[go: up one dir, main page]

JP2004035825A - Semiconductive polyimide film and method of producing the same - Google Patents

Semiconductive polyimide film and method of producing the same Download PDF

Info

Publication number
JP2004035825A
JP2004035825A JP2002197575A JP2002197575A JP2004035825A JP 2004035825 A JP2004035825 A JP 2004035825A JP 2002197575 A JP2002197575 A JP 2002197575A JP 2002197575 A JP2002197575 A JP 2002197575A JP 2004035825 A JP2004035825 A JP 2004035825A
Authority
JP
Japan
Prior art keywords
polyimide film
semiconductive
polyamic acid
filler
dispersant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002197575A
Other languages
Japanese (ja)
Inventor
Nagayasu Kaneshiro
金城 永泰
Taiji Nishikawa
西川 泰司
Renichi Akahori
赤堀 廉一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP2002197575A priority Critical patent/JP2004035825A/en
Publication of JP2004035825A publication Critical patent/JP2004035825A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Moulding By Coating Moulds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductive polyimide film without being accompanied with residual residues of a dispersant, etc., and agglomeration of a filler, excellent in mechanical characteristics such as tensile strength, elongation, etc., and having a small environmental dependency of its resistance value. <P>SOLUTION: This method of producing the semiconductive polyimide film is a method of producing the polyimide film containing the polyimide and a semiconductive inorganic filler in (85:15)-(40:60) weight ratio, by using a dispersant consisting mainly of a polyamic acid in dispersing the semiconductive inorganic filler in an organic solvent. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
また、本発明は、電池の電極材料、電磁シールド材、静電吸着用フィルム、帯電防止剤、画像形成装置部品、電子デバイス等に好適に使用される半導電性ポリイミドフィルムとその製造方法に関する。
【0002】
【従来の技術】
従来、ポリイミドの導電性を改良する方法として一般にカーボン、グラファイト、金属粒子、酸化インジウム錫等導電性物質で被覆することにより導電性を付与された物質等の導電性充填剤を混合する方法が知られている。しかしこの方法により導電性を改良しようとした場合得られるフィルムは機械的特性に劣ったものであることが多く、また、これらの方法で用いられている充填剤は、その抵抗率が非常に低いため半導電性領域での抵抗制御は非常に困難であり、特に表面抵抗率を再現性良くかつ面内ばらつきを小さくすることが困難であった。また更にはその抵抗率の測定電圧依存性が大きいものしか得られなかった。
また、特開平1−146957には金属酸化物微粉末とカーボンブラックを充填した樹脂組成物が開示されているが、やはり良導電性フィラーを用いているため抵抗値の調節が難しく、再現性に乏しいものであった。
またさらに、こういった方法の欠点を改善すべく、ポリアニリンとポリイミドのポリマーブレンドにより導電性を付与する方法が特開平8−259810、特開平8−259709に開示されている。しかしポリアニリンはイオン導電性であるためその抵抗値の環境依存性が大きく、さらに工業的な生産性は確立されておらず、ポリマーブレンドとして使用するには非常に高価であるという問題点を有している。
また、溶液製膜法により製造される樹脂フィルム中に多量のフィラーを混合させる場合、フィラーの分散には通常分散性を改良する目的で分散剤が使用される。しかし分散剤を使用した場合、最終的にフィルムに分散剤そのもの、または分散剤の分解物等が残存し、フィルム特性を悪化させたることが多かった。半導電性ポリイミドフィルムにおいても分散剤の使用は機械的特性の低下、抵抗値の環境依存性の増大等の諸問題を引き起こしていた。また、分散剤を使用しなかった場合、フィラーの凝集による抵抗値の上昇、機械的強度の低下、表面粗さの増大等の諸問題を引き起こしていた。
【0003】
【発明が解決しようとする課題】
本発明者らは、上記従来の問題点を解決し、分散剤等の残渣の残留及びフィラーの凝集を伴わず、引張強度、伸度等の機械的特性に優れ、抵抗値の環境依存性の小さい半導電性ポリイミドフィルムを提供すべく鋭意研究を重ねた結果、本発明に至ったのである。
【0004】
【課題を解決するための手段】
本発明にかかる半導電性ポリイミドフィルムの製造方法は、ポリイミドと半導電性無機フィラーを85:15〜40:60の重量比で含むポリイミドフィルムの製造方法において、半導電性無機フィラーを有機溶剤中に分散させる際にポリアミック酸を主成分とする分散剤を用いることを内容とする。
【0005】
また、本発明は半導電性無機フィラーが酸化チタンである前記半導電性ポリイミドフィルムを内容とする。
【0006】
また本発明は半導電性無機フィラーが針状である前記半導電性ポリイミドフィルムを内容とする。
【0007】
またさらに本発明はポリアミック酸溶液と、ポリアミック酸を主成分とする分散剤を用いて半導電性無機フィラーを均一に分散させたフィラー分散液とを混合し、この混合液を含む製膜溶液を基材上に流延製膜し、熱的又は化学的にイミド化する前記半導電性ポリイミドフィルムの製造方法を内容とする。
【0008】
またさらに本発明は印加電圧100Vで測定した表面抵抗率が1010〜1013Ω/□、体積抵抗率が1010〜1014Ωcmであって、式(I)で表される表面抵抗率Iの環境依存性が1以下、式(II)で表される体積抵抗率Iの環境依存性が1以下である前記半導電性ポリイミドフィルムの製造方法を内容とする。
【0009】
【数3】

