流電源1の電圧が正の時は、サイリスタ10を点弧させることにより、交流電源1→サイリスタ10→コンデンサ6→ダイオード9→交流電源1の経路で突入電流が流れ、従来のようにダイオード305、308には突入電流が流れない。また、交流電源1の電圧が負の場合には、サイリスタ11を点弧させることにより、交流電源1→サイリスタ11→コンデンサ6→ダイオード8→交流電源1の経路で突入電流が流れ、従来のようにダイオード306、307には突入電流が流れない。また、通常動作状態においては、サイリスタ10,11をオフさせることにより、従来と同様の動作となる。
【0040】
図9は請求項4に基づく実施例である。請求項1から請求項3の発明においては、従来整流回路の交流入力に1個のリアクトルを使用していたが、本発明では上記説明から分かるように、単相入力の場合は2個、三相入力の場合は3個必要となる。請求項4はこれら複数のリアクトルのコアを共通にすることにより、部品点数を削減するものである。
【0041】
前述の全てに適用可能であるが、ここでは、前述の実施例図7に適用した場合について説明する。図9に示すように、リアクトルのコアを結合させると、回路構成は図9(a)、リアクトルの巻線構成は図9(b)となる。ここで、定常動作時交流電源1の電圧が正の場合、スイッチング素子201がオンすると、交流電源1→リアクトル217のA端子→リアクトル217のB端子→スイッチング素子201→ダイオード206→リアクトル217のC端子→リアクトル217のD端子→交流電源1の経路で電流が流れ、B点を基準にするとA点には正の電圧が、D点を基準とするとC点には正の電圧が、それぞれ印加されている。
【0042】
また、スイッチング素子201がオフすると電流はリアクトル217のB端子→ダイオード207→コンデンサ6→ダイオード206→リアクトル217のC端子→リアクトル217のD端子→交流電源1→リアクトル217のA端子→リアクトル217のB端子の経路に転流し、A点を基準にするとB点には正の電圧が、C点を基準とするとD点には正の電圧が、それぞれ印加されている。
【0043】
従って、A点を基準にB点の電圧が正のときに発生する磁束とC点を基準にD点の電圧が正のときに発生する磁束が同じ方向になるように、コア351に銅線352を巻くことにより、二つの巻線によって励磁される磁束はお互いに強め合うように動作するので、リアクトル217のAB間およびCD間はそれぞれリアクトルとして動作する。以上のような動作原理になるように、リアクトルを図9(b)のような構成にすることで、一つの部品で二つのリアクトルを構成することができ、部品点数の削減、小形軽量化、低コスト化が可能となる。
【0044】
【発明の効果】
本発明によれば、起動時や停電からの復電時の突入電流の流れる経路を、電流耐量の大きなダイオードやサイリスタなどを用いてバイパスさせることが可能となり、整流回路内の高速ダイオードやスイッチング素子の寄生ダイオード等の逆導通機能部に突入電流が流れるのを防止できるので、装置を破壊することなく安全に動作させることができる。また、リアクトルのコアを共通化することにより、部品点数の増加を最低限に抑えることができ、装置の小型軽量化と低コスト化が可能となる。
【図面の簡単な説明】
【図1】本発明の請求項1に基づいた第1の実施例を示す回路図である。
【図2】本発明の請求項1に基づいた第2の実施例を示す回路図である。
【図3】本発明の請求項1に基づいた第3の実施例を示す回路図である。
【図4】本発明の請求項2に基づいた第1の実施例を示す回路図である。
【図5】本発明の請求項2に基づいた第2の実施例を示す回路図である。
【図6】本発明の請求項2に基づいた第3の実施例を示す回路図である。
【図7】本発明の請求項3に基づいた第1の実施例を示す回路図である。
【図8】本発明の請求項3に基づいた第2の実施例を示す回路図である。
【図9】本発明の請求項4に基づいた実施例を示す回路図である。
【図10】従来技術に基づいた第1の実施例を示す回路図である。
【図11】従来技術に基づいた第2の実施例を示す回路図である。
【図12】従来技術に基づいた第3の実施例を示す回路図である。
【図13】従来技術に基づいた第4の実施例を示す回路図である。
【符号の説明】
1・・・・交流電源
2、3、4、5、20、30、40、50・・・・整流回路
6・・・・コンデンサ
7・・・・負荷
8、9、205〜208、305〜308、405、406、415、416、505〜508・・・・ダイオード
10〜13・・・・サイリスタ
209、210、309、310、409、410、509、510、217
・・・・リアクトル
211、212、311、312、411、412、511、512
・・・・交流入力端子
213、313、413、513・・・・正極直流出力端子
214、314、414、514・・・・負極直流出力端子
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a so-called rectifier circuit that uses a switching element and a diode to generate DC from an AC power supply, and particularly when an AC power supply fails and is restored or when the power supply starts, an excessive rush current flows through the switching element or the diode, and The present invention relates to a technique for preventing destruction.
[0002]
[Prior art]
FIGS. 10 to 13 show examples of a single-phase rectifier circuit as a conventional circuit system. 10 and 11 show a configuration in which two second series connection circuits described in claims are connected in parallel, FIG. 12 shows a configuration in which a first series connection circuit and a third series connection circuit are connected in parallel, and FIG. This is a configuration in which two series-connected circuits are connected in parallel. In each case, a MOSFET is used as a switching element, and a diode connected in anti-parallel to the switching element shown in the drawing can be replaced with a parasitic diode inside the MOSFET.
[0003]
10, a rectifier circuit 20 includes a switching arm in which a switching element 201 and a diode 205 are connected in anti-parallel and a series connection circuit in which a diode 207 is connected in series, a switching arm in which a switching element 202 and a diode 206 are connected in anti-parallel, and a diode 208 Are connected in parallel, a parallel connection point 213 is a positive DC output terminal, a parallel connection point 214 is a negative DC output terminal, and a switching arm and a diode 207 in which the switching element 201 and the diode 205 are connected in reverse parallel. One end of a reactor 209 is connected to an internal connection point of the series connection circuit, and the other end of the reactor is connected to an AC input terminal 211, and a switching arm in which a switching element 202 and a diode 206 are connected in reverse parallel and a diode 208 are connected in series. Are connected to the AC input terminal 212, respectively. Further, the capacitor 6 and the load 7 are connected between the positive DC output terminal 213 and the negative DC output terminal 214, and the AC input terminals 211 and 212 are connected to each other. The AC power supply 1 is connected between the two.
[0004]
The operation in this configuration will be described below. When the AC power supply has a positive voltage (when the voltage of the terminal 211 is higher than the voltage of the terminal 212 in the figure), when the switching element 201 is turned on, the current is changed from the AC power supply 1 → reactor 209 → switching element 201 → diode 206 → AC It flows in the path of the power supply 1 and increases. Here, when the switching element 201 is turned off, the current flowing through the reactor 209 is commutated to the path of the reactor 209 → the diode 207 → the capacitor 6 → the diode 206 → the AC power supply 1 → the reactor 209, and energy is supplied to the load.
[0005]
On the other hand, when the AC power supply 1 has a negative voltage (when the voltage of the terminal 212 is higher than the voltage of the terminal 211 in the figure), the same operation is performed by switching the switching element 202. Therefore, when AC power supply 1 is positive, switching element 201 is switched, and when AC power supply 1 is negative, switching element 202 is switched. As described above, by controlling the switching element 201 or the switching element 202, it is possible to obtain an arbitrary DC (more than the maximum value of the AC power supply voltage) from the AC power supply while controlling the input current to a high power factor.
[0006]
FIG. 11 is a circuit diagram showing a second conventional technique. The difference from FIG. 10 is that the configuration of a series connection circuit in which a switching arm and a diode are connected in series and a switching element and a diode are connected in reverse parallel is reversed in the upper and lower arms.
[0007]
The operation principle of the circuit system shown in FIG. 11 will be described. When the AC power supply 1 has a positive voltage, when the switching element 302 is turned on, the current increases in the path of the AC power supply 1 → reactor 309 → diode 305 → switching element 302 → AC power supply 1. Here, when the switching element 302 is turned off, the current flowing through the reactor 309 is diverted to the path of the reactor 309 → the diode 305 → the capacitor 6 → the diode 308 → the AC power supply 1 → the reactor 309, and the load 7 is supplied with energy. .
[0008]
On the other hand, when the voltage of the AC power supply 1 is negative, the same operation is performed by switching the switching element 301. Therefore, when AC power supply 1 is positive, switching element 302 is switched, and when AC power supply 1 is negative, switching element 301 is switched. As described above, by controlling the switching element 302 or the switching element 301, it is possible to obtain an arbitrary DC (more than the maximum value of the AC power supply voltage) from the AC power supply while controlling the input current to a high power factor.
[0009]
FIG. 12 is a circuit diagram showing a third conventional technique. The rectifier circuit 40 includes a series connection circuit in which a switching arm in which the switching element 401 and the diode 405 are connected in antiparallel, a switching arm in which the switching element 402 and the diode 406 are connected in antiparallel, and a diode 415 and the diode 416 connected in series. The switching arm, the switching element 402, and the diode in which the switching element 401 and the diode 405 are connected in anti-parallel, and the parallel connection point 413 is a positive DC output terminal and the parallel connection point 414 is a negative DC output terminal. One end of a reactor 409 is connected to an internal connection point of a series connection circuit with a switching arm in which 406 is connected in reverse parallel, the other end of the reactor is connected to an AC input terminal 411, and an inside of a series connection circuit in which a diode 415 and a diode 416 are connected in series. Contact The point is a configuration connected to the AC input terminal 412, respectively. Further, a capacitor 6 and a load 7 are provided between the positive DC output terminal 413 and the negative DC output terminal 414, and between the AC input terminals 411 and 412. Are connected to an AC power supply 1 respectively.
[0010]
