[go: up one dir, main page]

JP2004022706A - Method for manufacturing ceramic multilayered substrate - Google Patents

Method for manufacturing ceramic multilayered substrate Download PDF

Info

Publication number
JP2004022706A
JP2004022706A JP2002173815A JP2002173815A JP2004022706A JP 2004022706 A JP2004022706 A JP 2004022706A JP 2002173815 A JP2002173815 A JP 2002173815A JP 2002173815 A JP2002173815 A JP 2002173815A JP 2004022706 A JP2004022706 A JP 2004022706A
Authority
JP
Japan
Prior art keywords
ceramic
heat treatment
temperature
substrate
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002173815A
Other languages
Japanese (ja)
Other versions
JP3994380B2 (en
Inventor
Kazuhiro Kusaka
日下 和宏
Hiroyuki Ito
伊藤 博之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2002173815A priority Critical patent/JP3994380B2/en
Publication of JP2004022706A publication Critical patent/JP2004022706A/en
Application granted granted Critical
Publication of JP3994380B2 publication Critical patent/JP3994380B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the planarity of the surface of a ceramic multilayered substrate. <P>SOLUTION: When the ceramic multilayered substrate is baked, the baking is divided into two stages. In the first baking, the ceramic multilayered substrate is baked without applying a load to the ceramic multilayered substrate. In the second baking, the ceramic multilayered substrate is baked while the ceramic multilayered substrate is pressurized, and the warpage or deformation of the substrate is corrected to improve planarity. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明が属する技術分野】
本発明は、グリーンシート積層法によるセラミック多層基板の製造方法に関し、特には反り、ゆがみといったセラミック多層基板の変形を抑制する製造方法に関する。
【0002】
【従来の技術】
プラスチックなどの樹脂材料と比べ放熱性、電気的特性等をはじめとして総合的に優れたセラミック基板は、半導体素子や他のチップ部品等を搭載する基板として注目され、近年、高機能化・高集積化を図るため、LTCC(Low temperature co−fired ceramics)技術により基板内に微細配線やコンデンサパターン等の導体パターンを含むセラミック多層基板としたものが多く利用されている。
導体パターンを構成する金属材料には安価で電気抵抗の低いAgやCuを主成分とするものが多く使用されているが、一般に低温焼結セラミック材料とでは焼成時の収縮特性が異なるため、両者を積層して同時に焼成すると基板に反りやゆがみが生じやすい。このような変形は、半導体素子や他のチップ部品との接続の信頼性に大きく影響する。
【0003】
【発明が解決しようとする課題】
従来、セラミック多層基板の反りや変形を抑制させる方法として以下の方法があった。
例えば、特開平9−312476号に開示の製造方法では、ガラスとセラミック粉末のフィラーとからなるセラミック材料をセラミックグリーンシートとし、このセラミックグリーンシートを積層した成形体を前記ガラスの軟化点以下の所定の温度範囲で焼成して予備焼成体とし、しかる後、この予備焼成体に荷重をかけて焼成するものであり、特公平2−25277号にはガラスの軟化点よりも高く、基板の焼成温度より低い温度範囲で予備焼成し、次に荷重をかけて本焼成を行う方法が開示され、どちらも荷重により強制的に反りを抑える方法である。
【0004】
これらの方法は、比較的低荷重で基板の変形を抑制できるため、よく利用される技術である。しかしこれらの方法では基板内に形成せれる導体パターンが、基板の面積に対して小さい形成面積の場合には効果があるが、コンデンサパターン等やグランドパターンといった大きな面積を有する導体パターンである場合には、変形を抑制しきれない問題があった。変形を抑制しようとして更に荷重をかけると、基板の均一な収縮を阻害したり、また本焼成前の予備焼成体は本焼成後のものと比べ、その機械的な強度は劣るものであって、過度な荷重は基板割れなどを発生させる要因となっていた。
そこで本発明ではこれらの問題を解決し、平坦度の高いセラミック多層基板の製造方法を提供することを目的とするものである。
【0005】
【課題を解決するための手段】
本発明は、セラミック材料をセラミックグリーンシートとするシート工程と、前記セラミックグリーンシートに銀又は銅を主成分とする金属材料でなる導体パターンを形成するパターン形成工程と、前記セラミックグリーンシートを複数積層して板状成形体とする積層工程と、前記板状成形体に加重せず、セラミック材料が焼結しかつ結晶化しない温度において熱処理し、前記導体パターンとセラミックグリーンシートとを一体焼結して板状焼結体とする第1の熱処理工程と、前記第1の熱処理工程を経た前記板状焼結体に加重し、導体パターン金属材料の融点以下で、かつ低温焼結セラミック材料の軟化点以上の温度で熱処理する第2の熱処理工程を有するセラミック多層基板の製造方法である
本発明においては、前記第2の熱処理工程における板状焼結体への加重、6.9kPa以上50.0kPa以下とすることが好ましい。そして、前記低温焼結セラミック材料をセラミックフィラーと600〜900℃点に軟化点を有する低融点ガラスより構成するのも好ましい。
【0006】
ここで言うセラミック材料の焼結とは、熱処理によりセラミック材料が緻密化した状態で、それ以上の温度でセラミック材料を熱処理しても、試料密度がほぼ飽和した状態を指す。具体的には、熱処理温度とセラミック材料の試料密度の関係を調べた時、図3においてA点で示されるように試料密度がほぼ飽和した状態をセラミック材料が焼結したとし、その時の温度を焼結温度と定義した。
【0007】
またここで言う結晶化とは、セラミック材料に含まれる低融点ガラスとセラミックフィラーとが反応し、新たな結晶相を析出することを指す。結晶相が析出するとセラミック材料の粘度は急激に増加する。そこで、セラミック材料が結晶化しない温度を、セラミック材料の粘度が1013poise以下で維持できる温度と定義した。
セラミック材料の粘度は、圧縮成形して外形寸法が15mm×8mm×1mmの棒状試料作成し、支点間距を13mmとして2点で水平に支持し、試料の中央に660Paの荷重を加えたまま加熱して得られる、試料のたわみ速度より次式を用いて算出した。
【0008】
【数1】

