[go: up one dir, main page]

JP2004076787A - Diaphragm valve structure - Google Patents

Diaphragm valve structure Download PDF

Info

Publication number
JP2004076787A
JP2004076787A JP2002234691A JP2002234691A JP2004076787A JP 2004076787 A JP2004076787 A JP 2004076787A JP 2002234691 A JP2002234691 A JP 2002234691A JP 2002234691 A JP2002234691 A JP 2002234691A JP 2004076787 A JP2004076787 A JP 2004076787A
Authority
JP
Japan
Prior art keywords
valve
diaphragm
valve body
fluid
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002234691A
Other languages
Japanese (ja)
Other versions
JP3756135B2 (en
Inventor
Hironobu Matsuzawa
松沢 広宣
Tomoko Shibata
柴田 知子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advance Denki Kogyo KK
Original Assignee
Advance Denki Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advance Denki Kogyo KK filed Critical Advance Denki Kogyo KK
Priority to JP2002234691A priority Critical patent/JP3756135B2/en
Publication of JP2004076787A publication Critical patent/JP2004076787A/en
Application granted granted Critical
Publication of JP3756135B2 publication Critical patent/JP3756135B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Lift Valve (AREA)
  • Details Of Valves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a novel diaphragm valve structure hardly giving an abrupt pressure change to a fluid, suppressing the occurrence of cavitation and allowing smooth distribution of the fluid. <P>SOLUTION: A valve chest 20 is formed into an approximately funnel diameter-enlarged face 21 as a whole in a range from an orifice portion 15 approximate to an outer periphery 32 of a diaphragm portion 31. A valve seat 25 is formed into an obtuse-angle face 27 on the diameter-enlarged face. A valve element 35 is formed into a die shape 35S with a front side inclined face 37 adaptable to be seated on the valve seat and inclined toward the front end and a rear side inclined face 38 inclined toward a shaft portion 36 of the valve element. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、半導体の製造ライン等において薬液や純水等の流体の制御に使用されるダイヤフラム弁の構造に関する。
【0002】
【従来の技術】
例えば半導体の製造ラインやあるいは各種薬品の製造ライン等においては、各種の薬液や純水の供給がダイヤフラム弁を介して制御される。添付図面の図10は従来一般に使用されているダイヤフラム弁100であって、バルブボディ101の弁室102内をダイヤフラム部91と弁体部92を有するダイヤフラム弁体90が弁座105に対して進退し、弁室102のオリフィス部103を開閉制御して流出部104から流出する流体の流通を制御する。符号111は流体の流入側流路、112は流出側流路である。
【0003】
図において符号80はダイヤフラム弁体90の作動シリンダ装置を表し、81はシリンダブロック、82はシリンダ室、83は該シリンダ室82と前記弁室102とを区画する区画ブロック、84は前記ダイヤフラム弁体90と連結されたピストン部材、85及び86は前記ピストン部材84を進退させる作動流体の流出入部、87はピストン部材84を常時前方へ付勢するバネ体、88はエア抜き部、89はダイヤフラム弁体90の取付部材である。
【0004】
図示のダイヤフラム弁100は、流出部104を弁室102の横側に形成して流出側流路112を連設したものである。このダイヤフラム弁100の構造によれば、流入側流路111からオリフィス部103を経て弁室102内に流入した流体は、弁室102から流出部104を経て流出側流路112に直線方向に流通する。すなわち、ダイヤフラム弁100を流通する流体は、屈曲部R1及びR2の2ケ所を有する「L」字状に流通する。
【0005】
この従来一般に使用されているダイヤフラム弁100にあっては、図11に示したように、弁体90が略水平な前端面96と該端面96に向かって略45度の角度で傾斜する前部側傾斜面97を有し、略直角に形成された弁座105に前記前部側傾斜面97が着座可能となっている。そして、弁体90が後退するとオリフィス部103が開き、流体はオリフィス側流路F11からダイヤフラム側流路F12を経て弁室102内に流入する。
【0006】
しかるに、このダイヤフラム弁体90にあっては、図12に示すように、弁体90が後退して前部側傾斜面97と弁座105との間の流路がわずかに開かれた状態となった場合、弁体端面96が略水平で弁座105が略直角であることより、流体はオリフィス側流路F11の部分から急に流路幅が狭くなった流路を流通することになる。また、弁座105を通過した流体L12は、流路幅が狭い流路から急激に流路幅が拡がるダイヤフラム側流路F12を流通する。このような流路幅が急激に変化する流路を流体が流通すると、その流路幅の変化に伴って流体に急激な圧力変化が生ずる。
【0007】
流体に急激な圧力変化が起こることにより、いわゆるキャビテーションと呼ばれる空洞化現象が発生しやすくなる。すなわち、急激な圧力変化に伴って、流体である液体中に含有される空気が圧力の低下によって微少な気泡を発生させ、次いで蒸発し、空洞化するのがキャビテーションである。前記のように、弁座105と弁体90の前部側傾斜面97との間の流路の断面積は弁座105で最小となりその前後で大きく増加するが、最小断面部分では流体の流速は最大となり、圧力はその直後で最小となり、この低圧時にキャビテーションが発生する。このキャビテーションによって発生した微少な気泡は、例えば半導体製造にあってはウェハの表面を汚すゴミとして倦厭される。
【0008】
また、図のような弁座105が略直角で弁室102が垂直面によって形成されていると、それらの角隅部において流体の流速に変化が生じ、流体の圧力損失(エネルギー損失)が大きくなって、流通効率が低下するばかりか、流体が流れにくい部分が発生するため、流体の置換特性が悪くなるという問題がある。
【0009】
さらに、この種ダイヤフラム弁100では、オリフィス部103側から弁室102側に流体を流通させるほかに、その流通方向を逆にして、弁室102側からオリフィス部103側に流体を流通させることがある。図13に示すように、流体の流通方向を逆にして弁室102からオリフィス部103の方向に流体を流通した場合にも、前記と同様、キャビテーションが発生しやすくなるとともに、圧力損失が大きくなり、流体の置換特性が悪くなる。
【0010】
【発明が解決しようとする課題】
この発明は前記の点に鑑みなされたものであって、流体に急激な圧力変化が起こりにくくキャビテーションの発生を抑止するとともに、流体のスムーズな流通を可能にする、新規なダイヤフラム弁の構造を提供することを目的とする。
【0011】
【課題を解決するための手段】
すなわち、請求項1の発明は、被制御流体の流路(F1,F2)中にオリフィス部(15)を介して弁座(25)を備えた弁室(20)を有し、前記弁室に外周部(32)を固定されたダイヤフラム部(31)の中心部(33)に前記弁座に対して進退する弁体部(35)を一体に有するダイヤフラム弁体(30)を備えたダイヤフラム弁(10)において、前記弁室は前記オリフィス部より前記ダイヤフラム部の略外周部に至るまで全体として略ロウト状に拡径した面(21)に形成されており、かつ前記弁座は前記拡径面に形成された鈍角面(27)に形成されているとともに、前記弁体部は前記弁座に着座可能で先端に向かって傾斜する前部側傾斜面(37)と前記弁体部の軸部(36)に向かって傾斜する後部側傾斜面(38)とを有する駒形状(35S)に形成されていることを特徴とするダイヤフラム弁構造に係る。
【0012】
請求項2の発明は、前記弁座が前記鈍角面の頂上に形成された微細な突条部(26)からなる請求項1に記載のダイヤフラム弁構造に係る。
【0013】
請求項3の発明は、前記弁体部の前部側傾斜面に前記弁座に着座する微細な突条部(39)が形成されている請求項1に記載のダイヤフラム弁構造に係る。
【0014】
請求項4の発明は、前記鈍角面と前記弁体部の前部側傾斜面によって形成される流体のオリフィス側流路(F3)とダイヤフラム側流路(F4)の角度が略同じに構成された請求項1ないし3のいずれか1項に記載のダイヤフラム弁構造に係る。
【0015】
請求項5の発明は、前記ダイヤフラム部は予めその中心部が弁座方向となるように傾斜して配置されていて、前記ダイヤフラム弁体の後退時にも前記ダイヤフラム部の中心部がその外周部より後方に移動しないように構成されている請求項1ないし4のいずれか1項に記載のダイヤフラム弁構造に係る。
【0016】
請求項6の発明は、前記弁体部の最大外周径(r1)が前記ダイヤフラム部のダイヤフラム膜部最大径と膜部最小径を2分した位置における直径距離(r2)よりも大きく形成されている請求項1ないし5のいずれか1項に記載のダイヤフラム弁構造に係る。
【0017】
【発明の実施の形態】
以下添付の図面に従ってこの発明を詳細に説明する。
図1はこの発明の一実施例に係るダイヤフラム弁全体の縦断面図、図2は図1のダイヤフラム弁体を後退させた状態を示す縦断面図、図3は弁体部の前部側傾斜面と弁座の着座状態を拡大して表した部分断面図、図4は同じく弁体部の前部側傾斜面と弁座の他の実施例の着座状態を拡大して表した部分断面図、図5は弁体部の後退時における流体の流通状態を表した部分断面図、図6は同じく流体の他の流通状態を表した部分断面図、図7はダイヤフラム部の外周部と中心部との位置関係を表した断面図、図8はダイヤフラム弁体の弁体部とダイヤフラム部の膜部との関係を表した断面図、図9はこの発明構造をマニホールド弁に用いた実施例の断面図である。
【0018】
図1及び図2は、本発明におけるダイヤフラム弁10の断面図である。図示したダイヤフラム弁10は、バルブボディ11内の被制御流体の流路(流入側流路F1及び流出側流路F2)中にオリフィス部15を介して弁座25を備えた弁室20と、前記弁室20に外周部32を固定されたダイヤフラム部31の中心部33に前記弁座25に対して進退する弁体部35を一体に有するダイヤフラム弁体30を備える。
【0019】
この発明構造に係る弁室20は、前記オリフィス部15より前記ダイヤフラム部の略外周部32に至るまで全体として略ロウト状に拡径した面21に形成されており、かつ弁座25は前記拡径面21に形成された鈍角面27に形成されている。とともに、前記弁体部35は、前記弁座25に着座可能で先端に向かって傾斜する前部側傾斜面37と弁体部35の軸部36に向かって傾斜する後部側傾斜面38を有する駒形状35Sに形成されていることを特徴とする。
【0020】
図1及び図2において、符号50は前述したと同様のダイヤフラム弁体30を作動するための公知の作動シリンダ装置を表し、51はシリンダブロック、52はシリンダ室、53は該シリンダ室52と前記弁室20とを区画する区画ブロック、54は前記ダイヤフラム弁体30と連結されたピストン部材、55及び56は前記ピストン部材54を進退させる作動流体の流出入部、57はピストン部材54を常時前方へ付勢するバネ体、58はエア抜き部、59はダイヤフラム弁体30の取付部材である。図1はダイヤフラム弁体30が前進して弁体部35の前部側傾斜面37が弁座25に着座して弁が閉じられた状態を表し、図2はダイヤフラム弁体30が前記作動シリンダ装置50の作動によって後退し、流体が弁室20に流通する状態を表す。以下、このダイヤフラム弁10について詳しく説明する。
【0021】
まず、弁室20は、図示のように、オリフィス部15よりダイヤフラム部略外周部32に至るまで全体として略ロウト状に拡径した面21に形成される。ロウト状とは前側が狭く後側が徐々に広くなる傾斜形状を意味し、ここではオリフィス部15を有する弁室20の底面部分とダイヤフラム部外周部32が固定された弁室20の壁面部分とが角部を介することなく曲面22でなだらかに連接され、ダイヤフラム部略外周部32に至るまで拡径された面21に形成されている。そして、弁座25はこの拡径面21に形成された鈍角面27に形成される。
【0022】
このように、弁室20の形状をオリフィス部15よりダイヤフラム部の略外周部32に至るまで全体として略ロウト状に拡径した面21に形成することによって、弁室20に角隅部がなくなり、弁室20内を流通する流体の流速を均一化させることができるようになる。従って、これによって、流体の圧力損失を抑止して流通効率を向上させることができ、スムーズな流れによって流体の置換特性が良好となるのである。