The operation in the circuit configuration of FIG. 12 will be described. When the AC power supply 1 has a positive voltage, when the switching element 402 is turned on, the current flows through the path of the AC power supply 1 → the reactor 409 → the switching element 402 → the diode 416 → the AC power supply 1 and increases. Here, when the switching element 402 is turned off, the current flowing through the reactor 409 is diverted to the path of the reactor 409 → the diode 405 → the capacitor 6 → the diode 416 → the AC power supply 1 → the reactor 409, and energy is supplied to the load.
[00011]
On the other hand, when the voltage of the AC power supply 1 is negative, the same operation is performed by switching the switching element 401. Therefore, by switching the switching element 402 when the AC power supply 1 is positive, and by switching the switching element 401 when the AC power supply 1 is negative, an arbitrary DC (AC) is controlled from the AC power supply while controlling the input current to a high power factor. Power supply voltage or more).
[00012]
FIG. 13 is a circuit diagram showing a fourth conventional technique. The rectifier circuit 50 includes a series connection circuit in which a switching arm in which the switching element 501 and the diode 505 are connected in anti-parallel, a switching arm in which the switching element 502 and the diode 506 are connected in anti-parallel, and a switching element 503 and the diode 507 which are connected in series. A switching arm connected in parallel and a series connection circuit in which a switching element 504 and a switching arm in which a diode 508 are connected in anti-parallel are connected in parallel. A parallel connection point 513 is a positive DC output terminal, and a parallel connection point 514 is a negative DC output. The reactor 509 is connected to an internal connection point of a series connection circuit of an output terminal and a switching arm in which the switching element 501 and the diode 505 are connected in anti-parallel and a switching arm in which the switching element 502 and the diode 506 are connected in anti-parallel. A series connection circuit in which a switching arm having a switching element 503 and a diode 507 connected in anti-parallel and a switching arm having a switching element 504 and a diode 508 connected in anti-parallel are connected in series to the AC input terminal 511 at the other end of the reactor. Are connected to an AC input terminal 512, respectively. Further, a capacitor 6 and a load 7 are provided between a positive DC output terminal 513 and a negative DC output terminal 514, and the AC input terminals 511 and 512 are connected to each other. The AC power supply 1 is connected between the two.
[0013]
Hereinafter, an operation example in FIG. 13 will be described. When the AC power supply 1 has a positive voltage, when the switching elements 501 are turned off and 502 are turned on while the switching elements 503 are turned off and 504 are turned on, the current is changed from the AC power supply 1 → reactor 509 → switching element 502 → diode 508 → AC power supply 1 Flowing along the path increases. Here, when the switching element 502 is turned off and turned on, the current flowing through the reactor 509 is commutated to the path of the reactor 509 → diode 505 → capacitor 6 → diode 508 → AC power supply 1 → reactor 509 to supply energy to the load. Is done.
[0014]
On the other hand, when the voltage of the AC power supply 1 is negative, the same operation is performed by switching the switching elements 503 and 504 while the switching element 502 is on and 501 is off. Therefore, when AC power supply 1 is positive, switching element 502 is switched, and when AC power supply 1 is negative, switching element 501 is switched. As described above, by controlling the switching element 502 or the switching element 501, the AC voltage can be converted to an arbitrary DC voltage (more than the maximum value of the AC power supply voltage) while controlling the input current to a high power factor. . The difference from FIG. 10 to FIG. 12 is that even when discharging the current of the reactor to the capacitor, the switching element connected in anti-parallel with the diode in the discharging path is turned on. The point is that the regenerative electric power can be regenerated to the AC power supply 1.
[0015]
[Problems to be solved by the invention]
In the related art, when the power is restored at the time of startup or after a power failure, the voltage of the AC power supply 1 may be higher than the voltage of the capacitor 6 in some cases. At this time, if the AC power supply 1 has a positive voltage, for example, in the circuit system of FIG. 10, the AC power supply 1 → reactor 209 → diode 207 → capacitor 6 → diode 206 → AC power supply 1 In the circuit system of FIG. 12, AC power supply 1 → reactor 309 → diode 305 → capacitor 6 → diode 308 → AC power supply 1; AC power supply 1 → reactor 409 → diode 405 → capacitor 6 → diode 416 → AC power supply 1 In the circuit shown in FIG. 13, in the path of AC power supply 1 → reactor 509 → diode 505 → capacitor 6 → diode 508 → AC power supply 1, an inrush current flows, and excessive current flows inside the diode or the switching element. (Such as a parasitic diode).
[0016]
Here, in the rectifier circuits shown in FIGS. 10 and 11, when the switching element is turned on, the diode reversely recovers, so that the diodes 207, 208, 307, and 308 need high-speed diodes. 12 and 13, the diodes 405, 406, and 505 to 508 connected in antiparallel with the switching elements perform a reverse recovery operation, and thus require a high-speed diode.
[0017]
The reverse conducting function section such as a high-speed diode or a parasitic diode inside the switching element has a small current withstand capacity against an excessive current, and the diode and the switching element may be damaged. In view of the above, an object of the present proposal is to provide a small and inexpensive rectifier circuit that does not allow an excessive current to flow through a reverse conducting function unit such as a high-speed diode or a parasitic diode inside a switching element, and to operate the device safely. Here, the diodes 205, 206, 305, and 306 shown in FIGS. 10 and 11 and the diodes 415 and 416 shown in FIG. 12 each have a half-wave waveform of an alternating current. do not have to.
[0018]
Also, here, the case where the AC power supply is a single phase is described as an example, but also in the case of a three-phase AC power supply, if a high-speed diode is required or not due to a difference in circuit configuration, a reverse diode such as a parasitic diode inside the element is used. It is needless to say that there is a case where a conducting portion is used and there is a problem similar to that of a single phase.
[0019]
[Means for Solving the Problems]
In order to solve such a problem, according to the first aspect of the present invention, in a rectifier that generates a DC from an AC power supply by a switching operation, a switching arm including a reverse-parallel connection circuit of a switching element and a diode, and a switching having a reverse conduction function. A first series connection circuit in which any two of the elements including the same element are connected in series, a switching arm including an anti-parallel connection circuit of a switching element and a diode, and a switching element having a reverse conduction function; From a second series connection circuit in which diodes are connected in series and a third series connection circuit in which two diodes are connected in series, a plurality of series connection circuits including the same ones including switching elements are connected in parallel. And a capacitor and a load are connected in parallel between the parallel connection points of the plurality of series connection circuits. A reactor is provided between each of the internal connection points of the plurality of series connection circuits and the AC power supply, and a diode is provided between a connection point between the AC power supply and the reactor and one or both of the parallel connection points of the plurality of series connection circuits. Are connected respectively.
[0020]