Figure 2004022706
【0009】
本発明者はセラミック材料が焼結した状態であっても、ガラス成分が結晶化しガラス粘度が上昇する前の状態であれば、荷重を加えながらセラミック材料の軟化点以上の温度で、かつ導体パターンを構成する金属材料の融点以下の温度で熱処理することにより、変形した基板であっても基板の面方向寸法を実質的に変化させることなく、基板の反りを修正し、基板の平坦度を向上することが出来ることを見出した。
導体パターンとセラミックグリーンシートとを一体焼結して板状焼結体とする第1の熱処理工程において、その熱処理温度はセラミック材料が焼結する温度以上で、かつ結晶化しない温度でなければならない。焼結温度以下で熱処理した場合には後の加圧焼成工程でセラミック材料が更に緻密化し、寸法変化が起きる為、所望の寸法精度を得られなくなったり、十分に変形を抑えることが困難である場合や、基板が割れるといった不具合を生じたり、また、結晶化が起きる温度以上で熱処理すると、ガラス粘度が上昇し、基板の変形を除去できなくなるからである。
また、セラミックフィラーとガラス成分の組成やその組成量により、結晶化しない場合や、結晶化温度が導体パターンを構成する金属材料の融点以上になるものもある。その場合は、第1の熱処理工程の熱処理温度の上限は金属材料の融点以下とすればよい。
【0010】
導体パターン金属材料の融点以下で、かつセラミック材料の軟化点以上の温度で熱処理する第2の熱処理工程における荷重は、6.9kPa〜50.0kPaとするのがよい。荷重が6.9kPa未満では焼結した基板の反りを修正するには不十分であり、また、荷重を加えすぎると基板を破損するという問題が発生すため、その上限は50.0kPaであることが望ましい。
【0011】
また、セラミック材料はその成分としてセラミックフィラーと低融点ガラスとで構成するのが好ましい。この際、低融点ガラスの軟化点は600℃〜900℃の範囲とする必要がある。600℃以下に軟化点をもつガラス成分を用いた場合、成形体中に含まれるバインダーが完全に分解する前に、ガラス成分の軟化が生じ、それに伴いセラミック材料の焼結が起こるため、バインダーの一部が炭化して残渣として残ったり、基板に空隙などの欠陥を形成する原因になるからである。また、ガラス成分の軟化点が900℃以上であると、焼結する温度が電極材料の融点に近く、熱処理を行う炉内の温度雰囲気のばらつきを勘案すると、温度管理の余裕が少なく、工業的な生産には不適であるからである。したがって、低融点ガラスは600℃〜900℃、特に650℃〜800℃に軟化点をもつガラス成分であることが望ましい。
【0012】
【発明の実施の形態】
以下本発明に係るセラミック多層基板の製造方法について図1を用いて詳細に説明する。
本発明においてはセラミック材料をセラミックフィラーと低融点ガラスとにより構成する。低融点ガラスとしては、様々なものがあるが主にホウケイ酸ガラスが好適であり、SiO,B以外にAlやLiO,NaO,KO等のアルカリ金属酸化物およびCaO,BaO,MgOなどのアルカリ土類金属酸化物、さらにはZrO,ZnO,TiOなどを含有してもよい。
一方セラミックフィラーとしては、アルミナ、コーディエライト、スピネル、フォルステライト、エンスタタイト、チタン酸ストロンチウム、チタン酸バリウム、チタン酸カルシウム、イルメナイト、ジルコン酸カルシウム等がセラミック多層基板用として、基板強度や誘電特性を得る点で好ましい。
本発明におけるセラミック材料は、低融点ガラス粉砕粉とセラミックフィラーを混合した粉末をセラミック材料とする場合や、低融点ガラスとセラミックフィラーを構成する素原料粉を混合した粉末をセラミック材料とする場合がある。後者の場合には、焼成段階で低融点ガラスとセラミックフィラーを構成するので、どちらの場合であっても本発明に適用できる。
【0013】
このセラミック材料をアセタール樹脂等の有機バインダー(例えばポリビニルブチラール樹脂)、可塑剤(例えばフタル酸ブチル)、溶剤(例えばトルエン、キシレン)を添加・混合してセラミックスラリーとし、得られたセラミックスラリーを減圧脱泡し粘度調整した後、ドクターブレード法により、ポリエチレンテレフタレートフィルムからなるキャリアフィルム上に均一な厚さで塗布し、数十μmから数百μmのセラミックグリーンシート1を形成する。そして乾燥後のセラミックグリーンシート1を、キャリアシート(図示せず)が付いたまま所定の寸法に裁断する。
そのセラミックグリーンシート1に適宜レーザーやパンチングによりビアホール(図示せず)の加工を行い、ビアホールに導体ペーストを充填するとともに、スクリーン印刷法などにより、キャリアシートの反対面であるグリーンシートの主面の製品部分となる所定箇所に、回路素子を構成する導体パターン2を印刷形成する。導体パターン2は例えばAgやCuを主成分とする金属粉を主構成としている。
次に、セラミックグリーンシートを所定の順序に積層・圧着し板状成形体3とする。前記グリーンシートに形成されたビアホールにより、セラミック層間の導体パターンが適宜接続され、回路素子として機能するように構成される。
【0014】
このようにして得られた板状成形体をガラスの軟化温度より低い温度、例えば550〜600℃で脱バインダー処理を行なった後、セラミック材料が焼結し、かつ結晶化の起きない温度で所定時間第1の熱処理を行ない板状焼結体4とする。
次に耐熱性材料からなるセラミック板5で焼結した板状焼結体4を挟み込み、荷重をかけながら導体パターン金属材料の融点以下で、かつ低温焼結セラミック材料の軟化点以上の温度で所定時間第2の熱処理を行なう。挟み込むセラミック板5はアルミナや炭化ケイ素、窒化アルミニウム等の耐熱性のある材料であると共に、平坦度の高い物であることが必要である。だたし、被加重物である板状焼結体は焼結しているので、当然脱バインダー性すなわちバインダーの分解ガスの通気性を考慮する必要がないので、セラミック板5の選択肢を広げることができる。荷重をかける方法としては、セラミック板自身の重みを利用し、これを複数枚積み重ねても良いし、セラミック板の上に耐熱煉瓦等を載せることでも代用できる。この場合は連続焼成炉やバッチ式焼成炉で適用できる。また、任意の圧縮荷重を加えながら熱処理するにはホットプレスを用いることも出来る。このようにして、反りなどの変形が少なく平坦度の高いセラミック多層基板を得ることが出来る。
【0015】
【実施例】
セラミック多層基板の材料として表1に示すようなセラミック材料粉末を用意した。セラミックフィラーはD50=0.8μmであるものを用意し、低融点ガラスは各酸化物を混合し、溶融してガラス化した後、水中で急冷し、粉砕したものを用いた。
【0016】
【表1】
Figure 2004022706
【0017】
上記セラミック粉末にバインダー(ポリビニルブチラール樹脂)と可塑剤(フタル酸ブチル)および溶剤を加えて、ボールミルで15時間湿式混合しセラミックスラリーを得た。このセラミックスラリーを減圧脱泡して適度な粘度に調整した後、ドクターブレード法により100μm程度のセラミックグリーンシートにした。得られたセラミックグリーンシートを適当な大きさに裁断した後、Agペーストを用いて導体パターンをスクリーン印刷法により形成した。これらのセラミックグリーンシートを8枚積層して、90℃で9.8MPaの圧力で加熱圧着し、板状成形体を得た。前記セラミックグリーンシートにはビアホールが形成されており、セラミック層間の導体パターンが適宜接続され、回路素子として機能するように構成される。
その後、平板状成形体の主面に互いに平行な複数の第1の分割溝と前記第1の分割溝と直交する複数の第2の分割溝を、それぞれほぼ0.1mmの深さとなるように鋼刃で刻設した。なお、前記分割溝の深さは、分割のし易さや取り扱い易さ等から、50μm〜300μmの範囲で適宜設定される。
【0018】
この板状成形体をバッチ式の電気炉を用いて、大気雰囲気中で600℃で4時間脱バインダー処理を行い、その後、表2に示す条件で第1の熱処理を行い板状焼結体とした。この際、板状成形体はアルミナ製のセッタの上に載せてあるだけで、荷重は加えていない。
次に上記の体を表面粗さ0.5μm、平坦度10μm/□15cmのセラミック板(アルミナ基板)で挟み、表2に示す条件で板状成形体に荷重を加えながら第2の熱処理を行った。図2に実施例10の第1及び第2の熱処理工程の熱処理プロファイルを示す。なお第1の熱処理温度における保持時間は焼結の進行程度により設定され、第2の熱処理温度における保持時間は、変形改善の程度と熱処理工数の観点から適宜設定される。
【0019】
この様にして得られたセラミック多層基板の反りを、レーザー式の3次元測定器を用い基板の対角方向に計測した凹凸の(最大値)−(最小値)として計測した。
表2にその結果を示す。本発明の範囲内の条件で作成したセラミック多層基板の反りは最大値で50μmであった。最も平坦度が高い基板は、加圧焼成時に荷重を50.0kPa加えて焼成した基板であった。また、実施例の基板には何れも加圧焼成後にクラックや破損といった跡は見られなかった。
【0020】
比較例のNo.13の基板は第1の熱処理工程の熱処理をセラミック材料が結晶する温度以上で行い、第2の熱処理工程を実施しなかった例であり、また、No.14およびNo.15のものは、第1の熱処理工程の熱処理温度がセラミック材料の結晶化温度以上のものである。結晶化温度以上で第1の熱処理工程の熱処理をした基板は、第2の熱処理工程で荷重を50.0kPa以上加えても反りは100μm以上であった。またNo.15のものでは基板の端部の方にクラックが入ってしまった。さらにNo.16及びNo.17は第2の熱処置工程における荷重が本発明の範囲外の例である。荷重が6.9kPa以下では基板の反りは90μm程度にしかならなかった。
【0021】
【表2】
Figure 2004022706
【0022】
【発明の効果】
以上の説明から明らかなように、本発明のセラミック多層基板の製造方法によれば、平坦度の高いセラミック多層基板を得ることができ、基板表面に形成された導体パターンとICチップ等との接合信頼性を向上することができる。
【図面の簡単な説明】
【図1】本発明の一実施例に係る製造工程図である。
【図2】本発明の一実施例に係る第1及び第2の熱処理工程の温度プロファイルを示す図である。
【図3】第1の熱処理温度と板状成形体の密度との関係図である。
【符号の説明】
1 セラミックグリーンシート
2 導体パターン
3 板状成形体
4 板状焼結体
5 セラミック板[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a ceramic multilayer substrate by a green sheet laminating method, and more particularly to a method for suppressing deformation of the ceramic multilayer substrate such as warpage and distortion.
[0002]
[Prior art]