【0023】
一方、ダイヤフラム弁体30の弁体部35は、前記弁座25に着座可能で先端に向かって傾斜する前部側傾斜面37と前記弁体部35の軸部36に向かって傾斜する後部側傾斜面38を有する駒形状35Sに形成される。この前部側傾斜面37と後部側傾斜面38とはできるだけ長く形成されることが好ましく、望ましくは図示のように前部側傾斜面37は弁体部35の先端まで形成され、後部側傾斜面38は軸部36まで形成される。なお、図の符号40はダイヤフラム部31の裏当て部材である。
【0024】
このように、弁体部35を前部側傾斜面37と後部側傾斜面38を有する駒形状35Sに形成することによって、弁体部35にかかる一次側圧力と二次側圧力の圧力バランスを図ることができ、より小さい力で弁体30の作動を行うことができるようになる。また、弁体部35にかかる一次側圧力と二次側圧力の圧力バランスを図ることができることによって、オリフィスサイズを大きくすることができ、ダイヤフラム弁10の外形サイズを大きくすることなく、流量を多く流すことができる。さらに、弁体部35を駒形状35Sとすることによって、弁室20を流通する流体は弁体部35の駒形状35に沿って回り込みくまなく流通し、流体の混合やフラッシングを効果的に行うことができる。
【0025】
図1及び図2の例では、請求項2の発明として規定し図3の拡大図に図示したように、弁座25が拡径面21に形成された鈍角面27の頂上に形成された微細な突条部26からなる例が示される。突条部26は弁体部35の弁座25に対する着座性を確実にするためである。また、この着座性を確実にするためには、請求項3の発明として規定し図4の拡大図に図示したように、弁体部35の前部側傾斜面37に弁座25に着座する微細な突条部39を形成してもよい。
【0026】
図3及び図4から理解されるように、この発明構造では、弁室20のロウト状拡径面21の鈍角面27に形成された弁座25と弁体部35の前部側傾斜面37とによって、オリフィス部15から弁室20に至る流路において、鋭角状に狭くなるオリフィス側流路F3と鋭角状に広くなるダイヤフラム側流路F4が形成される。これらの鋭角状のオリフィス側流路F3とダイヤフラム側流路F4によって、図5に図示したように、弁体30が後退して流体が流通する際に、弁座25を流通する流体L1の流路幅が弁座25の前後で徐々に狭くなりかつ徐々に広くなって、急激に変化することを回避することができる。すなわち、弁座25の前後における流体の大きな圧力変化を回避することができるのである。これによって、前記したキャビテーションによる微小な気泡の発生を防止することができる。また、図6のように、流体L2の流通方向を逆にして用いる場合にも、同様に効果的である。
【0027】
なお、図3及び図4に図示し請求項4の発明として規定したように、前記鈍角面27と前記弁体部35の前部側傾斜面37によって形成される流体のオリフィス側流路F3とダイヤフラム側流路F4の角度を略同じに構成することによって、弁座25の前後で徐々に狭くなりかつ徐々に広くなる流路幅が対称となり、圧力変化の回避をさらに効果的に行うことができる。
【0028】
図7はダイヤフラム弁体30におけるダイヤフラム部31の外周部32とその中心部33との位置関係を示したものである。図7各図に示しかつ請求項5の発明として規定したように、ダイヤフラム部31は予めその中心部33が弁座25方向となるように傾斜して配置されていて(図7(A)の符号A1参照)、ダイヤフラム弁体30の後退時にもダイヤフラム部31の中心部33がその外周部32より後方に移動しないように(図7(B)の符号A2参照)構成されている。
【0029】
このようなダイヤフラム弁体30の配置構成によって、弁体30の後退時にダイヤフラム部31の中心部33がその外周部32より前方に位置(A2位置)するので、ダイヤフラム部31の中心部33が常に弁室20内に突出した形状配置となる。これによってダイヤフラム部31の中心部33に凹所が形成されることなく、かつ、図7各図からよくわかるように、弁体部35の後部側傾斜面38及び弁室20の拡径面21とによって、断面略三角形状のリング状空間が弁室20に形成され、弁室20内における流体の流通がくまなくスムーズになる。従って、ダイヤフラム部31に気泡がたまりにくく、圧力損失も小さくなり、流体の置換特性も向上する。
【0030】
また、弁体30の移動に伴うダイヤフラム部31の変位は、その外周部32を支点として弁座25側の一方向(下方向)のみとなり、双方向に変位する場合に比して、ダイヤフラム部31の外周部32に加わる屈曲疲労を低減することができ、その耐久性を高めることができる。さらに、弁体の後退時にダイヤフラム部31の中心部33をその外周部32より前方になるように配置することによって、フラッシングなども効果的に行うことができる。
【0031】
図8は、請求項6の発明として規定したように、ダイヤフラム弁体30の弁体部35の最大外周径r1が前記ダイヤフラム部31のダイヤフラム膜部34の最大径と膜部最小径を2分した位置における直径距離r2よりも大きく形成されている例を表す。前記したように、弁体部35に前部側傾斜面37と後部側傾斜面38とを有する駒形状35Sに形成することによって、弁体部35にかかる一次側圧力と二次側圧力の圧力バランスを図ることができ、より小さい力で弁体30の作動を行うことができるのであるが、弁体部35の最大外周径r1をダイヤフラム部31のダイヤフラム膜部34の最大径と膜部最小径を2分した位置における直径距離r2よりも大きく形成したものにあっては、特に、二次側からの圧力が高い場合にも弁を閉じる方向の力が弁体部35に働くので、耐圧を高くした場合でも弁体30の開閉をスムーズに行うことができる。なお、ダイヤフラム膜部34とは圧力によって変位する薄膜部分をいう。このことより、高い圧力の場合においても、流体の入口を指定することなく、オリフィス側流路あるいはダイヤフラム側流路のいずれからも使用することが可能となる。通常の場合では、ダイヤフラム側流路から流体を入れると、ダイヤフラム部にかかる圧力により弁体が上方に持上げられるために耐圧を上げることがむずかしかった。
【0032】
上記のように構成されたこの発明のダイヤフラム弁10構造は、例えば図9に図示したように、マニホールド弁Mとして用いることができる。このマニホールド弁Mは、本発明構造に係る複数(ここでは3つ)のダイヤフラム弁部10A,10B,10Cを流路72,73によって横方向に互いに連結し、ダイヤフラム弁部10Aの流路71から流路72,73を経てダイヤフラム弁部10Cの流路74まで貫通状に流通するように構成されている。なお、図示のマニホールド弁Mではそのバルブボディ79を単一として表したが、独立した個別のダイヤフラム弁部を必要に応じて連結することも一般に行われている。
【0033】
そして、各ダイヤフラム弁部10A,10B,10Cの流入部12A,12B,12Cからの流体L12,L13,L14の流通を各ダイヤフラム弁体30A,30B,30Cによって制御するとともに、流路71からの流体L15と混合して、流路74から混合流体L16として流出するのである。これは薬液の混合などに利用される。あるいは、各ダイヤフラム弁体30A,30B,30Cを図のように閉じた状態で、流路71から流体L15として純水等の清浄液体を流通させてフラッシングを行ったりすることもある。
【0034】
この発明構造に係るダイヤフラム弁構造は、このようなマニホールド弁Mにおいて、前述した各部構成が保有する特有の作用により、効果的に液の混合やフラッシングなどを行うことができる。
【0035】
【発明の効果】
以上図示し説明したように、この発明のダイヤフラム弁構造によれば、まず、弁室形状によって、弁室内を流通する流体の流速を均一化させることができ、流体の圧力損失を抑止して流通効率を向上させることができ、スムーズな流れによって流体の置換特性が良好となる。また、弁体部の形状によって、一次側圧力と二次側圧力の圧力バランスを図ることができ、オリフィスサイズを大きくすることができ、ダイヤフラム弁の外形を大きくすることなく流量を多く流すことができるとともに、流体は弁体部に沿って回り込みくまなく流通して混合やフラッシングを効果的に行うことができる。
【0036】
さらに、この発明構造によれば、弁室の弁座と弁体部によって鋭角状に徐々に狭くなりかつ広くなる流路が形成されるので、弁座の前後を流通する流体の大きな圧力変化を回避することができ、これによって、キャビテーションによる微小な気泡の発生を防止することができる。
【0037】
これに加えて、請求項2及び3の発明によれば、弁室の弁座と弁体部との着座が確実となり、請求項4の発明によれば、弁座の前後を流通する流体の圧力変化をより効果的に回避することができる。
【0038】
請求項5の発明によれば、ダイヤフラム弁体の配置構成の点から、弁室内における流体の流通がくまなくスムーズになり、ダイヤフラム部に気泡がたまりにくく、圧力損失も小さくなり、流体の置換特性も向上する。同時に、ダイヤフラム部の外周部に加わる屈曲疲労を低減することができ、耐久性を高めることができる。
【0039】
さらにまた、請求項6の発明によれば、耐圧を高くした場合でも弁体の開閉をスムーズに行うことができ、高い圧力の場合においても、流体の入口を指定することなく、オリフィス側流路あるいはダイヤフラム側流路のいずれからからも使用することが可能となる。
【図面の簡単な説明】
【図1】この発明の一実施例に係るダイヤフラム弁全体の縦断面図である。
【図2】図1のダイヤフラム弁体を後退させた状態を示す縦断面図である。
【図3】弁体部の前部側傾斜面と弁座の着座状態を拡大して表した部分断面図である。
【図4】同じく弁体部の前部側傾斜面と弁座の他の実施例の着座状態を拡大して表した部分断面図である。
【図5】弁体部の後退時における流体の流通状態を表した部分断面図である。
【図6】同じく流体の他の流通状態を表した部分断面図である。
【図7】ダイヤフラム部の外周部と中心部との位置関係を表した断面図である。
【図8】ダイヤフラム弁体の弁体部とダイヤフラム部の膜部との関係を表した断面図である。
【図9】この発明構造をマニホールド弁に用いた実施例の断面図である。
【図10】従来の一般的なダイヤフラム弁の縦断面図である。
【図11】従来のダイヤフラム弁における要部の断面図である。
【図12】従来のダイヤフラム弁における流体の流通状態を表す断面図である。
【図13】従来のダイヤフラム弁における流体の他の流通状態を表す断面図である。
【符号の説明】
10 ダイヤフラム弁
15 オリフィス部
20 弁室
21 (ロウト状)拡径面
25 弁座
26 突条部
27 鈍角面
30 ダイヤフラム弁体
31 ダイヤフラム部
32 外周部
33 中心部
34 ダイヤフラム膜部
35 弁体部
35S 駒形状
37 前部側傾斜面
38 後部側傾斜面
39 突条部
50 作動シリンダ装置
F3 オリフィス側流路
F4 ダイヤフラム側流路
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a structure of a diaphragm valve used for controlling a fluid such as a chemical solution or pure water in a semiconductor manufacturing line or the like.
[0002]
[Prior art]
For example, in a semiconductor production line or a production line for various chemicals, the supply of various chemicals and pure water is controlled via a diaphragm valve. FIG. 10 of the accompanying drawings shows a generally used diaphragm valve 100 in which a diaphragm valve element 90 having a diaphragm section 91 and a valve element section 92 moves forward and backward with respect to a valve seat 105 in a valve chamber 102 of a valve body 101. Then, the flow of the fluid flowing out of the outflow portion 104 is controlled by opening and closing the orifice portion 103 of the valve chamber 102. Reference numeral 111 denotes an inflow side flow path of the fluid, and 112 denotes an outflow side flow path.
[0003]
In the drawing, reference numeral 80 denotes an operating cylinder device of the diaphragm valve body 90, 81 denotes a cylinder block, 82 denotes a cylinder chamber, 83 denotes a partition block that separates the cylinder chamber 82 from the valve chamber 102, and 84 denotes the diaphragm valve body. A piston member connected to 90, 85 and 86 are inflow / outflow portions of a working fluid for moving the piston member 84 forward and backward, 87 is a spring body for constantly urging the piston member 84 forward, 88 is an air vent portion, and 89 is a diaphragm valve. A mounting member for the body 90.
[0004]