According to a second aspect of the present invention, in the rectifier for generating a direct current from an AC power supply by a switching operation, a rectifying device including a switching arm including an anti-parallel connection circuit of a switching element and a diode and a switching element having a reverse conduction function include the same ones. A first series connection circuit in which any two are connected in series, a switching arm composed of an anti-parallel connection circuit of a switching element and a diode, and a second series in which a diode is connected in series with one of the switching elements having a reverse conduction function. From the connection circuit and the third series connection circuit in which two diodes are connected in series, a plurality of series connection circuits including the same ones including the switching element are connected in parallel, and the plurality of series connection circuits are connected. A capacitor and a load are connected in parallel between the parallel connection points. Of the reactor between the internal junction point and the AC power source, a switching element between one or both of the parallel connection point of the AC power source and the plurality of series connection circuit and the connection point of the reactor, connected respectively.
[0021]
According to a third aspect of the present invention, in the rectifier for generating a direct current from an AC power supply by a switching operation, a rectifying device including a switching arm having a reverse-parallel connection circuit of a switching element and a diode and a switching element having a reverse conduction function include the same ones. A first series connection circuit in which any two are connected in series, a switching arm composed of an anti-parallel connection circuit of a switching element and a diode, and a second series in which a diode is connected in series with one of the switching elements having a reverse conduction function. From the connection circuit and the third series connection circuit in which two diodes are connected in series, a plurality of series connection circuits including the same ones including the switching element are connected in parallel, and the plurality of series connection circuits are connected. A capacitor and a load are connected in parallel between the parallel connection points. A reactor between the internal connection point of the AC power supply and a diode between the connection point of the AC power supply and the reactor and one of the parallel connection points of the plurality of series connection circuits, and a switching element between the other. , Connect each.
[0022]
In the invention of claim 4, a plurality of windings are provided on one core as a plurality of reactors respectively connected between the internal connection points of the plurality of series connection circuits used in claim 1 and the AC power supply. A configuration is provided.
[0023]
BEST MODE FOR CARRYING OUT THE INVENTION
FIGS. 1 to 3 are circuit diagrams showing an embodiment according to claim 1 of the present invention. 1 and 2 show a configuration in which two second series connection circuits described in claims are connected in parallel, and FIG. 3 shows a configuration in which a first series connection circuit and a third series connection circuit are connected in parallel. In each case, a MOSFET is used as a switching element, and a diode connected in anti-parallel to the switching element shown in the drawing can be replaced with a parasitic diode inside the MOSFET. Needless to say, another element such as an IGBT can be applied as the switching element.
[0024]
In FIG. 1, a rectifying circuit 2 includes a switching arm in which a switching element 201 and a diode 205 are connected in anti-parallel and a series connection circuit in which a diode 207 is connected in series, a switching arm in which a switching element 202 and a diode 206 are connected in anti-parallel, and a diode 208 Are connected in parallel, a parallel connection point 213 is a positive DC output terminal, a parallel connection point 214 is a negative DC output terminal, and a switching arm and a diode 207 in which the switching element 201 and the diode 205 are connected in reverse parallel. One end of the reactor 209 is connected to the internal connection point of the series connection circuit in which the switching element 202 and the diode 206 are connected in series to the switching arm and the diode 208 are connected in reverse parallel to the AC input terminal 211. One end of the reactor 210 is connected to the internal connection point of the column connection circuit, and the other end of the reactor is connected to the AC input terminal 212. Further, between the positive DC output terminal 213 and the negative DC output terminal 214 , A capacitor 6 and a load 7 in parallel, an AC power supply 1 between the AC input terminals 211 and 212, a diode 8 between the AC input terminal 211 and the positive DC output terminal 213, and a The diodes 9 are connected to the positive DC output terminal 213, respectively.
[0025]
When the voltage of the capacitor 6 rises from a state where the voltage of the capacitor 6 is lower than the voltage of the AC power supply 1, such as at the time of start-up or power recovery from a power failure, when the voltage of the AC power supply 1 is positive, the AC power supply 1 → An inrush current flows through the route of the diode 8 → the capacitor 6 → the diode 206 → the reactor 210 → the AC power supply 1, and no inrush current flows through the diode 207 as in the conventional case. When the voltage of the AC power supply 1 is negative, an inrush current flows through the path of the AC power supply 1 → diode 9 → capacitor 6 → diode 205 → reactor 209 → AC power supply 1, and the inrush current flows into the diode 208 as in the conventional case. No current flows.
[0026]
2 differs from FIG. 1 in that the configuration of a series connection circuit in which a switching arm and a diode are connected in series and a switching element and a diode are connected in series is reversed, and that an AC input terminal 311 and a negative DC output are connected. The diode 8 is connected between the terminals 314, and the diode 9 is connected between the AC input terminal 312 and the negative DC output terminal 314. When the AC power supply rises from a state in which the voltage of the capacitor 6 is lower than the voltage of the AC power supply 1, such as when starting up or when recovering from a power failure, if the AC power supply 1 voltage is positive, the AC power supply 1 → reactor 309 An inrush current flows through the path of → diode 305 → capacitor 6 → diode 9 → AC power supply 1, and no inrush current flows through diode 308 as in the prior art. When the voltage of the AC power supply 1 is negative, an inrush current flows through the path of the AC power supply 1 → reactor 310 → diode 306 → capacitor 6 → diode 8 → AC power supply 1, and the rush current flows into the diode 307 as in the conventional case. No current flows.
[0027]
In FIG. 3, a rectifier circuit 4 includes a series connection circuit in which a switching arm in which a switching element 401 and a diode 405 are connected in anti-parallel, a switching arm in which a switching element 402 and a diode 406 are connected in anti-parallel, and a diode 415 and a diode 416. And a switching arm and a switching element in which a parallel connection point 413 is a positive DC output terminal, a parallel connection point 414 is a negative DC output terminal, and a switching element 401 and a diode 405 are connected in reverse parallel. One end of a reactor 409 is connected to an internal connection point of a series connection circuit in which switching arms in which a 402 and a diode 406 are connected in reverse parallel are connected to the AC input terminal 411 at the other end of the reactor, and a diode 415 and a diode 416 are connected in series. One end of a reactor 410 is connected to an internal connection point of the column connection circuit, and the other end of the reactor is connected to an AC input terminal 412, and a parallel connection is made between a positive DC output terminal 413 and a negative DC output terminal 414. A capacitor 6 and a load 7, an AC power supply 1 between the AC input terminals 411 and 412, a diode 8 between the AC input terminal 411 and the positive DC output terminal 413, and an AC input terminal 411 and the negative DC Diodes 9 are connected between the output terminals.
[0028]
In such a configuration, when the AC power supply rises from a state in which the voltage of the capacitor 6 is lower than the voltage of the AC power supply 1, such as at the time of startup or power recovery from a power failure, if the voltage of the AC power supply 1 is positive, An inrush current flows through the path of AC power supply 1 → diode 8 → capacitor 6 → diode 416 → reactor 410 → AC power supply 1, and no inrush current flows through diode 405 as in the related art. When the voltage of the AC power supply 1 is negative, an inrush current flows through the path of the AC power supply 1, the reactor 410, the diode 415, the capacitor 6, the diode 9, and the AC power supply 1. No current flows.
