[go: up one dir, main page]

JP2004003802A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP2004003802A
JP2004003802A JP2002372936A JP2002372936A JP2004003802A JP 2004003802 A JP2004003802 A JP 2004003802A JP 2002372936 A JP2002372936 A JP 2002372936A JP 2002372936 A JP2002372936 A JP 2002372936A JP 2004003802 A JP2004003802 A JP 2004003802A
Authority
JP
Japan
Prior art keywords
heat exchanger
temperature gas
wall surface
protrusion
exchanger according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002372936A
Other languages
Japanese (ja)
Other versions
JP4178944B2 (en
Inventor
Hiroyuki Osakabe
長賀部 博之
Hajime Sugito
杉戸 肇
Shigeki Okochi
大河内 隆樹
Toshihide Ninagawa
蜷川 稔英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2002372936A priority Critical patent/JP4178944B2/en
Priority to DE2003116044 priority patent/DE10316044A1/en
Publication of JP2004003802A publication Critical patent/JP2004003802A/en
Application granted granted Critical
Publication of JP4178944B2 publication Critical patent/JP4178944B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/025Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements
    • F28F3/027Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements with openings, e.g. louvered corrugated fins; Assemblies of corrugated strips
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • F28D1/0308Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other
    • F28D1/0325Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another
    • F28D1/0333Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another the plates having integrated connecting members
    • F28D1/0341Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another the plates having integrated connecting members with U-flow or serpentine-flow inside the conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/04Arrangements for modifying heat-transfer, e.g. increasing, decreasing by preventing the formation of continuous films of condensate on heat-exchange surfaces, e.g. by promoting droplet formation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Details Of Fluid Heaters (AREA)
  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent sticking of condensed water generated in heat exchange to a fin and its stagnation and to prevent deterioration of a heat exchange efficiency of the heat changer. <P>SOLUTION: This heat exchanger is provided with a plurality of flat-shaped tubes 2 to be disposed stackedly, allows high temperature gas including vapor to pass from the upper sides to the lower sides of gas passages 11 formed between adjoining tubes 2, allows fluid having lower temperature than the high temperature gas to pass in fluid passages 2A in the tubes 2, recovers not only sensible heat but also condensation latent heat from the high temperature gas, and heats the low temperature fluid. This heat exchanger is also provided with a projection part 10 disposed so as to incline in the flowing direction of the high temperature gas in the gas passages 11 and enlarging its projection amount as approaching to the downstream side of the high temperature gas. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、主に、給湯器などに内蔵され、水蒸気を含む高温の気体と熱交換し、給湯水を加熱する給湯器用熱交換器に適用して好適な熱交換器に関する。
【0002】
【従来の技術】
従来の給湯器用熱交換器として、例えば、特許文献1に記載の発明では、給湯水が流通するチューブの外壁面に薄板状のフィンを設けて給湯水と燃焼ガスとの熱交換を促進している。
【0003】
【特許文献1】
特開2000−146305号公報
【0004】
【発明が解決しようとする課題】
近年、熱交換器に対する性能向上の要求は強く、その一方策としてフィンの細密化による対応が考えられる。
【0005】
しかしながら、燃焼ガスは、給湯水と熱交換して温度を低下させるが、燃焼ガスの温度が露点温度以下となると、燃焼ガス中の水蒸気が凝縮して凝縮水を生成する。この時、図15に示すように、凝縮水はフィン3の広い領域に渡って液膜を厚く形成して付着(溜まる)する。あるいは、上記のフィン3の細密化によっては、図16に示すように、凝縮水はフィン3の間において完全に膜を張り、停滞してしまう。そして、燃焼ガスからフィン3に熱が移動することを阻害する熱抵抗となる。さらには、凝縮水によって燃焼ガスの流路がつまると、通風抵抗が増大する。その結果、熱交換効率が悪化する。
【0006】
本発明は、上記点に基づいてなされたものであり、熱交換時に生成される凝縮水のフィンへの付着や停滞を防止し、熱交換器の熱交換効率が悪化することを防止することを目的とする。
【0007】
【課題を解決するための手段】
本発明は、上記目的を達成するために以下の技術的手段を採用する。
【0008】
なお、以下に示す各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示す一例である。
【0009】
請求項1に記載の発明では、積層配置される複数本の扁平形状のチューブ(2)を有し、隣接するチューブ(2)間に形成される気体通路(11)を上方から下方へ向かって水蒸気を含む高温の気体が流れ、チューブ(2)内の流体通路(2A)に高温の気体より低温の流体を流通させて、高温の気体から顕熱のみならず凝縮潜熱をも回収して低温の流体を加熱する熱交換器であって、気体通路(11)中には、高温の気体流れ方向に対して傾斜するよう配置され、高温の気体流れ下流側となるにつれて自身の突出量が大きくなる突出部(10)が設けられていることを特徴としている。
【0010】
気体通路(11)において高温の気体から凝縮される凝縮水は、まず細かな液滴として生成され、自重によって順次垂れ落ちていく。本発明においては、この凝縮水を一旦、突出部(10)に積極的に集めることができる。即ち、突出部(10)の表面近傍においては高温の気体の流速が低下するので、垂れ落ちてくる細かな液滴をその表面張力によって突出部(10)に集合させることができる。
【0011】
この時、高温の気体は、突出部(10)の上流側における突出量の小さい領域を通過することが可能であり、高温の気体と低温の流体との熱交換が滞ることは無く、突出部(10)に対して上流、下流側(上、下側)となる領域においては、凝縮水の生成が継続される。
【0012】
そして、突出部(10)に集まった凝縮水の自重と高温の気体の風圧とによる下向きの力が、突出部(10)における凝縮水の表面張力を上回った時点で、凝縮水を一気に下方に落とすことができる。
【0013】
このように突出部(10)に凝縮水を集合させ、この集合した凝縮水を順次落下させていくというサイクルを繰り返すことにより、従来のように凝縮水が気体通路(11)の広い領域において付着したり停滞したりすることを防止できる。よって、凝縮水による熱抵抗や、通風抵抗の増化を防止でき、熱交換器(1)の熱交換効率の悪化を防止することができる。
【0014】
また、付随的に気体通路(11)表面に付着する凝縮水の量を低減させることができるので、気体通路(11)および突出部(10)が早期に腐食してしまうことを抑制することができる。
【0015】
請求項2に記載の発明によれば、突出部(10)は、高温の気体の流れ方向において隙間(δ)を有して離散的に複数個設けられているので、気体通路(11)において高温の気体流れ方向全体に渡ってバランス良く請求項1に記載の効果を持たせることができる。
【0016】
突出部(10)は、請求項3に記載の発明のように、気体通路(11)に対応するチューブ(2)の外壁面(4c)に設けられ、外側に凸状と成る打出し部(4d)として形成することができる。
【0017】
また、請求項4に記載の発明のように、隣接するチューブ(2)どうしの間には、チューブ(2)の外壁面(4c)に熱的に接触し、熱伝達性能を向上させるフィン(3)が設けられており、突出部(10)は、フィン(3)の表面から高温の気体流れに突出して設けられるようにしても良い。
【0018】
請求項5に記載の発明では、突出部(10)は、高温の気体の流れ方向に対して所定の角度で傾斜した第1突出部(10a)と、高温の気体の流れ方向に対して第1突出部(10a)とは異なる角度で傾斜した第2突出部(10b)とを有することを特徴としている。
【0019】
これにより、高温の気体の流れに交差する方向に対して、突出部(10)の突出量の小さい側の位置が異なるように配置できる。そして、高温の気体は主に突出量の小さい側を通過して、蛇行した流れを形成できる。よって、気体通路(11)に対して高温の気体を均等に流すことができ、熱交換効率を低下させることが無い。
【0020】
さらに、請求項6に記載の発明のように、第1突出部(10a)および第2突出部(10b)は、高温の気体流れ方向において交互に設けられるようにすれば、高温のガスの規則正しい蛇行流が形成でき、請求項5に記載の効果をさらに向上させることができる。
【0021】
また、請求項5、請求項6に記載の発明に対して、請求項7に記載の発明のように、第1突出部(10a)および第2突出部(10b)は、高温の気体流れ方向から見て、互いに重なるようにしても良い。
【0022】
尚、請求項4に記載の発明においては、請求項8に記載の発明のように、突出部(10)は、フィン(3)の表面から切り起こされて形成されるようにすれば、突出部(10)を容易に加工することができる。
【0023】
また、請求項9に記載の発明では、フィン(3)は、チューブ(2)の外壁面(4c)に接合される第1の壁面(3A)と、この第1の壁面(3A)と交差する第2の壁面(3B)とを有し、突出部(10)は、第1の壁面(3A)に形成されていることを特徴としている。
【0024】
本熱交換器(1)においては、高温の気体および低温の流体の温度差が最大となるチューブ(2)の外壁面(4c)に凝縮水が生成されやすい。よって、突出部(10)を外壁面(4c)に接合される第1の壁面(3A)に形成することにより、凝縮水を突出部(10)に導きやすくなる。なお、突出部(10)を切り起こす際に形成されるフィン(3)表面の開口部(10c)をチューブ(2)の外壁面(4c)によって塞ぐことができ、高温の気体の流れを乱すことが無い。
【0025】