Figure 2004035825
LL:10℃ 15%RH、印加電圧100V条件下での表面抵抗率
HH:28℃ 85%RH、印加電圧100V条件下での表面抵抗率
【0010】
【数4】
Figure 2004035825
LL:10℃ 15%RH、印加電圧100V条件下での体積抵抗率
HH:28℃ 85%RH、印加電圧100V条件下での体積抵抗率
【0011】
【発明の実施の形態】
以下、本発明の半導性ポリイミドフィルムおよびその製造方法についてその実施の形態の一例に基づき説明する。
【0012】
本発明に用いられるポリイミドの前駆体であるポリアミック酸は、基本的には、公知のあらゆるポリアミック酸を適用することができる。
【0013】
本発明に用いられるポリアミック酸は、通常、芳香族酸二無水物の少なくとも1種とジアミンの少なくとも1種を、実質的等モル量を有機溶媒中に溶解させて、得られたポリアミック酸有機溶媒溶液を、制御された温度条件下で、上記酸二無水物とジアミンの重合が完了するまで攪拌することによって製造される。本発明においてはいかなる重合法により得られたポリアミック酸有機溶媒溶液を用いることも出来るが、その一例として1)ジアミンを溶解または分散させた溶媒中に芳香族酸二無水物を固体状、スラリー状、溶液状またはこれらの組み合わせで添加していく方法、2)芳香族酸二無水物を溶解又は分散させた溶媒中にジアミンを固体状、スラリー状、溶液状またはこれらの組み合わせで添加していく方法、3)ポリアミック酸分子中のモノマー配列を制御する目的で各モノマーを多段階で添加し、最終的に実質的に等モル量の芳香族酸二無水物とジアミンを反応させる方法などが挙げられる。また、別途重合した二種以上のポリアミック酸有機溶媒溶液を混合して用いることも出来る。これらのポリアミック酸溶液の濃度と粘度は用途、プロセスに合わせて適宜調節すればよいが、通常5〜35重量%、好ましくは10〜30重量%の濃度で、23℃の測定温度で50〜10000ポイズ、好ましくは100〜5000ポイズの溶液が得られる。この範囲の濃度および溶液粘度のとき適当な分子量を得られる場合が多い。
【0014】
また、ポリイミドはポリアミック酸をイミド化して得られるが、イミド化には、熱キュア法及び化学キュア法のいずれかを用いる。熱キュア法は、脱水閉環剤等を作用させずに加熱だけでイミド化反応を進行させる方法である。また、化学キュア法は、ポリアミック酸有機溶媒溶液に、無水酢酸等の酸無水物に代表される化学的転化剤と、イソキノリン、β−ピコリン、ピリジン等の第三級アミン類等に代表される触媒とを作用させる方法である。化学キュア法に熱キュア法を併用してもよい。イミド化の反応条件は、ポリアミック酸の種類、フィルムの厚さ、熱キュア法及び/または化学キュア法の選択等により、変動し得る。
【0015】
ここで、本発明にかかるポリイミド前駆体ポリアミック酸組成物に用いられる材料について説明する。
【0016】
本ポリイミドにおける使用のための適当な酸無水物は、ピロメリット酸二無水物、2,3,6,7−ナフタレンテトラカルボン酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、1,2,5,6−ナフタレンテトラカルボン酸二無水物、2,2’,3,3’−ビフェニルテトラカルボン酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、2,2−ビス(3,4−ジカルボキシフェニル)プロパン二無水物、3,4,9,10−ペリレンテトラカルボン酸二無水物、ビス(3,4−ジカルボキシフェニル)プロパン二無水物、1,1−ビス(2,3−ジカルボキシフェニル)エタン二無水物、1,1−ビス(3,4−ジカルボキシフェニル)エタン二無水物、ビス(2,3−ジカルボキシフェニル)メタン二無水物、ビス(3,4−ジカルボキシフェニル)エタン二無水物、オキシジフタル酸二無水物、ビス(3,4−ジカルボキシフェニル)スルホン二無水物、p−フェニレンビス(トリメリット酸モノエステル酸無水物)、エチレンビス(トリメリット酸モノエステル酸無水物 )、ビスフェノールAビス(トリメリット酸モノエステル酸無水物)及びそれらの類似物を含み、これらを単独または、任意の割合の混合物が好ましく用い得る。
【0017】
これらのうち、本発明において用いられるポリイミド前駆体ポリアミック酸組成物において最も適当な酸二無水物はピロメリット酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、p−フェニレンビス(トリメリット酸モノエステル酸無水物)であり、これらを単独または、任意の割合の混合物が好ましく用い得る。
【0018】
本発明にかかるポリイミド前駆体ポリアミック酸組成物において使用し得る適当なジアミンは、4,4’−ジアミノジフェニルプロパン、4,4’−ジアミノジフェニルメタン、ベンジジン、3,3’−ジクロロベンジジン、4,4’−ジアミノジフェニルスルフィド、3,3’−ジアミノジフェニルスルホン、4,4’−ジアミノジフェニルスルホン、4,4’−ジアミノジフェニルエーテル、3,3’−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルエーテル、1,5−ジアミノナフタレン、4,4’−ジアミノジフェニルジエチルシラン、4,4’−ジアミノジフェニルシラン、4,4’−ジアミノジフェニルエチルホスフィンオキシド、4,4’−ジアミノジフェニルN−メチルアミン、4,4’−ジアミノジフェニル N−フェニルアミン、1,4−ジアミノベンゼン(p−フェニレンジアミン)、1,3−ジアミノベンゼン、1,2−ジアミノベンゼン、及びそれらの類似物を含み、これらを単独または、任意の割合の混合物が好ましく用い得る。
これらジアミンにおいて、4,4’−ジアミノジフェニルエーテル及び/またはp−フェニレンジアミンが特に好ましく、また、これらを単独または任意の割合で混合した混合物が好ましく用い得る。
また、複写機やプリンターの定着ベルト用途などのように高温に曝されるような用途においては、用いるポリイミド単体の100〜200℃の平均線膨張係数は25ppm以下、更には20ppm以下、特に17ppm以下が好ましい。平均線膨張係数がこの範囲を外れると得られる半導電性ポリイミドフィルムの熱的寸法安定性が低下したり、熱時の抵抗値が大きくなりすぎる、すなわち抵抗値の温度依存性が大きくなることがある。
【0019】
また、種々応力がかかるような用途においては用いるポリイミド単体フィルムの機械的特性が重要になる。例えば室温における引張強度が280MPa以上、更には300MPa以上が好ましい。引張強度がこの範囲を下回ると、例えば複写機やプリンター等の転写・定着ベルト用途などにおいて、応力がかかった際に伸びてしまい、表面及び/又は体積抵抗値等が変化してしまう恐れがある。
【0020】
また、高温下、様々な応力がかかるような用途においては、用いるポリイミド単体の機械的特性の温度依存性が重要になる。例えば、室温から400℃までの動的粘弾性測定における貯蔵弾性率と損失弾性率の比であるtanδが極大になる温度が250℃以上、更には300℃以上、更には350℃以上、また更には370℃以上であることが好ましい。tanδがこの範囲を下回ると熱時にかかる応力のために、半導電性ポリイミドフィルムが永久変形してしまう可能性がある。
【0021】
また、半導電性ポリイミドフィルムのフレキシビリティ及び/又は耐屈曲性が要求されるような用途には、用いるポリイミド単体フィルムのの引張弾性率が7GPa以下、さらには6GPa以下、特には5GPa以下が好ましい。ポリイミド単体フィルムの引張弾性率がこの範囲を超えると、半導電性ポリイミドフィルムの弾性率が高くなりすぎてフレキシビリティが低下する、脆くなり耐屈曲性が低下するなど傾向がある。
【0022】
ポリアミック酸を合成するための好ましい溶媒は、アミド系溶媒すなわちN,N−ジメチルフォルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドンなどであり、N,N−ジメチルフォルムアミドまたはN,N−ジメチルアセトアミドを単独または、任意の割合の混合物を用いるのが好ましい。
【0023】
また、イミド化を化学キュア法により行う場合、化学的転化剤と触媒を含む硬化剤を併用する。本発明にかかるポリアミック酸組成物に添加する化学的転化剤は、例えば脂肪族酸無水物、芳香族酸無水物、N,N ’ − ジアルキルカルボジイミド、低級脂肪族ハロゲン化物、ハロゲン化低級脂肪族ハロゲン化物、ハロゲン化低級脂肪酸無水物、アリールホスホン酸ジハロゲン化物、チオニルハロゲン化物またはそれら2種以上の混合物が挙げられる。それらのうち、無水酢酸、無水プロピオン酸、無水ラク酸等の脂肪族無水物またはそれらの2種以上の混合物が、好ましく用い得る。化学的転化剤の量としては、ポリアミック酸中のアミド酸1モルに対して0.5〜5.0モル当量、好ましくは0.8〜4.0モル当量、さらに好ましくは1.0〜3.0モル当量の範囲で好適に用い得る。化学的転化剤の量がこの範囲を下回るとイミド化が遅くなる傾向にあり、生産性を悪化させることがある。またこの範囲を上回ると得られるポリイミドフィルムの機械的特性が悪化したり、イミド化が速くなりすぎて基材に流延するのが困難になったりする事がある。
【0024】
また、イミド化を効果的に行うためには、化学的転化剤に触媒を同時に用いることが好ましい。触媒としては脂肪族第三級アミン、芳香族第三級アミン、複素環式第三級アミン等が用いられる。それらのうち複素環式第三級アミンから選択されるものが特に好ましく用い得る。具体的にはキノリン、イソキノリン、β−ピコリン、ピリジン等が好ましく用いられる。触媒の量としてはポリアミック酸中のアミド酸1モルに対して0.1〜2モル当量、好ましくは0.2〜1.5モル当量、さらに好ましくは0.3〜1.0モル当量の割合で用い得る。少なすぎると化学イミド化が進行(硬化)しにくくなる傾向があり、多すぎると化学イミド化の進行(硬化)が速くなり、支持体上に流延するのが困難となる。
本発明で用いられる半導電性無機フィラーとは、絶乾状態の無機フィラーを100kg/cm2の圧力で圧縮成型した成形体の体積抵抗率(粉体抵抗)が10〜10Ω・cmのフィラーが望ましく、半導電性ポリイミドフィルムとは、23℃、55%RH条件下で調湿、測定した体積抵抗率が10〜1013Ω・cm、かつ表面抵抗率が1010〜1014Ω/□であるポリイミドフィルムを指す。
本発明で用いる半導電性無機フィラーの好ましい例としては、酸化チタン、酸化亜鉛、酸化鉄、炭酸カルシウム、水酸化鉄、酸化錫等が挙げられるが、これらの中で酸化チタンが耐熱性、抵抗制御等の観点から最も好ましい。
また、半導電性無機フィラーは球状、層状、針状、粉粒状またはこれらの混合物等いかなる形状のものを用いてもよいが、これらの中でも機械的特性の観点から針状のものまたは針状のものと他形状のものの混合物を用いるのが好ましい。半導電性無機フィラーの添加量は、ポリイミドと半導電性無機フィラーの合計量に対して15〜60重量%、好ましくは15〜50重量%、さらに好ましくは20〜35重量%である。フィラーの添加量がこの範囲よりも小さいと導電性が改良されにくく、この範囲より大きくても体積及び表面抵抗値はほぼ飽和する上に、半導電性ポリイミドフィルムの機械的特性が低下する傾向にある。
針状フィラーの場合、短軸径は0.01〜1μm、好ましくは0.05〜0.75μm、さらに好ましくは0.1〜0.5μm、且つ長軸径は1〜20μm、好ましくは1.5〜15μm、更に好ましくは2〜10μmのものを用いるのが好ましい。短軸径と長軸径がこの範囲を外れると抵抗値と機械的強度のバランスがとりにくくなる。
【0025】
その他形状のフィラーを用いる場合、その平均粒子径が0.01〜20μm、好ましくは0.01〜15μm、更に好ましくは0.01〜10μmのものを用いるのが好ましい。この粒子径が上記範囲を外れると機械的特性が低下したり、電気特性が悪化したりする傾向にある。
【0026】
本発明において半導電性無機フィラーの分散にはポリアミック酸を主成分とする分散剤を用いる。分散剤として用いるポリアミック酸は公知のいかなるポリアミック酸を用いても良く、半導電性ポリイミドフィルムを構成するポリイミドを与えるポリアミック酸と同一であっても良いし、異なっていても良い。分散剤は固体状、スラリー状、溶液状いかなる形態でも良いが、フィラー分散液中では溶解していることが必要であるため、溶液状の物を用いることが再溶解させる手間がないので好ましい。分散剤としてはいかなる分子量のポリアミック酸を用いても効果を発揮しうるが、半導電性ポリイミドフィルムの機械的物性を低下させない為には、上述したポリアミック酸有機溶剤溶液と同等の濃度、粘度を有する溶液をそのまま、もしくは稀釈して用いるのが好ましい。
【0027】
用いる分散剤としてのポリアミック酸量は、分散剤とフィラーの合計重量に対して、1重量%以上、好ましくは3重量%以上、より好ましくは5重量%以上用いればよい。分散剤の量がこの範囲より少ないと分散性の改善効果が見られにくくなる。また、一旦良好な分散状態を経た後、フィラーの沈降防止のためさらにポリアミック酸を添加して増粘させることも可能である。このため分散剤としてのポリアミック酸量の上限は特に限定されない。また、分散剤中には公知のあらゆる分散剤、分散助剤、増粘剤、界面活性剤、合成樹脂の可塑剤等の各種薬剤及び/又は添加剤を混合して用いることもできる。 これら各種薬剤及び/又は添加剤は液状であってもよいし、固体であってもよい。またこれら各種薬剤及び/または添加剤の量は分散剤としてのポリアミック酸との合計量に対して10重量%以下、好ましくは5重量%以下、さらに好ましくは3重量%以下である。これら各種薬剤及び/または添加剤の量がこの範囲を上回ると、分散の効果が小さくなる、薬剤の残差が残る、ポリイミドフィルムの機械的特性が低下する、抵抗値の環境依存性が大きくなるなどの現象がみられやすくなる。
【0028】
フィラーを分散させる溶媒としては、ポリアミック酸を溶解する溶媒で有ればいかなるものも用いることが出来るが、アミド系溶媒すなわちN,N−ジメチルフォルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドンなどであり、N,N−ジメチルフォルムアミドまたはN,N−ジメチルアセトアミドを単独または、任意の割合の混合物を用いるのが分散剤の溶解性と言う観点から好ましい。
【0029】
フィラーを分散させる方法としては1)分散剤を溶媒に溶解した後フィラーを添加する方法、2)溶媒にフィラーを添加、混合した後分散剤を溶解する方法、3)フィラーとポリアミック酸を混合し、溶媒を加えて分散させる方法、4)分散を多段階に分けて1)〜3)を組み合わせる方法等が挙げられるが、最終的に分散溶媒、フィラー、ポリアミック酸という構成の分散液が得られる方法ならばいかなる方法を用いても良い。またフィラーの分散には、超音波、ビーズミル、ペイントシェーカー等の分散機を使用しても良い。
【0030】
フィラー分散液とポリアミック酸有機溶剤溶液との混合は、1)これら二液を予め混合しておき、製膜に用いる方法、2)これら二液を製膜直前の工程で混合する方法、3)フィラー分散液を溶媒として用いてポリアミック酸を重合する方法等、いかなる方法をも用いることが出来る。好ましくは上記1)または2)の方法が採用される。
熱キュア法により製膜する場合はフィラー分散液とポリアミック酸有機溶剤溶液の混合物を製膜溶液として用い、化学キュア法の場合はフィラー分散液、ポリアミック酸有機溶剤溶液、硬化剤を混合して得られる混合物を製膜溶液として用い、この製膜溶液をガラス板、アルミ箔、エンドレスステンレスベルト、ステンレスドラムなどの支持体上にフィルム状にキャストし、支持体上で80℃〜200℃、好ましくは100℃〜180℃の温度領域で加熱することで部分的に硬化及び/または乾燥した後支持体から剥離してゲルフィルムを得る。なお、製膜溶液を得る際の混合手順は、いかなる順、方法で行っても良い。例えば化学キュア法の場合を一例とした場合、1)ポリアミック酸有機溶剤溶液、フィラー分散液、硬化剤の順で添加、混合する方法、2)フィラー分散液に硬化剤を添加した後ポリアミック酸有機溶剤溶液を添加する方法、3)ポリアミック酸有機溶剤溶液、硬化剤、フィラー分散液の順で添加、混合する方法、4)ポリアミック酸有機溶剤溶液、フィラー分散液、硬化剤を同時に混合する方法等が挙げられる。
ゲルフィルムは、ポリアミック酸からポリイミドへの硬化の中間段階にあり、自己支持性を有する。
【0031】
前記ゲルフィルムの端部を固定して硬化時の収縮を回避して乾燥し、水、残留溶媒、残存転化剤及び触媒を除去し、そして残ったアミド酸を完全にイミド化する事により本発明の半導電性ポリイミドフィルムを得ることができる。
この時、最終的に400〜580℃、好ましくは450〜550℃の温度で1〜500秒、好ましくは15〜400秒加熱するのが好ましい。この温度より高い及び/または時間が長いと、フィルムの熱劣化が起こり、機械的特性の低下が起こることがある。逆にこの温度より低い及び/または時間が短いと耐加水分解性等の化学的特性の低下が見られることがある。
【0032】
【実施例】
以下に実施例を挙げて、本発明の効果を具体的に説明するが、本発明は、以下の実施例に限定されるものではなく、当業者は本発明の範囲を逸脱することなく、種々の変更、修正、及び改変を行い得る。なお、半導電性ポリイミドフィルムの表面抵抗値及び体積抵抗値の測定はすべて、測定環境下に48時間放置して調湿し、ADVANTEST社製R8340 ULTRA HIGH RESISTANCE METERを用い、30秒間除電した後、100Vの電圧を印加してから30秒後の電流値を読み取って求めた。
【0033】
動的粘弾性によるtanδの測定は、セイコー電子(株)製DMS200を用いて(サンプルサイズ 横9mm、縦40mm)、引張モードで行った。フィルムの種類によっては極大値が複数になることがあるが、この場合は最も高い温度で極大になる温度を読み取る。測定条件は以下の通りである。
【0034】
温度プロファイル:20℃〜400℃
昇温速度:3℃/min
測定周波数:1、5、10Hzの3点で測定を行い、5Hzのチャートからtanδ極大温度を読み取る。
【0035】
装置パラメータ:Fbase 0g、F0gain 3.0
引張強度測定はASTM D882に準じて行った。
100〜200℃の線膨張係数の測定は、セイコー電子(株)社製TMA120Cを用いて(サンプルサイズ 幅3mm、長さ10mm)、過重3gで10℃/minで10℃〜400℃まで一旦昇温させてた後、10℃まで冷却し、さらに10℃/minで昇温させて、2回目の昇温時の100℃及び200℃における熱膨張率から平均値として計算した。
【0036】
(参考例1)815gのジメチルホルムアミド(DMF)に4,4’−ジアミノジフェニルエーテル88.5gを溶解させ、溶液を10℃に冷却した。ここにピロメリット酸二無水物96.5gを徐々に添加して2時間撹拌、反応させてポリアミック酸溶液を得た。(23℃における粘度2800ポイズ、固形分濃度18.5重量%)。このポリアミック酸溶液100gと、無水酢酸9g、イソキノリン11.4g、DMF15.6gからなる硬化剤を混合、攪拌し、遠心分離による脱泡の後、アルミ箔上に流延塗布した。攪拌から脱泡までは0℃以下に冷却しながら行った。このアルミ箔とポリアミック酸溶液の積層体を140℃で250秒間加熱し、自己支持性を有するゲルフィルムを得た。このゲルフィルムをアルミ箔から剥がし、フレームに固定した。このゲルフィルムを200℃、300℃、400℃、450℃で各1分間加熱して厚さ75μmのポリイミドフィルムを得た。得られたポリイミドフィルムの引張強度は280MPa、引張弾性率は3.0GPa、100〜200℃の線膨張係数は32ppm、tanδの極大温度は見られなかった(>400℃)であった。