[0029]
FIGS. 4 to 6 are circuit diagrams showing an embodiment according to claim 2 of the present invention. 4 and 5 show a configuration in which two second series connection circuits described in claims are connected in parallel, and FIG. 6 shows a configuration in which two first series connection circuits are connected in parallel. In each case, a MOSFET is used as a switching element, and a diode connected in anti-parallel to the switching element shown in the figure can be replaced by a reverse conduction function such as a parasitic diode inside the MOSFET. Further, in the embodiment, a thyristor is used as a switching element connected between a connection point between the AC power supply and the reactor and a parallel connection point of the plurality of series connection circuits. It goes without saying that another element such as an IGBT can be applied as a switching element in a composite circuit with a diode.
[0030]
In FIG. 4, a rectifier circuit 2 includes a switching arm in which a switching element 201 and a diode 205 are connected in anti-parallel and a series connection circuit in which a diode 207 is connected in series, a switching arm in which a switching element 202 and a diode 206 are connected in anti-parallel and a diode 208 Are connected in parallel, a parallel connection point 213 is a positive DC output terminal, a parallel connection point 214 is a negative DC output terminal, and a switching arm and a diode 207 in which the switching element 201 and the diode 205 are connected in reverse parallel. One end of the reactor 209 is connected to the internal connection point of the series connection circuit in which the switching element 202 and the diode 206 are connected in series to the switching arm and the diode 208 are connected in reverse parallel to the AC input terminal 211. One end of the reactor 210 is connected to the internal connection point of the column connection circuit, and the other end of the reactor is connected to the AC input terminal 212. Further, between the positive DC output terminal 213 and the negative DC output terminal 214 , A capacitor 6 and a load 7 in parallel, an AC power supply 1 between the AC input terminals 211 and 212, a thyristor 10 between the AC input terminal 211 and the negative DC output terminal 214, The thyristors 11 are connected to the negative DC output terminals 214, respectively.
[0031]
When the AC power supply rises from a state in which the voltage of the capacitor 6 is lower than the voltage of the AC power supply 1, such as at the time of startup or power recovery from a power failure, the thyristor 11 is fired if the voltage of the AC power supply 1 is positive. As a result, an inrush current flows through the path of AC power supply 1 → reactor 209 → diode 207 → capacitor 6 → thyristor 11 → AC power supply 1, and no inrush current flows through diode 206 as in the related art. When the voltage of the AC power supply 1 is negative, the thyristor 10 is ignited, so that an inrush current flows through the path of the AC power supply 1 → reactor 210 → diode 208 → capacitor 6 → thyristor 10 → AC power supply 1, No rush current flows through the diode 205 as in the related art. In the normal operation state, by turning off the thyristors 10 and 11, the operation becomes the same as the conventional operation.
[0032]
The difference between FIG. 5 and FIG. 4 is that the configuration of a series connection circuit in which a switching arm and a diode are connected in series and a switching element and a diode are connected in series is reversed, and an AC input terminal 311 and a positive DC output are connected. The thyristor 10 is connected between the terminal 313 and the thyristor 11 is connected between the AC input terminal 312 and the positive DC output terminal 313.
[0033]
When the AC power supply rises from a state in which the voltage of the capacitor 6 is lower than the voltage of the AC power supply 1, such as at the time of startup or power recovery from a power failure, the thyristor 10 is fired if the voltage of the AC power supply 1 is positive. As a result, an inrush current flows through the path of AC power supply 1 → thyristor 10 → capacitor 6 → diode 308 → reactor 310 → AC power supply 1, and no inrush current flows through diode 305 as in the related art. When the voltage of the AC power supply 1 is negative, the thyristor 11 is ignited, so that an inrush current flows through the path of the AC power supply 1 → the thyristor 11 → the capacitor 6 → the diode 307 → the reactor 309 → the AC power supply 1; No rush current flows through the diode 306 as in the related art. In the normal operation state, by turning off the thyristors 10 and 11, the operation becomes the same as the conventional operation.
[0034]
6, a rectifier circuit 5 includes a series connection circuit in which a switching arm in which a switching element 501 and a diode 505 are connected in anti-parallel, a switching arm in which a switching element 502 and a diode 506 are connected in anti-parallel, a switching element 503, and a diode. A switching arm 507 is connected in anti-parallel and a series connection circuit in which a switching element 504 and a diode 508 are connected in series is connected in parallel. A parallel connection point 513 is connected to a positive DC output terminal, and a parallel connection point 514 is connected. An internal connection point of a series connection circuit in which a switching arm in which a switching element 501 and a diode 505 are connected in anti-parallel and a switching arm in which a switching element 502 and a diode 506 are connected in anti-parallel are connected in series as a negative DC output terminal. One end of the reactor 509, the other end of the reactor is connected to the AC input terminal 511, and a switching arm in which the switching element 503 and the diode 507 are connected in anti-parallel and a switching arm in which the switching element 504 and the diode 508 are connected in anti-parallel are connected in series. One end of a reactor 510 is connected to an internal connection point of the connection circuit, and the other end of the reactor is connected to an AC input terminal 512, and a parallel connection is made between a positive DC output terminal 513 and a negative DC output terminal 514. A capacitor 6 and a load 7, an AC power supply 1 between the AC input terminals 511 and 512, a thyristor 10 between the AC input terminal 511 and the positive DC output terminal 513, and an AC input terminal 511 and the negative DC A thyristor 12 is provided between the output terminal 514 and the AC input terminal 512 and the positive DC output terminal. Thyristor 11 is between 513, thyristor 13 between the AC input terminal 512 and the negative DC output terminal 514 are connected, respectively.
[0035]
In such a configuration, when the AC power supply rises from a state in which the voltage of the capacitor 6 is lower than the voltage of the AC power supply 1, such as at the time of startup or power recovery from a power failure, if the voltage of the AC power supply 1 is positive, By igniting the thyristors 10 and 13, an inrush current flows through the path of the AC power supply 1 → the thyristor 10 → the capacitor 6 → the thyristor 13 → the AC power supply 1, and an inrush current flows through the diodes 505 and 508 as in the conventional case. Absent. When the voltage of the AC power supply 1 is negative, the thyristors 11 and 12 are ignited, so that an inrush current flows through the path of the AC power supply 1 → the thyristor 11 → the capacitor 6 → the thyristor 12 → the AC power supply 1. No rush current flows through the high-speed diodes 507 and 506 as shown in FIG. In the normal operation state, by turning off the thyristors 10 to 13, the operation becomes the same as the conventional operation.
[0036]
7 and 8 show an embodiment based on claim 3.