さらに、請求項10に記載の発明のように、切り起こされる突出部(10)は、略三角形状に形成されるようにしてやれば、容易に突出部(10)を形成することができ、請求項11に記載の発明のように、略三角形状に形成される突出部(10)の頂点は、鈍角あるいは滑らかな曲線状に形成されるようにしてやれば、切り起こし成形(プレス成形)がさらに容易になる。
【0026】
【発明の実施の形態】
(第1実施形態)
以下、本発明の第1実施形態を図1〜図11に基づいて説明する。
【0027】
図3は熱交換器1の正面図、図4は熱交換器1の平面図、図5は熱交換器1の側面図である。
【0028】
本実施形態の熱交換器1は、給湯器に使用されて給湯水(本発明の低温の流体)と水蒸気を含む燃焼ガス(本発明の高温の気体)との熱交換を行うもので(当然のことながら、給湯水の温度は、燃焼ガスより低温であり、給湯水は燃焼ガスによって加熱される)、図4及び図5に示すように、複数の扁平状のチューブ2をアウタフィン3と共に積層して構成される所謂ドロンカップタイプと呼ばれる熱交換器1であり、全体が組み立てられた後、一体ろう付けによって製造される。
【0029】
チューブ2は、図6及び図7に示す2枚の伝熱プレート4(4A、4B)を組み合わせて形成され、内部にU字状の流水通路(本発明の流体通路)を形成する扁平管部2A(図4参照)と、流水通路の両端に通じる一組のタンク部2B(図4参照)とが設けられ、このタンク部2Bに連通口2bが開口している。
【0030】
2枚の伝熱プレート4は、第1の伝熱プレート4A(図6参照)の周縁部に巻締め部4aが設けられていること以外は略同一形状である。この2枚の伝熱プレート4は、図1(b)に示すように、第1の伝熱プレート4Aの巻締め部4aを第2の伝熱プレート4Bの内面側から外面側へ折り返して、第2の伝熱プレート4Bの端部を両側から挟み込むように巻締めして組付けられ、両者の当接面4bがろう付けされる。
【0031】
タンク部2Bは、扁平管部2Aより厚み幅が大きく設けられ、そのタンク部2Bを形成する伝熱プレート4の外壁面には、連通口2bの周囲にろう付け面となる平坦面2c(図8及び図10参照)が環状に設けられている。なお、タンク部2Bを形成している伝熱プレートの断面形状(B−B断面、C−C断面、D−D断面)と、扁平管部2Aを形成している伝熱プレート4の断面形状(E−E断面)を図8〜図10に示す。
【0032】
複数のチューブ2は、図4及び図5に示すように、互いのタンク部2B同士を連ねて積層され、連通口2bの周囲に設けられる平坦部2c同士が接合される。これにより、タンク部2Bに開口する連通口2bを通じて各チューブ2の流水通路が相互に連通している。なお、チューブ2の内部には、図1(a)に示すように伝熱面積を増大するためにインナフィン5を挿入してもよい。
【0033】
積層方向の一端側に配されるチューブ2には、図5に示すように、給湯水の給湯口6と出湯口7とがタンク部2Bに接合されている。また、チューブ2の積層方向の両端側には、それぞれ補強用のプレート8が接合されている。
【0034】
タンク部2Bより厚み幅が薄い扁平管部2Aでは、隣接する扁平管部2A同士の間に略一定の幅を有する扁平な空間が形成される。この空間は燃焼ガスが通過する燃焼ガス通路11(本発明の気体通路)となっており、この燃焼ガス通路11にはアウタフィン(本発明のフィン)3が配置される。
【0035】
アウタフィン3は、図2(a)に示すように、伝熱性に優れる金属(例えば、ステンレス、アルミニウム等)製の薄板材を凹凸状に折り曲げて形成され、その凹凸空間を燃焼ガスが上方から下方へ流れるように配置され、扁平管部2A(チューブ2)を形成する伝熱プレート4の外壁面4cにろう付けされる。このように凹凸状に折り曲げられたアウタフィン3によって、燃焼ガス通路11は複数個の細流路11aに区画される。
【0036】
なお、アウタフィン3の凹凸状に折り曲げられた壁面のうち、チューブ2の外壁面4cと略平行に配され、この外壁面4cにろう付けされる壁面は第1の壁面3Aとなっており、また、アウタフィン3の凹凸状に折り曲げられた壁面のうち、第1の壁面3Aと交差する側壁面は第2の壁面3Bとなっている。
【0037】
このアウタフィン3の第1の壁面3Aには、図1(a)及び図2(a)に示すように、燃焼ガス通路11に配されるアウタフィン3のほぼ全域にわたって、隙間δをもって離散的に複数個の切り起こし片(以下、ウイングと呼ぶ)10が設けられている。
【0038】
ウイング10は、ここでは三角形の一辺を残してアウタフィン3の第1の壁面3Aから切り起こされており、燃焼ガス通路11中に突出する突出部となっている。なお、ウイング10は、第1の壁面3Aからの高さ(突出量)が、燃焼ガス流れ下流側となるにつれて高くなるような向きで配置される。
【0039】
ウイング10は、燃焼ガスの流れ方向に対し、所定の角度で傾斜して設けられており、アウタフィン3の上下方向に連続する2個のウイング10a、10bは、図2(b)に示すように、燃焼ガスの流れ方向に対する傾斜方向が異なるように切り起こされている。つまり、図2(b)に示す上側のウイング10a(本発明の第1突出部)は、三角形の右側の一辺を残してフィン表面から切り起こされているのに対し、下側のウイング10b(本発明の第2突出部)は、三角形の左側の一辺を残してフィン表面から切り起こされている。よって、ウイング10は燃焼ガスの流れ方向に対して交互に傾斜角度が異なる千鳥配列となっている。なお、ウイング10の高さおよび幅は、各燃焼ガス流路を塞がない高さおよび幅となっている。
【0040】
次に、本実施形態の作用及び効果を説明する。
【0041】
給湯水は、熱交換器1の給湯口6から各チューブ2の一方のタンク部2Bへ流入し、その一方のタンク部2Bから扁平管部2Aに形成される流水通路を流れて他方のタンク部2Bへ流入し、その他方のタンク部2Bから出湯口7を通って流出する。 一方、燃焼ガスは、図3に示すように、熱交換器1の上方から下方へ向かって流れ、熱交換器1を通過する際に給湯水との間で熱交換を行い、給湯水を加熱する。この時、燃焼ガスは、少なくとも熱交換器1の出口側で露点温度以下(例えば30〜50℃)まで温度低下して、内部に含まれる水蒸気は凝縮する。即ち、この熱交換器1は、燃焼ガスの顕熱だけでなく、燃焼ガスが凝縮する際に放出される凝縮潜熱をも吸収して給湯水を加熱することができる。
【0042】
本発明においては、上記のように生成される凝縮水の排出を効果的に行うところに特徴部を持たせている。
【0043】
まず、燃焼ガスから凝縮される凝縮水は、図11(a)に示すように、アウタフィン3の第1の壁面3Aに細かな液滴として生成され、自重によって順次垂れ落ちていく。そして、この凝縮水は、一旦、ウイング10に積極的に集められる。即ち、ウイング10の表面近傍においては燃焼ガスの流速が低下するので、垂れ落ちてくる細かな液滴をその表面張力によってウイング10に集合させることができる訳である。なお、ウイング10の下側表面近傍に生成される凝縮水も表面張力によって集められる(図11(a)中の白矢印)。
【0044】
この時、燃焼ガスは、ウイング10の上流側における突出量の小さい領域を通過することが可能であり(図11中のア)、燃焼ガスと給湯水との熱交換が滞ることは無く、ウイング10に対して上流、下流側(上、下側)となる領域においては、凝縮水の生成が継続される。
【0045】
そして、図11(b)に示すように、ウイング10に集まった凝縮水の自重と燃焼ガスの風圧とによる下向きの力が、ウイング10における凝縮水の表面張力を上回った時点で、凝縮水は一気に下方に落とされる(図11(b)中のハッチング矢印)。尚、図11に示したウイング10のさらに下流側(下側)に位置するウイング(図示せず)においては、上記のように落下してくる凝縮水がさらに集合され、再び落下し、以下、さらに下流側(下側)に向けて繰り返されることになる。
【0046】
このように、ウイング10に凝縮水を集合させ、この集合した凝縮水を順次落下させていくというサイクルを繰り返すことにより、従来のように凝縮水が気体通路11の広い領域において付着したり停滞したりすることを防止できる。よって、凝縮水による熱抵抗や、通風抵抗の増化を防止でき、熱交換器1の熱交換効率の悪化を防止することができる。
【0047】
ここでは、ウイング10を燃焼ガスの流れ方向において隙間δをもって離散的に複数設けているので、凝縮水の付着や停滞を燃焼ガスの流れ方向全体に渡ってバランス良く防止することができる。
【0048】
また、複数のウイング10を燃焼ガスの流れ方向にその傾斜角度が交互に異なるように千鳥配列としているので、燃焼ガスの流れに交差する方向に対して、ウイング10の突出量の小さい側の位置が異なるように配置できる。そして、燃焼ガスは主に突出量の小さい側を通過して、規則正しい蛇行流れを形成できる。よって、気体通路11に対して燃焼ガスを均等に流すことができ、熱交換効率を低下させることが無い。
【0049】
また、ウイング10をアウタフィン3の第1の壁面3Aに切り起こしによって形成されるようにしているので、ウイング10を容易に加工することができる。そして、燃焼ガスおよび給湯水の温度差が最大となるチューブ2の外壁面4cに生成される凝縮水をウイング10に導きやすくなる。なお、ウイング10を切り起こす際に形成されるフィン表面の開口部10cをチューブ2の外壁面4cによって塞ぐことができ、燃焼ガスの流れを乱すことが無い。
【0050】
また、ウイング10を三角形状にしているので、燃焼ガスの下流側に向けて突出量が大きくなる突出部を容易に形成できる。
【0051】
また、本実施形態では、アウタフィン3として、薄板状の部材を凹凸状に折り曲げ形成したフィンを用いるため、オフセットフィンなどに比べて細かいピッチのフィンを製造しやすく、フィンの放熱面積を容易に拡大することができる。
【0052】
また、付随的に燃焼ガス通路11表面に付着する凝縮水の量を低減させることができるので、チューブ2およびウイング10(アウタフィン3)が早期に腐食してしまうことを抑制することができる。
【0053】
なお、上記第1実施形態の変形例1として、複数のウイング10は、図12に示すように、燃焼ガスの流れ方向から見た時に、互いに重なるように設けてやれば、燃焼ガス流れの均一化をより一層高めることができる。
【0054】
また、上記第1実施形態の変形例2として、図13に示すように、三角形状に形成されるウイング10の頂点は、鈍角と成るように多角形状にしたり、滑らかな曲線で形成するようにしても良く、これにより切り起こし成形(プレス成形)をさらに容易にすることができる。
【0055】
(第2実施形態)
本発明の第2実施形態を図14に示す。第2実施形態は、上記第1実施形態に対して、突出部をチューブ2に形成したものとしている。ここでは、突出部としてチューブ2を構成する伝熱プレート4A、4Bの外壁面4cにおいて外側に凸状と成る打出し部4dとしている。
【0056】
これにより、上記第1実施形態と同様の効果を得ることができる。また、上記第1実施形態のようにアウタフィン3に切り起こし加工を追加してウイング10(突出部)を形成するものに比べて、チューブ2の伝熱プレート4A、4Bのプレス成形時に同時に打出し部4dを形成でき、安価な対応が可能となる。
【0057】
(その他の実施形態)
上記第1実施形態では、アウタフィン3を切り起こすことによってウイング10を形成した実施例について述べたが、例えば、ウイング10を別部品にて形成し、凹凸状に折り曲げられたアウタフィン3にろう付けなどの手段によって接合してもよい。さらに、ウイング10を第1の壁面3Aに形成した実施例について述べたが、第2の壁面3Bにウイング10を形成した構造としてもよい。
【0058】
また、上記実施形態では本発明の熱交換器1を給湯器用に適用したものとして説明したが、これに限らず、その他にも例えば冷凍サイクル内に配設される蒸発器等に適用するようにしても良い。
【図面の簡単な説明】
【図1】(a)は図3におけるA−A部を示す断面図、(b)は(a)のF部(チューブの巻締め部)を示す拡大断面図である。
【図2】(a)はアウタフィンの外観を示す斜視図、(b)はウイングの形状を示すろう付け面の正面図である。
【図3】給湯器用熱交換器を示す正面図である。
【図4】給湯器用熱交換器を示す平面図である。
【図5】給湯器用熱交換器を示す側面図である。
【図6】第1の伝熱プレートを示す三面図である。
【図7】第2の伝熱プレートを示す三面図である。
【図8】図6におけるB−B部を示す断面図である。
【図9】図6におけるE−E部を示す断面図である。
【図10】図6における、(a)はC−C部を示す断面図、(b)はD−D部を示す断面図である。
【図11】ウイングの要部拡大図であり、(a)は凝縮水がウイングに集合する挙動を示し、(b)は集合した凝縮水が落下する挙動を示すモデル図である。
【図12】第1実施形態における変形例1を示す(a)はアウタフィンの外観斜視図、(b)は(a)のG方向からの矢視図である。
【図13】第1実施形態における変形例2を示す(a)はウイングのバリエーション1、(b)はウイングのバリエーション2の平面図である。
【図14】第2実施形態における突出部を示す(a)は正面図、(b)は(a)のH方向からの矢視図である。
【図15】従来技術における凝縮水の挙動を示すモデル図である。
【図16】従来技術におけるフィンを細密化した場合の凝縮水の挙動を示すモデル図である。
【符号の説明】
1 給湯器用熱交換器
2 チューブ
2A 扁平管部(流体通路)
3 アウタフィン(フィン)
3A 第1の壁面
3B 第2の壁面
4c 外壁面
4d 打出し部
10 切り起こし片(ウイング、突出部)
10a 上側のウイング(第1突出部)
10b 下側のウイング(第2突出部)
11 燃焼ガス通路(気体通路)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a heat exchanger which is preferably applied to a heat exchanger for a water heater which is mainly incorporated in a water heater or the like, exchanges heat with a high-temperature gas containing water vapor, and heats hot water.
