JP2004023020A - Projection optical system and reduction projection exposure apparatus - Google Patents
Projection optical system and reduction projection exposure apparatus Download PDFInfo
- Publication number
- JP2004023020A JP2004023020A JP2002179461A JP2002179461A JP2004023020A JP 2004023020 A JP2004023020 A JP 2004023020A JP 2002179461 A JP2002179461 A JP 2002179461A JP 2002179461 A JP2002179461 A JP 2002179461A JP 2004023020 A JP2004023020 A JP 2004023020A
- Authority
- JP
- Japan
- Prior art keywords
- reflecting
- optical system
- projection optical
- mirrors
- projection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- Lenses (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、感光基板上にレチクルのパターンの縮小像を投影形成する投影光学系、及びこの投影光学系を備えた縮小投影露光装置に関する。
【0002】
【従来の技術】
半導体用縮小投影露光装置の開口数(以下、「NA」と呼ぶ。)及び使用波長は、半導体素子の高密度化、対象線幅の細線化に伴って年々大口径化、短波長化する傾向にある。使用する光線の波長は水銀灯のi線(波長365.015nm)から、KrFエキシマレーザー(波長248nm)へ移り、ArFエキシマレーザー(波長193nm)を光源とした縮小投影露光装置も実用化されている。しかし、近年においては、パターンの微細化の要求がさらに強まっており、F2エキシマレーザー(波長157nm)を経て、さらに波長の短いEUV光(極端紫外光、波長13nm付近)を光源として用いた縮小投影露光装置が次世代の半導体リソグラフィの有力手段として研究されている。
【0003】
このような縮小投影露光装置に用いられる投影レンズの硝材は、透過率の問題からF2エキシマレーザーを光源として使用したものが限界であり、これより波長が短い光源を利用する場合は、反射鏡で構成された反射屈折光学系を用いて縮小投影露光装置を構成する必要がある。また、高解像度を実現するためには、この光学系の高NA化が必要となり、そのために、収差を良好に保ったまま光束と反射鏡の物理的干渉を避けるために、反射屈折光学系を構成する反射鏡の枚数が増加する傾向にあった。
【0004】
【発明が解決しようとする課題】
しかしながら、EUV光のような短波長の光線を照射すると反射鏡を透過してしまうため、反射鏡の反射面に反射膜を形成してEUV光を反射をさせなければならないが、現状では十分な反射率を持った反射膜が得られていないことから、実際の露光を考えると反射膜で露光光の吸収による熱が発生し、光学系の性能が熱変動により悪化する可能性がある。また、反射膜での露光光の吸収を考慮して、光源の光量を大きくする必要があり、従来知られている光学系では縮小投影露光装置としての実現化は困難と考えられる。
【0005】
本発明はこのような問題に鑑みなされたものであり、投影光学系を構成する反射鏡の枚数を少なくしても収差が少なく十分なNAを有し、かつ、反射鏡の配置の自由度を上げて光束と反射鏡の物理的干渉を避けることを可能とした投影光学系及びこの投影光学系を備えた縮小投影露光装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
前記課題を解決するために本発明に係る投影光学系は、50nm以下の波長の光源を使用して、それぞれ所定形状の反射面を有する反射鏡からなる縮小投影装置を用いて、第1物体面上の物体の縮小像を第2物体面上に投影形成するように構成され、前記縮小投影装置を構成する前記反射鏡のうちの少なくとも1枚は非球面で凸面状の反射面を有し、その他の前記反射鏡のうちの少なくとも1枚は非球面で凹面状の反射面を有し、前記凸面状の反射面と前記凹面状の反射面とは所定の光軸に対して互いに偏心するように配置されており、前記第1物体面からの光は、前記反射鏡で反射され、前記第2物体面上にテレセントリックに結像されることを特徴として構成される。
【0007】
また、前記反射鏡が4枚以上で構成され、各々の光軸が全て互いに偏心するように構成することが可能である。
【0008】
さらに、前記反射鏡は4枚で構成され、全ての反射鏡が非球面の反射面を有するように構成することが可能である。
【0009】
そして、前記第2物体面と、前記非球面で凸面状の反射面を有する反射鏡及び前記非球面で凹面状の反射面を有する反射鏡の光軸のなす角度が、40度より小さく0.01度より大きくなるように構成されることが好ましい。
【0010】
なお、前記反射鏡のうち少なくとも1枚の反射鏡がアナモルフィック非球面の反射面を有して構成することが可能であり、このとき、前記第2物体面の光軸と前記アナモルフィック非球面のベースとなる球面の光軸のなす角度が、40度より小さく0.01度より大きくなるように構成されることが好ましい。
【0011】
本発明に係る縮小投影露光装置は、レチクルに露光光を照射し、前記レチクルに形成されたパターンの像を前記投影光学系を介して感光基板上に投影するように構成される。
【0012】
【発明の実施の形態】