In FIG. 7, a rectifier circuit 2 includes a switching circuit in which a switching element 201 and a diode 205 are connected in anti-parallel and a series connection circuit in which a diode 207 is connected in series, a switching arm in which a switching element 202 and a diode 206 are connected in anti-parallel, and a diode 208 Are connected in parallel, a parallel connection point 213 is a positive DC output terminal, a parallel connection point 214 is a negative DC output terminal, and a switching arm and a diode 207 in which the switching element 201 and the diode 205 are connected in reverse parallel. One end of the reactor 209 is connected to the internal connection point of the series connection circuit in which the switching element 202 and the diode 206 are connected in series to the switching arm and the diode 208 are connected in reverse parallel to the AC input terminal 211. One end of the reactor 210 is connected to the internal connection point of the column connection circuit, and the other end of the reactor is connected to the AC input terminal 212. Further, between the positive DC output terminal 213 and the negative DC output terminal 214 , A capacitor 6 and a load 7 in parallel, an AC power supply 1 between the AC input terminals 211 and 212, a diode 8 between the AC input terminal 211 and the positive DC output terminal 213, and a The diode 9 is located between the positive DC output terminal 213, the thyristor 10 is located between the AC input terminal 211 and the negative DC output terminal 214, and the thyristor 11 is located between the AC input terminal 212 and the negative DC output terminal 214. Are connected respectively.
[0037]
When the AC power supply rises from a state where the voltage of the capacitor 6 is lower than the voltage of the AC power supply 1 such as when starting up or when recovering from a power failure, the thyristor 11 is turned on when the voltage of the AC power supply 1 is positive. By arcing, an inrush current flows through the path of AC power supply 1 → diode 8 → capacitor 6 → thyristor 11 → AC power supply 1, and no inrush current flows through diodes 207 and 206 as in the related art. When the voltage of the AC power supply 1 is negative, the thyristor 10 is fired, so that an inrush current flows through the path of the AC power supply 1 → the diode 9 → the capacitor 6 → the thyristor 10 → the AC power supply 1, Inrush current does not flow through the diodes 208 and 205. In the normal operation state, by turning off the thyristors 10 and 11, the operation becomes the same as the conventional operation.
[0038]
8 differs from FIG. 7 in that the configuration of a series connection circuit in which a switching arm and a diode are connected in series and a switching element and a diode are connected in series is inverted, and that an AC input terminal 311 and a positive DC output are connected. The thyristor 10 is located between the terminal 313, the thyristor 11 is located between the AC input terminal 312 and the positive DC output terminal 313, the diode 8 is located between the AC input terminal 311 and the negative DC output terminal 314, and the AC input terminal 312 is located. The point is that the diode 9 is connected between the power supply and the negative DC output terminal 314, respectively.
[0039]
When the voltage of the capacitor 6 rises from a state where the voltage of the capacitor 6 is lower than the voltage of the AC power supply 1 such as at the time of startup or power recovery from power failure, the thyristor 10 is turned on when the voltage of the AC power supply 1 is positive. By arcing, an inrush current flows through the path of AC power supply 1 → thyristor 10 → capacitor 6 → diode 9 → AC power supply 1, and no inrush current flows through diodes 305 and 308 as in the conventional case. When the voltage of the AC power supply 1 is negative, the thyristor 11 is fired, so that an inrush current flows through the path of the AC power supply 1 → the thyristor 11 → the capacitor 6 → the diode 8 → the AC power supply 1. No rush current flows through the diodes 306 and 307. In the normal operation state, by turning off the thyristors 10 and 11, the operation becomes the same as the conventional operation.
[0040]
FIG. 9 shows an embodiment according to the fourth aspect. In the inventions of claims 1 to 3, one reactor is conventionally used for the AC input of the rectifier circuit. However, in the present invention, as can be understood from the above description, two reactors are used for a single-phase input, and three reactors are used. In the case of phase input, three are required. Claim 4 reduces the number of parts by making the cores of the plurality of reactors common.
[0041]
Although it is applicable to all of the above, a case where the present invention is applied to the above-described embodiment in FIG. 7 will be described. As shown in FIG. 9, when the cores of the reactors are connected, the circuit configuration is as shown in FIG. 9A, and the winding configuration of the reactor is as shown in FIG. 9B. Here, when the voltage of the AC power supply 1 in the normal operation is positive, when the switching element 201 is turned on, the AC power supply 1 → the A terminal of the reactor 217 → the B terminal of the reactor 217 → the switching element 201 → the diode 206 → the C of the reactor 217 A current flows through the path from the terminal → the D terminal of the reactor 217 → the AC power supply 1, and a positive voltage is applied to the point A with respect to the point B, and a positive voltage is applied to the point C with respect to the point D. Have been.
[0042]
When the switching element 201 is turned off, the current is changed to the terminal B of the reactor 217 → the diode 207 → the capacitor 6 → the diode 206 → the terminal C of the reactor 217 → the terminal D of the reactor 217 → the AC power supply 1 → the terminal A of the reactor 217 → the terminal of the reactor 217. The current commutates to the path of the terminal B, and a positive voltage is applied to the point B with respect to the point A, and a positive voltage is applied to the point D with respect to the point C.
[0043]
Accordingly, the copper wire is attached to the core 351 so that the magnetic flux generated when the voltage at the point B is positive with respect to the point A and the magnetic flux generated when the voltage at the point D is positive with respect to the point C are in the same direction. By winding 352, the magnetic fluxes excited by the two windings operate so as to reinforce each other, so that each of the reactors 217 between AB and CD operates as a reactor. By configuring the reactor as shown in FIG. 9B so that the above-described operation principle is obtained, two reactors can be configured with one component, and the number of components can be reduced, the size and weight can be reduced. Cost reduction becomes possible.
[0044]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to bypass the path | route of the inrush current at the time of starting or at the time of power recovery from a power failure by using a diode or thyristor etc. with a large current withstand, and a high-speed diode and a switching element in a rectifier circuit. Since the inrush current can be prevented from flowing through the reverse conducting function section such as the parasitic diode, the device can be safely operated without destruction. In addition, by using a common reactor core, an increase in the number of components can be suppressed to a minimum, and the device can be reduced in size and weight and cost can be reduced.
[Brief description of the drawings]
FIG. 1 is a circuit diagram showing a first embodiment according to claim 1 of the present invention.
FIG. 2 is a circuit diagram showing a second embodiment according to claim 1 of the present invention.
FIG. 3 is a circuit diagram showing a third embodiment according to the first aspect of the present invention.
FIG. 4 is a circuit diagram showing a first embodiment according to claim 2 of the present invention.
FIG. 5 is a circuit diagram showing a second embodiment according to claim 2 of the present invention.
FIG. 6 is a circuit diagram showing a third embodiment according to claim 2 of the present invention.
FIG. 7 is a circuit diagram showing a first embodiment according to claim 3 of the present invention.
FIG. 8 is a circuit diagram showing a second embodiment according to claim 3 of the present invention.
FIG. 9 is a circuit diagram showing an embodiment according to claim 4 of the present invention.
FIG. 10 is a circuit diagram showing a first embodiment based on the prior art.
FIG. 11 is a circuit diagram showing a second embodiment based on the prior art.
FIG. 12 is a circuit diagram showing a third embodiment based on the prior art.
FIG. 13 is a circuit diagram showing a fourth embodiment based on the prior art.
[Explanation of symbols]
1. AC power supply
2, 3, 4, 5, 20, 30, 40, 50 rectifier circuit
6. Capacitor
7. Load
8, 9, 205 to 208, 305 to 308, 405, 406, 415, 416, 505 to 508 ... diode
10-13 ... thyristor
209, 210, 309, 310, 409, 410, 509, 510, 217
.... Reactor
211, 212, 311, 312, 411, 412, 511, 512
.... AC input terminals
213, 313, 413, 513 ... Positive electrode DC output terminal
214, 314, 414, 514... Negative electrode DC output terminal