[0002]
[Prior art]
As a conventional heat exchanger for a water heater, for example, in the invention described in Patent Document 1, a thin plate-like fin is provided on the outer wall surface of a tube through which the hot water flows, thereby promoting heat exchange between the hot water and the combustion gas. I have.
[0003]
[Patent Document 1]
JP 2000-146305 A
[Problems to be solved by the invention]
In recent years, there has been a strong demand for improved performance of heat exchangers, and as one of the measures, measures to reduce the size of fins can be considered.
[0005]
However, the combustion gas exchanges heat with hot water to lower the temperature, but when the temperature of the combustion gas becomes lower than the dew point temperature, water vapor in the combustion gas condenses to generate condensed water. At this time, as shown in FIG. 15, the condensed water forms a thick liquid film and adheres (accumulates) over a wide area of the fin 3. Alternatively, depending on the miniaturization of the fins 3, the condensed water completely spreads the film between the fins 3 and stagnates, as shown in FIG. And it becomes the thermal resistance which inhibits the transfer of heat from the combustion gas to the fins 3. Further, when the flow path of the combustion gas is blocked by the condensed water, the ventilation resistance increases. As a result, heat exchange efficiency deteriorates.
[0006]
The present invention has been made based on the above points, and prevents the condensed water generated at the time of heat exchange from adhering and stagnating to the fins and preventing the heat exchange efficiency of the heat exchanger from deteriorating. Aim.
[0007]
[Means for Solving the Problems]
The present invention employs the following technical means to achieve the above object.
[0008]
It should be noted that reference numerals in parentheses of each unit shown below are examples showing the correspondence with specific units described in the embodiments described later.
[0009]
According to the first aspect of the present invention, a plurality of flat tubes (2) are stacked and arranged, and a gas passage (11) formed between adjacent tubes (2) is moved downward from above. A high-temperature gas containing water vapor flows, and a lower-temperature fluid than the high-temperature gas flows through the fluid passage (2A) in the tube (2). A heat exchanger for heating a fluid of the type described above, wherein the heat exchanger is disposed in the gas passage (11) so as to be inclined with respect to the direction of the flow of the high-temperature gas, and the protruding amount thereof increases toward the downstream of the flow of the high-temperature gas. A protrusion (10) is provided.
[0010]
Condensed water condensed from the high-temperature gas in the gas passage (11) is first generated as fine droplets, and drops down sequentially by its own weight. In the present invention, this condensed water can be once collected positively in the protruding portion (10). That is, since the flow velocity of the high-temperature gas is reduced near the surface of the projection (10), fine droplets that hang down can be collected in the projection (10) by the surface tension.
[0011]
At this time, the high-temperature gas can pass through the region where the amount of protrusion is small on the upstream side of the protruding portion (10), and the heat exchange between the high-temperature gas and the low-temperature fluid does not stop. The generation of condensed water is continued in regions upstream and downstream (upper and lower) with respect to (10).
[0012]
Then, when the downward force caused by the own weight of the condensed water collected at the protrusion (10) and the wind pressure of the high-temperature gas exceeds the surface tension of the condensed water at the protrusion (10), the condensed water is immediately lowered. Can be dropped.
[0013]
By repeating the cycle in which the condensed water is collected on the protruding portion (10) and the collected condensed water is sequentially dropped, the condensed water adheres to the gas passage (11) in a wide area as in the related art. And stagnation can be prevented. Therefore, an increase in heat resistance and ventilation resistance due to condensed water can be prevented, and deterioration of the heat exchange efficiency of the heat exchanger (1) can be prevented.
[0014]
In addition, since the amount of condensed water adhering to the surface of the gas passage (11) can be reduced, it is possible to prevent the gas passage (11) and the protrusion (10) from being corroded at an early stage. it can.
[0015]
According to the second aspect of the present invention, since the plurality of protrusions (10) are discretely provided with the gap (δ) in the flow direction of the high-temperature gas, the protrusions (10) are provided in the gas passage (11). The effects described in claim 1 can be provided in a well-balanced manner over the entire high-temperature gas flow direction.
[0016]
The projecting portion (10) is provided on the outer wall surface (4c) of the tube (2) corresponding to the gas passage (11) and has an outwardly projecting portion (10). 4d).
[0017]
Further, as in the invention according to claim 4, between adjacent tubes (2), the fins (4) that are in thermal contact with the outer wall surface (4c) of the tube (2) to improve heat transfer performance. 3) may be provided, and the protruding portion (10) may be provided so as to protrude from the surface of the fin (3) into the high-temperature gas flow.
[0018]
According to the fifth aspect of the present invention, the projecting portion (10) has a first projecting portion (10a) inclined at a predetermined angle with respect to the flow direction of the high-temperature gas, and the first projecting portion (10a) is inclined with respect to the flow direction of the high-temperature gas. It is characterized by having a second projection (10b) inclined at a different angle from the one projection (10a).
[0019]