【0037】
(実施例1)針状の酸化チタン11.1g(石原産業株式会社製、FTL−300;粉体抵抗10Ωcm)にDMF12.5gを加えて混練した後、参考例1で得たポリアミック酸溶液を4g添加してフィラー分散液を得た(分散剤量 6wt%(フィラーと分散剤の合計重量に対して);フィラー分散液粘度 15ポイズ)。この分散液と参考例1で得られたポリアミック酸溶液100gとを混合した。次いでこのフィラー分散ポリアミック酸ワニスに、無水酢酸9g、イソキノリン11.4g、DMF15.6gからなる硬化剤を混合、攪拌し、遠心分離による脱泡の後、アルミ箔上に流延塗布した。攪拌から脱泡までは0℃以下に冷却しながら行った。このアルミ箔とポリアミック酸溶液の積層体を140℃で250秒間加熱し、自己支持性を有するゲルフィルムを得た。このゲルフィルムをアルミ箔から剥がし、フレームに固定した。このゲルフィルムを200℃、300℃、400℃、450℃で各1分間加熱して厚さ75μmの半導電性ポリイミドフィルムを製造した(フィラー含有量36.5重量%)。この半導電性ポリイミドフィルムの機械的特性および電気的特性を表1に示す。
【0038】
(実施例2)針状の酸化チタンフィラー(石原産業株式会社製、FTL−300;粉体抵抗10Ωcm)を14.8g、DMFを22.0g、参考例1で得たポリアミック酸溶液を4g用いてフィラー分散液を調製した(分散剤量 5wt%(フィラーと分散剤の合計重量に対して);フィラー分散液粘度 25ポイズ)以外は実施例1と全く同様にして厚さ75μmの半導電性ポリイミドフィルムを得た(フィラー含有量43.5重量%)。この半導電性ポリイミドフィルムの機械的特性および電気的特性を表1に示す。
【0039】
(比較例1)フィラーの分散に16.5gのDMFを用いて、参考例1で得たポリアミック酸溶液を用いなかった以外は、実施例1と全く同様にしてポリイミドフィルムを得た。このポリイミドフィルムの機械的特性および電気的特性を表1に示す。
【0040】
(比較例2)フィラーの分散に16.3gのDMFを用い、分散剤としてトリフルオロメタンスルホン酸リチウム0.2gを用いた以外は実施例1と全く同様にしてポリイミドフィルムを得た。このポリイミドフィルムの機械的特性及び電気的特性を表1に示す。
【0041】
(参考例2)
815gのジメチルホルムアミド(DMF)にp−フェニレンジアミン10.0gを溶解させ、溶液を10℃に冷却した。ここにピロメリット酸二無水物18.2gを徐々に添加して1時間撹拌させてポリアミック酸プレポリマーを得た。更にこの反応液に、4,4’−ジアミノジフェニルエーテル74.1gを溶解させた後、ピロメリット酸二無水物82.7gを徐々に添加して2時間撹拌させてポリアミック酸溶液を得た。(23℃における粘度3000ポイズ、固形分濃度18.5重量%、4,4‘−ジアミノジフェニルエーテルとp−フェニレンジアミンのモル比80/20)。このポリアミック酸を用いて参考例1と同様の方法により厚み75μmのポリイミドフィルムを得た。このフィルムの引張強度は305MPa、引張弾性率は3.8GPa、100〜200℃の線膨張係数は16ppm、tanδの極大温度は見られなかった(>400℃)であった。
【0042】
(実施例3)
参考例2で得たポリアミック酸溶液を用いた以外は実施例1と全く同様にして厚み50μmのポリイミドフィルムを得た。このポリイミドフィルムの機械的特性及び電気的特性を表2に示す。
【0043】
(実施例4)
参考例2で得たポリアミック酸溶液を用いた以外は実施例1と全く同様にして厚み75μmのポリイミドフィルムを得た。このポリイミドフィルムの機械的特性及び電気的特性を表2に示す。
【0044】
(比較例3)
参考例2で得たポリアミック酸溶液を用いた以外は比較例2と全く同様にしてポリイミドフィルムを得た。このポリイミドフィルムの機械的特性及び電気的特性を表2に示す。
【0045】
【表1】
Figure 2004035825
【0046】
【表2】
Figure 2004035825
【0047】
【発明の効果】
本発明により、分散剤の残渣等を含まず、抵抗値の環境依存性が小さく、かつフィラーの凝集等を伴わない、半導電性ポリイミドフィルムを製造することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention also relates to a semiconductive polyimide film suitably used for an electrode material of a battery, an electromagnetic shielding material, a film for electrostatic attraction, an antistatic agent, an image forming apparatus component, an electronic device, and the like, and a method for producing the same.
[0002]
[Prior art]
Conventionally, as a method of improving the conductivity of polyimide, there is generally known a method of mixing a conductive filler such as carbon, graphite, metal particles, and a substance provided with conductivity by coating with a conductive substance such as indium tin oxide. Have been. However, films obtained when attempting to improve conductivity by this method are often poor in mechanical properties, and the filler used in these methods has a very low resistivity. Therefore, it is very difficult to control the resistance in the semiconductive region, and it is particularly difficult to reduce the in-plane variation with good reproducibility of the surface resistivity. Further, only those having a large dependence of the resistivity on the measured voltage were obtained.
Japanese Patent Application Laid-Open No. 1-146957 discloses a resin composition filled with metal oxide fine powder and carbon black. However, since a good conductive filler is used, it is difficult to adjust the resistance value, and the reproducibility is low. It was poor.
Further, in order to improve the drawbacks of such a method, Japanese Patent Application Laid-Open Nos. 8-259810 and 8-259709 disclose a method of imparting conductivity by polymer blend of polyaniline and polyimide. However, since polyaniline is ionic conductive, its resistance value is greatly dependent on the environment, industrial productivity has not been established, and it is very expensive to use as a polymer blend. ing.
When a large amount of filler is mixed into a resin film produced by a solution casting method, a dispersant is usually used for dispersing the filler for the purpose of improving dispersibility. However, when a dispersant is used, the dispersant itself or a decomposition product of the dispersant or the like remains in the final film, often deteriorating the film characteristics. The use of a dispersing agent in a semiconductive polyimide film has caused various problems such as a decrease in mechanical properties and an increase in environmental dependence of a resistance value. Further, when no dispersant was used, various problems such as an increase in resistance value due to aggregation of the filler, a decrease in mechanical strength, and an increase in surface roughness were caused.
[0003]
[Problems to be solved by the invention]
The present inventors have solved the above-mentioned conventional problems, and have excellent mechanical properties such as tensile strength and elongation without accompanying residual residues such as a dispersant and filler agglomeration, and environmental dependency of resistance value. As a result of intensive studies to provide a small semiconductive polyimide film, the present invention has been achieved.
[0004]
[Means for Solving the Problems]
The method for producing a semiconductive polyimide film according to the present invention is a method for producing a polyimide film comprising polyimide and a semiconductive inorganic filler in a weight ratio of 85:15 to 40:60, wherein the semiconductive inorganic filler is contained in an organic solvent. The use of a dispersant containing polyamic acid as a main component when dispersing in water is described.
[0005]
Further, the present invention includes the above semiconductive polyimide film in which the semiconductive inorganic filler is titanium oxide.
[0006]
The present invention also includes the semiconductive polyimide film in which the semiconductive inorganic filler has a needle shape.
[0007]
Further, the present invention further comprises mixing a polyamic acid solution and a filler dispersion obtained by uniformly dispersing a semiconductive inorganic filler using a dispersant containing polyamic acid as a main component, and forming a film-forming solution containing the mixed solution. The subject matter includes a method for producing the semiconductive polyimide film which is cast on a substrate and thermally or chemically imidized.
[0008]
Furthermore, the present invention has a surface resistivity of 10 when measured at an applied voltage of 100 V. 10 -10 13 Ω / □, volume resistivity is 10 10 -10 14 Ωcm and the surface resistivity I represented by the formula (I) S Is less than 1 and the volume resistivity I represented by the formula (II) V A method for producing the semiconductive polyimide film, wherein the environmental dependency of the film is 1 or less.
[0009]
[Equation 3]
Figure 2004035825
S LL : Surface resistivity under conditions of 10 ° C., 15% RH and applied voltage of 100 V
S HH : Surface resistivity under conditions of 28 ° C., 85% RH, and applied voltage of 100 V
[0010]
(Equation 4)
Figure 2004035825
V LL : Volume resistivity under conditions of 10 ° C., 15% RH and applied voltage of 100 V
V HH : Volume resistivity under conditions of 28 ° C., 85% RH, and applied voltage of 100 V
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the semiconductive polyimide film of the present invention and a method for producing the same will be described based on an example of the embodiment.
[0012]
As the polyamic acid which is a precursor of the polyimide used in the present invention, basically any known polyamic acid can be applied.
[0013]