Claims (4)

スイッチング動作により交流電源から直流を作り出す整流装置において、スイッチング素子とダイオードとの逆並列接続回路からなるスイッチングアームおよび逆導通機能を有するスイッチング素子の中から同じもの同士も含めて何れか二つを直列接続した第1の直列接続回路、スイッチング素子とダイオードとの逆並列接続回路からなるスイッチングアームおよび逆導通機能を有するスイッチング素子の何れかとダイオードを直列接続した第2の直列接続回路、およびダイオード2個を直列接続した第3の直列接続回路の中から、スイッチング素子を含む形で同じもの同士も含めて複数の直列接続回路を並列接続し、該複数の直列接続回路の並列接続点間に並列にコンデンサと負荷を、該複数の直列接続回路のそれぞれの内部接続点と交流電源との間にリアクトルを、該交流電源と該リアクトルとの接続点と前記複数の直列接続回路の並列接続点の一方または双方との間にダイオードを、それぞれ接続することを特徴とする整流装置。In a rectifier that produces a direct current from an alternating current power supply by a switching operation, any two of a switching arm and a switching element having a reverse conducting function, including the same one, are serially connected, including a switching element and a switching element having a reverse conducting function. A connected first series connection circuit, a switching arm composed of an anti-parallel connection circuit of a switching element and a diode, a second series connection circuit in which a diode is connected in series with one of the switching elements having a reverse conduction function, and two diodes Are connected in series from the third series-connected circuit including the same one in a form including a switching element, and are connected in parallel between the parallel connection points of the plurality of series-connected circuits. Capacitors and loads are connected to the internal connection points of each of the A rectifier, wherein a diode is connected between the power source and a reactor, and a diode is connected between a connection point between the AC power supply and the reactor and one or both of the parallel connection points of the plurality of series connection circuits. . スイッチング動作により交流電源から直流を作り出す整流装置において、スイッチング素子とダイオードとの逆並列接続回路からなるスイッチングアームおよび逆導通機能を有するスイッチング素子の中から同じもの同士も含めて何れか二つを直列接続した第1の直列接続回路、スイッチング素子とダイオードとの逆並列接続回路からなるスイッチングアームおよび逆導通機能を有するスイッチング素子の何れかとダイオードを直列接続した第2の直列接続回路、およびダイオード2個を直列接続した第3の直列接続回路の中から、スイッチング素子を含む形で同じもの同士も含めて複数の直列接続回路を並列接続し、該複数の直列接続回路の並列接続点間に並列にコンデンサと負荷を、該複数の直列接続回路のそれぞれの内部接続点と交流電源との間にリアクトルを、該交流電源と該リアクトルとの接続点と前記複数の直列接続回路の並列接続点の一方または双方との間にスイッチング素子を、それぞれ接続することを特徴とする整流装置。In a rectifier that produces a direct current from an alternating current power supply by a switching operation, any two of a switching arm and a switching element having a reverse conducting function, including the same one, are serially connected, including a switching element and a switching element having a reverse conducting function. A connected first series connection circuit, a switching arm composed of an anti-parallel connection circuit of a switching element and a diode, a second series connection circuit in which a diode is connected in series with one of the switching elements having a reverse conduction function, and two diodes Are connected in series from the third series-connected circuit including the same one in a form including a switching element, and are connected in parallel between the parallel connection points of the plurality of series-connected circuits. Capacitors and loads are connected to the internal connection points of each of the And a switching element connected between a connection point between the AC power supply and the reactor and one or both of the parallel connection points of the plurality of series connection circuits. apparatus. スイッチング動作により交流電源から直流を作り出す整流装置において、スイッチング素子とダイオードとの逆並列接続回路からなるスイッチングアームおよび逆導通機能を有するスイッチング素子の中から同じもの同士も含めて何れか二つを直列接続した第1の直列接続回路、スイッチング素子とダイオードとの逆並列接続回路からなるスイッチングアームおよび逆導通機能を有するスイッチング素子の何れかとダイオードを直列接続した第2の直列接続回路、およびダイオード2個を直列接続した第3の直列接続回路の中から、スイッチング素子を含む形で同じもの同士も含めて複数の直列接続回路を並列接続し、該複数の直列接続回路の並列接続点間に並列にコンデンサと負荷を、該複数の直列接続回路のそれぞれの内部接続点と交流電源との間にリアクトルを、該交流電源と該リアクトルとの接続点と前記複数の直列接続回路の並列接続点の一方との間にダイオードを、他方との間にスイッチング素子を、それぞれ接続することを特徴とするた整流装置。In a rectifier that produces a direct current from an alternating current power supply by a switching operation, any two of a switching arm and a switching element having a reverse conducting function, including the same one, are serially connected, including a switching element and a switching element having a reverse conducting function. A connected first series connection circuit, a switching arm composed of an anti-parallel connection circuit of a switching element and a diode, a second series connection circuit in which a diode is connected in series with one of the switching elements having a reverse conduction function, and two diodes Are connected in series from the third series-connected circuit including the same one in a form including a switching element, and are connected in parallel between the parallel connection points of the plurality of series-connected circuits. Capacitors and loads are connected to the internal connection points of each of the A reactor is connected to a source, a diode is connected between a connection point between the AC power supply and the reactor, and one of parallel connection points of the plurality of series connection circuits, and a switching element is connected between the other. A rectifier characterized by the above-mentioned. 複数の直列接続回路の内部接続点と交流電源との間にそれぞれ接続した複数のリアクトルとして、一つのコアに複数の巻線を備えることを特徴とする請求項1から3に記載の整流装置。4. The rectifier according to claim 1, wherein a plurality of reactors are connected between an internal connection point of the plurality of series-connected circuits and the AC power supply, and each of the plurality of reactors includes a plurality of windings in one core. 5.
JP2002226500A 2002-08-02 2002-08-02 Rectifier Expired - Lifetime JP4096656B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002226500A JP4096656B2 (en) 2002-08-02 2002-08-02 Rectifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002226500A JP4096656B2 (en) 2002-08-02 2002-08-02 Rectifier