This allows the protrusion (10) to be disposed such that the position on the side where the amount of protrusion of the protrusion is small is different from the direction intersecting the flow of the high-temperature gas. Then, the high-temperature gas mainly passes through the side having a small protrusion amount, and can form a meandering flow. Therefore, the high-temperature gas can flow evenly through the gas passage (11), and the heat exchange efficiency does not decrease.
[0020]
Furthermore, if the first protrusions (10a) and the second protrusions (10b) are provided alternately in the direction of the flow of the high-temperature gas as in the invention described in claim 6, the high-temperature gas can be regularly arranged. A meandering flow can be formed, and the effect according to claim 5 can be further improved.
[0021]
Further, in contrast to the fifth and sixth aspects of the present invention, as in the seventh aspect of the present invention, the first protruding portion (10a) and the second protruding portion (10b) are provided in a direction in which a high-temperature gas flows. From the viewpoint, they may overlap each other.
[0022]
According to the fourth aspect of the present invention, as in the eighth aspect of the present invention, the projecting portion (10) is formed by being cut and raised from the surface of the fin (3). The part (10) can be easily processed.
[0023]
In the ninth aspect of the present invention, the fin (3) intersects the first wall surface (3A) joined to the outer wall surface (4c) of the tube (2) and the first wall surface (3A). And a second wall surface (3B), and the projection (10) is formed on the first wall surface (3A).
[0024]
In the heat exchanger (1), condensed water is easily generated on the outer wall surface (4c) of the tube (2) where the temperature difference between the high-temperature gas and the low-temperature fluid is maximized. Therefore, by forming the protruding portion (10) on the first wall surface (3A) joined to the outer wall surface (4c), it is easy to guide condensed water to the protruding portion (10). The opening (10c) on the surface of the fin (3) formed when the protrusion (10) is cut and raised can be closed by the outer wall surface (4c) of the tube (2), which disturbs the flow of the high-temperature gas. There is nothing.
[0025]
Further, as in the tenth aspect of the present invention, if the cut-and-raised protrusion (10) is formed in a substantially triangular shape, the protrusion (10) can be easily formed. As in the invention described in Item 11, if the vertices of the protrusion (10) formed in a substantially triangular shape are formed so as to have an obtuse angle or a smooth curve, cut-and-raise forming (press forming) is further performed. It will be easier.
[0026]
BEST MODE FOR CARRYING OUT THE INVENTION
(1st Embodiment)
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS.
[0027]
3 is a front view of the heat exchanger 1, FIG. 4 is a plan view of the heat exchanger 1, and FIG. 5 is a side view of the heat exchanger 1.
[0028]
The heat exchanger 1 of the present embodiment is used in a water heater to perform heat exchange between hot water (low temperature fluid of the present invention) and combustion gas containing steam (high temperature gas of the present invention) (of course). However, the temperature of the hot water is lower than the combustion gas, and the hot water is heated by the combustion gas.) As shown in FIGS. 4 and 5, a plurality of flat tubes 2 are laminated together with the outer fins 3. This is a so-called Dron cup type heat exchanger 1 which is manufactured by integral brazing after the whole is assembled.
[0029]
The tube 2 is formed by combining the two heat transfer plates 4 (4A, 4B) shown in FIGS. 6 and 7, and has a flat tube portion inside which a U-shaped flowing water passage (fluid passage of the present invention) is formed. 2A (see FIG. 4) and a pair of tank portions 2B (see FIG. 4) communicating with both ends of the flowing water passage are provided, and a communication port 2b is opened in the tank portion 2B.
[0030]
The two heat transfer plates 4 have substantially the same shape except that the first heat transfer plate 4A (see FIG. 6) is provided with a winding-up portion 4a on the periphery. As shown in FIG. 1B, the two heat transfer plates 4 are formed by folding back the tightened portion 4a of the first heat transfer plate 4A from the inner surface to the outer surface of the second heat transfer plate 4B. The second heat transfer plate 4B is wound and assembled so as to sandwich the end of the second heat transfer plate 4B from both sides, and the contact surfaces 4b of both are brazed.
[0031]
The tank portion 2B is provided with a greater thickness and width than the flat tube portion 2A, and the outer wall surface of the heat transfer plate 4 forming the tank portion 2B has a flat surface 2c (see FIG. 8 and FIG. 10) are provided in an annular shape. In addition, the cross-sectional shape (BB cross section, CC cross section, DD cross section) of the heat transfer plate forming the tank portion 2B and the cross-sectional shape of the heat transfer plate 4 forming the flat tube portion 2A. (EE section) are shown in FIGS.
[0032]
As shown in FIG. 4 and FIG. 5, the plurality of tubes 2 are stacked by connecting the tank portions 2B to each other, and the flat portions 2c provided around the communication port 2b are joined to each other. Thereby, the flowing water passages of the tubes 2 communicate with each other through the communication port 2b opened to the tank portion 2B. Note that an inner fin 5 may be inserted into the tube 2 to increase the heat transfer area as shown in FIG.
[0033]
As shown in FIG. 5, a hot water supply port 6 and a hot water supply port 7 are joined to the tank portion 2B of the tube 2 arranged on one end side in the stacking direction. Reinforcing plates 8 are joined to both ends of the tube 2 in the laminating direction.
[0034]
In the flat tube portion 2A having a smaller thickness than the tank portion 2B, a flat space having a substantially constant width is formed between the adjacent flat tube portions 2A. This space is a combustion gas passage 11 (gas passage of the present invention) through which the combustion gas passes, and an outer fin (fin of the present invention) 3 is arranged in the combustion gas passage 11.