以下、本発明の好ましい実施形態について図面を参照して説明する。まず、図1を用いて本発明に係る投影光学系の構成について説明する。図1は、本発明に係る投影光学系の横断面の光路図であり、光束の幅は横断面のみを表している。投影光学系1は、第1物体面2と第2物体面3の間に配設されており、第1の反射鏡4、第2の反射鏡5、第3の反射鏡6及び第4の反射鏡7で構成されている。第1物体面2を出た光は、第1〜4の反射鏡4,5,6,7で順に反射して第2物体面3上に第1物体面2上のパターンの縮小像をテレセントリックに投影して結像形成する。ここで、平坦性を維持し、倍率を確保するためには、少なくとも1枚の凸面鏡と1枚の凹面鏡が必要であり、また収差を補正するためには非球面であることが望ましいが、本実施例においては、第1の反射鏡4は非球面の凸面状の反射面を有しており、第2の反射鏡5は非球面の凹面状の反射面を有しており、第3の反射鏡6は非球面の凸面状の反射面を有しており、第4の反射鏡7は非球面の凹面状の反射面を有して構成されている。また、第1〜4の反射鏡4,5,6,7は、所定の光軸に対してお互いに偏心するように配設されており、第1物体面2から出た光束と反射鏡の干渉を避けるように配設することが可能である。また、第2物体面3側においてテレセントリックに投影しているため、デフォーカスしても倍率を変わらないようにすることが可能である。
【0013】
これらの反射鏡のうち、第1の反射鏡4と第3の反射鏡6は反射面が第1物体面2に向くように配設されており、第2の反射鏡5と第4の反射鏡7は反射面が第2物体面3に向くように配設されている。この時、反射鏡は第1物体面2から第2物体面3に向かって、第2の反射鏡5、第4の反射鏡7、第1の反射鏡4、第3の反射鏡6の順に並んで配設されており、第1物体面2からでた光は、凸面鏡と凹面鏡を交互に反射して、第2物体面3上に結像する。
【0014】
なお、本実施例では4枚の反射鏡で構成したが、反射鏡の枚数は2枚以上であれば実現可能である。但し、既に説明したとおり、現在利用可能な反射膜では、十分な反射率が得られないため、反射鏡は4枚以下で構成することが望ましい。
【0015】
また、前記反射鏡の光軸の第2物体面3の光軸に対しての偏心量は、0.01度より大きいことが好ましい。これより偏心量が小さいと、光束と反射鏡との物理的干渉が十分に避けられず、光の一部が反射鏡により遮光されてしまい、露光性能の低下を招くこととなる。また、偏心量が大きすぎると、反射鏡で発生する収差が大きくなり補正困難となるため、偏心量は40度以下とすることが好ましい。このとき、収差を補正するために、反射鏡の反射面をアナモルフィック非球面で構成することが可能であるが、この場合は、第2物体面3の光軸に対して、アナモルフィック非球面のベースとなる球面の光軸のなす角度が、上述した説明と同様の理由により、0.01度より大きく40度より小さくなるように構成されることが好ましい。
【0016】
次に、上述した投影光学系1を用いて構成され、半導体製造工程の一つである光リソグラフィ工程で使用される縮小投影露光装置について、図2を参照して説明する。光リソグラフィ工程で使用される縮小投影露光装置は、原理的には写真製版と同じであり、レチクル上に精密に描かれたデバイスパターンを、フォトレジストを添付した半導体ウエハやガラス基板等の感光基板上に光学的に投影して転写するものである。
【0017】
この縮小投影露光装置10は、反射型のレチクル13に露光用照明光源11からの光を照明光学系12を通してスリット状の露光光にして照射し、レチクル13に形成されたパターンの一部の像を上述した投影光学系1を通して半導体ウエハ17に投影し、レチクル13と半導体ウエハ17とを投影光学系1に対して1次元方向(Y軸方向)に相対走査することによって、レチクル13のパターンの全体を半導体ウエハ17上の複数のショット領域の各々にステップ・アンド・スキャン方式で転写するものである。本実施例の露光光としては、波長13.4nm程度のEUV光を使用している。なお、図2においては、投影光学系1の光軸方向をZ軸とし、このZ軸と直交する方向であって、レチクル13及び半導体ウエハ17の走査方向をY軸とし、これらYZ軸と直交する紙面垂直方向をX軸とする。
【0018】
ここで、本実施例における露光光の形状は、図3に示すように、露光用照明光源11からの照明光30の円周部をスリット30aにして利用している。なお、図3におけるX軸、Y軸は上述した軸と同じである。
【0019】
レチクル13は、少なくともY軸方向に沿って移動可能なレチクル支持台14に支持されており、半導体ウエハ17はXYZ軸方向に沿って移動可能な載置台18に載置されている。これらのレチクル支持台14及び載置台18の移動には、それぞれに接続されたレチクル支持台駆動部15及び載置台駆動部19により駆動される。露光動作の際には、照明光学系12によりレチクル13に対してEUV光を照射し、投影光学系1に対してレチクル13及び半導体ウエハ17を、投影光学系1の縮小倍率により定まる所定の速度比で移動させる。これにより、半導体ウエハ17上の所定のショット領域内には、レチクル13上のパターンの像が走査露光される。
【0020】
なお、本発明に係る投影光学系1の反射鏡は4枚で構成したが、上述したスリット30aのY軸方向の幅を狭くすれば(さらに円周部に近い部分を利用すれば)、反射鏡を2枚構成としても収差の補正をして投影光学系を構成することが可能である。
【0021】
最後に、本発明に係る投影光学系の数値実施例について説明する。投影光学系1の構造としては、上述した図1の通りであり、露光光30aの形状は図3に示したスリット状をしている。なお、本数値実施例における第1〜4の反射鏡4,5,6,7の反射面は、所定の光軸に対して回転対称な非球面形状(アナモルフィック非球面でない場合)を示しており、この非球面形状は次式で表される。
【0022】
【数1】
【0023】
ここで、zは反射面の中心接平面から非球面までの距離であり、cは中心曲率(近軸領域での中心曲率)、rは中心接平面上の光軸からの距離、κはコニック係数、Aは4次の非球面係数、Bは6次の非球面係数、Cは8次の非球面係数、Dは10次の非球面係数、Eは12次の非球面係数、Fは14次の非球面係数、Gは16次の非球面係数を表している。
【0024】
なお、本実施例における露光光(EUV光)の波長は13.4nm、縮小倍率が1/4倍、像側のNAが0.17、第2物体面3への光束はテレセントリックとなっている。また、露光光30aは、図3に示すように照明光30の像高(Y軸方向)のうち、29mm〜28mmの範囲をスリット状にして使用している。
【0025】
表1、表2に、投影光学系1の諸元の値を示す。表1において、曲率半径には各反射面の近似区曲率半径(単位:mm)が示されており、間隔には各面間隔(単位:mm)が示されている。なお、曲率半径の符号は第1物体面2側に向けて凹となる場合を正とし、間隔は一つ前の面番号からの間隔であり、また、反射面の前後で符号が逆転するものとする。また、表2には、第1〜4の反射鏡4,5,6,7の非球面データを示す。なお、表2において、YDEはY軸方向へ反射面の光軸を平行移動した偏心量(単位:mm)であり、ADEは、反射面をその中心接平面のX軸を中心に回転させた偏心量(単位:度)を表している。