In the illustrated diaphragm valve 100, an outflow portion 104 is formed on the side of the valve chamber 102, and an outflow side flow path 112 is provided continuously. According to the structure of the diaphragm valve 100, the fluid that has flowed into the valve chamber 102 from the inflow-side flow path 111 through the orifice portion 103 flows in the linear direction from the valve chamber 102 to the outflow-side flow path 112 through the outflow portion 104. I do. That is, the fluid flowing through the diaphragm valve 100 flows in an “L” shape having two locations of the bent portions R1 and R2.
[0005]
In the diaphragm valve 100 generally used in the related art, as shown in FIG. 11, a valve element 90 has a substantially horizontal front end surface 96 and a front portion inclined at an angle of approximately 45 degrees toward the end surface 96. The front-side inclined surface 97 can be seated on a valve seat 105 having a side inclined surface 97 and formed at a substantially right angle. Then, when the valve element 90 is retracted, the orifice portion 103 is opened, and the fluid flows into the valve chamber 102 from the orifice side flow path F11 via the diaphragm side flow path F12.
[0006]
However, in this diaphragm valve element 90, as shown in FIG. 12, the valve element 90 is retracted and the flow path between the front side inclined surface 97 and the valve seat 105 is slightly opened. In this case, since the valve body end surface 96 is substantially horizontal and the valve seat 105 is substantially right-angled, the fluid flows from the orifice-side flow path F11 through the flow path whose flow path width is sharply narrowed. . In addition, the fluid L12 that has passed through the valve seat 105 flows through the diaphragm-side flow path F12 in which the flow path width rapidly increases from the flow path with a narrow flow path width. When a fluid flows through such a flow path in which the flow path width changes rapidly, a sudden pressure change occurs in the fluid with the change in the flow path width.
[0007]
When a rapid pressure change occurs in the fluid, a cavitation phenomenon called so-called cavitation easily occurs. That is, cavitation is a phenomenon in which air contained in a liquid, which is a fluid, generates minute bubbles due to a decrease in pressure, and then evaporates and becomes hollow due to a sudden change in pressure. As described above, the cross-sectional area of the flow path between the valve seat 105 and the front inclined surface 97 of the valve body 90 is minimized at the valve seat 105 and greatly increases before and after the valve seat 105. Becomes maximum, and the pressure becomes minimum immediately after that, and cavitation occurs at this low pressure. The minute bubbles generated by the cavitation are disgusted as dust that contaminates the surface of the wafer in, for example, semiconductor manufacturing.
[0008]
Further, when the valve seat 105 as shown in the drawing is substantially perpendicular and the valve chamber 102 is formed by a vertical surface, the flow velocity of the fluid changes at those corners, and the pressure loss (energy loss) of the fluid is large. As a result, not only the flow efficiency is reduced, but also a portion where the fluid is difficult to flow is generated, so that there is a problem that the fluid replacement characteristic is deteriorated.
[0009]
Further, in the diaphragm valve 100 of this type, in addition to flowing the fluid from the orifice portion 103 side to the valve chamber 102 side, it is possible to reverse the flow direction and flow the fluid from the valve chamber 102 side to the orifice portion 103 side. is there. As shown in FIG. 13, when the fluid flows in the direction from the valve chamber 102 to the orifice portion 103 with the flow direction of the fluid reversed, cavitation is likely to occur as described above, and the pressure loss increases. In addition, the fluid replacement characteristics deteriorate.
[0010]
[Problems to be solved by the invention]
The present invention has been made in view of the above points, and provides a novel diaphragm valve structure that prevents a rapid change in pressure in a fluid, suppresses the occurrence of cavitation, and enables smooth flow of the fluid. The purpose is to do.
[0011]
[Means for Solving the Problems]
That is, the invention of claim 1 has a valve chamber (20) provided with a valve seat (25) via an orifice portion (15) in a flow path (F1, F2) of a controlled fluid, wherein the valve chamber is provided. A diaphragm valve body (30) integrally having a valve body (35) that advances and retreats with respect to the valve seat at a center part (33) of a diaphragm part (31) having an outer peripheral part (32) fixed thereto. In the valve (10), the valve chamber is formed on a surface (21) having a generally funnel-shaped diameter extending from the orifice portion to a substantially outer peripheral portion of the diaphragm portion, and the valve seat is provided with the valve seat. The valve body is formed on an obtuse angled surface (27) formed on a radial surface, and the valve body portion is seated on the valve seat and is inclined toward the front end. A rear side inclined surface (38) inclined toward the shaft portion (36). It is formed in frame shape (35S) that according to the diaphragm valve structure according to claim.
[0012]
The invention according to claim 2 relates to the diaphragm valve structure according to claim 1, wherein the valve seat comprises a fine ridge (26) formed on the top of the obtuse angle surface.
[0013]
The invention according to claim 3 relates to the diaphragm valve structure according to claim 1, wherein a fine ridge portion (39) seated on the valve seat is formed on a front-side inclined surface of the valve body portion.
[0014]
According to a fourth aspect of the present invention, the angle between the orifice-side flow path (F3) and the diaphragm-side flow path (F4) of the fluid formed by the obtuse surface and the front-side inclined surface of the valve body is substantially the same. The present invention relates to a diaphragm valve structure according to any one of claims 1 to 3.
[0015]
In the invention according to claim 5, the diaphragm portion is disposed so as to be inclined so that the center portion thereof is in the valve seat direction in advance, and even when the diaphragm valve body is retracted, the center portion of the diaphragm portion is higher than the outer peripheral portion thereof. The diaphragm valve structure according to any one of claims 1 to 4, wherein the diaphragm valve structure is configured not to move rearward.