The polyamic acid used in the present invention is generally obtained by dissolving at least one kind of aromatic dianhydride and at least one kind of diamine in a substantially equimolar amount in an organic solvent. It is produced by stirring the solution under controlled temperature conditions until the polymerization of the dianhydride and diamine is completed. In the present invention, a polyamic acid organic solvent solution obtained by any polymerization method can be used. For example, 1) Aromatic acid dianhydride is dissolved in a solvent in which a diamine is dissolved or dispersed in a solid or slurry form. , A solution or a combination thereof. 2) A diamine is added in a solid, slurry, solution or combination thereof in a solvent in which an aromatic dianhydride is dissolved or dispersed. Method 3) A method in which each monomer is added in multiple stages for the purpose of controlling the monomer arrangement in the polyamic acid molecule, and finally, a substantially equimolar amount of aromatic dianhydride and diamine are reacted. Can be In addition, two or more kinds of separately polymerized polyamic acid organic solvent solutions can be mixed and used. The concentration and viscosity of these polyamic acid solutions may be appropriately adjusted depending on the application and process, but are usually 5 to 35% by weight, preferably 10 to 30% by weight, and 50 to 10,000 at a measurement temperature of 23 ° C. A solution of poise, preferably 100 to 5000 poise, is obtained. When the concentration and the solution viscosity are within these ranges, an appropriate molecular weight can often be obtained.
[0014]
Polyimide is obtained by imidizing a polyamic acid. For the imidization, either a thermal curing method or a chemical curing method is used. The thermal curing method is a method in which the imidization reaction proceeds only by heating without the action of a dehydrating ring-closing agent or the like. Further, the chemical curing method is represented by a polyamic acid organic solvent solution, a chemical conversion agent represented by an acid anhydride such as acetic anhydride, and a tertiary amine such as isoquinoline, β-picoline and pyridine. This is a method of reacting with a catalyst. A thermal curing method may be used in combination with the chemical curing method. The reaction conditions for imidization can vary depending on the type of polyamic acid, the thickness of the film, the selection of a thermal curing method and / or a chemical curing method, and the like.
[0015]
Here, the materials used for the polyimide precursor polyamic acid composition according to the present invention will be described.
[0016]
Suitable acid anhydrides for use in the present polyimide include pyromellitic dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 3,3 ', 4,4'-biphenyltetracarboxylic acid Acid dianhydride, 1,2,5,6-naphthalenetetracarboxylic dianhydride, 2,2 ', 3,3'-biphenyltetracarboxylic dianhydride, 3,3', 4,4'-benzophenone Tetracarboxylic dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, 3,4,9,10-perylenetetracarboxylic dianhydride, bis (3,4-dicarboxy) Phenyl) propane dianhydride, 1,1-bis (2,3-dicarboxyphenyl) ethane dianhydride, 1,1-bis (3,4-dicarboxyphenyl) ethane dianhydride, bis (2,3 -Dicarboxyphenyl) Tan dianhydride, bis (3,4-dicarboxyphenyl) ethane dianhydride, oxydiphthalic dianhydride, bis (3,4-dicarboxyphenyl) sulfone dianhydride, p-phenylenebis (trimellitic acid monohydrate) Ester acid anhydride), ethylene bis (trimellitic acid monoester acid anhydride), bisphenol A bis (trimellitic acid monoester acid anhydride) and their analogs, either alone or as a mixture at any ratio Can be preferably used.
[0017]
Among these, the most suitable acid dianhydride in the polyimide precursor polyamic acid composition used in the present invention is pyromellitic dianhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and p-phenylenebis (trimellitic acid monoester anhydride), which can be used alone or in a mixture at any ratio.
[0018]
Suitable diamines that can be used in the polyimide precursor polyamic acid composition according to the present invention include 4,4′-diaminodiphenylpropane, 4,4′-diaminodiphenylmethane, benzidine, 3,3′-dichlorobenzidine, 4,4 '-Diaminodiphenyl sulfide, 3,3'-diaminodiphenyl sulfone, 4,4'-diaminodiphenyl sulfone, 4,4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 1, 5-diaminonaphthalene, 4,4'-diaminodiphenyldiethylsilane, 4,4'-diaminodiphenylsilane, 4,4'-diaminodiphenylethylphosphine oxide, 4,4'-diaminodiphenylN-methylamine, 4,4 '-Diaminodiphenyl N-phenylamido , 1,4-diaminobenzene (p-phenylenediamine), 1,3-diaminobenzene, 1,2-diaminobenzene, and the like, and these can be used alone or in a mixture in any ratio. .
Among these diamines, 4,4'-diaminodiphenyl ether and / or p-phenylenediamine are particularly preferred, and a mixture of these alone or in an arbitrary ratio can be preferably used.
Also, in applications such as copiers and printers that are exposed to high temperatures, such as fixing belt applications, the average linear expansion coefficient of the polyimide used at 100 to 200 ° C is 25 ppm or less, further 20 ppm or less, particularly 17 ppm or less. Is preferred. If the average linear expansion coefficient is outside this range, the thermal dimensional stability of the obtained semiconductive polyimide film is reduced, or the resistance value when heated is too large, that is, the temperature dependence of the resistance value is increased. is there.
[0019]
In applications where various stresses are applied, the mechanical properties of the polyimide film used are important. For example, the tensile strength at room temperature is preferably 280 MPa or more, more preferably 300 MPa or more. If the tensile strength is lower than this range, for example, in a transfer / fixing belt application of a copying machine, a printer, or the like, it may be stretched when stress is applied, and the surface and / or volume resistance value may change. .
[0020]
In applications where various stresses are applied at high temperatures, the temperature dependence of the mechanical properties of the polyimide used alone becomes important. For example, the temperature at which tan δ, which is the ratio between the storage elastic modulus and the loss elastic modulus in the dynamic viscoelasticity measurement from room temperature to 400 ° C., is maximized is 250 ° C. or more, further 300 ° C. or more, further 350 ° C. or more, or even more. Is preferably 370 ° C. or higher. If tan δ is below this range, the semiconductive polyimide film may be permanently deformed due to stress applied during heating.
[0021]
In applications where the flexibility and / or bending resistance of the semiconductive polyimide film is required, the tensile elasticity of the polyimide film used is preferably 7 GPa or less, more preferably 6 GPa or less, and particularly preferably 5 GPa or less. . When the tensile elastic modulus of the polyimide single film exceeds this range, the elasticity of the semiconductive polyimide film becomes too high, and the flexibility tends to decrease, and the semiconductive polyimide film tends to be brittle and the flex resistance decreases.
[0022]
Preferred solvents for synthesizing polyamic acid are amide solvents, ie, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, and the like, and N, N-dimethylformamide or N , N-dimethylacetamide alone or in a mixture at any ratio is preferred.
[0023]
When imidization is performed by a chemical curing method, a chemical conversion agent and a curing agent containing a catalyst are used in combination. The chemical converting agent to be added to the polyamic acid composition according to the present invention is, for example, an aliphatic acid anhydride, an aromatic acid anhydride, N, N′-dialkylcarbodiimide, a lower aliphatic halide, a halogenated lower aliphatic halogen. Chloride, halogenated lower fatty acid anhydride, arylphosphonic acid dihalide, thionyl halide, or a mixture of two or more thereof. Among them, aliphatic anhydrides such as acetic anhydride, propionic anhydride, and lacnic anhydride or a mixture of two or more thereof can be preferably used. The amount of the chemical conversion agent is 0.5 to 5.0 molar equivalents, preferably 0.8 to 4.0 molar equivalents, more preferably 1.0 to 3 molar equivalents, per 1 mol of the amic acid in the polyamic acid. It can be suitably used in the range of 0.0 molar equivalent. If the amount of the chemical conversion agent is below this range, the imidization tends to be slow, and the productivity may be deteriorated. If it exceeds this range, the mechanical properties of the obtained polyimide film may be deteriorated, or the imidization may be too fast to be cast on the substrate.
[0024]
Further, in order to effectively perform imidization, it is preferable to simultaneously use a catalyst as the chemical conversion agent. As the catalyst, an aliphatic tertiary amine, an aromatic tertiary amine, a heterocyclic tertiary amine or the like is used. Among them, those selected from heterocyclic tertiary amines can be particularly preferably used. Specifically, quinoline, isoquinoline, β-picoline, pyridine and the like are preferably used. The amount of the catalyst is 0.1 to 2 molar equivalents, preferably 0.2 to 1.5 molar equivalents, more preferably 0.3 to 1.0 molar equivalents, per 1 mol of the amic acid in the polyamic acid. Can be used. If the amount is too small, the chemical imidization tends to be difficult to proceed (curing). If the amount is too large, the chemical imidization proceeds (curing) becomes fast, and it is difficult to cast on the support.