【0026】
【表1】
【0027】
【表2】
【0028】
上述したような構成を有する投影光学系1によって、第1物体面2上のパターンの像を第2物体面3上に投影形成することができる。このとき、第2物体面3上に投影形成される像のコマ収差(ウエハ側)を、図3の露光光30aの形状に示すA〜Dの点に対応して示したグラフが図4である。図4において、左側の列のグラフがY軸方向の収差を表しており、縦軸にY軸方向の収差(EY 単位:mm)を取り、横軸にNAを取っている。図4の右側の列のグラフがX軸方向の収差を表しており、縦軸にX軸方向の収差(EX 単位:mm)を取り、横軸にNAを取っている。また、図3における点A〜Dに対応して、図4の(A)〜(D)にコマ収差のグラフが表されており、良好な結果となっている。
【0029】
以上のように、投影光学系1を構成する反射鏡を非球面の凸面状または凹面状の反射面を有するように構成することにより、4枚でも十分NAが大きく、かつ、収差の少ない精度のよい露光を行うことが可能となる。また、反射鏡を所定の光軸に対してお互いに偏心するように配設することにより、第1物体面2から出た光束と反射鏡の物理的干渉を容易に避けることができるため、投影光学系の設計が容易となる。
【0030】
なお、さらに収差を補正して、より精度の高い露光をするために、上述した反射鏡の反射面をアナモルフィック非球面で構成することも可能である。
【0031】
【発明の効果】
本発明による投影光学系によれば、投影光学系を構成する2枚以上の反射鏡の少なくとも1枚を非球面で凸面状の反射面を有するように構成し、その他の反射鏡の少なくとも1枚を非球面で凹面上の反射面を有するように構成し、第1物体面の縮小像を前記反射鏡に反射させて、第2物体面上にテレセントリックに投影して結像形成することにより、少ない反射鏡で、収差が少なく精度の良い露光を実現することができる。
【0032】
また、前記反射鏡をその光軸をお互いに偏心して配設することにより、光束と反射鏡の物理的干渉を容易に避けることができるため、投影光学系の設計が容易となる。
【図面の簡単な説明】
【図1】本発明に係る投影光学系の横断面の光路図である。
【図2】本発明に係る縮小投影露光装置におけるブロック図である。
【図3】本発明に係る投影光学系の露光光の形状を表す図である。
【図4】本発目に係る投影光学系のコマ収差を示し、同図(A)は図3における点Aでの収差であり、同図(B)は図3における点Bでの収差であり、同図(C)は図3における点Cでの収差であり、同図(D)は図3における点Dでの収差を表すグラフである。
【符号の説明】
1 投影光学系
2 第1物体面
3 第2物体面
4 第1の反射鏡
5 第2の反射鏡
6 第3の反射鏡
7 第4の反射鏡
10 縮小投影露光装置
13 レチクル
17 半導体ウエハ(感光基板)[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a projection optical system for projecting and forming a reduced image of a reticle pattern on a photosensitive substrate, and a reduction projection exposure apparatus including the projection optical system.
[0002]
[Prior art]
The numerical aperture (hereinafter, referred to as "NA") and the wavelength used of the reduction projection exposure apparatus for semiconductors tend to be larger and shorter year by year with the increase in the density of semiconductor elements and the thinning of the target line width. It is in. The wavelength of the light beam used shifts from the i-line of a mercury lamp (wavelength 365.015 nm) to a KrF excimer laser (wavelength 248 nm), and a reduction projection exposure apparatus using an ArF excimer laser (wavelength 193 nm) as a light source is also in practical use. However, in recent years, there has been an increasing demand for finer patterns, and reduction projection using an F2 excimer laser (wavelength: 157 nm) and EUV light having a shorter wavelength (extreme ultraviolet light, near 13 nm) as a light source. Exposure apparatuses have been studied as a promising tool for next-generation semiconductor lithography.
[0003]