Compared with resin materials such as plastics, ceramic substrates that are generally superior in heat dissipation, electrical characteristics, etc. are attracting attention as substrates on which semiconductor elements and other chip components are mounted, and in recent years they have become more sophisticated and highly integrated. In order to achieve this, a ceramic multilayer substrate including a fine wiring and a conductor pattern such as a capacitor pattern in the substrate is often used by a low temperature co-fired ceramics (LTCC) technique.
As the metal material constituting the conductor pattern, inexpensive materials having a low electric resistance of Ag or Cu as a main component are often used. However, in general, the shrinkage characteristics at the time of firing are different from low-temperature sintered ceramic materials. Are laminated and fired at the same time, the substrate is likely to be warped or distorted. Such deformation greatly affects the reliability of connection with the semiconductor element and other chip components.
[0003]
[Problems to be solved by the invention]
Conventionally, there has been the following method as a method for suppressing warpage or deformation of a ceramic multilayer substrate.
For example, in a manufacturing method disclosed in Japanese Patent Application Laid-Open No. Hei 9-31476, a ceramic material composed of glass and a filler of ceramic powder is used as a ceramic green sheet, and a molded product obtained by laminating the ceramic green sheets is a predetermined material having a softening point of the glass or lower. The pre-fired body is fired at a temperature in the range described above, and then the pre-fired body is fired by applying a load. Japanese Patent Publication No. 2-25277 discloses that the temperature is higher than the softening point of the glass. There is disclosed a method of performing preliminary firing in a lower temperature range and then performing main firing by applying a load, and both are methods of forcibly suppressing warpage by a load.
[0004]
Since these methods can suppress the deformation of the substrate with a relatively low load, these methods are frequently used techniques. However, these methods are effective when the conductor pattern formed in the substrate has a small formation area with respect to the area of the substrate, but is effective when the conductor pattern has a large area such as a capacitor pattern or a ground pattern. Has a problem that deformation cannot be completely suppressed. If a further load is applied in order to suppress deformation, uniform shrinkage of the substrate may be impaired, or the pre-fired body before main firing may have a lower mechanical strength than that after main firing, Excessive load has been a factor of causing substrate cracking and the like.
Therefore, an object of the present invention is to solve these problems and to provide a method for manufacturing a ceramic multilayer substrate having high flatness.
[0005]
[Means for Solving the Problems]
The present invention provides a sheet step of using a ceramic material as a ceramic green sheet, a pattern forming step of forming a conductor pattern made of a metal material containing silver or copper as a main component on the ceramic green sheet, and laminating a plurality of the ceramic green sheets. Laminating step to form a plate-shaped molded body, and heat-treated at a temperature at which the ceramic material does not sinter and crystallize without weighting the plate-shaped molded body, and integrally sintering the conductor pattern and the ceramic green sheet. A first heat treatment step of forming a plate-shaped sintered body, and applying a load to the plate-shaped sintered body after the first heat treatment step to soften the low-temperature sintered ceramic material at a temperature not higher than the melting point of the conductive pattern metal material. In the present invention, which is a method for manufacturing a ceramic multilayer substrate having a second heat treatment step of performing a heat treatment at a temperature equal to or higher than the temperature, the second heat treatment step Kicking weight of the plate-shaped sintered body is preferably not more than more than 6.9kPa 50.0kPa. It is also preferable that the low-temperature sintered ceramic material is composed of a ceramic filler and a low-melting glass having a softening point at a temperature of 600 to 900 ° C.
[0006]
The term “sintering of a ceramic material” as used herein refers to a state in which the density of a sample is substantially saturated even if the ceramic material is heat-treated at a higher temperature in a state where the ceramic material is densified by heat treatment. Specifically, when examining the relationship between the heat treatment temperature and the sample density of the ceramic material, it was assumed that the ceramic material was sintered in a state where the sample density was almost saturated as shown by point A in FIG. Defined as sintering temperature.