Publications (2)

Publication Number Publication Date
JP2004072846A true JP2004072846A (en) 2004-03-04
JP4096656B2 JP4096656B2 (en) 2008-06-04

Family

ID=32013816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002226500A Expired - Lifetime JP4096656B2 (en) 2002-08-02 2002-08-02 Rectifier

Country Status (1)

Country Link
JP (1) JP4096656B2 (en)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100682010B1 (en) 2004-07-09 2007-02-15 산요덴키가부시키가이샤 Power circuit
JP2007053853A (en) * 2005-08-18 2007-03-01 Fuji Electric Holdings Co Ltd Instantaneous low backup device
JP2009506734A (en) * 2005-08-23 2009-02-12 フリボ モバイル パワー ゲーエムベーハー Switching mode power supply input circuit
JP2009089469A (en) * 2007-09-28 2009-04-23 Hitachi Appliances Inc Converter device and module
JP2010041910A (en) * 2008-07-08 2010-02-18 Fuji Electric Systems Co Ltd Power supply apparatus
JP2010041863A (en) * 2008-08-07 2010-02-18 Fuji Electric Systems Co Ltd Ac/dc conversion circuit
JP2010093989A (en) * 2008-10-10 2010-04-22 Sony Corp Power supply circuit
WO2010073602A1 (en) * 2008-12-23 2010-07-01 株式会社日立製作所 Ac-dc converter
EP2215709A1 (en) 2007-10-31 2010-08-11 Eltek Valere AS Device arranged for converting an ac input voltage to a dc output voltage
JP2010283953A (en) * 2009-06-03 2010-12-16 Fuji Electric Systems Co Ltd Power factor correction circuit
JP2011091927A (en) * 2009-10-22 2011-05-06 Fuji Electric Holdings Co Ltd Ac-dc converter
JP2011109741A (en) * 2009-11-13 2011-06-02 Hitachi Appliances Inc Power converter
CN102097968A (en) * 2009-11-26 2011-06-15 富士电机控股株式会社 Rectifier circuit
JP2011524732A (en) * 2008-07-03 2011-09-01 フジツウ テクノロジー ソリューションズ インタレクチュアル プロパティ ゲーエムベーハー Circuit configuration with power input and operation method for controlling power input circuit
JP2012125018A (en) * 2010-12-07 2012-06-28 Mitsubishi Electric Corp Single phase ac/dc converter and air conditioner using single phase ac/dc converter
JP2012125138A (en) * 2010-11-18 2012-06-28 Fuji Electric Co Ltd Non-contact power supply device, and control method thereof
EP2475090A1 (en) * 2011-01-07 2012-07-11 Siemens Aktiengesellschaft Rectifier stage of an AC-DC-AC converter and converter using the rectifier stage
JP2012191760A (en) * 2011-03-10 2012-10-04 Fuji Electric Co Ltd Power conversion device
WO2012150649A1 (en) * 2011-05-02 2012-11-08 ダイキン工業株式会社 Power converter circuit, and air conditioner
JP2012239269A (en) * 2011-05-10 2012-12-06 Fujitsu Telecom Networks Ltd Semibridge-less power factor improvement circuit and driving method therefor
CN102969885A (en) * 2012-10-31 2013-03-13 上海交通大学 Additional-voltage-free zero voltage switch bridge-free power factor corrector and modulation method
CN103001484A (en) * 2012-10-31 2013-03-27 上海交通大学 Low additional voltage zero voltage switch bridgeless power factor corrector and modulation method
KR101255959B1 (en) * 2011-12-28 2013-04-23 주식회사 효성 Protection circuit for protecting voltage source converter
JP2013090390A (en) * 2011-10-14 2013-05-13 Fujitsu Telecom Networks Ltd Semi-bridgeless power-factor improvement circuit and method of driving semi-bridgeless power-factor improvement circuit
JP2013143896A (en) * 2012-01-12 2013-07-22 Fujitsu Telecom Networks Ltd Power-factor improvement circuit suppressing loss at light load and driving method therefor
CN103368371A (en) * 2012-03-29 2013-10-23 台达电子工业股份有限公司 Power factor correction circuit
JP2014079141A (en) * 2012-10-12 2014-05-01 Sanken Electric Co Ltd Power-factor correction circuit
JP2014121249A (en) * 2012-12-19 2014-06-30 Fujitsu Ltd Power supply unit
US8885367B2 (en) 2009-08-18 2014-11-11 Fujitsu Technology Solutions Intellectual Property Gmbh Input circuit for an electrical device, use of an input circuit and electrical device
JP2016010210A (en) * 2014-06-24 2016-01-18 パナソニックIpマネジメント株式会社 DC power supply device, inverter drive device, and air conditioner using the same
JP2017011778A (en) * 2015-06-17 2017-01-12 株式会社富士通ゼネラル Air conditioner
CN108540002A (en) * 2018-06-12 2018-09-14 大连重工机电设备成套有限公司 A kind of high-power rectifying device and direct current change poles system
US10811954B2 (en) * 2018-03-27 2020-10-20 Delta Electronics, Inc. Surge protective apparatus of power conversion circuit
CN114337221A (en) * 2021-12-28 2022-04-12 浙江大学杭州国际科创中心 A method to enhance the anti-surge capability of totem pole bridgeless PFC
CN115776244A (en) * 2021-09-08 2023-03-10 天津诺尔电气有限公司 Novel single-phase high-power active rectifying circuit and power supply device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104467390A (en) * 2014-11-26 2015-03-25 无锡上能新能源有限公司 Current converter protection circuit and current converter with same