The glass material of the projection lens used in such a reduced projection exposure apparatus is limited to a glass material using an F2 excimer laser as a light source due to the problem of transmittance. When a light source having a shorter wavelength is used, a reflecting mirror is used. It is necessary to configure a reduction projection exposure apparatus using the configured catadioptric optical system. Also, in order to realize high resolution, it is necessary to increase the NA of this optical system. Therefore, in order to avoid physical interference between the light beam and the reflecting mirror while maintaining good aberration, a catadioptric optical system must be used. The number of constituent mirrors tended to increase.
[0004]
[Problems to be solved by the invention]
However, when irradiated with a short wavelength light such as EUV light, the light passes through the reflecting mirror. Therefore, it is necessary to form a reflecting film on the reflecting surface of the reflecting mirror to reflect the EUV light. Since a reflective film having a reflectivity has not been obtained, heat due to absorption of exposure light is generated in the reflective film in consideration of actual exposure, and the performance of the optical system may be deteriorated due to heat fluctuation. In addition, it is necessary to increase the light amount of the light source in consideration of the absorption of the exposure light by the reflection film, and it is considered that it is difficult to realize a reduction projection exposure apparatus with a conventionally known optical system.
[0005]
The present invention has been made in view of such a problem, and has a sufficient NA with a small number of aberrations even when the number of reflecting mirrors constituting the projection optical system is reduced, and has a high degree of freedom in arrangement of the reflecting mirrors. It is an object of the present invention to provide a projection optical system capable of avoiding physical interference between a light beam and a reflecting mirror and a reduction projection exposure apparatus having the projection optical system.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, a projection optical system according to the present invention uses a light source having a wavelength of 50 nm or less and a first object surface using a reduction projection device including a reflecting mirror having a reflecting surface of a predetermined shape. Configured to project a reduced image of the upper object on a second object plane, at least one of the reflecting mirrors constituting the reduced projection device has an aspherical convex reflecting surface, At least one of the other reflecting mirrors has an aspherical concave reflecting surface, and the convex reflecting surface and the concave reflecting surface are eccentric with respect to a predetermined optical axis. And light from the first object surface is reflected by the reflecting mirror and is imaged telecentrically on the second object surface.
