JP2004035825A - Semiconductive polyimide film and method of producing the same - Google Patents
Semiconductive polyimide film and method of producing the same Download PDFInfo
- Publication number
- JP2004035825A JP2004035825A JP2002197575A JP2002197575A JP2004035825A JP 2004035825 A JP2004035825 A JP 2004035825A JP 2002197575 A JP2002197575 A JP 2002197575A JP 2002197575 A JP2002197575 A JP 2002197575A JP 2004035825 A JP2004035825 A JP 2004035825A
- Authority
- JP
- Japan
- Prior art keywords
- polyimide film
- semiconductive
- polyamic acid
- filler
- dispersant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229920001721 polyimide Polymers 0.000 title claims abstract description 69
- 238000000034 method Methods 0.000 title claims abstract description 41
- 229920005575 poly(amic acid) Polymers 0.000 claims abstract description 61
- 239000000945 filler Substances 0.000 claims abstract description 43
- 239000002270 dispersing agent Substances 0.000 claims abstract description 33
- 239000011256 inorganic filler Substances 0.000 claims abstract description 19
- 229910003475 inorganic filler Inorganic materials 0.000 claims abstract description 19
- 239000004642 Polyimide Substances 0.000 claims abstract description 17
- 239000003960 organic solvent Substances 0.000 claims abstract description 14
- 230000007613 environmental effect Effects 0.000 claims abstract description 8
- 239000000243 solution Substances 0.000 claims description 43
- 239000006185 dispersion Substances 0.000 claims description 23
- 238000004519 manufacturing process Methods 0.000 claims description 11
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical group O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 6
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 6
- 239000000758 substrate Substances 0.000 claims description 3
- 239000011259 mixed solution Substances 0.000 claims description 2
- 230000002776 aggregation Effects 0.000 abstract description 4
- 238000005054 agglomeration Methods 0.000 abstract description 2
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 42
- 239000000126 substance Substances 0.000 description 21
- 238000001723 curing Methods 0.000 description 19
- 239000003795 chemical substances by application Substances 0.000 description 18
- 239000000203 mixture Substances 0.000 description 18
- GTDPSWPPOUPBNX-UHFFFAOYSA-N ac1mqpva Chemical compound CC12C(=O)OC(=O)C1(C)C1(C)C2(C)C(=O)OC1=O GTDPSWPPOUPBNX-UHFFFAOYSA-N 0.000 description 16
- -1 acetic anhydride Chemical class 0.000 description 15
- 239000002904 solvent Substances 0.000 description 14
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 12
- 238000002156 mixing Methods 0.000 description 12
- 238000006243 chemical reaction Methods 0.000 description 9
- 108010025899 gelatin film Proteins 0.000 description 9
- AWJUIBRHMBBTKR-UHFFFAOYSA-N isoquinoline Chemical compound C1=NC=CC2=CC=CC=C21 AWJUIBRHMBBTKR-UHFFFAOYSA-N 0.000 description 8
- 238000005259 measurement Methods 0.000 description 8
- 229910052782 aluminium Inorganic materials 0.000 description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 7
- ARCGXLSVLAOJQL-UHFFFAOYSA-N anhydrous trimellitic acid Natural products OC(=O)C1=CC=C(C(O)=O)C(C(O)=O)=C1 ARCGXLSVLAOJQL-UHFFFAOYSA-N 0.000 description 7
- 150000004985 diamines Chemical class 0.000 description 7
- 239000011888 foil Substances 0.000 description 7
- 239000002253 acid Substances 0.000 description 6
- 239000003054 catalyst Substances 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- VLDPXPPHXDGHEW-UHFFFAOYSA-N 1-chloro-2-dichlorophosphoryloxybenzene Chemical compound ClC1=CC=CC=C1OP(Cl)(Cl)=O VLDPXPPHXDGHEW-UHFFFAOYSA-N 0.000 description 5
- HLBLWEWZXPIGSM-UHFFFAOYSA-N 4-Aminophenyl ether Chemical compound C1=CC(N)=CC=C1OC1=CC=C(N)C=C1 HLBLWEWZXPIGSM-UHFFFAOYSA-N 0.000 description 5
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 4
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 4
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 4
- 150000008065 acid anhydrides Chemical class 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 239000002243 precursor Substances 0.000 description 4
- 238000001029 thermal curing Methods 0.000 description 4
- CBCKQZAAMUWICA-UHFFFAOYSA-N 1,4-phenylenediamine Chemical compound NC1=CC=C(N)C=C1 CBCKQZAAMUWICA-UHFFFAOYSA-N 0.000 description 3
- 125000003118 aryl group Chemical group 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- ITQTTZVARXURQS-UHFFFAOYSA-N 3-methylpyridine Chemical compound CC1=CC=CN=C1 ITQTTZVARXURQS-UHFFFAOYSA-N 0.000 description 2
- IJJNNSUCZDJDLP-UHFFFAOYSA-N 4-[1-(3,4-dicarboxyphenyl)ethyl]phthalic acid Chemical compound C=1C=C(C(O)=O)C(C(O)=O)=CC=1C(C)C1=CC=C(C(O)=O)C(C(O)=O)=C1 IJJNNSUCZDJDLP-UHFFFAOYSA-N 0.000 description 2
- VQVIHDPBMFABCQ-UHFFFAOYSA-N 5-(1,3-dioxo-2-benzofuran-5-carbonyl)-2-benzofuran-1,3-dione Chemical compound C1=C2C(=O)OC(=O)C2=CC(C(C=2C=C3C(=O)OC(=O)C3=CC=2)=O)=C1 VQVIHDPBMFABCQ-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 150000001408 amides Chemical class 0.000 description 2
- 150000008064 anhydrides Chemical class 0.000 description 2
- HFACYLZERDEVSX-UHFFFAOYSA-N benzidine Chemical compound C1=CC(N)=CC=C1C1=CC=C(N)C=C1 HFACYLZERDEVSX-UHFFFAOYSA-N 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 2
- 239000011231 conductive filler Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229920000767 polyaniline Polymers 0.000 description 2
- 229920002959 polymer blend Polymers 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- GEYOCULIXLDCMW-UHFFFAOYSA-N 1,2-phenylenediamine Chemical compound NC1=CC=CC=C1N GEYOCULIXLDCMW-UHFFFAOYSA-N 0.000 description 1
- WZCQRUWWHSTZEM-UHFFFAOYSA-N 1,3-phenylenediamine Chemical compound NC1=CC=CC(N)=C1 WZCQRUWWHSTZEM-UHFFFAOYSA-N 0.000 description 1
- HUWXDEQWWKGHRV-UHFFFAOYSA-N 3,3'-Dichlorobenzidine Chemical compound C1=C(Cl)C(N)=CC=C1C1=CC=C(N)C(Cl)=C1 HUWXDEQWWKGHRV-UHFFFAOYSA-N 0.000 description 1
- GWHLJVMSZRKEAQ-UHFFFAOYSA-N 3-(2,3-dicarboxyphenyl)phthalic acid Chemical compound OC(=O)C1=CC=CC(C=2C(=C(C(O)=O)C=CC=2)C(O)=O)=C1C(O)=O GWHLJVMSZRKEAQ-UHFFFAOYSA-N 0.000 description 1
- LXJLFVRAWOOQDR-UHFFFAOYSA-N 3-(3-aminophenoxy)aniline Chemical compound NC1=CC=CC(OC=2C=C(N)C=CC=2)=C1 LXJLFVRAWOOQDR-UHFFFAOYSA-N 0.000 description 1
- LJGHYPLBDBRCRZ-UHFFFAOYSA-N 3-(3-aminophenyl)sulfonylaniline Chemical compound NC1=CC=CC(S(=O)(=O)C=2C=C(N)C=CC=2)=C1 LJGHYPLBDBRCRZ-UHFFFAOYSA-N 0.000 description 1
- ZBMISJGHVWNWTE-UHFFFAOYSA-N 3-(4-aminophenoxy)aniline Chemical compound C1=CC(N)=CC=C1OC1=CC=CC(N)=C1 ZBMISJGHVWNWTE-UHFFFAOYSA-N 0.000 description 1
- UCFMKTNJZCYBBJ-UHFFFAOYSA-N 3-[1-(2,3-dicarboxyphenyl)ethyl]phthalic acid Chemical compound C=1C=CC(C(O)=O)=C(C(O)=O)C=1C(C)C1=CC=CC(C(O)=O)=C1C(O)=O UCFMKTNJZCYBBJ-UHFFFAOYSA-N 0.000 description 1
- ICNFHJVPAJKPHW-UHFFFAOYSA-N 4,4'-Thiodianiline Chemical compound C1=CC(N)=CC=C1SC1=CC=C(N)C=C1 ICNFHJVPAJKPHW-UHFFFAOYSA-N 0.000 description 1
- YBRVSVVVWCFQMG-UHFFFAOYSA-N 4,4'-diaminodiphenylmethane Chemical compound C1=CC(N)=CC=C1CC1=CC=C(N)C=C1 YBRVSVVVWCFQMG-UHFFFAOYSA-N 0.000 description 1
- LFBALUPVVFCEPA-UHFFFAOYSA-N 4-(3,4-dicarboxyphenyl)phthalic acid Chemical compound C1=C(C(O)=O)C(C(=O)O)=CC=C1C1=CC=C(C(O)=O)C(C(O)=O)=C1 LFBALUPVVFCEPA-UHFFFAOYSA-N 0.000 description 1
- AVCOFPOLGHKJQB-UHFFFAOYSA-N 4-(3,4-dicarboxyphenyl)sulfonylphthalic acid Chemical compound C1=C(C(O)=O)C(C(=O)O)=CC=C1S(=O)(=O)C1=CC=C(C(O)=O)C(C(O)=O)=C1 AVCOFPOLGHKJQB-UHFFFAOYSA-N 0.000 description 1
- GEYAGBVEAJGCFB-UHFFFAOYSA-N 4-[2-(3,4-dicarboxyphenyl)propan-2-yl]phthalic acid Chemical compound C=1C=C(C(O)=O)C(C(O)=O)=CC=1C(C)(C)C1=CC=C(C(O)=O)C(C(O)=O)=C1 GEYAGBVEAJGCFB-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- MQJKPEGWNLWLTK-UHFFFAOYSA-N Dapsone Chemical compound C1=CC(N)=CC=C1S(=O)(=O)C1=CC=C(N)C=C1 MQJKPEGWNLWLTK-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- WRPSKOREVDHZHP-UHFFFAOYSA-N benzene-1,4-diamine Chemical compound NC1=CC=C(N)C=C1.NC1=CC=C(N)C=C1 WRPSKOREVDHZHP-UHFFFAOYSA-N 0.000 description 1
- WKDNYTOXBCRNPV-UHFFFAOYSA-N bpda Chemical compound C1=C2C(=O)OC(=O)C2=CC(C=2C=C3C(=O)OC(C3=CC=2)=O)=C1 WKDNYTOXBCRNPV-UHFFFAOYSA-N 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 238000013007 heat curing Methods 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 235000014413 iron hydroxide Nutrition 0.000 description 1
- NCNCGGDMXMBVIA-UHFFFAOYSA-L iron(ii) hydroxide Chemical compound [OH-].[OH-].[Fe+2] NCNCGGDMXMBVIA-UHFFFAOYSA-L 0.000 description 1
- MCVFFRWZNYZUIJ-UHFFFAOYSA-M lithium;trifluoromethanesulfonate Chemical compound [Li+].[O-]S(=O)(=O)C(F)(F)F MCVFFRWZNYZUIJ-UHFFFAOYSA-M 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- OBKARQMATMRWQZ-UHFFFAOYSA-N naphthalene-1,2,5,6-tetracarboxylic acid Chemical compound OC(=O)C1=C(C(O)=O)C=CC2=C(C(O)=O)C(C(=O)O)=CC=C21 OBKARQMATMRWQZ-UHFFFAOYSA-N 0.000 description 1
- KQSABULTKYLFEV-UHFFFAOYSA-N naphthalene-1,5-diamine Chemical compound C1=CC=C2C(N)=CC=CC2=C1N KQSABULTKYLFEV-UHFFFAOYSA-N 0.000 description 1
- DOBFTMLCEYUAQC-UHFFFAOYSA-N naphthalene-2,3,6,7-tetracarboxylic acid Chemical compound OC(=O)C1=C(C(O)=O)C=C2C=C(C(O)=O)C(C(=O)O)=CC2=C1 DOBFTMLCEYUAQC-UHFFFAOYSA-N 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- CLYVDMAATCIVBF-UHFFFAOYSA-N pigment red 224 Chemical compound C=12C3=CC=C(C(OC4=O)=O)C2=C4C=CC=1C1=CC=C2C(=O)OC(=O)C4=CC=C3C1=C42 CLYVDMAATCIVBF-UHFFFAOYSA-N 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- WYVAMUWZEOHJOQ-UHFFFAOYSA-N propionic anhydride Chemical compound CCC(=O)OC(=O)CC WYVAMUWZEOHJOQ-UHFFFAOYSA-N 0.000 description 1
- 239000013557 residual solvent Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 239000011342 resin composition Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 239000002966 varnish Substances 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Landscapes
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Moulding By Coating Moulds (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
また、本発明は、電池の電極材料、電磁シールド材、静電吸着用フィルム、帯電防止剤、画像形成装置部品、電子デバイス等に好適に使用される半導電性ポリイミドフィルムとその製造方法に関する。
【0002】
【従来の技術】
従来、ポリイミドの導電性を改良する方法として一般にカーボン、グラファイト、金属粒子、酸化インジウム錫等導電性物質で被覆することにより導電性を付与された物質等の導電性充填剤を混合する方法が知られている。しかしこの方法により導電性を改良しようとした場合得られるフィルムは機械的特性に劣ったものであることが多く、また、これらの方法で用いられている充填剤は、その抵抗率が非常に低いため半導電性領域での抵抗制御は非常に困難であり、特に表面抵抗率を再現性良くかつ面内ばらつきを小さくすることが困難であった。また更にはその抵抗率の測定電圧依存性が大きいものしか得られなかった。
また、特開平1−146957には金属酸化物微粉末とカーボンブラックを充填した樹脂組成物が開示されているが、やはり良導電性フィラーを用いているため抵抗値の調節が難しく、再現性に乏しいものであった。
またさらに、こういった方法の欠点を改善すべく、ポリアニリンとポリイミドのポリマーブレンドにより導電性を付与する方法が特開平8−259810、特開平8−259709に開示されている。しかしポリアニリンはイオン導電性であるためその抵抗値の環境依存性が大きく、さらに工業的な生産性は確立されておらず、ポリマーブレンドとして使用するには非常に高価であるという問題点を有している。
また、溶液製膜法により製造される樹脂フィルム中に多量のフィラーを混合させる場合、フィラーの分散には通常分散性を改良する目的で分散剤が使用される。しかし分散剤を使用した場合、最終的にフィルムに分散剤そのもの、または分散剤の分解物等が残存し、フィルム特性を悪化させたることが多かった。半導電性ポリイミドフィルムにおいても分散剤の使用は機械的特性の低下、抵抗値の環境依存性の増大等の諸問題を引き起こしていた。また、分散剤を使用しなかった場合、フィラーの凝集による抵抗値の上昇、機械的強度の低下、表面粗さの増大等の諸問題を引き起こしていた。
【0003】
【発明が解決しようとする課題】
本発明者らは、上記従来の問題点を解決し、分散剤等の残渣の残留及びフィラーの凝集を伴わず、引張強度、伸度等の機械的特性に優れ、抵抗値の環境依存性の小さい半導電性ポリイミドフィルムを提供すべく鋭意研究を重ねた結果、本発明に至ったのである。
【0004】
【課題を解決するための手段】
本発明にかかる半導電性ポリイミドフィルムの製造方法は、ポリイミドと半導電性無機フィラーを85:15〜40:60の重量比で含むポリイミドフィルムの製造方法において、半導電性無機フィラーを有機溶剤中に分散させる際にポリアミック酸を主成分とする分散剤を用いることを内容とする。
【0005】
また、本発明は半導電性無機フィラーが酸化チタンである前記半導電性ポリイミドフィルムを内容とする。
【0006】
また本発明は半導電性無機フィラーが針状である前記半導電性ポリイミドフィルムを内容とする。
【0007】
またさらに本発明はポリアミック酸溶液と、ポリアミック酸を主成分とする分散剤を用いて半導電性無機フィラーを均一に分散させたフィラー分散液とを混合し、この混合液を含む製膜溶液を基材上に流延製膜し、熱的又は化学的にイミド化する前記半導電性ポリイミドフィルムの製造方法を内容とする。
【0008】
またさらに本発明は印加電圧100Vで測定した表面抵抗率が1010〜1013Ω/□、体積抵抗率が1010〜1014Ωcmであって、式(I)で表される表面抵抗率ISの環境依存性が1以下、式(II)で表される体積抵抗率IVの環境依存性が1以下である前記半導電性ポリイミドフィルムの製造方法を内容とする。
【0009】
【数3】
SLL:10℃ 15%RH、印加電圧100V条件下での表面抵抗率
SHH:28℃ 85%RH、印加電圧100V条件下での表面抵抗率
【0010】
【数4】
VLL:10℃ 15%RH、印加電圧100V条件下での体積抵抗率
VHH:28℃ 85%RH、印加電圧100V条件下での体積抵抗率
【0011】
【発明の実施の形態】
以下、本発明の半導性ポリイミドフィルムおよびその製造方法についてその実施の形態の一例に基づき説明する。
【0012】
本発明に用いられるポリイミドの前駆体であるポリアミック酸は、基本的には、公知のあらゆるポリアミック酸を適用することができる。
【0013】
本発明に用いられるポリアミック酸は、通常、芳香族酸二無水物の少なくとも1種とジアミンの少なくとも1種を、実質的等モル量を有機溶媒中に溶解させて、得られたポリアミック酸有機溶媒溶液を、制御された温度条件下で、上記酸二無水物とジアミンの重合が完了するまで攪拌することによって製造される。本発明においてはいかなる重合法により得られたポリアミック酸有機溶媒溶液を用いることも出来るが、その一例として1)ジアミンを溶解または分散させた溶媒中に芳香族酸二無水物を固体状、スラリー状、溶液状またはこれらの組み合わせで添加していく方法、2)芳香族酸二無水物を溶解又は分散させた溶媒中にジアミンを固体状、スラリー状、溶液状またはこれらの組み合わせで添加していく方法、3)ポリアミック酸分子中のモノマー配列を制御する目的で各モノマーを多段階で添加し、最終的に実質的に等モル量の芳香族酸二無水物とジアミンを反応させる方法などが挙げられる。また、別途重合した二種以上のポリアミック酸有機溶媒溶液を混合して用いることも出来る。これらのポリアミック酸溶液の濃度と粘度は用途、プロセスに合わせて適宜調節すればよいが、通常5〜35重量%、好ましくは10〜30重量%の濃度で、23℃の測定温度で50〜10000ポイズ、好ましくは100〜5000ポイズの溶液が得られる。この範囲の濃度および溶液粘度のとき適当な分子量を得られる場合が多い。
【0014】
また、ポリイミドはポリアミック酸をイミド化して得られるが、イミド化には、熱キュア法及び化学キュア法のいずれかを用いる。熱キュア法は、脱水閉環剤等を作用させずに加熱だけでイミド化反応を進行させる方法である。また、化学キュア法は、ポリアミック酸有機溶媒溶液に、無水酢酸等の酸無水物に代表される化学的転化剤と、イソキノリン、β−ピコリン、ピリジン等の第三級アミン類等に代表される触媒とを作用させる方法である。化学キュア法に熱キュア法を併用してもよい。イミド化の反応条件は、ポリアミック酸の種類、フィルムの厚さ、熱キュア法及び/または化学キュア法の選択等により、変動し得る。
【0015】
ここで、本発明にかかるポリイミド前駆体ポリアミック酸組成物に用いられる材料について説明する。
【0016】
本ポリイミドにおける使用のための適当な酸無水物は、ピロメリット酸二無水物、2,3,6,7−ナフタレンテトラカルボン酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、1,2,5,6−ナフタレンテトラカルボン酸二無水物、2,2’,3,3’−ビフェニルテトラカルボン酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、2,2−ビス(3,4−ジカルボキシフェニル)プロパン二無水物、3,4,9,10−ペリレンテトラカルボン酸二無水物、ビス(3,4−ジカルボキシフェニル)プロパン二無水物、1,1−ビス(2,3−ジカルボキシフェニル)エタン二無水物、1,1−ビス(3,4−ジカルボキシフェニル)エタン二無水物、ビス(2,3−ジカルボキシフェニル)メタン二無水物、ビス(3,4−ジカルボキシフェニル)エタン二無水物、オキシジフタル酸二無水物、ビス(3,4−ジカルボキシフェニル)スルホン二無水物、p−フェニレンビス(トリメリット酸モノエステル酸無水物)、エチレンビス(トリメリット酸モノエステル酸無水物 )、ビスフェノールAビス(トリメリット酸モノエステル酸無水物)及びそれらの類似物を含み、これらを単独または、任意の割合の混合物が好ましく用い得る。
【0017】
これらのうち、本発明において用いられるポリイミド前駆体ポリアミック酸組成物において最も適当な酸二無水物はピロメリット酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、p−フェニレンビス(トリメリット酸モノエステル酸無水物)であり、これらを単独または、任意の割合の混合物が好ましく用い得る。
【0018】
本発明にかかるポリイミド前駆体ポリアミック酸組成物において使用し得る適当なジアミンは、4,4’−ジアミノジフェニルプロパン、4,4’−ジアミノジフェニルメタン、ベンジジン、3,3’−ジクロロベンジジン、4,4’−ジアミノジフェニルスルフィド、3,3’−ジアミノジフェニルスルホン、4,4’−ジアミノジフェニルスルホン、4,4’−ジアミノジフェニルエーテル、3,3’−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルエーテル、1,5−ジアミノナフタレン、4,4’−ジアミノジフェニルジエチルシラン、4,4’−ジアミノジフェニルシラン、4,4’−ジアミノジフェニルエチルホスフィンオキシド、4,4’−ジアミノジフェニルN−メチルアミン、4,4’−ジアミノジフェニル N−フェニルアミン、1,4−ジアミノベンゼン(p−フェニレンジアミン)、1,3−ジアミノベンゼン、1,2−ジアミノベンゼン、及びそれらの類似物を含み、これらを単独または、任意の割合の混合物が好ましく用い得る。
これらジアミンにおいて、4,4’−ジアミノジフェニルエーテル及び/またはp−フェニレンジアミンが特に好ましく、また、これらを単独または任意の割合で混合した混合物が好ましく用い得る。
また、複写機やプリンターの定着ベルト用途などのように高温に曝されるような用途においては、用いるポリイミド単体の100〜200℃の平均線膨張係数は25ppm以下、更には20ppm以下、特に17ppm以下が好ましい。平均線膨張係数がこの範囲を外れると得られる半導電性ポリイミドフィルムの熱的寸法安定性が低下したり、熱時の抵抗値が大きくなりすぎる、すなわち抵抗値の温度依存性が大きくなることがある。
【0019】
また、種々応力がかかるような用途においては用いるポリイミド単体フィルムの機械的特性が重要になる。例えば室温における引張強度が280MPa以上、更には300MPa以上が好ましい。引張強度がこの範囲を下回ると、例えば複写機やプリンター等の転写・定着ベルト用途などにおいて、応力がかかった際に伸びてしまい、表面及び/又は体積抵抗値等が変化してしまう恐れがある。
【0020】
また、高温下、様々な応力がかかるような用途においては、用いるポリイミド単体の機械的特性の温度依存性が重要になる。例えば、室温から400℃までの動的粘弾性測定における貯蔵弾性率と損失弾性率の比であるtanδが極大になる温度が250℃以上、更には300℃以上、更には350℃以上、また更には370℃以上であることが好ましい。tanδがこの範囲を下回ると熱時にかかる応力のために、半導電性ポリイミドフィルムが永久変形してしまう可能性がある。
【0021】
また、半導電性ポリイミドフィルムのフレキシビリティ及び/又は耐屈曲性が要求されるような用途には、用いるポリイミド単体フィルムのの引張弾性率が7GPa以下、さらには6GPa以下、特には5GPa以下が好ましい。ポリイミド単体フィルムの引張弾性率がこの範囲を超えると、半導電性ポリイミドフィルムの弾性率が高くなりすぎてフレキシビリティが低下する、脆くなり耐屈曲性が低下するなど傾向がある。
【0022】
ポリアミック酸を合成するための好ましい溶媒は、アミド系溶媒すなわちN,N−ジメチルフォルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドンなどであり、N,N−ジメチルフォルムアミドまたはN,N−ジメチルアセトアミドを単独または、任意の割合の混合物を用いるのが好ましい。
【0023】
また、イミド化を化学キュア法により行う場合、化学的転化剤と触媒を含む硬化剤を併用する。本発明にかかるポリアミック酸組成物に添加する化学的転化剤は、例えば脂肪族酸無水物、芳香族酸無水物、N,N ’ − ジアルキルカルボジイミド、低級脂肪族ハロゲン化物、ハロゲン化低級脂肪族ハロゲン化物、ハロゲン化低級脂肪酸無水物、アリールホスホン酸ジハロゲン化物、チオニルハロゲン化物またはそれら2種以上の混合物が挙げられる。それらのうち、無水酢酸、無水プロピオン酸、無水ラク酸等の脂肪族無水物またはそれらの2種以上の混合物が、好ましく用い得る。化学的転化剤の量としては、ポリアミック酸中のアミド酸1モルに対して0.5〜5.0モル当量、好ましくは0.8〜4.0モル当量、さらに好ましくは1.0〜3.0モル当量の範囲で好適に用い得る。化学的転化剤の量がこの範囲を下回るとイミド化が遅くなる傾向にあり、生産性を悪化させることがある。またこの範囲を上回ると得られるポリイミドフィルムの機械的特性が悪化したり、イミド化が速くなりすぎて基材に流延するのが困難になったりする事がある。
【0024】
また、イミド化を効果的に行うためには、化学的転化剤に触媒を同時に用いることが好ましい。触媒としては脂肪族第三級アミン、芳香族第三級アミン、複素環式第三級アミン等が用いられる。それらのうち複素環式第三級アミンから選択されるものが特に好ましく用い得る。具体的にはキノリン、イソキノリン、β−ピコリン、ピリジン等が好ましく用いられる。触媒の量としてはポリアミック酸中のアミド酸1モルに対して0.1〜2モル当量、好ましくは0.2〜1.5モル当量、さらに好ましくは0.3〜1.0モル当量の割合で用い得る。少なすぎると化学イミド化が進行(硬化)しにくくなる傾向があり、多すぎると化学イミド化の進行(硬化)が速くなり、支持体上に流延するのが困難となる。
本発明で用いられる半導電性無機フィラーとは、絶乾状態の無機フィラーを100kg/cm2の圧力で圧縮成型した成形体の体積抵抗率(粉体抵抗)が105〜109Ω・cmのフィラーが望ましく、半導電性ポリイミドフィルムとは、23℃、55%RH条件下で調湿、測定した体積抵抗率が109〜1013Ω・cm、かつ表面抵抗率が1010〜1014Ω/□であるポリイミドフィルムを指す。
本発明で用いる半導電性無機フィラーの好ましい例としては、酸化チタン、酸化亜鉛、酸化鉄、炭酸カルシウム、水酸化鉄、酸化錫等が挙げられるが、これらの中で酸化チタンが耐熱性、抵抗制御等の観点から最も好ましい。
また、半導電性無機フィラーは球状、層状、針状、粉粒状またはこれらの混合物等いかなる形状のものを用いてもよいが、これらの中でも機械的特性の観点から針状のものまたは針状のものと他形状のものの混合物を用いるのが好ましい。半導電性無機フィラーの添加量は、ポリイミドと半導電性無機フィラーの合計量に対して15〜60重量%、好ましくは15〜50重量%、さらに好ましくは20〜35重量%である。フィラーの添加量がこの範囲よりも小さいと導電性が改良されにくく、この範囲より大きくても体積及び表面抵抗値はほぼ飽和する上に、半導電性ポリイミドフィルムの機械的特性が低下する傾向にある。
針状フィラーの場合、短軸径は0.01〜1μm、好ましくは0.05〜0.75μm、さらに好ましくは0.1〜0.5μm、且つ長軸径は1〜20μm、好ましくは1.5〜15μm、更に好ましくは2〜10μmのものを用いるのが好ましい。短軸径と長軸径がこの範囲を外れると抵抗値と機械的強度のバランスがとりにくくなる。
【0025】
その他形状のフィラーを用いる場合、その平均粒子径が0.01〜20μm、好ましくは0.01〜15μm、更に好ましくは0.01〜10μmのものを用いるのが好ましい。この粒子径が上記範囲を外れると機械的特性が低下したり、電気特性が悪化したりする傾向にある。
【0026】
本発明において半導電性無機フィラーの分散にはポリアミック酸を主成分とする分散剤を用いる。分散剤として用いるポリアミック酸は公知のいかなるポリアミック酸を用いても良く、半導電性ポリイミドフィルムを構成するポリイミドを与えるポリアミック酸と同一であっても良いし、異なっていても良い。分散剤は固体状、スラリー状、溶液状いかなる形態でも良いが、フィラー分散液中では溶解していることが必要であるため、溶液状の物を用いることが再溶解させる手間がないので好ましい。分散剤としてはいかなる分子量のポリアミック酸を用いても効果を発揮しうるが、半導電性ポリイミドフィルムの機械的物性を低下させない為には、上述したポリアミック酸有機溶剤溶液と同等の濃度、粘度を有する溶液をそのまま、もしくは稀釈して用いるのが好ましい。
【0027】
用いる分散剤としてのポリアミック酸量は、分散剤とフィラーの合計重量に対して、1重量%以上、好ましくは3重量%以上、より好ましくは5重量%以上用いればよい。分散剤の量がこの範囲より少ないと分散性の改善効果が見られにくくなる。また、一旦良好な分散状態を経た後、フィラーの沈降防止のためさらにポリアミック酸を添加して増粘させることも可能である。このため分散剤としてのポリアミック酸量の上限は特に限定されない。また、分散剤中には公知のあらゆる分散剤、分散助剤、増粘剤、界面活性剤、合成樹脂の可塑剤等の各種薬剤及び/又は添加剤を混合して用いることもできる。 これら各種薬剤及び/又は添加剤は液状であってもよいし、固体であってもよい。またこれら各種薬剤及び/または添加剤の量は分散剤としてのポリアミック酸との合計量に対して10重量%以下、好ましくは5重量%以下、さらに好ましくは3重量%以下である。これら各種薬剤及び/または添加剤の量がこの範囲を上回ると、分散の効果が小さくなる、薬剤の残差が残る、ポリイミドフィルムの機械的特性が低下する、抵抗値の環境依存性が大きくなるなどの現象がみられやすくなる。
【0028】
フィラーを分散させる溶媒としては、ポリアミック酸を溶解する溶媒で有ればいかなるものも用いることが出来るが、アミド系溶媒すなわちN,N−ジメチルフォルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドンなどであり、N,N−ジメチルフォルムアミドまたはN,N−ジメチルアセトアミドを単独または、任意の割合の混合物を用いるのが分散剤の溶解性と言う観点から好ましい。
【0029】
フィラーを分散させる方法としては1)分散剤を溶媒に溶解した後フィラーを添加する方法、2)溶媒にフィラーを添加、混合した後分散剤を溶解する方法、3)フィラーとポリアミック酸を混合し、溶媒を加えて分散させる方法、4)分散を多段階に分けて1)〜3)を組み合わせる方法等が挙げられるが、最終的に分散溶媒、フィラー、ポリアミック酸という構成の分散液が得られる方法ならばいかなる方法を用いても良い。またフィラーの分散には、超音波、ビーズミル、ペイントシェーカー等の分散機を使用しても良い。
【0030】
フィラー分散液とポリアミック酸有機溶剤溶液との混合は、1)これら二液を予め混合しておき、製膜に用いる方法、2)これら二液を製膜直前の工程で混合する方法、3)フィラー分散液を溶媒として用いてポリアミック酸を重合する方法等、いかなる方法をも用いることが出来る。好ましくは上記1)または2)の方法が採用される。
熱キュア法により製膜する場合はフィラー分散液とポリアミック酸有機溶剤溶液の混合物を製膜溶液として用い、化学キュア法の場合はフィラー分散液、ポリアミック酸有機溶剤溶液、硬化剤を混合して得られる混合物を製膜溶液として用い、この製膜溶液をガラス板、アルミ箔、エンドレスステンレスベルト、ステンレスドラムなどの支持体上にフィルム状にキャストし、支持体上で80℃〜200℃、好ましくは100℃〜180℃の温度領域で加熱することで部分的に硬化及び/または乾燥した後支持体から剥離してゲルフィルムを得る。なお、製膜溶液を得る際の混合手順は、いかなる順、方法で行っても良い。例えば化学キュア法の場合を一例とした場合、1)ポリアミック酸有機溶剤溶液、フィラー分散液、硬化剤の順で添加、混合する方法、2)フィラー分散液に硬化剤を添加した後ポリアミック酸有機溶剤溶液を添加する方法、3)ポリアミック酸有機溶剤溶液、硬化剤、フィラー分散液の順で添加、混合する方法、4)ポリアミック酸有機溶剤溶液、フィラー分散液、硬化剤を同時に混合する方法等が挙げられる。
ゲルフィルムは、ポリアミック酸からポリイミドへの硬化の中間段階にあり、自己支持性を有する。
【0031】
前記ゲルフィルムの端部を固定して硬化時の収縮を回避して乾燥し、水、残留溶媒、残存転化剤及び触媒を除去し、そして残ったアミド酸を完全にイミド化する事により本発明の半導電性ポリイミドフィルムを得ることができる。
この時、最終的に400〜580℃、好ましくは450〜550℃の温度で1〜500秒、好ましくは15〜400秒加熱するのが好ましい。この温度より高い及び/または時間が長いと、フィルムの熱劣化が起こり、機械的特性の低下が起こることがある。逆にこの温度より低い及び/または時間が短いと耐加水分解性等の化学的特性の低下が見られることがある。
【0032】
【実施例】
以下に実施例を挙げて、本発明の効果を具体的に説明するが、本発明は、以下の実施例に限定されるものではなく、当業者は本発明の範囲を逸脱することなく、種々の変更、修正、及び改変を行い得る。なお、半導電性ポリイミドフィルムの表面抵抗値及び体積抵抗値の測定はすべて、測定環境下に48時間放置して調湿し、ADVANTEST社製R8340 ULTRA HIGH RESISTANCE METERを用い、30秒間除電した後、100Vの電圧を印加してから30秒後の電流値を読み取って求めた。
【0033】
動的粘弾性によるtanδの測定は、セイコー電子(株)製DMS200を用いて(サンプルサイズ 横9mm、縦40mm)、引張モードで行った。フィルムの種類によっては極大値が複数になることがあるが、この場合は最も高い温度で極大になる温度を読み取る。測定条件は以下の通りである。
【0034】
温度プロファイル:20℃〜400℃
昇温速度:3℃/min
測定周波数:1、5、10Hzの3点で測定を行い、5Hzのチャートからtanδ極大温度を読み取る。
【0035】
装置パラメータ:Fbase 0g、F0gain 3.0
引張強度測定はASTM D882に準じて行った。
100〜200℃の線膨張係数の測定は、セイコー電子(株)社製TMA120Cを用いて(サンプルサイズ 幅3mm、長さ10mm)、過重3gで10℃/minで10℃〜400℃まで一旦昇温させてた後、10℃まで冷却し、さらに10℃/minで昇温させて、2回目の昇温時の100℃及び200℃における熱膨張率から平均値として計算した。
【0036】
(参考例1)815gのジメチルホルムアミド(DMF)に4,4’−ジアミノジフェニルエーテル88.5gを溶解させ、溶液を10℃に冷却した。ここにピロメリット酸二無水物96.5gを徐々に添加して2時間撹拌、反応させてポリアミック酸溶液を得た。(23℃における粘度2800ポイズ、固形分濃度18.5重量%)。このポリアミック酸溶液100gと、無水酢酸9g、イソキノリン11.4g、DMF15.6gからなる硬化剤を混合、攪拌し、遠心分離による脱泡の後、アルミ箔上に流延塗布した。攪拌から脱泡までは0℃以下に冷却しながら行った。このアルミ箔とポリアミック酸溶液の積層体を140℃で250秒間加熱し、自己支持性を有するゲルフィルムを得た。このゲルフィルムをアルミ箔から剥がし、フレームに固定した。このゲルフィルムを200℃、300℃、400℃、450℃で各1分間加熱して厚さ75μmのポリイミドフィルムを得た。得られたポリイミドフィルムの引張強度は280MPa、引張弾性率は3.0GPa、100〜200℃の線膨張係数は32ppm、tanδの極大温度は見られなかった(>400℃)であった。
【0037】
(実施例1)針状の酸化チタン11.1g(石原産業株式会社製、FTL−300;粉体抵抗108Ωcm)にDMF12.5gを加えて混練した後、参考例1で得たポリアミック酸溶液を4g添加してフィラー分散液を得た(分散剤量 6wt%(フィラーと分散剤の合計重量に対して);フィラー分散液粘度 15ポイズ)。この分散液と参考例1で得られたポリアミック酸溶液100gとを混合した。次いでこのフィラー分散ポリアミック酸ワニスに、無水酢酸9g、イソキノリン11.4g、DMF15.6gからなる硬化剤を混合、攪拌し、遠心分離による脱泡の後、アルミ箔上に流延塗布した。攪拌から脱泡までは0℃以下に冷却しながら行った。このアルミ箔とポリアミック酸溶液の積層体を140℃で250秒間加熱し、自己支持性を有するゲルフィルムを得た。このゲルフィルムをアルミ箔から剥がし、フレームに固定した。このゲルフィルムを200℃、300℃、400℃、450℃で各1分間加熱して厚さ75μmの半導電性ポリイミドフィルムを製造した(フィラー含有量36.5重量%)。この半導電性ポリイミドフィルムの機械的特性および電気的特性を表1に示す。
【0038】
(実施例2)針状の酸化チタンフィラー(石原産業株式会社製、FTL−300;粉体抵抗108Ωcm)を14.8g、DMFを22.0g、参考例1で得たポリアミック酸溶液を4g用いてフィラー分散液を調製した(分散剤量 5wt%(フィラーと分散剤の合計重量に対して);フィラー分散液粘度 25ポイズ)以外は実施例1と全く同様にして厚さ75μmの半導電性ポリイミドフィルムを得た(フィラー含有量43.5重量%)。この半導電性ポリイミドフィルムの機械的特性および電気的特性を表1に示す。
【0039】
(比較例1)フィラーの分散に16.5gのDMFを用いて、参考例1で得たポリアミック酸溶液を用いなかった以外は、実施例1と全く同様にしてポリイミドフィルムを得た。このポリイミドフィルムの機械的特性および電気的特性を表1に示す。
【0040】
(比較例2)フィラーの分散に16.3gのDMFを用い、分散剤としてトリフルオロメタンスルホン酸リチウム0.2gを用いた以外は実施例1と全く同様にしてポリイミドフィルムを得た。このポリイミドフィルムの機械的特性及び電気的特性を表1に示す。
【0041】
(参考例2)
815gのジメチルホルムアミド(DMF)にp−フェニレンジアミン10.0gを溶解させ、溶液を10℃に冷却した。ここにピロメリット酸二無水物18.2gを徐々に添加して1時間撹拌させてポリアミック酸プレポリマーを得た。更にこの反応液に、4,4’−ジアミノジフェニルエーテル74.1gを溶解させた後、ピロメリット酸二無水物82.7gを徐々に添加して2時間撹拌させてポリアミック酸溶液を得た。(23℃における粘度3000ポイズ、固形分濃度18.5重量%、4,4‘−ジアミノジフェニルエーテルとp−フェニレンジアミンのモル比80/20)。このポリアミック酸を用いて参考例1と同様の方法により厚み75μmのポリイミドフィルムを得た。このフィルムの引張強度は305MPa、引張弾性率は3.8GPa、100〜200℃の線膨張係数は16ppm、tanδの極大温度は見られなかった(>400℃)であった。
【0042】
(実施例3)
参考例2で得たポリアミック酸溶液を用いた以外は実施例1と全く同様にして厚み50μmのポリイミドフィルムを得た。このポリイミドフィルムの機械的特性及び電気的特性を表2に示す。
【0043】
(実施例4)
参考例2で得たポリアミック酸溶液を用いた以外は実施例1と全く同様にして厚み75μmのポリイミドフィルムを得た。このポリイミドフィルムの機械的特性及び電気的特性を表2に示す。
【0044】
(比較例3)
参考例2で得たポリアミック酸溶液を用いた以外は比較例2と全く同様にしてポリイミドフィルムを得た。このポリイミドフィルムの機械的特性及び電気的特性を表2に示す。
【0045】
【表1】
【0046】
【表2】
【0047】
【発明の効果】
本発明により、分散剤の残渣等を含まず、抵抗値の環境依存性が小さく、かつフィラーの凝集等を伴わない、半導電性ポリイミドフィルムを製造することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention also relates to a semiconductive polyimide film suitably used for an electrode material of a battery, an electromagnetic shielding material, a film for electrostatic attraction, an antistatic agent, an image forming apparatus component, an electronic device, and the like, and a method for producing the same.
[0002]
[Prior art]
Conventionally, as a method of improving the conductivity of polyimide, there is generally known a method of mixing a conductive filler such as carbon, graphite, metal particles, and a substance provided with conductivity by coating with a conductive substance such as indium tin oxide. Have been. However, films obtained when attempting to improve conductivity by this method are often poor in mechanical properties, and the filler used in these methods has a very low resistivity. Therefore, it is very difficult to control the resistance in the semiconductive region, and it is particularly difficult to reduce the in-plane variation with good reproducibility of the surface resistivity. Further, only those having a large dependence of the resistivity on the measured voltage were obtained.
Japanese Patent Application Laid-Open No. 1-146957 discloses a resin composition filled with metal oxide fine powder and carbon black. However, since a good conductive filler is used, it is difficult to adjust the resistance value, and the reproducibility is low. It was poor.
Further, in order to improve the drawbacks of such a method, Japanese Patent Application Laid-Open Nos. 8-259810 and 8-259709 disclose a method of imparting conductivity by polymer blend of polyaniline and polyimide. However, since polyaniline is ionic conductive, its resistance value is greatly dependent on the environment, industrial productivity has not been established, and it is very expensive to use as a polymer blend. ing.
When a large amount of filler is mixed into a resin film produced by a solution casting method, a dispersant is usually used for dispersing the filler for the purpose of improving dispersibility. However, when a dispersant is used, the dispersant itself or a decomposition product of the dispersant or the like remains in the final film, often deteriorating the film characteristics. The use of a dispersing agent in a semiconductive polyimide film has caused various problems such as a decrease in mechanical properties and an increase in environmental dependence of a resistance value. Further, when no dispersant was used, various problems such as an increase in resistance value due to aggregation of the filler, a decrease in mechanical strength, and an increase in surface roughness were caused.
[0003]
[Problems to be solved by the invention]
The present inventors have solved the above-mentioned conventional problems, and have excellent mechanical properties such as tensile strength and elongation without accompanying residual residues such as a dispersant and filler agglomeration, and environmental dependency of resistance value. As a result of intensive studies to provide a small semiconductive polyimide film, the present invention has been achieved.
[0004]
[Means for Solving the Problems]
The method for producing a semiconductive polyimide film according to the present invention is a method for producing a polyimide film comprising polyimide and a semiconductive inorganic filler in a weight ratio of 85:15 to 40:60, wherein the semiconductive inorganic filler is contained in an organic solvent. The use of a dispersant containing polyamic acid as a main component when dispersing in water is described.
[0005]
Further, the present invention includes the above semiconductive polyimide film in which the semiconductive inorganic filler is titanium oxide.
[0006]
The present invention also includes the semiconductive polyimide film in which the semiconductive inorganic filler has a needle shape.
[0007]
Further, the present invention further comprises mixing a polyamic acid solution and a filler dispersion obtained by uniformly dispersing a semiconductive inorganic filler using a dispersant containing polyamic acid as a main component, and forming a film-forming solution containing the mixed solution. The subject matter includes a method for producing the semiconductive polyimide film which is cast on a substrate and thermally or chemically imidized.
[0008]
Furthermore, the present invention has a surface resistivity of 10 when measured at an applied voltage of 100 V. 10 -10 13 Ω / □, volume resistivity is 10 10 -10 14 Ωcm and the surface resistivity I represented by the formula (I) S Is less than 1 and the volume resistivity I represented by the formula (II) V A method for producing the semiconductive polyimide film, wherein the environmental dependency of the film is 1 or less.
[0009]
[Equation 3]
S LL : Surface resistivity under conditions of 10 ° C., 15% RH and applied voltage of 100 V
S HH : Surface resistivity under conditions of 28 ° C., 85% RH, and applied voltage of 100 V
[0010]
(Equation 4)
V LL : Volume resistivity under conditions of 10 ° C., 15% RH and applied voltage of 100 V
V HH : Volume resistivity under conditions of 28 ° C., 85% RH, and applied voltage of 100 V
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the semiconductive polyimide film of the present invention and a method for producing the same will be described based on an example of the embodiment.
[0012]
As the polyamic acid which is a precursor of the polyimide used in the present invention, basically any known polyamic acid can be applied.
[0013]
The polyamic acid used in the present invention is generally obtained by dissolving at least one kind of aromatic dianhydride and at least one kind of diamine in a substantially equimolar amount in an organic solvent. It is produced by stirring the solution under controlled temperature conditions until the polymerization of the dianhydride and diamine is completed. In the present invention, a polyamic acid organic solvent solution obtained by any polymerization method can be used. For example, 1) Aromatic acid dianhydride is dissolved in a solvent in which a diamine is dissolved or dispersed in a solid or slurry form. , A solution or a combination thereof. 2) A diamine is added in a solid, slurry, solution or combination thereof in a solvent in which an aromatic dianhydride is dissolved or dispersed. Method 3) A method in which each monomer is added in multiple stages for the purpose of controlling the monomer arrangement in the polyamic acid molecule, and finally, a substantially equimolar amount of aromatic dianhydride and diamine are reacted. Can be In addition, two or more kinds of separately polymerized polyamic acid organic solvent solutions can be mixed and used. The concentration and viscosity of these polyamic acid solutions may be appropriately adjusted depending on the application and process, but are usually 5 to 35% by weight, preferably 10 to 30% by weight, and 50 to 10,000 at a measurement temperature of 23 ° C. A solution of poise, preferably 100 to 5000 poise, is obtained. When the concentration and the solution viscosity are within these ranges, an appropriate molecular weight can often be obtained.
[0014]
Polyimide is obtained by imidizing a polyamic acid. For the imidization, either a thermal curing method or a chemical curing method is used. The thermal curing method is a method in which the imidization reaction proceeds only by heating without the action of a dehydrating ring-closing agent or the like. Further, the chemical curing method is represented by a polyamic acid organic solvent solution, a chemical conversion agent represented by an acid anhydride such as acetic anhydride, and a tertiary amine such as isoquinoline, β-picoline and pyridine. This is a method of reacting with a catalyst. A thermal curing method may be used in combination with the chemical curing method. The reaction conditions for imidization can vary depending on the type of polyamic acid, the thickness of the film, the selection of a thermal curing method and / or a chemical curing method, and the like.
[0015]
Here, the materials used for the polyimide precursor polyamic acid composition according to the present invention will be described.
[0016]
Suitable acid anhydrides for use in the present polyimide include pyromellitic dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 3,3 ', 4,4'-biphenyltetracarboxylic acid Acid dianhydride, 1,2,5,6-naphthalenetetracarboxylic dianhydride, 2,2 ', 3,3'-biphenyltetracarboxylic dianhydride, 3,3', 4,4'-benzophenone Tetracarboxylic dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, 3,4,9,10-perylenetetracarboxylic dianhydride, bis (3,4-dicarboxy) Phenyl) propane dianhydride, 1,1-bis (2,3-dicarboxyphenyl) ethane dianhydride, 1,1-bis (3,4-dicarboxyphenyl) ethane dianhydride, bis (2,3 -Dicarboxyphenyl) Tan dianhydride, bis (3,4-dicarboxyphenyl) ethane dianhydride, oxydiphthalic dianhydride, bis (3,4-dicarboxyphenyl) sulfone dianhydride, p-phenylenebis (trimellitic acid monohydrate) Ester acid anhydride), ethylene bis (trimellitic acid monoester acid anhydride), bisphenol A bis (trimellitic acid monoester acid anhydride) and their analogs, either alone or as a mixture at any ratio Can be preferably used.
[0017]
Among these, the most suitable acid dianhydride in the polyimide precursor polyamic acid composition used in the present invention is pyromellitic dianhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and p-phenylenebis (trimellitic acid monoester anhydride), which can be used alone or in a mixture at any ratio.
[0018]
Suitable diamines that can be used in the polyimide precursor polyamic acid composition according to the present invention include 4,4′-diaminodiphenylpropane, 4,4′-diaminodiphenylmethane, benzidine, 3,3′-dichlorobenzidine, 4,4 '-Diaminodiphenyl sulfide, 3,3'-diaminodiphenyl sulfone, 4,4'-diaminodiphenyl sulfone, 4,4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 1, 5-diaminonaphthalene, 4,4'-diaminodiphenyldiethylsilane, 4,4'-diaminodiphenylsilane, 4,4'-diaminodiphenylethylphosphine oxide, 4,4'-diaminodiphenylN-methylamine, 4,4 '-Diaminodiphenyl N-phenylamido , 1,4-diaminobenzene (p-phenylenediamine), 1,3-diaminobenzene, 1,2-diaminobenzene, and the like, and these can be used alone or in a mixture in any ratio. .
Among these diamines, 4,4'-diaminodiphenyl ether and / or p-phenylenediamine are particularly preferred, and a mixture of these alone or in an arbitrary ratio can be preferably used.
Also, in applications such as copiers and printers that are exposed to high temperatures, such as fixing belt applications, the average linear expansion coefficient of the polyimide used at 100 to 200 ° C is 25 ppm or less, further 20 ppm or less, particularly 17 ppm or less. Is preferred. If the average linear expansion coefficient is outside this range, the thermal dimensional stability of the obtained semiconductive polyimide film is reduced, or the resistance value when heated is too large, that is, the temperature dependence of the resistance value is increased. is there.
[0019]
In applications where various stresses are applied, the mechanical properties of the polyimide film used are important. For example, the tensile strength at room temperature is preferably 280 MPa or more, more preferably 300 MPa or more. If the tensile strength is lower than this range, for example, in a transfer / fixing belt application of a copying machine, a printer, or the like, it may be stretched when stress is applied, and the surface and / or volume resistance value may change. .
[0020]
In applications where various stresses are applied at high temperatures, the temperature dependence of the mechanical properties of the polyimide used alone becomes important. For example, the temperature at which tan δ, which is the ratio between the storage elastic modulus and the loss elastic modulus in the dynamic viscoelasticity measurement from room temperature to 400 ° C., is maximized is 250 ° C. or more, further 300 ° C. or more, further 350 ° C. or more, or even more. Is preferably 370 ° C. or higher. If tan δ is below this range, the semiconductive polyimide film may be permanently deformed due to stress applied during heating.
[0021]
In applications where the flexibility and / or bending resistance of the semiconductive polyimide film is required, the tensile elasticity of the polyimide film used is preferably 7 GPa or less, more preferably 6 GPa or less, and particularly preferably 5 GPa or less. . When the tensile elastic modulus of the polyimide single film exceeds this range, the elasticity of the semiconductive polyimide film becomes too high, and the flexibility tends to decrease, and the semiconductive polyimide film tends to be brittle and the flex resistance decreases.
[0022]
Preferred solvents for synthesizing polyamic acid are amide solvents, ie, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, and the like, and N, N-dimethylformamide or N , N-dimethylacetamide alone or in a mixture at any ratio is preferred.
[0023]
When imidization is performed by a chemical curing method, a chemical conversion agent and a curing agent containing a catalyst are used in combination. The chemical converting agent to be added to the polyamic acid composition according to the present invention is, for example, an aliphatic acid anhydride, an aromatic acid anhydride, N, N′-dialkylcarbodiimide, a lower aliphatic halide, a halogenated lower aliphatic halogen. Chloride, halogenated lower fatty acid anhydride, arylphosphonic acid dihalide, thionyl halide, or a mixture of two or more thereof. Among them, aliphatic anhydrides such as acetic anhydride, propionic anhydride, and lacnic anhydride or a mixture of two or more thereof can be preferably used. The amount of the chemical conversion agent is 0.5 to 5.0 molar equivalents, preferably 0.8 to 4.0 molar equivalents, more preferably 1.0 to 3 molar equivalents, per 1 mol of the amic acid in the polyamic acid. It can be suitably used in the range of 0.0 molar equivalent. If the amount of the chemical conversion agent is below this range, the imidization tends to be slow, and the productivity may be deteriorated. If it exceeds this range, the mechanical properties of the obtained polyimide film may be deteriorated, or the imidization may be too fast to be cast on the substrate.
[0024]
Further, in order to effectively perform imidization, it is preferable to simultaneously use a catalyst as the chemical conversion agent. As the catalyst, an aliphatic tertiary amine, an aromatic tertiary amine, a heterocyclic tertiary amine or the like is used. Among them, those selected from heterocyclic tertiary amines can be particularly preferably used. Specifically, quinoline, isoquinoline, β-picoline, pyridine and the like are preferably used. The amount of the catalyst is 0.1 to 2 molar equivalents, preferably 0.2 to 1.5 molar equivalents, more preferably 0.3 to 1.0 molar equivalents, per 1 mol of the amic acid in the polyamic acid. Can be used. If the amount is too small, the chemical imidization tends to be difficult to proceed (curing). If the amount is too large, the chemical imidization proceeds (curing) becomes fast, and it is difficult to cast on the support.
The semiconductive inorganic filler used in the present invention is defined as having a volume resistivity (powder resistance) of a molded body obtained by compression-molding a completely dried inorganic filler at a pressure of 100 kg / cm 2. 5 -10 9 A Ω · cm filler is desirable, and a semiconductive polyimide film has a volume resistivity of 10 when measured and conditioned at 23 ° C. and 55% RH. 9 -10 13 Ω · cm and surface resistivity is 10 10 -10 14 Refers to a polyimide film of Ω / □.
Preferred examples of the semiconductive inorganic filler used in the present invention include titanium oxide, zinc oxide, iron oxide, calcium carbonate, iron hydroxide, tin oxide and the like. Among these, titanium oxide has heat resistance and resistance. It is most preferable from the viewpoint of control and the like.
Further, the semiconductive inorganic filler may be in any shape such as spherical, layered, acicular, powdery or granular, or a mixture thereof, but among them, acicular or acicular from the viewpoint of mechanical properties. It is preferable to use a mixture of a material and another shape. The addition amount of the semiconductive inorganic filler is 15 to 60% by weight, preferably 15 to 50% by weight, more preferably 20 to 35% by weight, based on the total amount of the polyimide and the semiconductive inorganic filler. If the added amount of the filler is smaller than this range, the conductivity is not easily improved, and even if it is larger than this range, the volume and the surface resistance value are almost saturated, and the mechanical properties of the semiconductive polyimide film tend to decrease. is there.
In the case of an acicular filler, the minor axis diameter is 0.01 to 1 μm, preferably 0.05 to 0.75 μm, more preferably 0.1 to 0.5 μm, and the major axis diameter is 1 to 20 μm, preferably 1. It is preferable to use one having a thickness of 5 to 15 μm, more preferably 2 to 10 μm. When the short axis diameter and the long axis diameter are out of this range, it becomes difficult to balance the resistance value and the mechanical strength.
[0025]
When a filler having another shape is used, it is preferable to use a filler having an average particle diameter of 0.01 to 20 μm, preferably 0.01 to 15 μm, and more preferably 0.01 to 10 μm. If the particle size is out of the above range, mechanical properties tend to decrease and electrical properties tend to deteriorate.
[0026]
In the present invention, a dispersant containing polyamic acid as a main component is used for dispersing the semiconductive inorganic filler. The polyamic acid used as the dispersant may be any known polyamic acid, and may be the same as or different from the polyamic acid that provides the polyimide constituting the semiconductive polyimide film. The dispersant may be in any form of solid, slurry, or solution. However, since it is necessary to dissolve in the filler dispersion, it is preferable to use a solution-like substance since there is no need for re-dissolution. As a dispersant, any molecular weight polyamic acid can be used, but in order not to lower the mechanical properties of the semiconductive polyimide film, a concentration and viscosity equivalent to those of the polyamic acid organic solvent solution described above are used. It is preferable to use the solution as it is or after diluting it.
[0027]
The amount of the polyamic acid used as the dispersant may be 1% by weight or more, preferably 3% by weight or more, more preferably 5% by weight or more based on the total weight of the dispersant and the filler. If the amount of the dispersant is less than the above range, the effect of improving the dispersibility becomes difficult to be seen. Further, after a good dispersion state is once obtained, it is also possible to further increase the viscosity by adding a polyamic acid in order to prevent the sedimentation of the filler. Therefore, the upper limit of the amount of the polyamic acid as the dispersant is not particularly limited. In addition, various known agents and / or additives such as a dispersant, a dispersing aid, a thickener, a surfactant, and a plasticizer of a synthetic resin can be mixed and used in the dispersant. These various drugs and / or additives may be liquid or solid. The amount of these various agents and / or additives is 10% by weight or less, preferably 5% by weight or less, more preferably 3% by weight or less, based on the total amount of the polyamic acid and the dispersant. When the amount of these various chemicals and / or additives exceeds this range, the effect of dispersion is reduced, residual chemicals remain, the mechanical properties of the polyimide film are reduced, and the environmental dependence of the resistance value is increased. And other phenomena are likely to be seen.
[0028]
As the solvent for dispersing the filler, any solvent can be used as long as it is a solvent for dissolving the polyamic acid, but an amide solvent, ie, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl- 2-pyrrolidone and the like, and it is preferable to use N, N-dimethylformamide or N, N-dimethylacetamide alone or in a mixture at an arbitrary ratio from the viewpoint of solubility of the dispersant.
[0029]
As a method of dispersing the filler, 1) a method of adding the filler after dissolving the dispersant in the solvent, 2) a method of dissolving the dispersant after adding and mixing the filler in the solvent, 3) mixing the filler and the polyamic acid , A method of dispersing by adding a solvent, 4) a method of dividing the dispersion into multiple stages and combining 1) to 3), and the like, and finally a dispersion having a constitution of a dispersion solvent, a filler, and a polyamic acid is obtained. Any method may be used. For dispersion of the filler, a disperser such as an ultrasonic wave, a bead mill, or a paint shaker may be used.
[0030]
The filler dispersion and the polyamic acid organic solvent solution can be mixed by: 1) mixing these two liquids in advance and using them for film formation; 2) mixing these two liquids in a process immediately before film formation; Any method such as a method of polymerizing a polyamic acid using a filler dispersion as a solvent can be used. Preferably, the above method 1) or 2) is employed.
When a film is formed by the heat curing method, a mixture of a filler dispersion and a polyamic acid organic solvent solution is used as a film forming solution, and when the chemical curing method is used, the mixture is obtained by mixing a filler dispersion, a polyamic acid organic solvent solution, and a curing agent. The resulting mixture is used as a film-forming solution, and the film-forming solution is cast into a film on a support such as a glass plate, an aluminum foil, an endless stainless belt, or a stainless steel drum, and is heated to 80 ° C to 200 ° C, preferably on the support. By heating in a temperature range of 100 ° C. to 180 ° C., the film is partially cured and / or dried, and then peeled from the support to obtain a gel film. The mixing procedure for obtaining the film-forming solution may be performed in any order and method. For example, when the case of the chemical curing method is taken as an example, 1) a method of adding and mixing a polyamic acid organic solvent solution, a filler dispersion, and a curing agent in this order, 2) adding a curing agent to the filler dispersion, and then adding a polyamic acid organic compound. A method of adding a solvent solution, 3) a method of adding and mixing a polyamic acid organic solvent solution, a curing agent, and a filler dispersion in this order. 4) A method of simultaneously mixing a polyamic acid organic solvent solution, a filler dispersion, and a curing agent. Is mentioned.
The gel film is at an intermediate stage of curing from polyamic acid to polyimide and has self-supporting properties.
[0031]
The present invention comprises fixing the edge of the gel film, drying while avoiding shrinkage during curing, removing water, residual solvent, residual conversion agent and catalyst, and completely imidizing the remaining amic acid. Can be obtained.
At this time, it is preferable to finally heat at a temperature of 400 to 580 ° C, preferably 450 to 550 ° C for 1 to 500 seconds, preferably 15 to 400 seconds. If the temperature is higher than this temperature and / or the time is longer, thermal deterioration of the film may occur, and mechanical properties may be deteriorated. Conversely, if the temperature is lower than this temperature and / or the time is short, chemical properties such as hydrolysis resistance may be reduced.
[0032]
【Example】
Hereinafter, the effects of the present invention will be specifically described with reference to examples. However, the present invention is not limited to the following examples, and those skilled in the art may use various methods without departing from the scope of the present invention. Can be changed, modified, and modified. In addition, the measurement of the surface resistance value and the volume resistance value of the semiconductive polyimide film were all left for 48 hours in a measurement environment, the humidity was adjusted, and after removing static electricity for 30 seconds using R8340 ULTRA HIGH RESISTANCE METER manufactured by ADVANTEST, The current value 30 seconds after the application of the voltage of 100 V was read and determined.
[0033]
The measurement of tan δ by dynamic viscoelasticity was performed in a tensile mode using DMS200 manufactured by Seiko Denshi Co., Ltd. (sample size: 9 mm wide, 40 mm long). Depending on the type of film, the maximum value may be plural. In this case, the temperature at which the maximum value is obtained at the highest temperature is read. The measurement conditions are as follows.
[0034]
Temperature profile: 20 ° C to 400 ° C
Heating rate: 3 ° C / min
Measurement frequency: Measurement is performed at three points of 1, 5, and 10 Hz, and the tan δ maximum temperature is read from a 5 Hz chart.
[0035]
Device parameters: Fbase 0g, F0gain 3.0
The tensile strength was measured according to ASTM D882.
The linear expansion coefficient at 100 to 200 ° C. was measured using TMA120C manufactured by Seiko Denshi Co., Ltd. (sample size, width 3 mm, length 10 mm). After warming, the temperature was cooled to 10 ° C., the temperature was further raised at 10 ° C./min, and the average value was calculated from the thermal expansion coefficients at 100 ° C. and 200 ° C. at the time of the second temperature rise.
[0036]
Reference Example 1 88.5 g of 4,4′-diaminodiphenyl ether was dissolved in 815 g of dimethylformamide (DMF), and the solution was cooled to 10 ° C. Here, 96.5 g of pyromellitic dianhydride was gradually added, and the mixture was stirred and reacted for 2 hours to obtain a polyamic acid solution. (Viscosity at 23 ° C. 2800 poise, solid content concentration 18.5% by weight). 100 g of this polyamic acid solution, 9 g of acetic anhydride, 11.4 g of isoquinoline, and a curing agent composed of 15.6 g of DMF were mixed, stirred, defoamed by centrifugation, and then cast on an aluminum foil. The process from stirring to defoaming was performed while cooling to 0 ° C. or less. The laminate of the aluminum foil and the polyamic acid solution was heated at 140 ° C. for 250 seconds to obtain a self-supporting gel film. This gel film was peeled off from the aluminum foil and fixed to a frame. This gel film was heated at 200 ° C., 300 ° C., 400 ° C., and 450 ° C. for 1 minute each to obtain a polyimide film having a thickness of 75 μm. The obtained polyimide film had a tensile strength of 280 MPa, a tensile modulus of 3.0 GPa, a linear expansion coefficient of 100 to 200 ° C. of 32 ppm, and no maximum temperature of tan δ observed (> 400 ° C.).
[0037]
(Example 1) 11.1 g of needle-shaped titanium oxide (manufactured by Ishihara Sangyo Co., Ltd., FTL-300; powder resistance 10) 8 After adding and mixing 12.5 g of DMF into Ωcm, 4 g of the polyamic acid solution obtained in Reference Example 1 was added to obtain a filler dispersion (dispersant amount: 6 wt% (based on the total weight of filler and dispersant). ); Filler dispersion viscosity 15 poise). This dispersion and 100 g of the polyamic acid solution obtained in Reference Example 1 were mixed. Next, a curing agent composed of 9 g of acetic anhydride, 11.4 g of isoquinoline, and 15.6 g of DMF was mixed with the filler-dispersed polyamic acid varnish, stirred, defoamed by centrifugal separation, and then cast on an aluminum foil. The process from stirring to defoaming was performed while cooling to 0 ° C. or less. The laminate of the aluminum foil and the polyamic acid solution was heated at 140 ° C. for 250 seconds to obtain a self-supporting gel film. This gel film was peeled off from the aluminum foil and fixed to a frame. This gel film was heated at 200 ° C., 300 ° C., 400 ° C., and 450 ° C. for 1 minute each to produce a 75 μm-thick semiconductive polyimide film (filler content: 36.5% by weight). Table 1 shows the mechanical and electrical properties of the semiconductive polyimide film.
[0038]
(Example 2) Needle-like titanium oxide filler (manufactured by Ishihara Sangyo Co., Ltd., FTL-300; powder resistance 10) 8 14.8 g, 22.0 g of DMF, and 4 g of the polyamic acid solution obtained in Reference Example 1 to prepare a filler dispersion (dispersant amount: 5 wt% (based on the total weight of filler and dispersant)). A semiconductive polyimide film having a thickness of 75 μm was obtained in exactly the same manner as in Example 1 except that the filler dispersion had a viscosity of 25 poise (filler content: 43.5% by weight). Table 1 shows the mechanical and electrical properties of the semiconductive polyimide film.
[0039]
(Comparative Example 1) A polyimide film was obtained in exactly the same manner as in Example 1 except that 16.5 g of DMF was used for dispersion of the filler, and the polyamic acid solution obtained in Reference Example 1 was not used. Table 1 shows the mechanical and electrical properties of this polyimide film.
[0040]
(Comparative Example 2) A polyimide film was obtained in exactly the same manner as in Example 1 except that 16.3 g of DMF was used for dispersing the filler and 0.2 g of lithium trifluoromethanesulfonate was used as the dispersant. Table 1 shows the mechanical and electrical properties of this polyimide film.
[0041]
(Reference Example 2)
10.0 g of p-phenylenediamine was dissolved in 815 g of dimethylformamide (DMF), and the solution was cooled to 10 ° C. To this, 18.2 g of pyromellitic dianhydride was gradually added and stirred for 1 hour to obtain a polyamic acid prepolymer. Further, after dissolving 74.1 g of 4,4'-diaminodiphenyl ether in this reaction solution, 82.7 g of pyromellitic dianhydride was gradually added and stirred for 2 hours to obtain a polyamic acid solution. (Viscosity at 23 ° C .: 3000 poise; solids concentration: 18.5% by weight; molar ratio of 4,4′-diaminodiphenyl ether to p-phenylenediamine: 80/20). Using this polyamic acid, a polyimide film having a thickness of 75 μm was obtained in the same manner as in Reference Example 1. The tensile strength of this film was 305 MPa, the tensile modulus was 3.8 GPa, the linear expansion coefficient at 100 to 200 ° C was 16 ppm, and the maximum temperature of tan δ was not observed (> 400 ° C).
[0042]
(Example 3)
A polyimide film having a thickness of 50 μm was obtained in the same manner as in Example 1 except that the polyamic acid solution obtained in Reference Example 2 was used. Table 2 shows the mechanical and electrical properties of this polyimide film.
[0043]
(Example 4)
A 75 μm-thick polyimide film was obtained in exactly the same manner as in Example 1 except that the polyamic acid solution obtained in Reference Example 2 was used. Table 2 shows the mechanical and electrical properties of this polyimide film.
[0044]
(Comparative Example 3)
A polyimide film was obtained in exactly the same manner as in Comparative Example 2, except that the polyamic acid solution obtained in Reference Example 2 was used. Table 2 shows the mechanical and electrical properties of this polyimide film.
[0045]
[Table 1]
[0046]
[Table 2]
[0047]
【The invention's effect】
According to the present invention, it is possible to produce a semiconductive polyimide film that does not contain a residue of a dispersing agent, has low environmental dependency of a resistance value, and does not involve aggregation of a filler or the like.
Claims (5)
IVの環境依存性が1以下であることを特徴とする請求項1記載の半導電性ポリイミドフィルムの製造方法。
SHH:28℃ 85%RH、印加電圧100V条件下での表面抵抗率
VHH:28℃ 85%RH、印加電圧100V条件下での体積抵抗率The surface resistivity measured at an applied voltage of 100 V, 23 ° C. and 55% RH is 10 10 to 10 13 Ω / □, the volume resistivity is 10 10 to 10 14 Ωcm, and the surface resistivity represented by the formula (I) environmental dependency of I S is 1 or less, the production method of the semiconductive polyimide film according to claim 1, wherein the environmental dependency of the volume resistivity I V of the formula (II) is 1 or less .
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2002197575A JP2004035825A (en) | 2002-07-05 | 2002-07-05 | Semiconductive polyimide film and method of producing the same |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2002197575A JP2004035825A (en) | 2002-07-05 | 2002-07-05 | Semiconductive polyimide film and method of producing the same |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JP2004035825A true JP2004035825A (en) | 2004-02-05 |
Family
ID=31705309
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2002197575A Pending JP2004035825A (en) | 2002-07-05 | 2002-07-05 | Semiconductive polyimide film and method of producing the same |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2004035825A (en) |
Cited By (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7433200B2 (en) | 2006-05-01 | 2008-10-07 | Nitto Denko Corporation | Wired circuit board |
| US7465884B2 (en) | 2006-04-20 | 2008-12-16 | Nitto Denko Corporation | Wired circuit board |
| US7629539B2 (en) | 2006-06-29 | 2009-12-08 | Nitto Denko Corporation | Wired circuit board |
| US7737365B2 (en) | 2006-06-22 | 2010-06-15 | Nitto Denko Corporation | Wired circuit board |
| US7782571B2 (en) | 2006-04-05 | 2010-08-24 | Nitto Denko Corporation | Wired circuit board and production method thereof |
| WO2011063229A1 (en) * | 2009-11-20 | 2011-05-26 | E. I. Du Pont De Nemours And Company | Coverlay compositions and methods relating thereto |
| JP2011122132A (en) * | 2009-09-17 | 2011-06-23 | E I Du Pont De Nemours & Co | Assembly provided with thermally and dimensionally stabilized polyimide film and electrode, and method about the same |
| CN102122680A (en) * | 2009-11-20 | 2011-07-13 | E.I.内穆尔杜邦公司 | Photovoltaic compositions or precursors thereto, and methods relating thereto |
| JP2011521076A (en) * | 2008-05-20 | 2011-07-21 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | Thermal and dimensionally stable polyimide films and methods related thereto |
| US8071886B2 (en) | 2006-12-25 | 2011-12-06 | Nitto Denko Corporation | Wired circuit board having a semiconductive grounding layer and producing method thereof |
| US8164002B2 (en) | 2006-12-25 | 2012-04-24 | Nitto Denko Corporation | Wired circuit board and producing method thereof |
| US8319299B2 (en) | 2009-11-20 | 2012-11-27 | Auman Brian C | Thin film transistor compositions, and methods relating thereto |
| CN103665866A (en) * | 2013-12-16 | 2014-03-26 | 宁波今山电子材料有限公司 | Preparation method for graphene-polyimide composite film |
| JP2019526163A (en) * | 2016-05-12 | 2019-09-12 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company | Polyimide composition and polyimide test socket housing |
-
2002
- 2002-07-05 JP JP2002197575A patent/JP2004035825A/en active Pending
Cited By (31)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7782571B2 (en) | 2006-04-05 | 2010-08-24 | Nitto Denko Corporation | Wired circuit board and production method thereof |
| US7465884B2 (en) | 2006-04-20 | 2008-12-16 | Nitto Denko Corporation | Wired circuit board |
| US7433200B2 (en) | 2006-05-01 | 2008-10-07 | Nitto Denko Corporation | Wired circuit board |
| US7737365B2 (en) | 2006-06-22 | 2010-06-15 | Nitto Denko Corporation | Wired circuit board |
| US8247700B2 (en) | 2006-06-22 | 2012-08-21 | Nitto Denko Corporation | Wired circuit board |
| US7629539B2 (en) | 2006-06-29 | 2009-12-08 | Nitto Denko Corporation | Wired circuit board |
| US8164002B2 (en) | 2006-12-25 | 2012-04-24 | Nitto Denko Corporation | Wired circuit board and producing method thereof |
| US8071886B2 (en) | 2006-12-25 | 2011-12-06 | Nitto Denko Corporation | Wired circuit board having a semiconductive grounding layer and producing method thereof |
| JP2011521076A (en) * | 2008-05-20 | 2011-07-21 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | Thermal and dimensionally stable polyimide films and methods related thereto |
| JP2011122132A (en) * | 2009-09-17 | 2011-06-23 | E I Du Pont De Nemours & Co | Assembly provided with thermally and dimensionally stabilized polyimide film and electrode, and method about the same |
| WO2011063209A1 (en) * | 2009-11-20 | 2011-05-26 | E. I. Du Pont De Nemours And Company | Thin film transistor compositions, and methods relating thereto |
| US8319299B2 (en) | 2009-11-20 | 2012-11-27 | Auman Brian C | Thin film transistor compositions, and methods relating thereto |
| WO2011063247A3 (en) * | 2009-11-20 | 2011-09-29 | E. I. Du Pont De Nemours And Company | Interposer films useful in semiconductor packaging applications, and methods relating thereto |
| WO2011063238A1 (en) * | 2009-11-20 | 2011-05-26 | E. I. Du Pont De Nemours And Company | Wire wrap compositions and methods relating thereto |
| WO2011063204A1 (en) * | 2009-11-20 | 2011-05-26 | E. I. Du Pont De Nemours And Company | Thermally and dimensionally stable polyimide films and methods relating thereto |
| WO2011063229A1 (en) * | 2009-11-20 | 2011-05-26 | E. I. Du Pont De Nemours And Company | Coverlay compositions and methods relating thereto |
| CN102668108A (en) * | 2009-11-20 | 2012-09-12 | E.I.内穆尔杜邦公司 | Assemblies comprising a polyimide film and an electrode, and methods relating thereto |
| CN102712753A (en) * | 2009-11-20 | 2012-10-03 | E·I·内穆尔杜邦公司 | Thermally and dimensionally stable polyimide films and methods relating thereto |
| CN102712754A (en) * | 2009-11-20 | 2012-10-03 | E.I.内穆尔杜邦公司 | Coverlay compositions and methods relating thereto |
| CN102714192A (en) * | 2009-11-20 | 2012-10-03 | E.I.内穆尔杜邦公司 | Interconnect conductive thin films for use in semiconductor packaging applications and related methods |
| CN102791769A (en) * | 2009-11-20 | 2012-11-21 | E.I.内穆尔杜邦公司 | Wire wrap compositions and methods relating thereto |
| CN102122680A (en) * | 2009-11-20 | 2011-07-13 | E.I.内穆尔杜邦公司 | Photovoltaic compositions or precursors thereto, and methods relating thereto |
| CN102803345A (en) * | 2009-11-20 | 2012-11-28 | E·I·内穆尔杜邦公司 | Thin film transistor compositions, and methods relating thereto |
| JP2013511599A (en) * | 2009-11-20 | 2013-04-04 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | Thermally and dimensionally stable polyimide films and related methods |
| JP2013511603A (en) * | 2009-11-20 | 2013-04-04 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | Interposer film useful in semiconductor packaging applications and methods related thereto |
| JP2013511601A (en) * | 2009-11-20 | 2013-04-04 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | Assembly comprising polyimide film and electrode and method related thereto |
| JP2013511412A (en) * | 2009-11-20 | 2013-04-04 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | Coverlay compositions and methods related thereto |
| JP2013512535A (en) * | 2009-11-20 | 2013-04-11 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | Wire wrap composition and methods related thereto |
| US8653512B2 (en) | 2009-11-20 | 2014-02-18 | E. I. Du Pont De Nemours And Company | Thin film transistor compositions, and methods relating thereto |
| CN103665866A (en) * | 2013-12-16 | 2014-03-26 | 宁波今山电子材料有限公司 | Preparation method for graphene-polyimide composite film |
| JP2019526163A (en) * | 2016-05-12 | 2019-09-12 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company | Polyimide composition and polyimide test socket housing |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP4920886B2 (en) | Polyimide-based compositions containing doped polyaniline and methods and compositions related thereto | |
| EP2634220B1 (en) | Process for production of electrically conductive polyimide film | |
| CN102482418A (en) | Matte finish polyimide films and methods relating thereto | |
| WO2002102882A1 (en) | Semiconductive polyimide film and process for production thereof | |
| JP2004035825A (en) | Semiconductive polyimide film and method of producing the same | |
| JPH06212075A (en) | Preparation of polyimide molding article containing pigment | |
| CN108117658B (en) | Preparation method of anti-electrostatic adsorption imide film | |
| US20130240777A1 (en) | Highly thermal-conductive polyimide film containing graphite powder | |
| KR101819783B1 (en) | Polyimide seamless belt and process for production thereof, and polyimide precursor solution composition | |
| US20230137913A1 (en) | Polyimide films | |
| JP4392578B2 (en) | Sliding polyimide film and method for producing the same | |
| JP5326253B2 (en) | Method for producing polyimide film and aromatic polyimide | |
| JPH10226751A (en) | Improved polyimide resin composition and heat-resistant resin film produced therefrom | |
| JP6102918B2 (en) | Method for producing conductive polyimide film | |
| JP5783789B2 (en) | Method for producing conductive polyimide film | |
| JP6361507B2 (en) | Method for producing conductive polyimide film | |
| WO2002022740A1 (en) | Polyimide resin composition and, polyimide product formed into film and intermediate transfer belt comprising the same | |
| JP2006133510A (en) | Semiconductive polyimide belt and method for manufacturing the same | |
| JP2004131659A (en) | Polyimide resin composition and molded polyimide article made thereof | |
| JP2004059694A (en) | Dispersing agent, dispersion and method for producing inorganic powder dispersion | |
| JP5810833B2 (en) | Method for producing conductive polyimide film | |
| JP2006028216A (en) | Polyimide film and manufacturing method of the polyimide film | |
| JP2003055473A (en) | Polyimide tubular product and tubular product for electrophotography | |
| JP2004107658A (en) | Polyimide film and method for producing the same | |
| JP2004138655A (en) | Polyimide molding for fixation or transfer fixation |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050530 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070405 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070515 |
|
| A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070705 |
|
| RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20070705 |
|
| A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20070828 |