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100682010B1 (en) 2004-07-09 2007-02-15 산요덴키가부시키가이샤 Power circuit
JP2007053853A (en) * 2005-08-18 2007-03-01 Fuji Electric Holdings Co Ltd Instantaneous low backup device
JP2009506734A (en) * 2005-08-23 2009-02-12 フリボ モバイル パワー ゲーエムベーハー Switching mode power supply input circuit
JP4874337B2 (en) * 2005-08-23 2012-02-15 フリボ モバイル パワー ゲーエムベーハー Switching mode power supply input circuit
US8072783B2 (en) 2005-08-23 2011-12-06 Power Systems Technologies Gmbh Input circuit for a switch-mode power supply
JP2009089469A (en) * 2007-09-28 2009-04-23 Hitachi Appliances Inc Converter device and module
EP2215709A1 (en) 2007-10-31 2010-08-11 Eltek Valere AS Device arranged for converting an ac input voltage to a dc output voltage
US8472216B2 (en) 2008-07-03 2013-06-25 Fujitsu Technology Solutions Intellectual Property Gmbh Circuit arrangement and control circuit for a power-supply unit, computer power-supply unit and method for switching a power-supply unit
JP2011524732A (en) * 2008-07-03 2011-09-01 フジツウ テクノロジー ソリューションズ インタレクチュアル プロパティ ゲーエムベーハー Circuit configuration with power input and operation method for controlling power input circuit
US8653700B2 (en) 2008-07-03 2014-02-18 Fujitsu Technology Solutions Intellectual Property Gmbh Circuit arrangement with a power input and an operating method for controlling a power input circuit
JP2010041910A (en) * 2008-07-08 2010-02-18 Fuji Electric Systems Co Ltd Power supply apparatus
JP2010041863A (en) * 2008-08-07 2010-02-18 Fuji Electric Systems Co Ltd Ac/dc conversion circuit
JP2010093989A (en) * 2008-10-10 2010-04-22 Sony Corp Power supply circuit
JP2010154582A (en) * 2008-12-23 2010-07-08 Hitachi Ltd Ac-dc converter
CN102265499A (en) * 2008-12-23 2011-11-30 株式会社日立制作所 AC-DC Converter
WO2010073602A1 (en) * 2008-12-23 2010-07-01 株式会社日立製作所 Ac-dc converter
JP2010283953A (en) * 2009-06-03 2010-12-16 Fuji Electric Systems Co Ltd Power factor correction circuit
US8885367B2 (en) 2009-08-18 2014-11-11 Fujitsu Technology Solutions Intellectual Property Gmbh Input circuit for an electrical device, use of an input circuit and electrical device
JP2011091927A (en) * 2009-10-22 2011-05-06 Fuji Electric Holdings Co Ltd Ac-dc converter
JP2011109741A (en) * 2009-11-13 2011-06-02 Hitachi Appliances Inc Power converter
JP2011135758A (en) * 2009-11-26 2011-07-07 Fuji Electric Co Ltd Rectifier circuit
US8467212B2 (en) 2009-11-26 2013-06-18 Fuji Electric Co., Ltd. Rectifier circuit
CN102097968A (en) * 2009-11-26 2011-06-15 富士电机控股株式会社 Rectifier circuit
JP2012125138A (en) * 2010-11-18 2012-06-28 Fuji Electric Co Ltd Non-contact power supply device, and control method thereof
JP2012125018A (en) * 2010-12-07 2012-06-28 Mitsubishi Electric Corp Single phase ac/dc converter and air conditioner using single phase ac/dc converter
EP2475090A1 (en) * 2011-01-07 2012-07-11 Siemens Aktiengesellschaft Rectifier stage of an AC-DC-AC converter and converter using the rectifier stage
WO2012093009A2 (en) 2011-01-07 2012-07-12 Siemens Aktiengesellschaft Assembly for converting an input ac voltage to an output ac voltage
WO2012093009A3 (en) * 2011-01-07 2012-10-04 Siemens Aktiengesellschaft Assembly for converting an input ac voltage to an output ac voltage
US9184654B2 (en) 2011-01-07 2015-11-10 Siemens Aktiengesellschaft Assembly for converting an input AC voltage to an output AC voltage
CN103299530A (en) * 2011-01-07 2013-09-11 西门子公司 Assembly for converting an input AC voltage to an output AC voltage
JP2012191760A (en) * 2011-03-10 2012-10-04 Fuji Electric Co Ltd Power conversion device
JP2012235632A (en) * 2011-05-02 2012-11-29 Daikin Ind Ltd Power converter circuit and air conditioner
WO2012150649A1 (en) * 2011-05-02 2012-11-08 ダイキン工業株式会社 Power converter circuit, and air conditioner
JP2012239269A (en) * 2011-05-10 2012-12-06 Fujitsu Telecom Networks Ltd Semibridge-less power factor improvement circuit and driving method therefor
JP2013090390A (en) * 2011-10-14 2013-05-13 Fujitsu Telecom Networks Ltd Semi-bridgeless power-factor improvement circuit and method of driving semi-bridgeless power-factor improvement circuit
KR101255959B1 (en) * 2011-12-28 2013-04-23 주식회사 효성 Protection circuit for protecting voltage source converter
WO2013100515A1 (en) * 2011-12-28 2013-07-04 주식회사 효성 Protection circuit for protecting voltage source converter
JP2013143896A (en) * 2012-01-12 2013-07-22 Fujitsu Telecom Networks Ltd Power-factor improvement circuit suppressing loss at light load and driving method therefor
CN103368371A (en) * 2012-03-29 2013-10-23 台达电子工业股份有限公司 Power factor correction circuit
US9001537B2 (en) 2012-03-29 2015-04-07 Delta Electronics, Inc. Power factor correction circuit
JP2014079141A (en) * 2012-10-12 2014-05-01 Sanken Electric Co Ltd Power-factor correction circuit
CN102969885A (en) * 2012-10-31 2013-03-13 上海交通大学 Additional-voltage-free zero voltage switch bridge-free power factor corrector and modulation method
CN103001484A (en) * 2012-10-31 2013-03-27 上海交通大学 Low additional voltage zero voltage switch bridgeless power factor corrector and modulation method
JP2014121249A (en) * 2012-12-19 2014-06-30 Fujitsu Ltd Power supply unit
JP2016010210A (en) * 2014-06-24 2016-01-18 パナソニックIpマネジメント株式会社 DC power supply device, inverter drive device, and air conditioner using the same
JP2017011778A (en) * 2015-06-17 2017-01-12 株式会社富士通ゼネラル Air conditioner
US10811954B2 (en) * 2018-03-27 2020-10-20 Delta Electronics, Inc. Surge protective apparatus of power conversion circuit
CN108540002A (en) * 2018-06-12 2018-09-14 大连重工机电设备成套有限公司 A kind of high-power rectifying device and direct current change poles system
CN108540002B (en) * 2018-06-12 2024-02-02 大连重工机电设备成套有限公司 High-power rectifying device and direct-current pole-changing system
CN115776244A (en) * 2021-09-08 2023-03-10 天津诺尔电气有限公司 Novel single-phase high-power active rectifying circuit and power supply device
CN114337221A (en) * 2021-12-28 2022-04-12 浙江大学杭州国际科创中心 A method to enhance the anti-surge capability of totem pole bridgeless PFC

Also Published As

Publication number Publication date
JP4096656B2 (en) 2008-06-04

Similar Documents

Publication Publication Date Title
JP2004072846A (en) Rectifier
CN102647097B (en) Power-supply device
US7729139B2 (en) Current source inverter with energy clamp circuit and controlling method thereof having relatively better effectiveness
US20050099829A1 (en) Dual bridge matrix converter
US20050122082A1 (en) Drive system
CN105531916B (en) Parallel modular multiphase converter and protection system
JP5452907B2 (en) Voltage clamp / energy recovery circuit
KR101768256B1 (en) Inverter with power cell of dual structure
CN1056482C (en) Common turn-off circuit for thyristor power converter
JP2009095083A (en) Power converter
JP2017093210A (en) Uninterruptible power system
JPS5829375A (en) Starting method of multiphase rectifier circuit
JP5407744B2 (en) AC-DC converter
JP2010041863A (en) Ac/dc conversion circuit
JP4351008B2 (en) Uninterruptible power system
JP3656779B2 (en) DC-DC converter
US6594130B2 (en) Method and circuit for the protection of a thyristor
JP4096696B2 (en) Rectifier
JPH08322268A (en) Three-phase / single-phase voltage converter
JP2016127782A (en) Power converter
JP2005094963A (en) PWM cycloconverter
JPH09252576A (en) Snubber circuit of DC-DC converter
JP2718857B2 (en) Power converter
JPH0530758A (en) Power converter
JP2004320888A (en) Power converter noise reduction device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050614

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080303

R150 Certificate of patent or registration of utility model

Ref document number: 4096656

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140321

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term