[0035]
As shown in FIG. 2A, the outer fin 3 is formed by bending a thin plate made of a metal (for example, stainless steel, aluminum, or the like) having excellent heat conductivity into an uneven shape, and a combustion gas flows through the uneven space from above to below. And brazed to the outer wall surface 4c of the heat transfer plate 4 forming the flat tube portion 2A (tube 2). The combustion gas passage 11 is divided into a plurality of narrow flow passages 11a by the outer fins 3 which are bent in an uneven shape as described above.
[0036]
In addition, of the wall surfaces of the outer fin 3 that are bent in an uneven shape, the wall surface is disposed substantially parallel to the outer wall surface 4c of the tube 2, and the wall surface brazed to the outer wall surface 4c is a first wall surface 3A. Of the wall surfaces of the outer fin 3 that are bent into an uneven shape, the side wall surface that intersects the first wall surface 3A is the second wall surface 3B.
[0037]
As shown in FIGS. 1 (a) and 2 (a), a plurality of discretely spaced gaps δ are formed on the first wall 3A of the outer fin 3 over substantially the entire area of the outer fin 3 arranged in the combustion gas passage 11. A plurality of cut-and-raised pieces (hereinafter referred to as wings) 10 are provided.
[0038]
Here, the wing 10 is cut and raised from the first wall surface 3 </ b> A of the outer fin 3 except for one side of the triangle, and serves as a protruding portion that protrudes into the combustion gas passage 11. In addition, the wing 10 is arranged in such a direction that the height (projection amount) from the first wall surface 3A becomes higher toward the downstream side of the combustion gas flow.
[0039]
The wings 10 are provided to be inclined at a predetermined angle with respect to the flow direction of the combustion gas, and two wings 10a and 10b which are continuous in the vertical direction of the outer fin 3 are arranged as shown in FIG. , Which are cut and raised so as to have different inclination directions with respect to the flow direction of the combustion gas. That is, the upper wing 10a (the first protrusion of the present invention) shown in FIG. 2B is cut and raised from the fin surface while leaving one side on the right side of the triangle, whereas the lower wing 10b ( The second projection of the present invention) is cut and raised from the fin surface except for one side on the left side of the triangle. Therefore, the wings 10 have a staggered arrangement in which the inclination angles are alternately different from the flow direction of the combustion gas. In addition, the height and width of the wing 10 are height and width which do not block each combustion gas flow path.
[0040]
Next, the operation and effect of the present embodiment will be described.
[0041]
Hot water flows from the hot water supply port 6 of the heat exchanger 1 into one tank portion 2B of each tube 2, flows from one tank portion 2B through a flowing water passage formed in the flat tube portion 2A, and flows into the other tank portion. 2B, and flows out from the other tank portion 2B through the tap hole 7. On the other hand, as shown in FIG. 3, the combustion gas flows downward from above the heat exchanger 1 and exchanges heat with hot water when passing through the heat exchanger 1 to heat the hot water. I do. At this time, the temperature of the combustion gas is reduced to a temperature equal to or lower than the dew point temperature (for example, 30 to 50 ° C.) at least on the outlet side of the heat exchanger 1, and the steam contained therein is condensed. That is, the heat exchanger 1 can heat the hot water by absorbing not only the sensible heat of the combustion gas but also the latent heat of condensation released when the combustion gas is condensed.
[0042]
In the present invention, a characteristic portion is provided in that the condensed water generated as described above is effectively discharged.
[0043]
First, the condensed water condensed from the combustion gas is generated as fine droplets on the first wall 3A of the outer fin 3 as shown in FIG. Then, the condensed water is once collected in the wing 10 positively. That is, since the flow velocity of the combustion gas decreases near the surface of the wing 10, fine droplets that hang down can be collected on the wing 10 by the surface tension. The condensed water generated near the lower surface of the wing 10 is also collected by the surface tension (white arrow in FIG. 11A).
[0044]
At this time, the combustion gas can pass through a region where the amount of protrusion is small on the upstream side of the wing 10 (A in FIG. 11), and the heat exchange between the combustion gas and the hot water is not interrupted. The generation of condensed water is continued in regions upstream and downstream (upper and lower) with respect to 10.
[0045]
Then, as shown in FIG. 11B, when the downward force caused by the weight of the condensed water collected on the wing 10 and the wind pressure of the combustion gas exceeds the surface tension of the condensed water on the wing 10, It is dropped at once (hatched arrow in FIG. 11B). In the wing (not shown) located further downstream (lower side) of the wing 10 shown in FIG. 11, the condensed water that has fallen as described above is further collected and falls again, and thereafter, It will be repeated further downstream (downward).
[0046]
In this way, by repeating the cycle of collecting the condensed water on the wing 10 and sequentially dropping the collected condensed water, the condensed water adheres or stagnates in a wide area of the gas passage 11 as in the related art. Can be prevented. Therefore, an increase in heat resistance and ventilation resistance due to condensed water can be prevented, and deterioration of the heat exchange efficiency of the heat exchanger 1 can be prevented.
[0047]
Here, since a plurality of wings 10 are provided discretely with a gap δ in the flow direction of the combustion gas, adhesion and stagnation of condensed water can be prevented with good balance over the entire flow direction of the combustion gas.
[0048]