[0007]
Further, it is possible to constitute the reflection mirror with four or more mirrors, and to make all the optical axes decentered from each other.
[0008]
Further, the number of the reflecting mirrors is four, and all of the reflecting mirrors can have an aspherical reflecting surface.
[0009]
The angle between the optical axis of the second object surface and the optical axis of the reflecting mirror having the aspherical convex reflecting surface and the reflecting mirror having the aspherical concave reflecting surface is smaller than 40 degrees. Preferably, it is configured to be greater than 01 degrees.
[0010]
In addition, at least one of the reflecting mirrors can be configured to have an anamorphic aspherical reflecting surface. At this time, the optical axis of the second object surface and the anamorphic It is preferable that the angle formed by the optical axis of the spherical surface serving as the base of the aspherical surface is smaller than 40 degrees and larger than 0.01 degrees.
[0011]
A reduction projection exposure apparatus according to the present invention is configured to irradiate a reticle with exposure light and project an image of a pattern formed on the reticle onto a photosensitive substrate via the projection optical system.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. First, the configuration of the projection optical system according to the present invention will be described with reference to FIG. FIG. 1 is an optical path diagram of a transverse section of a projection optical system according to the present invention, and the width of a light beam represents only the transverse section. The projection optical system 1 is disposed between the first object plane 2 and the second object plane 3, and includes a first reflecting mirror 4, a second reflecting mirror 5, a third reflecting mirror 6, and a fourth reflecting mirror 6. It comprises a reflecting mirror 7. The light that has exited the first object plane 2 is sequentially reflected by the first to fourth reflecting mirrors 4, 5, 6, and 7, and a reduced image of the pattern on the first object plane 2 is telecentric on the second object plane 3. To form an image. Here, at least one convex mirror and one concave mirror are required in order to maintain flatness and ensure magnification, and it is desirable that the lens be aspherical in order to correct aberrations. In the embodiment, the first reflecting mirror 4 has an aspherical convex reflecting surface, the second reflecting mirror 5 has an aspherical concave reflecting surface, and the third reflecting mirror 5 has a third reflecting mirror. The reflecting mirror 6 has an aspherical convex reflecting surface, and the fourth reflecting mirror 7 has an aspherical concave reflecting surface. Further, the first to fourth reflecting mirrors 4, 5, 6, and 7 are disposed so as to be eccentric with respect to a predetermined optical axis, and the luminous flux emitted from the first object plane 2 and the reflecting mirror It can be arranged to avoid interference. Further, since the projection is performed telecentrically on the second object plane 3 side, it is possible to keep the magnification unchanged even when defocused.
[0013]
Among these reflecting mirrors, the first reflecting mirror 4 and the third reflecting mirror 6 are disposed so that the reflecting surface faces the first object surface 2, and the second reflecting mirror 5 and the fourth reflecting mirror The mirror 7 is disposed so that the reflection surface faces the second object surface 3. At this time, the reflecting mirrors are arranged in the order of the second reflecting mirror 5, the fourth reflecting mirror 7, the first reflecting mirror 4, and the third reflecting mirror 6 from the first object plane 2 to the second object plane 3. The light emitted from the first object plane 2 is arranged side by side, and is reflected on the convex mirror and the concave mirror alternately to form an image on the second object plane 3.
[0014]
In this embodiment, four reflecting mirrors are used. However, the number of reflecting mirrors can be reduced to two or more. However, as already described, since a currently available reflective film does not provide a sufficient reflectivity, it is desirable that the number of reflective mirrors be four or less.
[0015]
Further, it is preferable that an eccentric amount of the optical axis of the reflecting mirror with respect to the optical axis of the second object plane 3 is larger than 0.01 degrees. If the amount of eccentricity is smaller than this, physical interference between the light beam and the reflecting mirror cannot be sufficiently avoided, and part of the light is blocked by the reflecting mirror, resulting in a decrease in exposure performance. If the amount of eccentricity is too large, the aberration generated by the reflecting mirror becomes large and it becomes difficult to correct the eccentricity. At this time, in order to correct the aberration, the reflecting surface of the reflecting mirror can be formed by an anamorphic aspherical surface. In this case, the reflecting surface of the reflecting mirror is anamorphic with respect to the optical axis of the second object surface 3. It is preferable that the angle formed by the optical axis of the spherical surface serving as the base of the aspherical surface is larger than 0.01 degrees and smaller than 40 degrees for the same reason as described above.