The semiconductive inorganic filler used in the present invention is defined as having a volume resistivity (powder resistance) of a molded body obtained by compression-molding a completely dried inorganic filler at a pressure of 100 kg / cm 2. 5 -10 9 A Ω · cm filler is desirable, and a semiconductive polyimide film has a volume resistivity of 10 when measured and conditioned at 23 ° C. and 55% RH. 9 -10 13 Ω · cm and surface resistivity is 10 10 -10 14 Refers to a polyimide film of Ω / □.
Preferred examples of the semiconductive inorganic filler used in the present invention include titanium oxide, zinc oxide, iron oxide, calcium carbonate, iron hydroxide, tin oxide and the like. Among these, titanium oxide has heat resistance and resistance. It is most preferable from the viewpoint of control and the like.
Further, the semiconductive inorganic filler may be in any shape such as spherical, layered, acicular, powdery or granular, or a mixture thereof, but among them, acicular or acicular from the viewpoint of mechanical properties. It is preferable to use a mixture of a material and another shape. The addition amount of the semiconductive inorganic filler is 15 to 60% by weight, preferably 15 to 50% by weight, more preferably 20 to 35% by weight, based on the total amount of the polyimide and the semiconductive inorganic filler. If the added amount of the filler is smaller than this range, the conductivity is not easily improved, and even if it is larger than this range, the volume and the surface resistance value are almost saturated, and the mechanical properties of the semiconductive polyimide film tend to decrease. is there.
In the case of an acicular filler, the minor axis diameter is 0.01 to 1 μm, preferably 0.05 to 0.75 μm, more preferably 0.1 to 0.5 μm, and the major axis diameter is 1 to 20 μm, preferably 1. It is preferable to use one having a thickness of 5 to 15 μm, more preferably 2 to 10 μm. When the short axis diameter and the long axis diameter are out of this range, it becomes difficult to balance the resistance value and the mechanical strength.
[0025]
When a filler having another shape is used, it is preferable to use a filler having an average particle diameter of 0.01 to 20 μm, preferably 0.01 to 15 μm, and more preferably 0.01 to 10 μm. If the particle size is out of the above range, mechanical properties tend to decrease and electrical properties tend to deteriorate.
[0026]
In the present invention, a dispersant containing polyamic acid as a main component is used for dispersing the semiconductive inorganic filler. The polyamic acid used as the dispersant may be any known polyamic acid, and may be the same as or different from the polyamic acid that provides the polyimide constituting the semiconductive polyimide film. The dispersant may be in any form of solid, slurry, or solution. However, since it is necessary to dissolve in the filler dispersion, it is preferable to use a solution-like substance since there is no need for re-dissolution. As a dispersant, any molecular weight polyamic acid can be used, but in order not to lower the mechanical properties of the semiconductive polyimide film, a concentration and viscosity equivalent to those of the polyamic acid organic solvent solution described above are used. It is preferable to use the solution as it is or after diluting it.
[0027]
The amount of the polyamic acid used as the dispersant may be 1% by weight or more, preferably 3% by weight or more, more preferably 5% by weight or more based on the total weight of the dispersant and the filler. If the amount of the dispersant is less than the above range, the effect of improving the dispersibility becomes difficult to be seen. Further, after a good dispersion state is once obtained, it is also possible to further increase the viscosity by adding a polyamic acid in order to prevent the sedimentation of the filler. Therefore, the upper limit of the amount of the polyamic acid as the dispersant is not particularly limited. In addition, various known agents and / or additives such as a dispersant, a dispersing aid, a thickener, a surfactant, and a plasticizer of a synthetic resin can be mixed and used in the dispersant. These various drugs and / or additives may be liquid or solid. The amount of these various agents and / or additives is 10% by weight or less, preferably 5% by weight or less, more preferably 3% by weight or less, based on the total amount of the polyamic acid and the dispersant. When the amount of these various chemicals and / or additives exceeds this range, the effect of dispersion is reduced, residual chemicals remain, the mechanical properties of the polyimide film are reduced, and the environmental dependence of the resistance value is increased. And other phenomena are likely to be seen.
[0028]
As the solvent for dispersing the filler, any solvent can be used as long as it is a solvent for dissolving the polyamic acid, but an amide solvent, ie, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl- 2-pyrrolidone and the like, and it is preferable to use N, N-dimethylformamide or N, N-dimethylacetamide alone or in a mixture at an arbitrary ratio from the viewpoint of solubility of the dispersant.
[0029]
As a method of dispersing the filler, 1) a method of adding the filler after dissolving the dispersant in the solvent, 2) a method of dissolving the dispersant after adding and mixing the filler in the solvent, 3) mixing the filler and the polyamic acid , A method of dispersing by adding a solvent, 4) a method of dividing the dispersion into multiple stages and combining 1) to 3), and the like, and finally a dispersion having a constitution of a dispersion solvent, a filler, and a polyamic acid is obtained. Any method may be used. For dispersion of the filler, a disperser such as an ultrasonic wave, a bead mill, or a paint shaker may be used.
[0030]
The filler dispersion and the polyamic acid organic solvent solution can be mixed by: 1) mixing these two liquids in advance and using them for film formation; 2) mixing these two liquids in a process immediately before film formation; Any method such as a method of polymerizing a polyamic acid using a filler dispersion as a solvent can be used. Preferably, the above method 1) or 2) is employed.
When a film is formed by the heat curing method, a mixture of a filler dispersion and a polyamic acid organic solvent solution is used as a film forming solution, and when the chemical curing method is used, the mixture is obtained by mixing a filler dispersion, a polyamic acid organic solvent solution, and a curing agent. The resulting mixture is used as a film-forming solution, and the film-forming solution is cast into a film on a support such as a glass plate, an aluminum foil, an endless stainless belt, or a stainless steel drum, and is heated to 80 ° C to 200 ° C, preferably on the support. By heating in a temperature range of 100 ° C. to 180 ° C., the film is partially cured and / or dried, and then peeled from the support to obtain a gel film. The mixing procedure for obtaining the film-forming solution may be performed in any order and method. For example, when the case of the chemical curing method is taken as an example, 1) a method of adding and mixing a polyamic acid organic solvent solution, a filler dispersion, and a curing agent in this order, 2) adding a curing agent to the filler dispersion, and then adding a polyamic acid organic compound. A method of adding a solvent solution, 3) a method of adding and mixing a polyamic acid organic solvent solution, a curing agent, and a filler dispersion in this order. 4) A method of simultaneously mixing a polyamic acid organic solvent solution, a filler dispersion, and a curing agent. Is mentioned.
The gel film is at an intermediate stage of curing from polyamic acid to polyimide and has self-supporting properties.
[0031]
The present invention comprises fixing the edge of the gel film, drying while avoiding shrinkage during curing, removing water, residual solvent, residual conversion agent and catalyst, and completely imidizing the remaining amic acid. Can be obtained.