[0016]
In the invention according to claim 6, the maximum outer diameter (r1) of the valve body is formed to be larger than the diameter distance (r2) at a position obtained by dividing the maximum diameter of the diaphragm film portion and the minimum diameter of the film portion of the diaphragm portion into two. The present invention relates to a diaphragm valve structure according to any one of claims 1 to 5.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
1 is a longitudinal sectional view of the entire diaphragm valve according to one embodiment of the present invention, FIG. 2 is a longitudinal sectional view showing a state where the diaphragm valve body of FIG. 1 is retracted, and FIG. 3 is a front side inclination of the valve body part. FIG. 4 is an enlarged partial cross-sectional view showing the seat and the seating state of the valve seat. FIG. 4 is an enlarged partial cross-sectional view showing the seating state of the front-side inclined surface of the valve body and the valve seat according to another embodiment. FIG. 5 is a partial cross-sectional view showing the flow state of the fluid when the valve body is retracted, FIG. 6 is a partial cross-sectional view showing another flow state of the fluid, and FIG. 7 is the outer peripheral portion and the central portion of the diaphragm portion. 8 is a cross-sectional view showing the relationship between the valve body of the diaphragm valve body and the membrane of the diaphragm, and FIG. 9 is a cross-sectional view showing the embodiment using the structure of the present invention for a manifold valve. It is sectional drawing.
[0018]
1 and 2 are cross-sectional views of a diaphragm valve 10 according to the present invention. The illustrated diaphragm valve 10 includes a valve chamber 20 having a valve seat 25 via an orifice portion 15 in a flow path (inflow-side flow path F1 and outflow-side flow path F2) of a controlled fluid in a valve body 11; A diaphragm valve body 30 integrally having a valve body 35 which advances and retreats with respect to the valve seat 25 is provided at a central portion 33 of a diaphragm 31 having an outer peripheral portion 32 fixed to the valve chamber 20.
[0019]
The valve chamber 20 according to the structure of the present invention is formed on a surface 21 having a generally funnel-shaped enlarged diameter from the orifice portion 15 to a substantially outer peripheral portion 32 of the diaphragm portion, and the valve seat 25 is provided with the valve seat 25. The obtuse surface 27 is formed on the radial surface 21. At the same time, the valve body portion 35 has a front inclined surface 37 that can be seated on the valve seat 25 and is inclined toward the front end and a rear inclined surface 38 that is inclined toward the shaft portion 36 of the valve body portion 35. It is characterized by being formed in a piece shape 35S.
[0020]
1 and 2, reference numeral 50 denotes a known working cylinder device for operating the same diaphragm valve body 30 as described above, 51 denotes a cylinder block, 52 denotes a cylinder chamber, and 53 denotes the cylinder chamber 52 and the cylinder chamber 52. A partition block for partitioning the valve chamber 20, 54 is a piston member connected to the diaphragm valve body 30, 55 and 56 are inflow / outflow portions of a working fluid for moving the piston member 54 forward and backward, and 57 is a piston member that constantly moves the piston member 54 forward. A biasing spring body, 58 is an air vent portion, and 59 is a mounting member for the diaphragm valve body 30. FIG. 1 shows a state in which the diaphragm valve body 30 moves forward, the front inclined surface 37 of the valve body portion 35 is seated on the valve seat 25 and the valve is closed, and FIG. A state in which the fluid is retracted by the operation of the device 50 and the fluid flows through the valve chamber 20 is shown. Hereinafter, the diaphragm valve 10 will be described in detail.
[0021]
First, as shown in the figure, the valve chamber 20 is formed on a surface 21 having a generally funnel-shaped enlarged diameter from the orifice portion 15 to the diaphragm portion outer peripheral portion 32 as a whole. The funnel shape refers to an inclined shape in which the front side is narrow and the rear side is gradually widened, and here, the bottom surface portion of the valve chamber 20 having the orifice portion 15 and the wall surface portion of the valve chamber 20 to which the diaphragm outer peripheral portion 32 is fixed. The curved surface 22 is smoothly connected without any intervening corners, and is formed on the surface 21 whose diameter is expanded to reach the outer peripheral portion 32 of the diaphragm portion. The valve seat 25 is formed on an obtuse angle surface 27 formed on the enlarged diameter surface 21.
[0022]
As described above, by forming the shape of the valve chamber 20 on the surface 21 having a generally funnel-shaped enlarged diameter from the orifice portion 15 to the substantially outer peripheral portion 32 of the diaphragm portion, the corners of the valve chamber 20 are eliminated. Thus, the flow velocity of the fluid flowing through the valve chamber 20 can be made uniform. Therefore, this makes it possible to suppress the pressure loss of the fluid and improve the flow efficiency, and the fluid replacement characteristics are improved by the smooth flow.
[0023]
On the other hand, the valve body portion 35 of the diaphragm valve body 30 has a front inclined surface 37 that can be seated on the valve seat 25 and is inclined toward the front end and a rear side inclined toward the shaft portion 36 of the valve body portion 35. A piece 35S having an inclined surface 38 is formed. The front-side inclined surface 37 and the rear-side inclined surface 38 are preferably formed as long as possible. Desirably, the front-side inclined surface 37 is formed up to the tip of the valve body 35 as shown in the figure, and the rear-side inclined surface is formed. The surface 38 is formed up to the shaft portion 36. Reference numeral 40 in the figure denotes a backing member for the diaphragm portion 31.
[0024]