[0016]
Next, a reduction projection exposure apparatus configured using the above-described projection optical system 1 and used in an optical lithography process, which is one of the semiconductor manufacturing processes, will be described with reference to FIG. The reduction projection exposure apparatus used in the optical lithography process is in principle the same as photolithography, in which a device pattern precisely drawn on a reticle is exposed to a photosensitive substrate such as a semiconductor wafer or glass substrate with photoresist. It is to be projected onto the upper surface and transferred.
[0017]
The reduction
[0018]
Here, as shown in FIG. 3, the shape of the exposure light in the present embodiment uses the circumferential portion of the illumination light 30 from the exposure illumination light source 11 as a
[0019]
The
[0020]
The projection optical system 1 according to the present invention has four reflecting mirrors. However, if the width of the
[0021]
Finally, numerical examples of the projection optical system according to the present invention will be described. The structure of the projection optical system 1 is as shown in FIG. 1 described above, and the shape of the
[0022]
(Equation 1)
[0023]
Here, z is the distance from the central tangent plane of the reflecting surface to the aspheric surface, c is the central curvature (central curvature in the paraxial region), r is the distance from the optical axis on the central tangent plane, and κ is conic. A is a fourth-order aspherical coefficient, B is a sixth-order aspherical coefficient, C is an eighth-order aspherical coefficient, D is a tenth-order aspherical coefficient, E is a twelfth-order aspherical coefficient, and F is 14 The next aspheric coefficient, G, represents a 16th-order aspheric coefficient.
[0024]
In this embodiment, the wavelength of the exposure light (EUV light) is 13.4 nm, the reduction magnification is 1/4, the NA on the image side is 0.17, and the light flux to the second object plane 3 is telecentric. . As shown in FIG. 3, the
[0025]
Tables 1 and 2 show the values of the specifications of the projection optical system 1. In Table 1, the radius of curvature indicates an approximate section radius of curvature (unit: mm) of each reflecting surface, and the interval indicates each surface interval (unit: mm). In addition, the sign of the radius of curvature is positive when it becomes concave toward the first object surface 2 side, the interval is the interval from the previous surface number, and the sign is reversed before and after the reflecting surface. And Table 2 shows aspherical data of the first to fourth reflecting mirrors 4, 5, 6, and 7. In Table 2, YDE is the amount of eccentricity (unit: mm) obtained by moving the optical axis of the reflecting surface in parallel in the Y-axis direction, and ADE is obtained by rotating the reflecting surface about the X-axis of the center tangent plane. It represents the amount of eccentricity (unit: degree).
[0026]
[Table 1]
[0027]
[Table 2]
[0028]
The image of the pattern on the first object plane 2 can be projected and formed on the second object plane 3 by the projection optical system 1 having the above-described configuration. At this time, FIG. 4 is a graph showing the coma aberration (wafer side) of the image projected and formed on the second object plane 3 corresponding to points A to D shown in the shape of the
[0029]
As described above, by configuring the reflecting mirror constituting the projection optical system 1 so as to have an aspherical convex or concave reflecting surface, even with four mirrors, the NA is sufficiently large, and the accuracy is small with little aberration. Good exposure can be performed. Further, by disposing the reflecting mirror so as to be decentered with respect to a predetermined optical axis, it is possible to easily avoid physical interference between the light flux emitted from the first object plane 2 and the reflecting mirror, and thus the projection is performed. The design of the optical system becomes easy.
[0030]
In order to further correct aberration and perform exposure with higher accuracy, the reflecting surface of the above-described reflecting mirror may be formed of an anamorphic aspheric surface.
[0031]
【The invention's effect】
According to the projection optical system of the present invention, at least one of the two or more reflecting mirrors constituting the projection optical system is configured to have an aspherical and convex reflecting surface, and at least one of the other reflecting mirrors is provided. Is configured to have an aspherical reflecting surface on a concave surface, reflect a reduced image of the first object surface to the reflecting mirror, and form a telecentric image on the second object surface to form an image. With a small number of reflecting mirrors, accurate exposure can be realized with less aberration.
[0032]
Further, by arranging the reflecting mirrors with their optical axes decentered from each other, physical interference between the light flux and the reflecting mirrors can be easily avoided, so that the design of the projection optical system is facilitated.
[Brief description of the drawings]
FIG. 1 is an optical path diagram of a cross section of a projection optical system according to the present invention.
FIG. 2 is a block diagram of a reduction projection exposure apparatus according to the present invention.
FIG. 3 is a diagram illustrating a shape of exposure light of a projection optical system according to the present invention.
4A and 4B show the coma aberration of the projection optical system according to the present invention. FIG. 4A shows the aberration at point A in FIG. 3, and FIG. 4B shows the aberration at point B in FIG. FIG. 3C is a graph showing aberration at a point C in FIG. 3, and FIG. 3D is a graph showing aberration at a point D in FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Projection optical system 2 1st object plane 3 2nd object plane 4 1st reflection mirror 5 2nd reflection mirror 6 3rd reflection mirror 7
Claims (6)
前記縮小投影装置を構成する前記反射鏡のうちの少なくとも1枚は非球面で凸面状の反射面を有し、その他の前記反射鏡のうちの少なくとも1枚は非球面で凹面状の反射面を有し、
前記凸面状の反射面と前記凹面状の反射面とは、所定の光軸に対して互いに偏心するように配設されており、
前記第1物体面からの光は、前記反射鏡で反射され、前記第2物体面上にテレセントリックに結像されることを特徴とする投影光学系。Using a light source having a wavelength of 50 nm or less, a reduced image of an object on the first object plane is formed on a second object plane by using a reduction projection device including two or more reflecting mirrors each having a reflecting surface of a predetermined shape. In a projection optical system that forms projections on
At least one of the reflecting mirrors constituting the reduction projection device has an aspherical and convex reflecting surface, and at least one of the other reflecting mirrors has an aspherical and concave reflecting surface. Have
The convex reflecting surface and the concave reflecting surface are disposed so as to be eccentric with respect to a predetermined optical axis,
A projection optical system, wherein light from the first object surface is reflected by the reflecting mirror and is imaged telecentrically on the second object surface.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2002179461A JP2004023020A (en) | 2002-06-20 | 2002-06-20 | Projection optical system and reduction projection exposure apparatus |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2002179461A JP2004023020A (en) | 2002-06-20 | 2002-06-20 | Projection optical system and reduction projection exposure apparatus |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JP2004023020A true JP2004023020A (en) | 2004-01-22 |
Family
ID=31176852
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2002179461A Pending JP2004023020A (en) | 2002-06-20 | 2002-06-20 | Projection optical system and reduction projection exposure apparatus |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2004023020A (en) |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2006195097A (en) * | 2005-01-12 | 2006-07-27 | Moritex Corp | Fiber with lens and method of forming aspherical lens in fiber with lens |
| US7869122B2 (en) | 2004-01-14 | 2011-01-11 | Carl Zeiss Smt Ag | Catadioptric projection objective |
| US8199400B2 (en) | 2004-01-14 | 2012-06-12 | Carl Zeiss Smt Gmbh | Catadioptric projection objective |
| WO2014019617A1 (en) | 2012-08-01 | 2014-02-06 | Carl Zeiss Smt Gmbh | Imaging optical unit for a projection exposure apparatus |
| US8913316B2 (en) | 2004-05-17 | 2014-12-16 | Carl Zeiss Smt Gmbh | Catadioptric projection objective with intermediate images |
| JP2017528775A (en) * | 2014-09-15 | 2017-09-28 | カール・ツァイス・エスエムティー・ゲーエムベーハー | Projection lens, projection exposure apparatus, and projection exposure method for EUV microlithography |
-
2002
- 2002-06-20 JP JP2002179461A patent/JP2004023020A/en active Pending
Cited By (21)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8730572B2 (en) | 2004-01-14 | 2014-05-20 | Carl Zeiss Smt Gmbh | Catadioptric projection objective |
| US8804234B2 (en) | 2004-01-14 | 2014-08-12 | Carl Zeiss Smt Gmbh | Catadioptric projection objective including an aspherized plate |
| US8199400B2 (en) | 2004-01-14 | 2012-06-12 | Carl Zeiss Smt Gmbh | Catadioptric projection objective |
| US8208198B2 (en) | 2004-01-14 | 2012-06-26 | Carl Zeiss Smt Gmbh | Catadioptric projection objective |
| US8208199B2 (en) | 2004-01-14 | 2012-06-26 | Carl Zeiss Smt Gmbh | Catadioptric projection objective |
| US8289619B2 (en) | 2004-01-14 | 2012-10-16 | Carl Zeiss Smt Gmbh | Catadioptric projection objective |
| US8339701B2 (en) | 2004-01-14 | 2012-12-25 | Carl Zeiss Smt Gmbh | Catadioptric projection objective |
| US8355201B2 (en) | 2004-01-14 | 2013-01-15 | Carl Zeiss Smt Gmbh | Catadioptric projection objective |
| US8416490B2 (en) | 2004-01-14 | 2013-04-09 | Carl Zeiss Smt Gmbh | Catadioptric projection objective |
| US9772478B2 (en) | 2004-01-14 | 2017-09-26 | Carl Zeiss Smt Gmbh | Catadioptric projection objective with parallel, offset optical axes |
| US7869122B2 (en) | 2004-01-14 | 2011-01-11 | Carl Zeiss Smt Ag | Catadioptric projection objective |
| US8908269B2 (en) | 2004-01-14 | 2014-12-09 | Carl Zeiss Smt Gmbh | Immersion catadioptric projection objective having two intermediate images |
| US8913316B2 (en) | 2004-05-17 | 2014-12-16 | Carl Zeiss Smt Gmbh | Catadioptric projection objective with intermediate images |
| US9019596B2 (en) | 2004-05-17 | 2015-04-28 | Carl Zeiss Smt Gmbh | Catadioptric projection objective with intermediate images |
| US9134618B2 (en) | 2004-05-17 | 2015-09-15 | Carl Zeiss Smt Gmbh | Catadioptric projection objective with intermediate images |
| US9726979B2 (en) | 2004-05-17 | 2017-08-08 | Carl Zeiss Smt Gmbh | Catadioptric projection objective with intermediate images |
| JP2006195097A (en) * | 2005-01-12 | 2006-07-27 | Moritex Corp | Fiber with lens and method of forming aspherical lens in fiber with lens |
| US9459539B2 (en) | 2012-08-01 | 2016-10-04 | Carl Zeiss Smt Gmbh | Imaging optical unit for a projection exposure apparatus |
| WO2014019617A1 (en) | 2012-08-01 | 2014-02-06 | Carl Zeiss Smt Gmbh | Imaging optical unit for a projection exposure apparatus |
| JP2017528775A (en) * | 2014-09-15 | 2017-09-28 | カール・ツァイス・エスエムティー・ゲーエムベーハー | Projection lens, projection exposure apparatus, and projection exposure method for EUV microlithography |
| US10591825B2 (en) | 2014-09-15 | 2020-03-17 | Carl Zeiss Smt Gmbh | Projection lens, projection exposure apparatus and projection exposure method for EUV microlithography |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| KR102562404B1 (en) | EUV lithography system for dense line patterning | |
| KR102154770B1 (en) | Imaging optical system | |
| US7471456B2 (en) | Optical integrator, illumination optical device, exposure device, and exposure method | |
| JP4923370B2 (en) | Illumination optical system, exposure apparatus, and microdevice manufacturing method | |
| JP3913009B2 (en) | Lithographic projection apparatus | |
| JP2002100561A (en) | Exposure method and apparatus, and device manufacturing method | |
| KR101946596B1 (en) | Image-forming optical system, exposure apparatus, and device producing method | |
| US20090033903A1 (en) | Illumination systems, exposure apparatus, and microdevice-manufacturing methods using same | |
| JP2004029625A (en) | Projection optical system, exposure apparatus and exposure method | |
| JP5077565B2 (en) | Illumination optical apparatus, exposure apparatus, and device manufacturing method | |
| US6995829B2 (en) | Projection optical system, exposure apparatus, and device manufacturing method | |
| KR100767833B1 (en) | Lithographic apparatus and device manufacturing method | |
| JP2002015979A (en) | Projection optical system, exposure apparatus and exposure method | |
| JP2000098228A (en) | Projection exposure apparatus, exposure method, and reflection reduction projection optical system | |
| JP2004023020A (en) | Projection optical system and reduction projection exposure apparatus | |
| JP2006278820A (en) | Exposure method and apparatus | |
| JP2004031808A (en) | Projection optical system of exposure apparatus, exposure apparatus having the projection optical system, and exposure method using the exposure apparatus | |
| JP2005209769A (en) | Exposure equipment | |
| JP2006080444A (en) | Measuring apparatus, test reticle, exposure apparatus, and device manufacturing method | |
| JP2004029458A (en) | Projection optical system and reduction projection exposure apparatus | |
| JP2005011914A (en) | Reflective mask and exposure apparatus | |
| JP2004093953A (en) | Projection optical system, exposure apparatus, and micro device manufacturing method | |
| JP4307039B2 (en) | Illumination apparatus, exposure apparatus, and device manufacturing method | |
| JP2004252359A (en) | Reflection type projection optical system and exposure apparatus having the reflection type projection optical system | |
| JP2004022722A (en) | Projection optical system and exposure apparatus having the projection optical system |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050609 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080116 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080201 |
|
| A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20080606 |