At this time, it is preferable to finally heat at a temperature of 400 to 580 ° C, preferably 450 to 550 ° C for 1 to 500 seconds, preferably 15 to 400 seconds. If the temperature is higher than this temperature and / or the time is longer, thermal deterioration of the film may occur, and mechanical properties may be deteriorated. Conversely, if the temperature is lower than this temperature and / or the time is short, chemical properties such as hydrolysis resistance may be reduced.
[0032]
【Example】
Hereinafter, the effects of the present invention will be specifically described with reference to examples. However, the present invention is not limited to the following examples, and those skilled in the art may use various methods without departing from the scope of the present invention. Can be changed, modified, and modified. In addition, the measurement of the surface resistance value and the volume resistance value of the semiconductive polyimide film were all left for 48 hours in a measurement environment, the humidity was adjusted, and after removing static electricity for 30 seconds using R8340 ULTRA HIGH RESISTANCE METER manufactured by ADVANTEST, The current value 30 seconds after the application of the voltage of 100 V was read and determined.
[0033]
The measurement of tan δ by dynamic viscoelasticity was performed in a tensile mode using DMS200 manufactured by Seiko Denshi Co., Ltd. (sample size: 9 mm wide, 40 mm long). Depending on the type of film, the maximum value may be plural. In this case, the temperature at which the maximum value is obtained at the highest temperature is read. The measurement conditions are as follows.
[0034]
Temperature profile: 20 ° C to 400 ° C
Heating rate: 3 ° C / min
Measurement frequency: Measurement is performed at three points of 1, 5, and 10 Hz, and the tan δ maximum temperature is read from a 5 Hz chart.
[0035]
Device parameters: Fbase 0g, F0gain 3.0
The tensile strength was measured according to ASTM D882.
The linear expansion coefficient at 100 to 200 ° C. was measured using TMA120C manufactured by Seiko Denshi Co., Ltd. (sample size, width 3 mm, length 10 mm). After warming, the temperature was cooled to 10 ° C., the temperature was further raised at 10 ° C./min, and the average value was calculated from the thermal expansion coefficients at 100 ° C. and 200 ° C. at the time of the second temperature rise.
[0036]
Reference Example 1 88.5 g of 4,4′-diaminodiphenyl ether was dissolved in 815 g of dimethylformamide (DMF), and the solution was cooled to 10 ° C. Here, 96.5 g of pyromellitic dianhydride was gradually added, and the mixture was stirred and reacted for 2 hours to obtain a polyamic acid solution. (Viscosity at 23 ° C. 2800 poise, solid content concentration 18.5% by weight). 100 g of this polyamic acid solution, 9 g of acetic anhydride, 11.4 g of isoquinoline, and a curing agent composed of 15.6 g of DMF were mixed, stirred, defoamed by centrifugation, and then cast on an aluminum foil. The process from stirring to defoaming was performed while cooling to 0 ° C. or less. The laminate of the aluminum foil and the polyamic acid solution was heated at 140 ° C. for 250 seconds to obtain a self-supporting gel film. This gel film was peeled off from the aluminum foil and fixed to a frame. This gel film was heated at 200 ° C., 300 ° C., 400 ° C., and 450 ° C. for 1 minute each to obtain a polyimide film having a thickness of 75 μm. The obtained polyimide film had a tensile strength of 280 MPa, a tensile modulus of 3.0 GPa, a linear expansion coefficient of 100 to 200 ° C. of 32 ppm, and no maximum temperature of tan δ observed (> 400 ° C.).
[0037]
(Example 1) 11.1 g of needle-shaped titanium oxide (manufactured by Ishihara Sangyo Co., Ltd., FTL-300; powder resistance 10) 8 After adding and mixing 12.5 g of DMF into Ωcm, 4 g of the polyamic acid solution obtained in Reference Example 1 was added to obtain a filler dispersion (dispersant amount: 6 wt% (based on the total weight of filler and dispersant). ); Filler dispersion viscosity 15 poise). This dispersion and 100 g of the polyamic acid solution obtained in Reference Example 1 were mixed. Next, a curing agent composed of 9 g of acetic anhydride, 11.4 g of isoquinoline, and 15.6 g of DMF was mixed with the filler-dispersed polyamic acid varnish, stirred, defoamed by centrifugal separation, and then cast on an aluminum foil. The process from stirring to defoaming was performed while cooling to 0 ° C. or less. The laminate of the aluminum foil and the polyamic acid solution was heated at 140 ° C. for 250 seconds to obtain a self-supporting gel film. This gel film was peeled off from the aluminum foil and fixed to a frame. This gel film was heated at 200 ° C., 300 ° C., 400 ° C., and 450 ° C. for 1 minute each to produce a 75 μm-thick semiconductive polyimide film (filler content: 36.5% by weight). Table 1 shows the mechanical and electrical properties of the semiconductive polyimide film.
[0038]
(Example 2) Needle-like titanium oxide filler (manufactured by Ishihara Sangyo Co., Ltd., FTL-300; powder resistance 10) 8 14.8 g, 22.0 g of DMF, and 4 g of the polyamic acid solution obtained in Reference Example 1 to prepare a filler dispersion (dispersant amount: 5 wt% (based on the total weight of filler and dispersant)). A semiconductive polyimide film having a thickness of 75 μm was obtained in exactly the same manner as in Example 1 except that the filler dispersion had a viscosity of 25 poise (filler content: 43.5% by weight). Table 1 shows the mechanical and electrical properties of the semiconductive polyimide film.
[0039]
(Comparative Example 1) A polyimide film was obtained in exactly the same manner as in Example 1 except that 16.5 g of DMF was used for dispersion of the filler, and the polyamic acid solution obtained in Reference Example 1 was not used. Table 1 shows the mechanical and electrical properties of this polyimide film.
[0040]
(Comparative Example 2) A polyimide film was obtained in exactly the same manner as in Example 1 except that 16.3 g of DMF was used for dispersing the filler and 0.2 g of lithium trifluoromethanesulfonate was used as the dispersant. Table 1 shows the mechanical and electrical properties of this polyimide film.
[0041]
(Reference Example 2)
10.0 g of p-phenylenediamine was dissolved in 815 g of dimethylformamide (DMF), and the solution was cooled to 10 ° C. To this, 18.2 g of pyromellitic dianhydride was gradually added and stirred for 1 hour to obtain a polyamic acid prepolymer. Further, after dissolving 74.1 g of 4,4'-diaminodiphenyl ether in this reaction solution, 82.7 g of pyromellitic dianhydride was gradually added and stirred for 2 hours to obtain a polyamic acid solution. (Viscosity at 23 ° C .: 3000 poise; solids concentration: 18.5% by weight; molar ratio of 4,4′-diaminodiphenyl ether to p-phenylenediamine: 80/20). Using this polyamic acid, a polyimide film having a thickness of 75 μm was obtained in the same manner as in Reference Example 1. The tensile strength of this film was 305 MPa, the tensile modulus was 3.8 GPa, the linear expansion coefficient at 100 to 200 ° C was 16 ppm, and the maximum temperature of tan δ was not observed (> 400 ° C).
[0042]
(Example 3)
A polyimide film having a thickness of 50 μm was obtained in the same manner as in Example 1 except that the polyamic acid solution obtained in Reference Example 2 was used. Table 2 shows the mechanical and electrical properties of this polyimide film.
[0043]
(Example 4)
A 75 μm-thick polyimide film was obtained in exactly the same manner as in Example 1 except that the polyamic acid solution obtained in Reference Example 2 was used. Table 2 shows the mechanical and electrical properties of this polyimide film.
[0044]
(Comparative Example 3)
A polyimide film was obtained in exactly the same manner as in Comparative Example 2, except that the polyamic acid solution obtained in Reference Example 2 was used. Table 2 shows the mechanical and electrical properties of this polyimide film.
[0045]
[Table 1]
Figure 2004035825
[0046]
[Table 2]
Figure 2004035825
[0047]
【The invention's effect】
According to the present invention, it is possible to produce a semiconductive polyimide film that does not contain a residue of a dispersing agent, has low environmental dependency of a resistance value, and does not involve aggregation of a filler or the like.