As described above, by forming the valve body portion 35 into a piece shape 35S having the front side inclined surface 37 and the rear side inclined surface 38, the pressure balance between the primary side pressure and the secondary side pressure applied to the valve body portion 35 is improved. Therefore, the operation of the valve body 30 can be performed with a smaller force. Further, since the pressure balance between the primary pressure and the secondary pressure applied to the valve body 35 can be achieved, the orifice size can be increased, and the flow rate can be increased without increasing the outer size of the diaphragm valve 10. Can be shed. Further, by forming the valve body portion 35 into the bridge shape 35S, the fluid flowing through the valve chamber 20 flows all the way along the bridge shape 35 of the valve body portion 35, and effectively mixes and flushes the fluid. be able to.
[0025]
In the example of FIGS. 1 and 2, as shown in the enlarged view of FIG. 3, the valve seat 25 is formed on the top of the obtuse angle surface 27 formed on the enlarged diameter surface 21 as shown in the enlarged view of FIG. 3. An example composed of the ridges 26 is shown. The ridge 26 is for ensuring the seating of the valve body 35 to the valve seat 25. In order to ensure this seating property, the valve seat 25 is seated on the front-side inclined surface 37 of the valve body 35 as defined in the third aspect of the invention and illustrated in the enlarged view of FIG. Fine projections 39 may be formed.
[0026]
As understood from FIGS. 3 and 4, in the structure of the present invention, the valve seat 25 formed on the obtuse angle surface 27 of the funnel-shaped enlarged surface 21 of the valve chamber 20 and the front-side inclined surface 37 of the valve body 35 are provided. Thus, in the flow path from the orifice portion 15 to the valve chamber 20, an orifice-side flow path F3 that narrows at an acute angle and a diaphragm-side flow path F4 that widens at an acute angle are formed. The flow of the fluid L1 flowing through the valve seat 25 when the valve body 30 is retracted and the fluid flows as shown in FIG. 5 by the acute angled orifice side flow path F3 and the diaphragm side flow path F4. The road width gradually narrows and widens before and after the valve seat 25, and it is possible to avoid a sudden change. That is, a large pressure change of the fluid before and after the valve seat 25 can be avoided. This can prevent the generation of minute bubbles due to the cavitation described above. Also, as shown in FIG. 6, the same effect is obtained when the flow direction of the fluid L2 is reversed.
[0027]
As shown in FIGS. 3 and 4, the orifice-side flow path F <b> 3 of the fluid formed by the obtuse angled surface 27 and the front-side inclined surface 37 of the valve body 35. By configuring the angle of the diaphragm-side flow path F4 to be substantially the same, the flow path width gradually narrowing and gradually widening before and after the valve seat 25 becomes symmetrical, so that the pressure change can be avoided more effectively. it can.
[0028]
FIG. 7 shows the positional relationship between the outer peripheral portion 32 of the diaphragm portion 31 and the central portion 33 of the diaphragm valve element 30. As shown in each figure of FIG. 7 and defined as the invention of claim 5, the diaphragm portion 31 is previously arranged so as to be inclined such that the center portion 33 thereof is directed toward the valve seat 25 (see FIG. 7A). The configuration is such that the central portion 33 of the diaphragm portion 31 does not move rearward of the outer peripheral portion 32 even when the diaphragm valve element 30 is retracted (see reference numeral A2 in FIG. 7B).
[0029]
With such an arrangement of the diaphragm valve body 30, the center part 33 of the diaphragm part 31 is located forward (A2 position) of the outer peripheral part 32 when the valve body 30 retreats, so that the center part 33 of the diaphragm part 31 is always positioned. It becomes a shape arrangement protruding into the valve chamber 20. As a result, no recess is formed in the center portion 33 of the diaphragm portion 31, and as can be clearly understood from each of FIGS. 7A and 7B, the rear inclined surface 38 of the valve body portion 35 and the enlarged surface 21 of the valve chamber 20. Thus, a ring-shaped space having a substantially triangular cross section is formed in the valve chamber 20, and the flow of fluid in the valve chamber 20 becomes smooth throughout. Therefore, bubbles hardly accumulate in the diaphragm portion 31, pressure loss is reduced, and fluid replacement characteristics are improved.
[0030]
Further, the displacement of the diaphragm portion 31 accompanying the movement of the valve element 30 is only in one direction (downward) on the valve seat 25 side with the outer peripheral portion 32 as a fulcrum. The bending fatigue applied to the outer peripheral portion 32 of the base 31 can be reduced, and its durability can be enhanced. Further, by arranging the central portion 33 of the diaphragm portion 31 forward of the outer peripheral portion 32 when the valve body is retracted, flushing or the like can be effectively performed.
[0031]
FIG. 8 shows that the maximum outer diameter r1 of the valve body portion 35 of the diaphragm valve body 30 is defined by dividing the maximum diameter and the minimum diameter of the diaphragm film portion 34 of the diaphragm portion 31 by two as defined in the invention of claim 6. Represents an example in which it is formed to be larger than the diameter distance r2 at the position indicated. As described above, by forming the piece 35S having the front side inclined surface 37 and the rear side inclined surface 38 on the valve body 35, the pressure of the primary side pressure and the secondary side pressure applied to the valve body 35 is increased. Although the balance can be achieved and the valve body 30 can be operated with a smaller force, the maximum outer diameter r1 of the valve body portion 35 is set to be equal to the maximum diameter of the diaphragm film portion 34 of the diaphragm portion 31 and the maximum diameter of the film portion. In the case where the diameter is larger than the diameter distance r2 at the position where the small diameter is divided into two, the force in the valve closing direction acts on the valve body 35 even when the pressure from the secondary side is high. , The opening and closing of the valve body 30 can be performed smoothly. Note that the diaphragm film portion 34 is a thin film portion that is displaced by pressure. Thus, even at a high pressure, it is possible to use the fluid from either the orifice-side flow path or the diaphragm-side flow path without specifying the inlet of the fluid. In a normal case, when a fluid is introduced from the diaphragm-side flow path, the valve body is lifted upward by the pressure applied to the diaphragm portion, so that it has been difficult to increase the pressure resistance.