[0007]
The term “crystallization” as used herein means that the low melting point glass contained in the ceramic material reacts with the ceramic filler to precipitate a new crystal phase. When the crystalline phase precipitates, the viscosity of the ceramic material increases rapidly. Therefore, the temperature at which the ceramic material does not crystallize is defined as the temperature at which the viscosity of the ceramic material can be maintained at 10 13 poise or less.
The viscosity of the ceramic material was measured by compression molding to prepare a rod-shaped sample with an outer dimension of 15 mm × 8 mm × 1 mm, supporting it horizontally at two points with a fulcrum distance of 13 mm, and applying a load of 660 Pa to the center of the sample while heating. It was calculated from the deflection speed of the sample obtained by using the following equation.
[0008]
(Equation 1)
Figure 2004022706
[0009]
Even if the ceramic material is sintered, even if the glass component is crystallized and the viscosity of the glass does not increase, the present inventors apply a load at a temperature equal to or higher than the softening point of the ceramic material, and Heat treatment at a temperature equal to or lower than the melting point of the metal material that constitutes the substrate corrects the warpage of the substrate and substantially improves the flatness of the substrate without substantially changing the planar dimension of the substrate even if the substrate is deformed I found that I can do it.
In the first heat treatment step of integrally sintering the conductor pattern and the ceramic green sheet into a plate-like sintered body, the heat treatment temperature must be higher than the temperature at which the ceramic material is sintered and not at the temperature at which crystallization takes place. . When the heat treatment is performed at a temperature lower than the sintering temperature, the ceramic material is further densified in the subsequent pressure sintering step, and a dimensional change occurs. Therefore, it is difficult to obtain a desired dimensional accuracy or it is difficult to sufficiently suppress deformation. This is because, in some cases, a problem such as cracking of the substrate occurs, or when heat treatment is performed at a temperature higher than the temperature at which crystallization occurs, the glass viscosity increases, and the deformation of the substrate cannot be removed.
In some cases, depending on the composition of the ceramic filler and the glass component and the composition amount thereof, no crystallization occurs, or the crystallization temperature is higher than the melting point of the metal material constituting the conductor pattern. In that case, the upper limit of the heat treatment temperature in the first heat treatment step may be lower than or equal to the melting point of the metal material.
[0010]
The load in the second heat treatment step in which the heat treatment is performed at a temperature equal to or lower than the melting point of the conductive pattern metal material and equal to or higher than the softening point of the ceramic material is preferably 6.9 kPa to 50.0 kPa. If the load is less than 6.9 kPa, it is not enough to correct the warpage of the sintered substrate, and if the load is applied too much, the problem of damaging the substrate will occur. Therefore, the upper limit is 50.0 kPa. Is desirable.
[0011]
Preferably, the ceramic material is composed of a ceramic filler and a low-melting glass as its components. At this time, the softening point of the low melting point glass needs to be in the range of 600 ° C to 900 ° C. When a glass component having a softening point of 600 ° C. or less is used, the glass component is softened before the binder contained in the molded body is completely decomposed, and sintering of the ceramic material occurs. This is because a portion of the substrate is carbonized and remains as a residue, or a defect such as a void is formed in the substrate. Further, when the softening point of the glass component is 900 ° C. or higher, the sintering temperature is close to the melting point of the electrode material. This is because it is not suitable for proper production. Therefore, it is desirable that the low melting point glass is a glass component having a softening point at 600 ° C to 900 ° C, particularly 650 ° C to 800 ° C.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a method for manufacturing a ceramic multilayer substrate according to the present invention will be described in detail with reference to FIG.