Claims (5)

ポリイミドと半導電性無機フィラーを85:15〜40:60の重量比で含むポリイミドフィルムの製造方法であって、半導電性無機フィラーを有機溶剤中に分散させる際にポリアミック酸を主成分とする分散剤を用いることを特徴とする半導電性ポリイミドフィルムの製造方法。A method for producing a polyimide film comprising a polyimide and a semiconductive inorganic filler in a weight ratio of 85:15 to 40:60, wherein a polyamic acid is a main component when the semiconductive inorganic filler is dispersed in an organic solvent. A method for producing a semiconductive polyimide film, comprising using a dispersant. 半導電性無機フィラーが針状であることを特徴とする請求項1記載のポリイミドフィルムの製造方法。The method for producing a polyimide film according to claim 1, wherein the semiconductive inorganic filler is acicular. 半導電性無機フィラーが酸化チタンであることを特徴とする請求項1および2記載のポリイミドフィルムの製造方法。3. The method according to claim 1, wherein the semiconductive inorganic filler is titanium oxide. ポリアミック酸溶液と、ポリアミック酸を主成分とする分散剤を用いて半導電性無機フィラーを均一に分散させたフィラー分散液とを混合し、この混合液を含む製膜溶液を基材上に流延製膜し、熱的又は化学的にイミド化する請求項1記載の半導電性ポリイミドフィルムの製造方法。A polyamic acid solution and a filler dispersion obtained by uniformly dispersing a semiconductive inorganic filler using a dispersant containing polyamic acid as a main component are mixed, and a film forming solution containing the mixed solution is allowed to flow on a substrate. The method for producing a semiconductive polyimide film according to claim 1, wherein the film is formed and thermally or chemically imidized. 印加電圧100V、23℃ 55%RHで測定した表面抵抗率が1010〜1013Ω/□、体積抵抗率が1010〜1014Ωcmであって、式(I)で表される表面抵抗率Iの環境依存性が1以下、式(II)で表される体積抵抗率
の環境依存性が1以下であることを特徴とする請求項1記載の半導電性ポリイミドフィルムの製造方法。
Figure 2004035825
LL:10℃ 15%RH、印加電圧100V条件下での表面抵抗率
HH:28℃ 85%RH、印加電圧100V条件下での表面抵抗率
Figure 2004035825
LL:10℃ 15%RH、印加電圧100V条件下での体積抵抗率
HH:28℃ 85%RH、印加電圧100V条件下での体積抵抗率
The surface resistivity measured at an applied voltage of 100 V, 23 ° C. and 55% RH is 10 10 to 10 13 Ω / □, the volume resistivity is 10 10 to 10 14 Ωcm, and the surface resistivity represented by the formula (I) environmental dependency of I S is 1 or less, the production method of the semiconductive polyimide film according to claim 1, wherein the environmental dependency of the volume resistivity I V of the formula (II) is 1 or less .
Figure 2004035825
S LL : Surface resistivity under conditions of 10 ° C. 15% RH and applied voltage of 100 V S HH : Surface resistivity under conditions of 28 ° C. and 85% RH and applied voltage of 100 V
Figure 2004035825
V LL : Volume resistivity under conditions of 10 ° C. 15% RH and applied voltage of 100 V V HH : Volume resistivity under conditions of 28 ° C. and 85% RH and applied voltage of 100 V
JP2002197575A 2002-07-05 2002-07-05 Semiconductive polyimide film and method of producing the same Pending JP2004035825A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002197575A JP2004035825A (en) 2002-07-05 2002-07-05 Semiconductive polyimide film and method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002197575A JP2004035825A (en) 2002-07-05 2002-07-05 Semiconductive polyimide film and method of producing the same