[0032]
The structure of the diaphragm valve 10 of the present invention configured as described above can be used as a manifold valve M, for example, as shown in FIG. The manifold valve M connects a plurality (three in this case) of the diaphragm valve portions 10A, 10B, and 10C according to the present invention to each other in the lateral direction by flow paths 72 and 73, and connects the manifold valve M from the flow path 71 of the diaphragm valve section 10A. It is configured to flow through the flow paths 72 and 73 to the flow path 74 of the diaphragm valve portion 10C in a penetrating manner. In the illustrated manifold valve M, the valve body 79 is shown as a single unit. However, independent individual diaphragm valve portions are generally connected as needed.
[0033]
The flow of the fluids L12, L13, L14 from the inflow portions 12A, 12B, 12C of the respective diaphragm valve portions 10A, 10B, 10C is controlled by the respective diaphragm valve bodies 30A, 30B, 30C, and the fluid from the flow path 71 is controlled. It mixes with L15 and flows out of the flow path 74 as a mixed fluid L16. This is used for mixing chemicals. Alternatively, flushing may be performed by flowing a clean liquid such as pure water as the fluid L15 from the flow path 71 in a state where the diaphragm valve bodies 30A, 30B, and 30C are closed as shown in the figure.
[0034]
The diaphragm valve structure according to the present invention is capable of effectively performing liquid mixing, flushing, and the like in such a manifold valve M by the unique action possessed by each component described above.
[0035]
【The invention's effect】
As shown and described above, according to the diaphragm valve structure of the present invention, first, the flow velocity of the fluid flowing through the valve chamber can be made uniform by the shape of the valve chamber, and the pressure loss of the fluid is suppressed while the flow rate is reduced. Efficiency can be improved and fluid replacement characteristics are improved by smooth flow. Also, depending on the shape of the valve body, the pressure balance between the primary pressure and the secondary pressure can be achieved, the orifice size can be increased, and the flow rate can be increased without increasing the outer diameter of the diaphragm valve. In addition, the fluid can be circulated around the valve body and can be effectively mixed and flushed.
[0036]
Further, according to the structure of the present invention, the flow passage that gradually narrows and widens at an acute angle is formed by the valve seat and the valve body of the valve chamber, so that a large pressure change of the fluid flowing before and after the valve seat is reduced. This can prevent the generation of minute bubbles due to cavitation.
[0037]
In addition, according to the second and third aspects of the present invention, the seating of the valve seat and the valve body in the valve chamber is ensured, and according to the fourth aspect of the present invention, the flow of the fluid flowing before and after the valve seat is ensured. Pressure changes can be avoided more effectively.
[0038]
According to the fifth aspect of the present invention, in terms of the arrangement of the diaphragm valve element, the flow of the fluid in the valve chamber becomes smoother and smoother, bubbles are less likely to accumulate in the diaphragm, the pressure loss is reduced, and the fluid replacement characteristic is reduced. Also improve. At the same time, bending fatigue applied to the outer peripheral portion of the diaphragm can be reduced, and durability can be improved.
[0039]
Furthermore, according to the invention of claim 6, the valve body can be smoothly opened and closed even when the pressure resistance is increased, and even when the pressure is high, the orifice side flow path can be specified without specifying the fluid inlet. Alternatively, it can be used from any of the diaphragm side flow paths.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of an entire diaphragm valve according to an embodiment of the present invention.
FIG. 2 is a longitudinal sectional view showing a state where the diaphragm valve body of FIG. 1 is retracted.
FIG. 3 is an enlarged partial cross-sectional view showing a front inclined surface of a valve body and a seated state of a valve seat.
FIG. 4 is an enlarged partial cross-sectional view of a seating state of another embodiment of a front-side inclined surface of a valve body and a valve seat.
FIG. 5 is a partial cross-sectional view illustrating a flow state of a fluid when the valve body retreats.
FIG. 6 is a partial sectional view showing another flow state of the fluid.
FIG. 7 is a cross-sectional view illustrating a positional relationship between an outer peripheral portion and a central portion of a diaphragm portion.
FIG. 8 is a cross-sectional view illustrating a relationship between a valve body portion of a diaphragm valve body and a membrane portion of the diaphragm portion.
FIG. 9 is a sectional view of an embodiment in which the structure of the present invention is used for a manifold valve.
FIG. 10 is a longitudinal sectional view of a conventional general diaphragm valve.
FIG. 11 is a sectional view of a main part of a conventional diaphragm valve.
FIG. 12 is a cross-sectional view illustrating a flow state of a fluid in a conventional diaphragm valve.
FIG. 13 is a cross-sectional view illustrating another flow state of a fluid in a conventional diaphragm valve.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Diaphragm valve 15 Orifice part 20 Valve chamber 21 (roof-shaped) enlarged-diameter surface 25 Valve seat 26 Protrusion part 27 Diaphragm surface 30 Diaphragm valve element 31 Diaphragm part 32 Outer peripheral part 33 Center part 34 Diaphragm film part 35 Valve part 35S piece Shape 37 Front-side inclined surface 38 Rear-side inclined surface 39 Ridge 50 Working cylinder device F3 Orifice-side flow path F4 Diaphragm-side flow path