Further, since the plurality of wings 10 are arranged in a staggered manner so that the inclination angles thereof are alternately different in the flow direction of the combustion gas, the position on the side where the protrusion amount of the wings 10 is smaller in the direction intersecting the flow of the combustion gas Can be arranged differently. Then, the combustion gas mainly passes through the side having a small protrusion amount, and can form a regular meandering flow. Therefore, the combustion gas can flow evenly through the gas passage 11, and the heat exchange efficiency does not decrease.
[0049]
Further, since the wing 10 is formed by cutting and raising the first wall surface 3A of the outer fin 3, the wing 10 can be easily processed. Then, the condensed water generated on the outer wall surface 4c of the tube 2 at which the temperature difference between the combustion gas and the hot water becomes maximum is easily guided to the wing 10. Note that the opening 10c on the fin surface formed when the wing 10 is cut and raised can be closed by the outer wall surface 4c of the tube 2, so that the flow of the combustion gas is not disturbed.
[0050]
Further, since the wing 10 is formed in a triangular shape, it is possible to easily form a projecting portion having a larger projecting amount toward the downstream side of the combustion gas.
[0051]
Further, in the present embodiment, as the outer fins 3, fins formed by bending a thin plate-like member into an uneven shape are used, so that fins having a finer pitch can be easily manufactured as compared with offset fins and the like, and the heat radiation area of the fins can be easily increased. can do.
[0052]
In addition, since the amount of condensed water adhering to the surface of the combustion gas passage 11 can be reduced, it is possible to prevent the tube 2 and the wings 10 (outer fins 3) from corroding at an early stage.
[0053]
As a first modification of the first embodiment, if the plurality of wings 10 are provided so as to overlap each other when viewed from the flow direction of the combustion gas as shown in FIG. Can be further enhanced.
[0054]
As a second modification of the first embodiment, as shown in FIG. 13, the vertices of the wing 10 formed in a triangular shape may be formed in a polygonal shape so as to form an obtuse angle, or may be formed in a smooth curve. This may further facilitate cut-and-raise molding (press molding).
[0055]
(2nd Embodiment)
FIG. 14 shows a second embodiment of the present invention. The second embodiment is different from the first embodiment in that a protrusion is formed on the tube 2. Here, the projecting portion 4d is formed as a projecting portion having an outwardly convex shape on the outer wall surface 4c of the heat transfer plates 4A and 4B constituting the tube 2 as the projecting portion.
[0056]
Thereby, the same effect as in the first embodiment can be obtained. Further, compared to the case where the outer fins 3 are cut and raised to form the wings 10 (projections) as in the first embodiment, the heat transfer plates 4A and 4B of the tube 2 are simultaneously punched during press forming. The portion 4d can be formed, and inexpensive support is possible.
[0057]
(Other embodiments)
In the first embodiment, the example in which the wings 10 are formed by cutting and raising the outer fins 3 has been described. However, for example, the wings 10 are formed as separate components, and the outer fins 3 are brazed to the uneven fins. May be joined by the above-mentioned means. Furthermore, although the embodiment in which the wing 10 is formed on the first wall surface 3A has been described, a structure in which the wing 10 is formed on the second wall surface 3B may be adopted.
[0058]
In the above embodiment, the heat exchanger 1 of the present invention has been described as being applied to a water heater. However, the present invention is not limited to this, and may be applied to, for example, an evaporator disposed in a refrigeration cycle. May be.
[Brief description of the drawings]
FIG. 1A is a cross-sectional view showing an AA part in FIG. 3, and FIG. 1B is an enlarged cross-sectional view showing an F part (a tube-tightened part) of FIG.
FIG. 2A is a perspective view showing an appearance of an outer fin, and FIG. 2B is a front view of a brazing surface showing a shape of a wing.
FIG. 3 is a front view showing a heat exchanger for a water heater.
FIG. 4 is a plan view showing a heat exchanger for a water heater.
FIG. 5 is a side view showing a heat exchanger for a water heater.
FIG. 6 is a three-view drawing showing a first heat transfer plate.
FIG. 7 is a three-view drawing showing a second heat transfer plate.
FIG. 8 is a sectional view showing a BB section in FIG. 6;
FIG. 9 is a sectional view showing an EE section in FIG. 6;
10A is a cross-sectional view showing a CC section, and FIG. 6B is a cross-sectional view showing a DD section.
11 is an enlarged view of a main part of the wing, in which (a) shows a behavior in which condensed water collects on the wing, and (b) is a model diagram showing a behavior in which the collected condensed water falls.
FIGS. 12A and 12B show a first modification of the first embodiment, in which FIG. 12A is an external perspective view of an outer fin, and FIG. 12B is a view from the direction of arrow G in FIG.
13A and 13B are plan views of Variation 1 of the wing, and FIG. 13B is a plan view of Variation 2 of the wing, showing Modification 2 of the first embodiment.
14A is a front view showing a protruding portion according to the second embodiment, and FIG. 14B is a view taken in the direction of arrow H in FIG.
FIG. 15 is a model diagram showing the behavior of condensed water in a conventional technique.
FIG. 16 is a model diagram showing the behavior of condensed water when fins are made finer in the prior art.
[Explanation of symbols]
1 Heat exchanger for water heater 2 Tube 2A Flat tube (fluid passage)
3 Outer fins (fins)
3A first wall surface 3B second wall surface 4c outer wall surface 4d embossed portion 10 cut-and-raised piece (wing, protrusion)
10a Upper wing (first protrusion)
10b Lower wing (second protrusion)
11 Combustion gas passage (gas passage)