In the present invention, the ceramic material is composed of a ceramic filler and a low-melting glass. As the low-melting glass, there are various types, but borosilicate glass is mainly preferable, and in addition to SiO 2 and B 2 O 3, other alkalis such as Al 2 O 3 , Li 2 O, Na 2 O, and K 2 O are used. metal oxides and CaO, BaO, alkaline earth metal oxides such as MgO, further ZrO, ZnO, may contain such TiO 2.
On the other hand, as the ceramic filler, alumina, cordierite, spinel, forsterite, enstatite, strontium titanate, barium titanate, calcium titanate, ilmenite, calcium zirconate, etc. are used for ceramic multilayer substrates, and the substrate strength and dielectric properties are Is preferred in that
The ceramic material in the present invention may be a case where a powder obtained by mixing a low melting glass crushed powder and a ceramic filler is used as a ceramic material, or a case where a powder obtained by mixing a low melting glass and a raw material powder constituting a ceramic filler is used as a ceramic material. is there. In the latter case, the low-melting glass and the ceramic filler are formed in the firing step, so that either case can be applied to the present invention.
[0013]
An organic binder such as an acetal resin (for example, polyvinyl butyral resin), a plasticizer (for example, butyl phthalate), and a solvent (for example, toluene and xylene) are added to and mixed with the ceramic material to form a ceramic slurry. After defoaming and adjusting the viscosity, it is applied to a carrier film made of a polyethylene terephthalate film with a uniform thickness by a doctor blade method to form a ceramic green sheet 1 having a thickness of several tens μm to several hundreds μm. Then, the dried ceramic green sheet 1 is cut into a predetermined size with a carrier sheet (not shown) attached.
The ceramic green sheet 1 is appropriately processed with a via hole (not shown) by laser or punching to fill the via hole with a conductive paste, and a screen printing method or the like is used to form the main surface of the green sheet opposite to the carrier sheet. A conductor pattern 2 constituting a circuit element is formed by printing on a predetermined portion to be a product portion. The conductor pattern 2 has, for example, a metal powder mainly composed of Ag or Cu as a main component.
Next, the ceramic green sheets are laminated and pressure-bonded in a predetermined order to form a plate-shaped molded body 3. The via holes formed in the green sheet connect the conductor patterns between the ceramic layers as appropriate, and are configured to function as circuit elements.
[0014]
After the thus obtained plate-like molded body is subjected to a binder removal treatment at a temperature lower than the softening temperature of the glass, for example, 550 to 600 ° C., the ceramic material is sintered at a predetermined temperature at which crystallization does not occur. The first heat treatment is performed for a time to obtain a plate-shaped sintered body 4.
Next, a plate-shaped sintered body 4 sintered by a ceramic plate 5 made of a heat-resistant material is sandwiched, and a predetermined load is applied at a temperature lower than the melting point of the conductive pattern metal material and higher than the softening point of the low-temperature sintered ceramic material while applying a load. The second heat treatment is performed for a time. The sandwiched ceramic plate 5 is required to be made of a heat-resistant material such as alumina, silicon carbide, or aluminum nitride, and to have a high flatness. However, since the plate-like sintered body to be weighted is sintered, it is not necessary to consider the debinding property, that is, the permeability of the decomposition gas of the binder. Can be. As a method of applying the load, the weight of the ceramic plate itself may be used, and a plurality of the plates may be stacked. Alternatively, a heat resistant brick or the like may be placed on the ceramic plate. In this case, a continuous firing furnace or a batch-type firing furnace can be used. Also, a hot press can be used for heat treatment while applying an arbitrary compression load. In this way, it is possible to obtain a ceramic multilayer substrate having a high degree of flatness with little deformation such as warpage.
[0015]
【Example】
Ceramic material powders as shown in Table 1 were prepared as materials for the ceramic multilayer substrate. A ceramic filler having a D 50 = 0.8 μm was prepared, and a low-melting-point glass obtained by mixing each oxide, melting and vitrifying, rapidly cooling in water, and pulverizing was used.
[0016]
[Table 1]
Figure 2004022706
[0017]