Claims (6)

被制御流体の流路中にオリフィス部(15)を介して弁座(25)を備えた弁室(20)を有し、前記弁室に外周部(32)を固定されたダイヤフラム部(31)の中心部(33)に前記弁座に対して進退する弁体部(35)を一体に有するダイヤフラム弁体(30)を備えたダイヤフラム弁(10)において、
前記弁室は前記オリフィス部より前記ダイヤフラム部の略外周部に至るまで全体として略ロウト状に拡径した面(21)に形成されており、かつ前記弁座は前記拡径面に形成された鈍角面(27)に形成されているとともに、前記弁体部は前記弁座に着座可能で先端に向かって傾斜する前部側傾斜面(37)と前記弁体部の軸部(36)に向かって傾斜する後部側傾斜面(38)とを有する駒形状(35S)に形成されていることを特徴とするダイヤフラム弁構造。
A diaphragm section (31) having a valve chamber (20) provided with a valve seat (25) through an orifice section (15) in a flow path of a controlled fluid, and having an outer peripheral portion (32) fixed to the valve chamber. A) a diaphragm valve (10) including a diaphragm valve body (30) integrally having a valve body part (35) that advances and retreats with respect to the valve seat at a central part (33) of the diaphragm valve (10);
The valve chamber is formed on a surface (21) having a generally funnel-shaped enlarged diameter from the orifice portion to a substantially outer peripheral portion of the diaphragm portion, and the valve seat is formed on the enlarged-diameter surface. The valve body is formed on an obtuse angled surface (27), and the valve body has a front-side inclined surface (37) that can be seated on the valve seat and is inclined toward the front end and a shaft (36) of the valve body. A diaphragm valve structure characterized by being formed in a bridge shape (35S) having a rear-side inclined surface (38) inclined toward the rear surface.
前記弁座が前記鈍角面の頂上に形成された微細な突条部(26)からなる請求項1に記載のダイヤフラム弁構造。The diaphragm valve structure according to claim 1, wherein the valve seat comprises a fine ridge (26) formed on the top of the obtuse surface. 前記弁体部の前部側傾斜面に前記弁座に着座する微細な突条部(39)が形成されている請求項1に記載のダイヤフラム弁構造。2. The diaphragm valve structure according to claim 1, wherein a fine ridge portion (39) seated on the valve seat is formed on a front-side inclined surface of the valve body portion. 3. 前記鈍角面と前記弁体部の前部側傾斜面によって形成される流体のオリフィス側流路(F3)とダイヤフラム側流路(F4)の角度が略同じに構成された請求項1ないし3のいずれか1項に記載のダイヤフラム弁構造。4. The fluid flow path according to claim 1, wherein the oblique surface and the front-side inclined surface of the valve body have substantially the same angle between the orifice-side flow path (F3) and the diaphragm-side flow path (F4). The diaphragm valve structure according to claim 1. 前記ダイヤフラム部は予めその中心部が弁座方向となるように傾斜して配置されていて、前記ダイヤフラム弁体の後退時にも前記ダイヤフラム部の中心部がその外周部より後方に移動しないように構成されている請求項1ないし4のいずれか1項に記載のダイヤフラム弁構造。The diaphragm portion is arranged so that the center portion thereof is inclined in advance so that the center portion thereof is in the valve seat direction, so that the center portion of the diaphragm portion does not move rearward from the outer peripheral portion even when the diaphragm valve body retreats. The diaphragm valve structure according to any one of claims 1 to 4, wherein: 前記弁体部の最大外周径(r1)が前記ダイヤフラム部のダイヤフラム膜部最大径と膜部最小径を2分した位置における直径距離(r2)よりも大きく形成されている請求項1ないし5のいずれか1項に記載のダイヤフラム弁構造。6. The valve according to claim 1, wherein a maximum outer diameter (r1) of the valve portion is larger than a diameter distance (r2) at a position obtained by dividing a maximum diameter of the diaphragm film portion and a minimum diameter of the film portion of the diaphragm portion into two. The diaphragm valve structure according to claim 1.
JP2002234691A 2002-08-12 2002-08-12 Diaphragm valve structure Expired - Lifetime JP3756135B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002234691A JP3756135B2 (en) 2002-08-12 2002-08-12 Diaphragm valve structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002234691A JP3756135B2 (en) 2002-08-12 2002-08-12 Diaphragm valve structure

Publications (2)

Publication Number Publication Date
JP2004076787A true JP2004076787A (en) 2004-03-11
JP3756135B2 JP3756135B2 (en) 2006-03-15

Family

ID=32019429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002234691A Expired - Lifetime JP3756135B2 (en) 2002-08-12 2002-08-12 Diaphragm valve structure

Country Status (1)

Country Link
JP (1) JP3756135B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005155878A (en) * 2003-11-28 2005-06-16 Asahi Organic Chem Ind Co Ltd Flow rate adjustment valve
JP2009144754A (en) * 2007-12-11 2009-07-02 Shinohara:Kk Valve device
WO2011042184A3 (en) * 2009-10-09 2011-06-03 Norgren Gmbh Blow molding valve for a blow molding valve block
WO2012157598A1 (en) * 2011-05-17 2012-11-22 株式会社Ihi Bypass valve and supercharger
JP2013019489A (en) * 2011-07-12 2013-01-31 Fuji Koki Corp Intake and exhaust valve
JP2014202355A (en) * 2013-04-10 2014-10-27 サーパス工業株式会社 Flow rate control device
JP2015086980A (en) * 2013-10-31 2015-05-07 株式会社滋賀山下 Fluid control valve and container cleaning device
EP3127841A1 (en) * 2015-08-05 2017-02-08 Reinhold Schulte Filling assembly and supply device for a filling assembly
KR20210089575A (en) 2020-01-08 2021-07-16 아드반스 덴키 고교 가부시키가이샤 Valve structure

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4316212Y1 (en) * 1964-09-24 1968-07-05
JPS494468U (en) * 1972-04-10 1974-01-15
JPS6246864U (en) * 1985-09-11 1987-03-23
JPH0287178U (en) * 1988-12-26 1990-07-10
JPH02116083U (en) * 1989-03-07 1990-09-17
JPH02248773A (en) * 1989-03-20 1990-10-04 Chubu Electric Power Co Inc Valve seat for valves
US5083750A (en) * 1990-05-17 1992-01-28 Balik Gesellschaft M.B.H. Membrane valve
JPH0482460U (en) * 1990-11-28 1992-07-17
JPH061753U (en) * 1992-06-08 1994-01-14 石川島播磨重工業株式会社 Propellant valve
JPH08219303A (en) * 1995-02-15 1996-08-30 Fujikin:Kk Diaphragm valve
JPH08270832A (en) * 1986-05-16 1996-10-15 Nupro Co Seal structure of stem end used for shut-off valve
JPH1130353A (en) * 1997-07-09 1999-02-02 Daisou:Kk valve
JPH11173429A (en) * 1997-12-10 1999-06-29 Fujikin Inc Metallic diaphragm type valve
WO2001073327A2 (en) * 2000-03-28 2001-10-04 Swagelok Company Sanitary diaphragm valve
JP2002081561A (en) * 2000-09-06 2002-03-22 Advance Denki Kogyo Kk Check valve structure

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4316212Y1 (en) * 1964-09-24 1968-07-05
JPS494468U (en) * 1972-04-10 1974-01-15
JPS6246864U (en) * 1985-09-11 1987-03-23
JPH08270832A (en) * 1986-05-16 1996-10-15 Nupro Co Seal structure of stem end used for shut-off valve
JPH0287178U (en) * 1988-12-26 1990-07-10
JPH02116083U (en) * 1989-03-07 1990-09-17
JPH02248773A (en) * 1989-03-20 1990-10-04 Chubu Electric Power Co Inc Valve seat for valves
US5083750A (en) * 1990-05-17 1992-01-28 Balik Gesellschaft M.B.H. Membrane valve
JPH0482460U (en) * 1990-11-28 1992-07-17
JPH061753U (en) * 1992-06-08 1994-01-14 石川島播磨重工業株式会社 Propellant valve
JPH08219303A (en) * 1995-02-15 1996-08-30 Fujikin:Kk Diaphragm valve
JPH1130353A (en) * 1997-07-09 1999-02-02 Daisou:Kk valve
JPH11173429A (en) * 1997-12-10 1999-06-29 Fujikin Inc Metallic diaphragm type valve
WO2001073327A2 (en) * 2000-03-28 2001-10-04 Swagelok Company Sanitary diaphragm valve
JP2002081561A (en) * 2000-09-06 2002-03-22 Advance Denki Kogyo Kk Check valve structure

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005155878A (en) * 2003-11-28 2005-06-16 Asahi Organic Chem Ind Co Ltd Flow rate adjustment valve
JP2009144754A (en) * 2007-12-11 2009-07-02 Shinohara:Kk Valve device
US9096011B2 (en) 2009-10-09 2015-08-04 Norgren Gmbh Blow molding valve for a blow molding valve block
WO2011042184A3 (en) * 2009-10-09 2011-06-03 Norgren Gmbh Blow molding valve for a blow molding valve block
CN102656003A (en) * 2009-10-09 2012-09-05 诺格伦有限责任公司 Blow molding valve for a blow molding valve block
JP2013507264A (en) * 2009-10-09 2013-03-04 ノアグレン ゲゼルシャフト ミット ベシュレンクテル ハフツング Blow molding valve block for blow molding
WO2012157598A1 (en) * 2011-05-17 2012-11-22 株式会社Ihi Bypass valve and supercharger
JP2012241558A (en) * 2011-05-17 2012-12-10 Ihi Corp Bypass valve and supercharger
US9476351B2 (en) 2011-05-17 2016-10-25 Ihi Corporation Recirculation valve and turbocharger
JP2013019489A (en) * 2011-07-12 2013-01-31 Fuji Koki Corp Intake and exhaust valve
JP2014202355A (en) * 2013-04-10 2014-10-27 サーパス工業株式会社 Flow rate control device
JP2015086980A (en) * 2013-10-31 2015-05-07 株式会社滋賀山下 Fluid control valve and container cleaning device
EP3127841A1 (en) * 2015-08-05 2017-02-08 Reinhold Schulte Filling assembly and supply device for a filling assembly
KR20210089575A (en) 2020-01-08 2021-07-16 아드반스 덴키 고교 가부시키가이샤 Valve structure
US11644117B2 (en) 2020-01-08 2023-05-09 Advance Denki Kogyo Kabushiki Kaisha Valve structure

Also Published As

Publication number Publication date
JP3756135B2 (en) 2006-03-15

Similar Documents

Publication Publication Date Title
JP2004076787A (en) Diaphragm valve structure
JPH08320074A (en) Valve boundary section structure for poppet valve
JP2017064393A (en) Water discharge device
JP2007096306A (en) heatsink
JP2017064099A (en) Water discharge device
JPH10300384A (en) Plate heat exchanger
KR20070106368A (en) Fluid Discharge Device
US10272450B2 (en) Spout apparatus
JP2023117677A (en) Waste liquid selector valve
CN101563775B (en) Heat exchanger for use in cooling of semiconductor element and method for manufacturing the same
JP7488437B1 (en) Check valve for water jet loom
JP2021055782A (en) Constant flow valve
JPH10252903A (en) Fluid force reduction structure of spool valve
JP5256633B2 (en) Water discharge device
JP6674632B2 (en) Water spouting device
JP2019173928A (en) Sleeve valve
CN105240332A (en) Control valve
US3249305A (en) Spray nozzle
JP2018110780A (en) Water discharge device
JP2010007661A (en) Variable wash flow filter assembly, fuel system and fuel flow filtering method
KR200257281Y1 (en) Anti cavitation apparatus of buttetrfly valve
JP2007023674A (en) Self-excited oscillating flow nozzle
JP2006348545A (en) Local cleaning nozzle
JPH11201294A (en) Perforated orifice valve
JP2003214547A (en) Structure of diaphragm valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051220

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3756135

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120106

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term