Claims (11)

積層配置される複数本の扁平形状のチューブ(2)を有し、
隣接する前記チューブ(2)間に形成される気体通路(11)を上方から下方へ向かって水蒸気を含む高温の気体が流れ、前記チューブ(2)内の流体通路(2A)に前記高温の気体より低温の流体を流通させて、前記高温の気体から顕熱のみならず凝縮潜熱をも回収して前記低温の流体を加熱する熱交換器であって、
前記気体通路(11)中には、前記高温の気体流れ方向に対して傾斜するよう配置され、前記高温の気体流れ下流側となるにつれて自身の突出量が大きくなる突出部(10)が設けられていることを特徴とする熱交換器。
It has a plurality of flat tubes (2) that are stacked and arranged,
A high-temperature gas containing water vapor flows downward from above in a gas passage (11) formed between the adjacent tubes (2), and flows into the fluid passage (2A) in the tube (2). A heat exchanger that circulates a lower temperature fluid and heats the low temperature fluid by collecting not only sensible heat but also latent heat of condensation from the high temperature gas,
A projection (10) is provided in the gas passage (11) so as to be inclined with respect to the direction of the flow of the high-temperature gas, and the amount of protrusion of the projection is increased toward the downstream side of the flow of the high-temperature gas. A heat exchanger.
前記突出部(10)は、前記高温の気体の流れ方向において隙間(δ)を有して離散的に複数個設けられていることを特徴とする請求項1に記載の熱交換器。2. The heat exchanger according to claim 1, wherein a plurality of the protrusions are provided discretely with a gap in the flow direction of the high-temperature gas. 3. 前記突出部(10)は、前記気体通路(11)に対応する前記チューブ(2)の外壁面(4c)に設けられ、外側に凸状と成る打出し部(4d)として形成されていることを特徴とする請求項1または請求項2のいずれかに記載の熱交換器。The projecting portion (10) is provided on an outer wall surface (4c) of the tube (2) corresponding to the gas passage (11), and is formed as an outwardly projecting portion (4d). The heat exchanger according to claim 1, wherein: 隣接する前記チューブ(2)どうしの間には、前記チューブ(2)の外壁面(4c)に熱的に接触し、熱伝達性能を向上させるフィン(3)が設けられており、
前記突出部(10)は、前記フィン(3)の表面から前記高温の気体流れに突出して設けられていることを特徴とする請求項1または請求項2のいずれかに記載の熱交換器。
Fins (3) are provided between the adjacent tubes (2) to thermally contact the outer wall surface (4c) of the tubes (2) to improve heat transfer performance.
The heat exchanger according to claim 1, wherein the projecting portion is provided to project from the surface of the fin into the high-temperature gas flow.
前記突出部(10)は、前記高温の気体の流れ方向に対して所定の角度で傾斜した第1突出部(10a)と、前記高温の気体の流れ方向に対して第1突出部(10a)とは異なる角度で傾斜した第2突出部(10b)とを有することを特徴とする請求項1〜請求項4のいずれかに記載の熱交換器。The protrusion (10) has a first protrusion (10a) inclined at a predetermined angle with respect to the flow direction of the high-temperature gas and a first protrusion (10a) with respect to the flow direction of the high-temperature gas. The heat exchanger according to any one of claims 1 to 4, further comprising a second projection (10b) inclined at an angle different from that of the second projection (10b). 前記第1突出部(10a)および前記第2突出部(10b)は、前記高温の気体流れ方向において交互に設けられていることを特徴とする請求項5に記載の熱交換器。The heat exchanger according to claim 5, wherein the first projections (10a) and the second projections (10b) are provided alternately in the high-temperature gas flow direction. 前記第1突出部(10a)および前記第2突出部(10b)は、前記高温の気体流れ方向から見て、互いに重なるように設けられていることを特徴とする請求項5または請求項6のいずれかに記載の熱交換器。The said 1st protrusion part (10a) and the said 2nd protrusion part (10b) are provided so that it may mutually overlap, when seen from the said high temperature gas flow direction. The heat exchanger according to any one of the above. 前記突出部(10)は、前記フィン(3)の表面から切り起こされて形成されていることを特徴とする請求項4に記載の熱交換器。Heat exchanger according to claim 4, characterized in that the projections (10) are cut and raised from the surface of the fins (3). 前記フィン(3)は、前記チューブ(2)の前記外壁面(4c)に接合される第1の壁面(3A)と、この第1の壁面(3A)と交差する第2の壁面(3B)とを有し、
前記突出部(10)は、前記第1の壁面(3A)に形成されていることを特徴とする請求項4〜請求項8のいずれかに記載の熱交換器。
The fin (3) has a first wall surface (3A) joined to the outer wall surface (4c) of the tube (2), and a second wall surface (3B) intersecting the first wall surface (3A). And having
The heat exchanger according to any one of claims 4 to 8, wherein the protrusion (10) is formed on the first wall surface (3A).
前記切り起こされる前記突出部(10)は、略三角形状に形成されていることを特徴とする請求項8または請求項9のいずれかに記載の熱交換器。The heat exchanger according to claim 8, wherein the protruding portion (10) cut and raised is formed in a substantially triangular shape. 前記略三角形状に形成される前記突出部(10)の頂点は、鈍角あるいは滑らかな曲線状に形成されていることを特徴とする請求項10に記載の熱交換器。The heat exchanger according to claim 10, wherein the apex of the protrusion (10) formed in the substantially triangular shape is formed in an obtuse angle or a smooth curved shape.
JP2002372936A 2002-04-10 2002-12-24 Heat exchanger Expired - Fee Related JP4178944B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002372936A JP4178944B2 (en) 2002-04-10 2002-12-24 Heat exchanger
DE2003116044 DE10316044A1 (en) 2002-04-10 2003-04-04 Heat exchanger, for heating water, has flat tubes forming fluid channels in a stack around gas channels, for flows of gas with a moisture content with gas channel projections to prevent condensation adhering to the walls