Publications (1)

Publication Number Publication Date
JP2004035825A true JP2004035825A (en) 2004-02-05

Family

ID=31705309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002197575A Pending JP2004035825A (en) 2002-07-05 2002-07-05 Semiconductive polyimide film and method of producing the same

Country Status (1)

Country Link
JP (1) JP2004035825A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7433200B2 (en) 2006-05-01 2008-10-07 Nitto Denko Corporation Wired circuit board
US7465884B2 (en) 2006-04-20 2008-12-16 Nitto Denko Corporation Wired circuit board
US7629539B2 (en) 2006-06-29 2009-12-08 Nitto Denko Corporation Wired circuit board
US7737365B2 (en) 2006-06-22 2010-06-15 Nitto Denko Corporation Wired circuit board
US7782571B2 (en) 2006-04-05 2010-08-24 Nitto Denko Corporation Wired circuit board and production method thereof
WO2011063229A1 (en) * 2009-11-20 2011-05-26 E. I. Du Pont De Nemours And Company Coverlay compositions and methods relating thereto
JP2011122132A (en) * 2009-09-17 2011-06-23 E I Du Pont De Nemours & Co Assembly provided with thermally and dimensionally stabilized polyimide film and electrode, and method about the same
CN102122680A (en) * 2009-11-20 2011-07-13 E.I.内穆尔杜邦公司 Photovoltaic compositions or precursors thereto, and methods relating thereto
JP2011521076A (en) * 2008-05-20 2011-07-21 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Thermal and dimensionally stable polyimide films and methods related thereto
US8071886B2 (en) 2006-12-25 2011-12-06 Nitto Denko Corporation Wired circuit board having a semiconductive grounding layer and producing method thereof
US8164002B2 (en) 2006-12-25 2012-04-24 Nitto Denko Corporation Wired circuit board and producing method thereof
US8319299B2 (en) 2009-11-20 2012-11-27 Auman Brian C Thin film transistor compositions, and methods relating thereto
CN103665866A (en) * 2013-12-16 2014-03-26 宁波今山电子材料有限公司 Preparation method for graphene-polyimide composite film
JP2019526163A (en) * 2016-05-12 2019-09-12 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company Polyimide composition and polyimide test socket housing

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7782571B2 (en) 2006-04-05 2010-08-24 Nitto Denko Corporation Wired circuit board and production method thereof
US7465884B2 (en) 2006-04-20 2008-12-16 Nitto Denko Corporation Wired circuit board
US7433200B2 (en) 2006-05-01 2008-10-07 Nitto Denko Corporation Wired circuit board
US7737365B2 (en) 2006-06-22 2010-06-15 Nitto Denko Corporation Wired circuit board
US8247700B2 (en) 2006-06-22 2012-08-21 Nitto Denko Corporation Wired circuit board
US7629539B2 (en) 2006-06-29 2009-12-08 Nitto Denko Corporation Wired circuit board
US8164002B2 (en) 2006-12-25 2012-04-24 Nitto Denko Corporation Wired circuit board and producing method thereof
US8071886B2 (en) 2006-12-25 2011-12-06 Nitto Denko Corporation Wired circuit board having a semiconductive grounding layer and producing method thereof
JP2011521076A (en) * 2008-05-20 2011-07-21 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Thermal and dimensionally stable polyimide films and methods related thereto
JP2011122132A (en) * 2009-09-17 2011-06-23 E I Du Pont De Nemours & Co Assembly provided with thermally and dimensionally stabilized polyimide film and electrode, and method about the same
WO2011063209A1 (en) * 2009-11-20 2011-05-26 E. I. Du Pont De Nemours And Company Thin film transistor compositions, and methods relating thereto
US8319299B2 (en) 2009-11-20 2012-11-27 Auman Brian C Thin film transistor compositions, and methods relating thereto
WO2011063247A3 (en) * 2009-11-20 2011-09-29 E. I. Du Pont De Nemours And Company Interposer films useful in semiconductor packaging applications, and methods relating thereto
WO2011063238A1 (en) * 2009-11-20 2011-05-26 E. I. Du Pont De Nemours And Company Wire wrap compositions and methods relating thereto
WO2011063204A1 (en) * 2009-11-20 2011-05-26 E. I. Du Pont De Nemours And Company Thermally and dimensionally stable polyimide films and methods relating thereto
WO2011063229A1 (en) * 2009-11-20 2011-05-26 E. I. Du Pont De Nemours And Company Coverlay compositions and methods relating thereto
CN102668108A (en) * 2009-11-20 2012-09-12 E.I.内穆尔杜邦公司 Assemblies comprising a polyimide film and an electrode, and methods relating thereto
CN102712753A (en) * 2009-11-20 2012-10-03 E·I·内穆尔杜邦公司 Thermally and dimensionally stable polyimide films and methods relating thereto
CN102712754A (en) * 2009-11-20 2012-10-03 E.I.内穆尔杜邦公司 Coverlay compositions and methods relating thereto
CN102714192A (en) * 2009-11-20 2012-10-03 E.I.内穆尔杜邦公司 Interconnect conductive thin films for use in semiconductor packaging applications and related methods
CN102791769A (en) * 2009-11-20 2012-11-21 E.I.内穆尔杜邦公司 Wire wrap compositions and methods relating thereto
CN102122680A (en) * 2009-11-20 2011-07-13 E.I.内穆尔杜邦公司 Photovoltaic compositions or precursors thereto, and methods relating thereto
CN102803345A (en) * 2009-11-20 2012-11-28 E·I·内穆尔杜邦公司 Thin film transistor compositions, and methods relating thereto
JP2013511599A (en) * 2009-11-20 2013-04-04 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Thermally and dimensionally stable polyimide films and related methods
JP2013511603A (en) * 2009-11-20 2013-04-04 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Interposer film useful in semiconductor packaging applications and methods related thereto
JP2013511601A (en) * 2009-11-20 2013-04-04 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Assembly comprising polyimide film and electrode and method related thereto
JP2013511412A (en) * 2009-11-20 2013-04-04 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Coverlay compositions and methods related thereto
JP2013512535A (en) * 2009-11-20 2013-04-11 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Wire wrap composition and methods related thereto
US8653512B2 (en) 2009-11-20 2014-02-18 E. I. Du Pont De Nemours And Company Thin film transistor compositions, and methods relating thereto
CN103665866A (en) * 2013-12-16 2014-03-26 宁波今山电子材料有限公司 Preparation method for graphene-polyimide composite film
JP2019526163A (en) * 2016-05-12 2019-09-12 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company Polyimide composition and polyimide test socket housing

Similar Documents

Publication Publication Date Title
JP4920886B2 (en) Polyimide-based compositions containing doped polyaniline and methods and compositions related thereto
EP2634220B1 (en) Process for production of electrically conductive polyimide film
CN102482418A (en) Matte finish polyimide films and methods relating thereto
WO2002102882A1 (en) Semiconductive polyimide film and process for production thereof
JP2004035825A (en) Semiconductive polyimide film and method of producing the same
JPH06212075A (en) Preparation of polyimide molding article containing pigment
CN108117658B (en) Preparation method of anti-electrostatic adsorption imide film
US20130240777A1 (en) Highly thermal-conductive polyimide film containing graphite powder
KR101819783B1 (en) Polyimide seamless belt and process for production thereof, and polyimide precursor solution composition
US20230137913A1 (en) Polyimide films
JP4392578B2 (en) Sliding polyimide film and method for producing the same
JP5326253B2 (en) Method for producing polyimide film and aromatic polyimide
JPH10226751A (en) Improved polyimide resin composition and heat-resistant resin film produced therefrom
JP6102918B2 (en) Method for producing conductive polyimide film
JP5783789B2 (en) Method for producing conductive polyimide film
JP6361507B2 (en) Method for producing conductive polyimide film
WO2002022740A1 (en) Polyimide resin composition and, polyimide product formed into film and intermediate transfer belt comprising the same
JP2006133510A (en) Semiconductive polyimide belt and method for manufacturing the same
JP2004131659A (en) Polyimide resin composition and molded polyimide article made thereof
JP2004059694A (en) Dispersing agent, dispersion and method for producing inorganic powder dispersion
JP5810833B2 (en) Method for producing conductive polyimide film
JP2006028216A (en) Polyimide film and manufacturing method of the polyimide film
JP2003055473A (en) Polyimide tubular product and tubular product for electrophotography
JP2004107658A (en) Polyimide film and method for producing the same
JP2004138655A (en) Polyimide molding for fixation or transfer fixation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070705

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070705

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070828