A binder (polyvinyl butyral resin), a plasticizer (butyl phthalate), and a solvent were added to the ceramic powder, and the mixture was wet-mixed with a ball mill for 15 hours to obtain a ceramic slurry. This ceramic slurry was defoamed under reduced pressure to adjust the viscosity to an appropriate level, and then formed into a ceramic green sheet of about 100 μm by a doctor blade method. After the obtained ceramic green sheet was cut into an appropriate size, a conductor pattern was formed by a screen printing method using an Ag paste. Eight of these ceramic green sheets were stacked and heated and pressed at 90 ° C. under a pressure of 9.8 MPa to obtain a plate-like molded body. Via holes are formed in the ceramic green sheet, and conductor patterns between the ceramic layers are appropriately connected to each other so as to function as circuit elements.
Then, the plurality of first division grooves parallel to each other and the plurality of second division grooves orthogonal to the first division groove on the main surface of the flat molded body are each formed to have a depth of approximately 0.1 mm. Carved with steel blade. In addition, the depth of the division groove is appropriately set in the range of 50 μm to 300 μm from the viewpoint of easy division and easy handling.
[0018]
The plate-shaped compact was subjected to a binder removal treatment in an air atmosphere at 600 ° C. for 4 hours using a batch-type electric furnace, and then subjected to a first heat treatment under the conditions shown in Table 2 to obtain a plate-shaped sintered compact. did. At this time, the plate-shaped compact was merely placed on an alumina setter, and no load was applied.
Next, the above-mentioned body was sandwiched between ceramic plates (alumina substrate) having a surface roughness of 0.5 μm and a flatness of 10 μm / □ 15 cm, and subjected to a second heat treatment while applying a load to the plate-like molded body under the conditions shown in Table 2. Was. FIG. 2 shows heat treatment profiles of the first and second heat treatment steps of the tenth embodiment. The holding time at the first heat treatment temperature is set according to the degree of progress of sintering, and the holding time at the second heat treatment temperature is appropriately set from the viewpoint of the degree of deformation improvement and the number of heat treatment steps.
[0019]
The warpage of the ceramic multilayer substrate thus obtained was measured as (maximum value)-(minimum value) of irregularities measured in a diagonal direction of the substrate using a laser type three-dimensional measuring device.
Table 2 shows the results. The maximum warpage of the ceramic multilayer substrate produced under the conditions within the range of the present invention was 50 μm. The substrate with the highest flatness was a substrate fired by applying a load of 50.0 kPa during pressure firing. In addition, none of the substrates of the examples showed traces such as cracks and breakage after firing under pressure.
[0020]
No. of the comparative example. The substrate No. 13 is an example in which the heat treatment in the first heat treatment step was performed at a temperature higher than the temperature at which the ceramic material was crystallized, and the second heat treatment step was not performed. 14 and No. In No. 15, the heat treatment temperature in the first heat treatment step is higher than the crystallization temperature of the ceramic material. The substrate subjected to the heat treatment in the first heat treatment step at the crystallization temperature or higher had a warp of 100 μm or more even when a load of 50.0 kPa or more was applied in the second heat treatment step. No. In the case of the fifteenth example, a crack was formed near the edge of the substrate. Furthermore, No. 16 and No. 17 is an example in which the load in the second heat treatment step is out of the range of the present invention. When the load was 6.9 kPa or less, the warpage of the substrate was only about 90 μm.
[0021]
[Table 2]
Figure 2004022706
[0022]
【The invention's effect】
As is apparent from the above description, according to the method for manufacturing a ceramic multilayer substrate of the present invention, a ceramic multilayer substrate having high flatness can be obtained, and a conductive pattern formed on the substrate surface can be bonded to an IC chip or the like. Reliability can be improved.
[Brief description of the drawings]
FIG. 1 is a manufacturing process diagram according to an embodiment of the present invention.
FIG. 2 is a diagram showing temperature profiles of first and second heat treatment steps according to one embodiment of the present invention.
FIG. 3 is a diagram illustrating a relationship between a first heat treatment temperature and a density of a plate-shaped compact.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Ceramic green sheet 2 Conductor pattern 3 Plate-shaped molded object 4 Plate-shaped sintered body 5 Ceramic plate

Claims (3)

セラミック材料をセラミックグリーンシートとするシート工程と、前記セラミックグリーンシートに銀又は銅を主成分とする金属材料でなる導体パターンを形成するパターン形成工程と、前記セラミックグリーンシートを複数積層して板状成形体とする積層工程と、
前記板状成形体に加重せず、低温焼結セラミック材料が焼結しかつ結晶化しない温度において熱処理し、前記導体パターンとセラミックグリーンシートとを一体焼結して板状焼結体とする第1の熱処理工程と、
前記第1の熱処理工程を経た前記板状焼結体に加重し、導体パターン金属材料の融点以下で、かつ低温焼結セラミック材料の軟化点以上の温度で熱処理する第2の熱処理工程を有することを特徴とするセラミック多層基板の製造方法。
A sheet step of using a ceramic material as a ceramic green sheet; a pattern forming step of forming a conductor pattern made of a metal material containing silver or copper as a main component on the ceramic green sheet; A laminating step of forming a molded body,
A heat treatment is performed at a temperature at which the low-temperature sintered ceramic material does not sinter and crystallize without applying weight to the plate-shaped molded body, and the conductor pattern and the ceramic green sheet are integrally sintered to form a plate-shaped sintered body. 1 heat treatment step;
A second heat treatment step of applying a heat treatment to the plate-like sintered body that has undergone the first heat treatment step and performing a heat treatment at a temperature equal to or lower than the melting point of the conductive pattern metal material and equal to or higher than the softening point of the low-temperature sintered ceramic material. A method for manufacturing a ceramic multilayer substrate, comprising:
前記第2の熱処理工程において、板状焼結体への加重を6.9kPa以上50.0kPa以下とすることを特徴とする請求項1に記載のセラミック多層基板の製造方法。2. The method according to claim 1, wherein in the second heat treatment step, a load on the plate-shaped sintered body is set to 6.9 kPa or more and 50.0 kPa or less. 前記セラミック材料がセラミックフィラーと600〜900℃点に軟化点を有する低融点ガラスより構成されることを特徴とする請求項1又は2に記載のセラミック多層基板の製造方法。3. The method according to claim 1, wherein the ceramic material comprises a ceramic filler and a low-melting glass having a softening point at a temperature of 600 to 900 ° C. 4.
JP2002173815A 2002-06-14 2002-06-14 Manufacturing method of ceramic multilayer substrate Expired - Lifetime JP3994380B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002173815A JP3994380B2 (en) 2002-06-14 2002-06-14 Manufacturing method of ceramic multilayer substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002173815A JP3994380B2 (en) 2002-06-14 2002-06-14 Manufacturing method of ceramic multilayer substrate

Publications (2)

Publication Number Publication Date
JP2004022706A true JP2004022706A (en) 2004-01-22
JP3994380B2 JP3994380B2 (en) 2007-10-17

Family

ID=31172948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002173815A Expired - Lifetime JP3994380B2 (en) 2002-06-14 2002-06-14 Manufacturing method of ceramic multilayer substrate

Country Status (1)

Country Link
JP (1) JP3994380B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100829069B1 (en) 2007-07-06 2008-05-16 한국지질자원연구원 Manufacturing method of multilayer ceramic molded body using multiple tubes
JP2008159725A (en) * 2006-12-22 2008-07-10 Kyocera Corp Ceramic multilayer substrate and manufacturing method thereof
US8974720B2 (en) 2010-07-01 2015-03-10 Toyota Jidosha Kabushiki Kaisha Method for producing ceramic laminate
US9048245B2 (en) 2012-06-05 2015-06-02 International Business Machines Corporation Method for shaping a laminate substrate
US9059240B2 (en) 2012-06-05 2015-06-16 International Business Machines Corporation Fixture for shaping a laminate substrate
US9129942B2 (en) 2012-06-05 2015-09-08 International Business Machines Corporation Method for shaping a laminate substrate
KR101900547B1 (en) * 2016-03-07 2018-09-19 주식회사 케이씨씨 Loading system for producing ceramic substrate and method of producing ceramic board using thereof
CN115073007A (en) * 2022-07-26 2022-09-20 宜宾红星电子有限公司 Low temperature co-fired glass-ceramic composite material and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11350490B2 (en) 2017-03-08 2022-05-31 Raytheon Company Integrated temperature control for multi-layer ceramics and method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008159725A (en) * 2006-12-22 2008-07-10 Kyocera Corp Ceramic multilayer substrate and manufacturing method thereof
KR100829069B1 (en) 2007-07-06 2008-05-16 한국지질자원연구원 Manufacturing method of multilayer ceramic molded body using multiple tubes
US8974720B2 (en) 2010-07-01 2015-03-10 Toyota Jidosha Kabushiki Kaisha Method for producing ceramic laminate
US9048245B2 (en) 2012-06-05 2015-06-02 International Business Machines Corporation Method for shaping a laminate substrate
US9059240B2 (en) 2012-06-05 2015-06-16 International Business Machines Corporation Fixture for shaping a laminate substrate
US9129942B2 (en) 2012-06-05 2015-09-08 International Business Machines Corporation Method for shaping a laminate substrate
US9543253B2 (en) 2012-06-05 2017-01-10 Globalfoundries Inc. Method for shaping a laminate substrate
KR101900547B1 (en) * 2016-03-07 2018-09-19 주식회사 케이씨씨 Loading system for producing ceramic substrate and method of producing ceramic board using thereof
CN115073007A (en) * 2022-07-26 2022-09-20 宜宾红星电子有限公司 Low temperature co-fired glass-ceramic composite material and preparation method thereof

Also Published As

Publication number Publication date
JP3994380B2 (en) 2007-10-17

Similar Documents

Publication Publication Date Title
EP2168928B1 (en) Glass Ceramic Substrate
JPH01241731A (en) Manufacture of gas discharge display
JPH107435A (en) Glass ceramic wiring substrate and its production
CN1887594B (en) Pseudo-symmetrically configured low temperature cofired ceramic structure and process for the constrained sintering of the pseudo-symmetrically configured low temperature cofired ceramic structure
KR100538733B1 (en) Process for the constrained sintering of asymmetrically configured dielectric layers
JP3994380B2 (en) Manufacturing method of ceramic multilayer substrate
JP2003110238A (en) Manufacturing method of glass ceramic multilayer board
KR101072125B1 (en) Multi-layer board
JP2006225251A (en) Process for constrained sintering of pseudo-symmetrically configured low temperature cofired ceramic structure
JP2006148130A (en) Method for constrained sintering of pseudo-symmetrically configured low-temperature co-fired ceramic structure
JP4610114B2 (en) Manufacturing method of ceramic wiring board
JPH0799263A (en) Ceramic substrate manufacturing method
JP4028810B2 (en) Manufacturing method of multilayer wiring board
JP4496529B2 (en) Multilayer ceramic substrate manufacturing method and multilayer ceramic substrate
JP2727652B2 (en) Method for firing aluminum nitride substrate
JP3807257B2 (en) Manufacturing method of ceramic parts
JP6597268B2 (en) Method for producing ceramic fired body
JP2002246746A (en) Manufacturing method of glass ceramic multilayer substrate
JPH09312476A (en) Method of manufacturing multilayer ceramic wiring board
JP2002290040A (en) Method of manufacturing ceramic board
KR20130036446A (en) Manufacturing method of low teperature co-fired ceramics substrate
JP2008105916A (en) Low-temperature fired porcelain, method for producing the same, and wiring board using the same
JP2008186905A (en) Manufacturing method for low-temperature baked wiring board
JP2005183482A (en) Multilayer substrate and manufacturing method thereof
JP2005243931A (en) GLASS CERAMIC MULTILAYER SUBSTRATE, WIRING BOARD AND METHOD FOR PRODUCING THE SAME

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070719

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 3994380

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 6

EXPY Cancellation because of completion of term