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002107854 2002-04-10
JP2002372936A JP4178944B2 (en) 2002-04-10 2002-12-24 Heat exchanger

Publications (2)

Publication Number Publication Date
JP2004003802A true JP2004003802A (en) 2004-01-08
JP4178944B2 JP4178944B2 (en) 2008-11-12

Family

ID=28677634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002372936A Expired - Fee Related JP4178944B2 (en) 2002-04-10 2002-12-24 Heat exchanger

Country Status (2)

Country Link
JP (1) JP4178944B2 (en)
DE (1) DE10316044A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7267163B2 (en) 2004-05-27 2007-09-11 Denso Corporation Heat exchanger
KR101137031B1 (en) 2009-06-05 2012-04-19 가부시키가이샤 덴소 Cold-storage heat exchanger
JP2016080325A (en) * 2014-10-22 2016-05-16 カルソニックカンセイ株式会社 Heat exchanger
CN112119266A (en) * 2018-03-13 2020-12-22 里姆制造公司 Condensation reduction in water heaters

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2228615B1 (en) 2009-03-12 2018-04-25 MAHLE Behr GmbH & Co. KG Plate heat exchanger, in particular for heat recovery from exhaust gases of a motor vehicle
FR2995397B1 (en) * 2012-09-10 2014-08-22 Valeo Systemes Thermiques INTERCALAR OF HEAT EXCHANGER.

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7267163B2 (en) 2004-05-27 2007-09-11 Denso Corporation Heat exchanger
KR101137031B1 (en) 2009-06-05 2012-04-19 가부시키가이샤 덴소 Cold-storage heat exchanger
JP2016080325A (en) * 2014-10-22 2016-05-16 カルソニックカンセイ株式会社 Heat exchanger
CN112119266A (en) * 2018-03-13 2020-12-22 里姆制造公司 Condensation reduction in water heaters

Also Published As

Publication number Publication date
JP4178944B2 (en) 2008-11-12
DE10316044A1 (en) 2003-10-23

Similar Documents

Publication Publication Date Title
JP2004144460A (en) Heat exchanger
JP2006322698A (en) Heat exchanger
CN101929767B (en) Heat exchanger and article storage device
CN101173841A (en) Cooling heat exchanger
US20070056719A1 (en) Heat exchanger for cooling
JP2016523350A (en) Fluid channel with performance enhancing features and devices incorporating the same
JP2001059690A (en) Heat exchanger
JP4079119B2 (en) Heat exchanger
JP2009204279A (en) Heat exchanger
EP2447660A2 (en) Heat Exchanger and Micro-Channel Tube Thereof
JP2004003802A (en) Heat exchanger
JP2001027484A (en) Serpentine heat-exchanger
JP2009121708A (en) Heat exchanger
JP6383942B2 (en) Heat exchanger
CN221403981U (en) Microchannel heat exchanger and air conditioner having the same
JP4147731B2 (en) Heat exchanger for cooling
JP2005315520A (en) Heat exchanger
JP2021085534A (en) Heat exchanger
JPH0755380A (en) Heat exchanger
JP2004317002A (en) Heat exchanger
JPH08166181A (en) Heat exchanger
JP2907864B2 (en) Heat pump type air conditioner indoor unit heat exchanger
JP4306158B2 (en) Heat exchanger
JP2005055013A (en) Heat exchanger
JP5940152B2 (en) Plate heat exchanger and refrigeration cycle apparatus equipped with the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080805

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080818

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees