[go: up one dir, main page]

JP2004039700A - Semiconductor power module - Google Patents

Semiconductor power module Download PDF

Info

Publication number
JP2004039700A
JP2004039700A JP2002191446A JP2002191446A JP2004039700A JP 2004039700 A JP2004039700 A JP 2004039700A JP 2002191446 A JP2002191446 A JP 2002191446A JP 2002191446 A JP2002191446 A JP 2002191446A JP 2004039700 A JP2004039700 A JP 2004039700A
Authority
JP
Japan
Prior art keywords
power module
semiconductor power
sealing resin
external terminal
heat sink
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002191446A
Other languages
Japanese (ja)
Inventor
Shinji Uchida
内田 真治
Kenji Okamoto
岡本 健次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2002191446A priority Critical patent/JP2004039700A/en
Publication of JP2004039700A publication Critical patent/JP2004039700A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • H01L2224/48139Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate with an intermediate bond, e.g. continuous wire daisy chain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49111Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting two common bonding areas, e.g. Litz or braid wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/157Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2924/15738Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950 C and less than 1550 C
    • H01L2924/15747Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/1815Shape

Landscapes

  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

【課題】小型で低コストな高絶縁耐圧の半導体パワーモジュールを提供すること。
【解決手段】成形樹脂14の背面側に溝状の凹部を設けたり、あるいは、成形樹脂14に突出部分を設けることにより、外部端子16から成形樹脂14の表面に沿って外部ヒートシンク15に至るまでの距離(沿面距離)Lがこれらの間隔Dに比べて長くなるように構成されているので、外部ヒートシンク15と外部端子16との間の実効的な絶縁間隔が長くなり、小型で低コストな高絶縁耐圧の半導体パワーモジュールを提供することが可能となる。
【選択図】    図1
An object of the present invention is to provide a small and low-cost semiconductor power module having a high withstand voltage.
A groove-shaped concave portion is provided on the back side of a molding resin, or a protruding portion is provided in the molding resin, from an external terminal to an external heat sink along the surface of the molding resin. Is configured to be longer than these distances D, the effective insulation distance between the external heat sink 15 and the external terminal 16 is increased, and the size and cost are reduced. It is possible to provide a semiconductor power module having a high withstand voltage.
[Selection diagram] Fig. 1

Description

【0001】
【発明の属する技術分野】
本発明は、半導体パワーモジュールに関し、より詳細には、小型で低コストな高絶縁耐圧の半導体パワーモジュールに関する。
【0002】
【従来の技術】
従来の半導体パワーモジュールは、セラミックスや金属ベース等の絶縁基板上に設けられた銅箔をエッチングしてパターン化した回路基板上に、半導体素子やチップなどの部品が半田付け等されて実装されたものである。
【0003】
このような半導体パワーモジュールの一般的な製造方法は以下のとおりである。先ず、金属ベース基板上の銅箔にパターニングを施して回路基板とし、次に、この回路基板上にクリーム半田を塗工して、半導体素子を半田付けした銅チップなどで構成される発熱拡散用のヒートスプレッダやゲート用抵抗素子やサーミスタを所定の位置にマウントしてこれらを半田付けする。さらに、基板に残存する半田フラックスを洗浄により除去した後にアルミ製のワイヤなどがボンディングされる。
【0004】
この状態の基板を樹脂製の外部端子付きのケース枠に嵌め込んでケース枠の底部と基板の全周囲とを接着剤で固着し、ケース枠の端子部分を基板上に形成した回路パターンの所定の位置に半田付けした後に洗浄を施し、基板とケース枠で囲まれた部分にシリコーン樹脂やエポキシ樹脂などの封止樹脂を注入して硬化させ、ケース枠付きの半導体パワーモジュールとして実装する。
【0005】
昨今の半導体パワーモジュールには、製造コストの低減と小型化とが求められており、このうち、製造コストの低減のためには、モジュールの構成部品を減らして製造方法を簡略化することが必要である。しかしながら、従来型の半導体パワーモジュールでは回路用基板と樹脂製ケース枠とが必須の構成要素となっているために、基板上に回路パターンをエッチングで形成する工程と外部端子との接続用端子を予め付属させたケース枠とが必要とされ、コストの低減には限界がある。
【0006】
また、電気的な絶縁不良の原因となるボイドやクラックの発生を防止する目的でケース枠に封止樹脂を充填して硬化させる工程が不可欠であることから、この工程に要する時間分だけ製造時間が長くなりスループットが低下して製造コストを引き上げる原因となっていた。
【0007】
半導体パワーモジュールの製造コストの低減のために、トランスファ成形や射出成形といったフルモールド成形でモジュール化する方法が考案されており、この方法によれば、リードフレームの外部端子部分などの一部を除いてはモジュール全体が成形樹脂によってモールドされる(フルモールド)こととなるために、金属ベース基板やケース枠といった高価な部材を必要とせず、さらに、比較的長時間を要する封止樹脂の充填・硬化工程も不要であるために製造コストの大幅な削減と小型化が可能となる。
【0008】
そのような半導体パワーモジュールとしては、例えば、特開平9−139461号公報に記載されているように、打ち抜き加工されたリードフレーム上にIGBT素子、フリーホイールダイオード、集積回路素子、抵抗素子、容量素子などの各素子を固定してワイヤボンディングを行い、金型を用いて絶縁樹脂で封止することで得られるモジュールの発明があり、この例では、リードフレームとヒートシンクとの間に絶縁性の封止樹脂を充填し、リードフレームとヒートシンクとの間の電気的絶縁を図りつつ相互に連結させて樹脂封止している。この他にも、金属板の上に絶縁層を介してリードフレームを設けた樹脂モールド用回路基板の発明が特開2001−196495号公報に開示されている。
【0009】
図4は、このようなフルモールド型の半導体モジュールの構成例を説明するための図で、この半導体モジュールは、リードフレーム41上に半導体素子42が固定され、半導体素子42と外部端子46とがアルミワイヤ43で電気的に接続されて成形樹脂44により封止されて実装され、半導体モジュールの成形樹脂44の背面には、放熱用のフィンなどの金属製の外部ヒートシンク45が固定されている。
【0010】
【発明が解決しようとする課題】
半導体パワーモジュールの外部端子と外部ヒートシンクとは、その絶縁性を担保するためにモジュールの使用電圧に応じて所定の間隔をあけて設けられる必要があるが、従来のフルモールド型のパッケージでは、上下金型の合わせ面である成形樹脂44の側面から外部端子46を取り出すために外部端子46と外部ヒートシンク45との間隔Dが狭くなり、電気的な絶縁が不充分となってそのままでは高耐圧のモジュールには適用が困難であるという問題があった。
【0011】
この問題に対して、モジュールと外部ヒートシンクとの間に絶縁シートを挟んで電気的な絶縁性を確保するという方法もあるが、高電圧大容量のモジュールの場合には、絶縁シートによって外部ヒートシンクへの放熱経路の一部が塞がれることとなる結果、充分な放熱効率を確保するために外部ヒートシンクの放熱面積を広げる必要が生じて外部ヒートシンクが大型化してしまうという問題が生じてしまう。
【0012】
また、外部端子と外部ヒートシンクとの間隔を確保するためにモジュールを厚くすると、モールドに大量の成形樹脂が必要となり硬化時間に長時間を要することとなる結果、製造コストが上昇することに加え、成形樹脂の回り込み不良が生じたり、さらには、モールド後の反りや内部応力に起因する信頼性の低下を招いてしまうという問題もあった。
【0013】
本発明は、このような問題に鑑みてなされたものであり、その目的とするところは、モジュールの外形や厚みを変えることなく、小型で低コストな高絶縁耐圧の半導体パワーモジュールを提供することにある。
【0014】
【課題を解決するための手段】
本発明は、このような目的を達成するために、請求項1に記載の発明は、封止樹脂内部に半導体素子がモールドされた半導体パワーモジュールであって、前記半導体素子と前記封止樹脂内部で電気的に接続され、前記封止樹脂の側面から外部へ突出して前記封止樹脂の一方の主面側に曲折する外部端子を備え、前記封止樹脂の他方の主面を含む第1の平面と、前記外部端子が外部に突出する前記封止樹脂の側面上の位置を含み前記第1の平面と平行な第2の平面との間隔(D)と、前記封止樹脂の他方の主面の縁から前記封止樹脂の側面に沿って前記外部端子に至る最短距離(L)とが、L>Dとなるように前記外部端子が配置されていることを特徴とする。
【0015】
また、請求項2に記載の発明は、請求項1に記載の半導体パワーモジュールにおいて、前記第1の平面と第2の平面との間の前記封止樹脂の側面形状が、少なくとも1つの凹または凸の部分を備えていることを特徴とする。
【0016】
さらに、請求項3に記載の発明は、請求項1に記載の半導体パワーモジュールにおいて、前記封止樹脂の側面は、前記他方の主面側が前記一方の主面側よりも張り出した形状を有し、前記外部端子が、前記封止樹脂の前記一方の主面側の側面から外部に突出するように配置されていることを特徴とする。
【0017】
【発明の実施の形態】
以下に、図面を参照して本発明の実施の形態について説明する。
【0018】
図1は、フルモールド型の本発明の半導体モジュールの第1の構成例を説明するための図で、この半導体モジュールは、リードフレーム11上に半導体素子12が固定され、半導体素子12と外部端子16とがアルミワイヤ13で電気的に接続されて成形樹脂14により封止実装されている。この半導体パワーモジュールの成形樹脂14の背面側には、例えば、深さ1mm、幅2mmの溝状の凹部が設けられており、成形樹脂14の背面に放熱用のフィンなどの金属製の外部ヒートシンク15が外部端子16と間隔Dを保って固定されている。
【0019】
この半導体パワーモジュールでは、成形樹脂14の背面側に設けられた溝状の凹部によって、外部端子16から成形樹脂14の表面に沿って外部ヒートシンク15に至るまでの距離L(沿面距離)がこれらの間隔Dに比べて溝状の凹部の幅(2mm)だけ長くなり、空間的な間隔Dを一定にした状態で外部端子16と外部ヒートシンク15との実効的な絶縁間隔である沿面距離Lを長くすることができるように工夫されている。
【0020】
この半導体パワーモジュールは以下のような工程により製造することが可能である。先ず、バラバラにならないようにガイドを付けた形状に打ち抜いた銅製のリードフレーム11を準備し、このリードフレーム11上の所定位置にクリーム半田をディスペンサで塗工する。次に、リードフレーム11上に半導体素子12を並べ、リフロー炉中で240℃、10分間の半田付けによりリードフレーム12上に固定する。さらに、残存する余分な半田フラックスを洗浄により除去した後に、0.3mm径のアルミワイヤ13をボンディングして半導体素子12を外部端子16と電気的に接続し、トランスファ成形機を用いて175℃、2分間の成形でモールドし、180℃でアフターキュアして実装する。
【0021】
図2はこのようにして得られる半導体パワーモジュールの概要を説明するための図で、図2(a)は上面概観図であり、図2(b)はこのモジュールの内部レイアウト例を説明するための図である。これらの図に示すように、このモジュールは、リードフレーム24上にアルミワイヤ26でボンディングされた半導体素子25と、制御端子21と主電流端子22とを備えており、制御端子21は、厚さ0.8mm、幅1.5mmで、2mmの端子間隔で計12本が設けられ、主電流端子22は、厚さ0.8mm、幅4.0mmで、6mm以上の端子間隔で計3本が設けられている。なお、これらの端子は成形樹脂23の側面から1.5mm飛び出た箇所で曲げ加工されており、モジュールの背面には図示しない外部ヒートシンクがネジで固定されている。
【0022】
図3は、フルモールド型の本発明の半導体パワーモジュールの第2の構成例を説明するための図で、この半導体パワーモジュールは、リードフレーム31上に半導体素子32が固定され、半導体素子32と外部端子36とがアルミワイヤ33で電気的に接続されて成形樹脂34により封止されて実装され、成形樹脂34の背面に放熱用のフィンなどの金属製の外部ヒートシンク35が外部端子36と間隔Dを保って固定されている。
【0023】
この半導体パワーモジュールの成形樹脂34には、外部端子36の外部ヒートシンク35側に、例えば1.5mmの突出部分が設けられており、これにより、外部端子36から成形樹脂34の表面に沿って外部ヒートシンク35に至るまでの距離L(沿面距離)が間隔Dに比べて突出部分の幅(1.5mm)だけ長くなり実効的な絶縁距離が長く取れるように工夫されている。
【0024】
なお、この半導体パワーモジュールも図1で示したモジュールと同様の方法で作製可能である。
【0025】
(比較例)
このようにして得られた本発明の半導体パワーモジュールを用いたインバータ回路について、85℃85%RHの条件で高湿度環境下での動作試験を実施した。この試験条件は、IGBTベアチップ、FWDベアチップ、ゲート抵抗素子を各々6チップと、サーミスタ素子1チップを搭載した1200V・10A定格のモジュールにおいて、定格印加で30分の運転を行い、アウトプットの電流・電圧が別の制御回路により安定して取り出され、暴走や短絡がなく、かつ、運転時間中一定であるか否かで合否を判断した。
【0026】
また、比較のため、図4に示した従来の構成の半導体パワーモジュールを用いたインバータ回路についても同様の評価を行った。なお、これらの半導体パワーモジュールにおける外部端子と外部ヒートシンクとの間隔Dを全て同じにして比較している。
【0027】
図1に示した第1の構成例の本発明の半導体パワーモジュールを用いたインバータ回路は、定格の100%での運転条件下で充分な特性を示したが、定格の120%での運転条件下では、一部のモジュールに暴走や短絡が認められた。
【0028】
図3に示した第2の構成例の本発明の半導体パワーモジュールを用いたインバータ回路は、定格の100%および120%での両運転条件下で充分な特性を示した。
【0029】
これらの結果に対して、図4に示した従来の構成の半導体パワーモジュールを用いたインバータ回路では、定格の100%での運転条件下でも短絡が認められ、充分な特性を得ることはできなかった。
【0030】
【発明の効果】
以上説明したように、本発明の半導体パワーモジュールによれば、成形樹脂の背面側に溝状の凹部を設けたり、あるいは、成形樹脂に突出部分を設けることにより、外部端子から成形樹脂の表面に沿って外部ヒートシンクに至るまでの距離(沿面距離)がこれらの間隔に比べて長くなるように工夫されているので、これらの間の実効的な絶縁間隔が長くなり、小型で低コストな高絶縁耐圧の半導体パワーモジュールを提供することが可能となる。
【0031】
なお、図1および図3では、実効的な絶縁距離である沿面距離Lを長くするために溝状の凹部を設けたり突起部分を設けた例のみを示して説明したが、これに限定されるものではなく、これらの組み合わせや他の凹凸を有する形状を採用することとしてもよいことは言うまでもない。
【図面の簡単な説明】
【図1】本発明の半導体パワーモジュールの第1の構成例を説明するための断面図である。
【図2】本発明の半導体パワーモジュールの概要を説明するための図で、(a)は上面概観図であり、(b)はこのモジュールの内部レイアウト例を説明するための図である。
【図3】本発明の半導体パワーモジュールの第2の構成例を説明するための図である。
【図4】従来の半導体パワーモジュールの構成例を説明するための図である。
【符号の説明】
11、24、31、41 リードフレーム
12、25、32、42 半導体素子
13、26、33、43 アルミワイヤ
14、23、34、44 成形樹脂
15、35、45 外部ヒートシンク
16、36、46 外部端子
21 制御端子
22 主電流端子
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a semiconductor power module, and more particularly, to a small, low-cost, high withstand voltage semiconductor power module.
[0002]
[Prior art]
In conventional semiconductor power modules, components such as semiconductor elements and chips are mounted by soldering and the like on a circuit board obtained by etching and patterning copper foil provided on an insulating substrate such as a ceramic or metal base. Things.
[0003]
A general method for manufacturing such a semiconductor power module is as follows. First, the copper foil on the metal base substrate is patterned to make a circuit board, and then cream solder is applied on this circuit board, and the heat spreader is composed of a copper chip soldered with semiconductor elements. The heat spreader, the gate resistance element and the thermistor are mounted at predetermined positions and soldered. Furthermore, after removing the solder flux remaining on the substrate by washing, an aluminum wire or the like is bonded.
[0004]
The board in this state is fitted into a case frame having external terminals made of resin, the bottom of the case frame and the entire periphery of the board are fixed with an adhesive, and the terminal portion of the case frame is fixed to a predetermined circuit pattern formed on the board. After soldering to the position, cleaning is performed, a sealing resin such as silicone resin or epoxy resin is injected into a portion surrounded by the substrate and the case frame, and the resin is cured to be mounted as a semiconductor power module with a case frame.
[0005]
Recent semiconductor power modules are required to reduce manufacturing costs and reduce size. Of these, to reduce manufacturing costs, it is necessary to reduce the number of component parts of the module and simplify the manufacturing method. It is. However, since the circuit board and the resin case frame are essential components in the conventional semiconductor power module, the step of forming a circuit pattern on the board by etching and the connection terminals for the external terminals are omitted. A case frame attached in advance is required, and there is a limit to cost reduction.
[0006]
In addition, the process of filling the case frame with the sealing resin and curing the resin to prevent the occurrence of voids and cracks that cause electrical insulation failure is indispensable. , The throughput is reduced and the manufacturing cost is increased.
[0007]
In order to reduce the manufacturing cost of semiconductor power modules, a method has been devised in which modules are formed by full molding, such as transfer molding or injection molding. In other words, the entire module is molded with the molding resin (full molding), so that expensive members such as a metal base substrate and a case frame are not required. Since a curing step is not required, the manufacturing cost can be significantly reduced and the size can be reduced.
[0008]
As such a semiconductor power module, for example, as described in Japanese Patent Application Laid-Open No. 9-139461, an IGBT element, a freewheel diode, an integrated circuit element, a resistance element, and a capacitance element are formed on a punched lead frame. There is an invention of a module obtained by fixing each element such as a wire, performing wire bonding, and sealing with a mold using an insulating resin. In this example, an insulating sealing is provided between a lead frame and a heat sink. A sealing resin is filled, and the lead frame and the heat sink are connected to each other while being electrically insulated, thereby sealing the resin. In addition, JP-A-2001-196495 discloses a circuit board for resin molding in which a lead frame is provided on a metal plate via an insulating layer.
[0009]
FIG. 4 is a view for explaining a configuration example of such a full-mold type semiconductor module. In this semiconductor module, a semiconductor element 42 is fixed on a lead frame 41, and the semiconductor element 42 and an external terminal 46 are connected to each other. The semiconductor module is electrically connected by an aluminum wire 43, sealed with a molding resin 44, and mounted. A metal external heat sink 45 such as a radiating fin is fixed to the back surface of the molding resin 44 of the semiconductor module.
[0010]
[Problems to be solved by the invention]
The external terminals and the external heat sink of the semiconductor power module need to be provided at a predetermined interval in accordance with the operating voltage of the module in order to secure the insulating properties. In order to take out the external terminal 46 from the side surface of the molding resin 44, which is the mating surface of the mold, the distance D between the external terminal 46 and the external heat sink 45 is reduced, and electrical insulation becomes insufficient. There was a problem that the module was difficult to apply.
[0011]
To solve this problem, there is a method to secure electrical insulation by sandwiching an insulating sheet between the module and the external heat sink.However, in the case of a module with a high voltage and a large capacity, the insulating sheet is used to connect the external heat sink. As a result, a part of the heat radiating path is closed, so that it is necessary to increase the heat radiating area of the external heat sink in order to secure sufficient heat radiating efficiency, which causes a problem that the external heat sink becomes large.
[0012]
In addition, if the module is thickened to secure the space between the external terminal and the external heat sink, a large amount of molding resin is required for the mold, and a long curing time is required. There is also a problem that a wraparound failure of the molding resin occurs, and furthermore, the reliability is reduced due to warpage or internal stress after molding.
[0013]
The present invention has been made in view of such a problem, and an object of the present invention is to provide a small, low-cost, high-breakdown-voltage semiconductor power module without changing the outer shape and thickness of the module. It is in.
[0014]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a semiconductor power module in which a semiconductor element is molded inside a sealing resin, wherein the semiconductor element and the inside of the sealing resin are provided. A first terminal including the other main surface of the sealing resin, wherein the first terminal includes an external terminal that is electrically connected at a position, protrudes outward from a side surface of the sealing resin, and is bent on one main surface side of the sealing resin. A distance (D) between a plane and a second plane parallel to the first plane including a position on a side surface of the sealing resin from which the external terminals protrude to the outside; The external terminals are arranged such that the shortest distance (L) from the edge of the surface to the external terminals along the side surface of the sealing resin satisfies L> D.
[0015]
According to a second aspect of the present invention, in the semiconductor power module according to the first aspect, a side surface shape of the sealing resin between the first plane and the second plane is at least one concave or concave. It is characterized by having a convex portion.
[0016]
Further, according to a third aspect of the present invention, in the semiconductor power module according to the first aspect, the side surface of the sealing resin has a shape in which the other main surface side protrudes more than the one main surface side. The external terminals are arranged so as to protrude outside from a side surface on the one main surface side of the sealing resin.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described below with reference to the drawings.
[0018]
FIG. 1 is a view for explaining a first configuration example of a full-mold type semiconductor module according to the present invention. In this semiconductor module, a semiconductor element 12 is fixed on a lead frame 11, and the semiconductor element 12 and external terminals are connected. 16 are electrically connected by an aluminum wire 13 and are sealed and mounted by a molding resin 14. On the back side of the molding resin 14 of this semiconductor power module, for example, a groove-shaped recess having a depth of 1 mm and a width of 2 mm is provided, and a metal external heat sink such as a radiating fin is provided on the back surface of the molding resin 14. Reference numeral 15 is fixed to the external terminal 16 while keeping a distance D therebetween.
[0019]
In this semiconductor power module, the distance L (creepage distance) from the external terminal 16 to the external heat sink 15 along the surface of the molding resin 14 is reduced by the groove-shaped recess provided on the back side of the molding resin 14. As compared with the interval D, the crevice distance L, which is the effective insulation interval between the external terminal 16 and the external heat sink 15, is increased with the width of the groove-shaped concave portion (2 mm) longer and the spatial interval D constant. It is devised to be able to.
[0020]
This semiconductor power module can be manufactured by the following steps. First, a copper lead frame 11 punched into a shape with a guide so as not to fall apart is prepared, and cream solder is applied to a predetermined position on the lead frame 11 with a dispenser. Next, the semiconductor elements 12 are arranged on the lead frame 11 and fixed on the lead frame 12 by soldering at 240 ° C. for 10 minutes in a reflow furnace. Further, after removing the remaining excess solder flux by washing, the semiconductor element 12 is electrically connected to the external terminal 16 by bonding an aluminum wire 13 having a diameter of 0.3 mm, and the transfer device is used at 175 ° C. It is molded by molding for 2 minutes, and after-cured at 180 ° C. for mounting.
[0021]
FIG. 2 is a diagram for explaining the outline of the semiconductor power module obtained in this manner. FIG. 2A is a top view, and FIG. 2B is a diagram for explaining an example of the internal layout of this module. FIG. As shown in these figures, this module includes a semiconductor element 25 bonded on a lead frame 24 with an aluminum wire 26, a control terminal 21 and a main current terminal 22, and the control terminal 21 has a thickness of A total of twelve main current terminals 22 are provided with a thickness of 0.8 mm, a width of 4.0 mm, and a terminal spacing of 6 mm or more. Is provided. These terminals are bent at locations protruding 1.5 mm from the side surfaces of the molding resin 23, and an external heat sink (not shown) is fixed to the back of the module with screws.
[0022]
FIG. 3 is a view for explaining a second configuration example of a full-mold type semiconductor power module of the present invention. In this semiconductor power module, a semiconductor element 32 is fixed on a lead frame 31, and The external terminal 36 is electrically connected to the external terminal 36 by an aluminum wire 33, sealed with a molding resin 34, and mounted. A metal external heat sink 35 such as a fin for heat dissipation is provided on the back surface of the molding resin 34 at a distance from the external terminal 36. D is fixed.
[0023]
The molding resin 34 of this semiconductor power module is provided with, for example, a 1.5 mm protruding portion on the external heat sink 35 side of the external terminal 36, whereby the external terminal 36 extends along the surface of the molding resin 34 from the external terminal 36. The distance L (creepage distance) up to the heat sink 35 is longer than the distance D by the width of the protruding portion (1.5 mm), so that the effective insulation distance can be increased.
[0024]
This semiconductor power module can also be manufactured by the same method as the module shown in FIG.
[0025]
(Comparative example)
With respect to the inverter circuit using the semiconductor power module of the present invention thus obtained, an operation test was performed under a high humidity environment at 85 ° C. and 85% RH. The test conditions were as follows: an IGBT bare chip, an FWD bare chip, and a gate resistance element, each having 6 chips and a thermistor element mounted on a 1200 V, 10 A rated module, were operated for 30 minutes with a rated application, and the output current and Pass / fail was determined based on whether the voltage was stably taken out by another control circuit, there was no runaway or short circuit, and the voltage was constant during the operation time.
[0026]
For comparison, the same evaluation was performed on an inverter circuit using the conventional semiconductor power module shown in FIG. In addition, the distances D between the external terminals and the external heat sink in these semiconductor power modules are all the same and compared.
[0027]
The inverter circuit using the semiconductor power module of the present invention of the first configuration example shown in FIG. 1 showed sufficient characteristics under the operating condition at 100% of the rating, but the operating condition at 120% of the rating. Below, some modules had runaway or short circuit.
[0028]
The inverter circuit using the semiconductor power module of the present invention having the second configuration example shown in FIG. 3 showed sufficient characteristics under both operating conditions of 100% and 120% of the rating.
[0029]
In contrast to these results, in the inverter circuit using the semiconductor power module having the conventional configuration shown in FIG. 4, short-circuiting was observed even under the operating condition of 100% of the rated value, and sufficient characteristics could not be obtained. Was.
[0030]
【The invention's effect】
As described above, according to the semiconductor power module of the present invention, a groove-shaped concave portion is provided on the back side of the molding resin, or a protruding portion is provided on the molding resin, so that the external terminal can be applied to the surface of the molding resin. The distance to the external heat sink along the surface (creepage distance) has been devised to be longer than these distances, so the effective insulation distance between them has been lengthened, resulting in small, low-cost, high insulation. A withstand voltage semiconductor power module can be provided.
[0031]
Although FIGS. 1 and 3 show only an example in which a groove-shaped concave portion or a protruding portion is provided in order to increase the creeping distance L which is an effective insulating distance, the present invention is not limited to this. Needless to say, a combination of these and other shapes having irregularities may be adopted.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view illustrating a first configuration example of a semiconductor power module according to the present invention.
FIGS. 2A and 2B are diagrams for explaining the outline of the semiconductor power module according to the present invention, wherein FIG. 2A is a top view and FIG. 2B is a diagram for explaining an example of the internal layout of the module.
FIG. 3 is a diagram for explaining a second configuration example of the semiconductor power module of the present invention.
FIG. 4 is a diagram illustrating a configuration example of a conventional semiconductor power module.
[Explanation of symbols]
11, 24, 31, 41 Lead frame 12, 25, 32, 42 Semiconductor element 13, 26, 33, 43 Aluminum wire 14, 23, 34, 44 Molded resin 15, 35, 45 External heat sink 16, 36, 46 External terminal 21 Control terminal 22 Main current terminal

Claims (3)

封止樹脂内部に半導体素子がモールドされた半導体パワーモジュールであって、
前記半導体素子と前記封止樹脂内部で電気的に接続され、前記封止樹脂の側面から外部へ突出して前記封止樹脂の一方の主面側に曲折する外部端子を備え、
前記封止樹脂の他方の主面を含む第1の平面と、前記外部端子が外部に突出する前記封止樹脂の側面上の位置を含み前記第1の平面と平行な第2の平面との間隔(D)と、前記封止樹脂の他方の主面の縁から前記封止樹脂の側面に沿って前記外部端子に至る最短距離(L)とが、L>Dとなるように前記外部端子が配置されていることを特徴とする半導体パワーモジュール。
A semiconductor power module in which a semiconductor element is molded inside a sealing resin,
An external terminal electrically connected inside the sealing resin and the semiconductor element, protruding outward from a side surface of the sealing resin, and bending to one main surface side of the sealing resin;
A first plane including the other main surface of the sealing resin, and a second plane parallel to the first plane including a position on a side surface of the sealing resin where the external terminal protrudes to the outside. The distance between the external terminal and the shortest distance (L) from the edge of the other main surface of the sealing resin to the external terminal along the side surface of the sealing resin is L> D. A semiconductor power module, wherein:
前記第1の平面と第2の平面との間の前記封止樹脂の側面形状が、少なくとも1つの凹または凸の部分を備えていることを特徴とする請求項1に記載の半導体パワーモジュール。2. The semiconductor power module according to claim 1, wherein a side surface shape of the sealing resin between the first plane and the second plane includes at least one concave or convex portion. 3. 前記封止樹脂の側面は、前記他方の主面側が前記一方の主面側よりも張り出した形状を有し、
前記外部端子が、前記封止樹脂の前記一方の主面側の側面から外部に突出するように配置されていることを特徴とする請求項1に記載の半導体パワーモジュール。
The side surface of the sealing resin has a shape in which the other main surface side is more protruding than the one main surface side,
2. The semiconductor power module according to claim 1, wherein the external terminal is disposed so as to protrude outside from a side surface on the one main surface side of the sealing resin. 3.
JP2002191446A 2002-06-28 2002-06-28 Semiconductor power module Pending JP2004039700A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002191446A JP2004039700A (en) 2002-06-28 2002-06-28 Semiconductor power module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002191446A JP2004039700A (en) 2002-06-28 2002-06-28 Semiconductor power module

Publications (1)

Publication Number Publication Date
JP2004039700A true JP2004039700A (en) 2004-02-05

Family

ID=31701023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002191446A Pending JP2004039700A (en) 2002-06-28 2002-06-28 Semiconductor power module

Country Status (1)

Country Link
JP (1) JP2004039700A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100735851B1 (en) * 2005-03-09 2007-07-04 미쓰비시덴키 가부시키가이샤 Semiconductor module
US7728413B2 (en) 2005-09-07 2010-06-01 Denso Corporation Resin mold type semiconductor device
JP2011228128A (en) * 2010-04-20 2011-11-10 Panasonic Electric Works Co Ltd Lighting fixture
EP2816591A4 (en) * 2012-02-14 2016-01-20 Toshiba Carrier Corp ELECTRIC COOLING DEVICE AND REFRIGERATION CYCLE DEVICE HEAT SOURCE MACHINE EQUIPPED WITH SAME
JP2022067375A (en) * 2020-10-20 2022-05-06 三菱電機株式会社 Power semiconductor devices, their manufacturing methods, and power conversion devices
WO2023032667A1 (en) * 2021-09-06 2023-03-09 ローム株式会社 Semiconductor device and mounting structure for semiconductor device
US12300562B2 (en) 2021-04-12 2025-05-13 Fuji Electric Co., Ltd. Semiconductor module and semiconductor apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100735851B1 (en) * 2005-03-09 2007-07-04 미쓰비시덴키 가부시키가이샤 Semiconductor module
US7728413B2 (en) 2005-09-07 2010-06-01 Denso Corporation Resin mold type semiconductor device
JP2011228128A (en) * 2010-04-20 2011-11-10 Panasonic Electric Works Co Ltd Lighting fixture
EP2816591A4 (en) * 2012-02-14 2016-01-20 Toshiba Carrier Corp ELECTRIC COOLING DEVICE AND REFRIGERATION CYCLE DEVICE HEAT SOURCE MACHINE EQUIPPED WITH SAME
JP2022067375A (en) * 2020-10-20 2022-05-06 三菱電機株式会社 Power semiconductor devices, their manufacturing methods, and power conversion devices
JP7535909B2 (en) 2020-10-20 2024-08-19 三菱電機株式会社 Power semiconductor device, its manufacturing method, and power conversion device
US12300562B2 (en) 2021-04-12 2025-05-13 Fuji Electric Co., Ltd. Semiconductor module and semiconductor apparatus
WO2023032667A1 (en) * 2021-09-06 2023-03-09 ローム株式会社 Semiconductor device and mounting structure for semiconductor device

Similar Documents

Publication Publication Date Title
JP3547333B2 (en) Power converter
CN103339724B (en) power semiconductor module
EP3226292B1 (en) Lead frame, semiconductor device, method for manufacturing lead frame, and method for manufacturing semiconductor device
US10879222B2 (en) Power chip integration module, manufacturing method thereof, and double-sided cooling power module package
US9171773B2 (en) Semiconductor device
JP7691208B2 (en) Power module and manufacturing method thereof, converter, and electronic device
US20160035646A1 (en) Semiconductor device, method for assembling semiconductor device, semiconductor device component, and unit module
US9524929B2 (en) Semiconductor module package and method of manufacturing the same
US8368203B2 (en) Heat radiation member for a semiconductor package with a power element and a control circuit
JP6149932B2 (en) Semiconductor device
JP4967701B2 (en) Power semiconductor device
KR101994727B1 (en) Power module Package and Manufacturing Method for the same
CN113192943A (en) Semiconductor circuit and method for manufacturing the same
JP2020072094A (en) Power unit, method of manufacturing the same, and electric device having power unit
CN110914975A (en) Power Semiconductor Modules
US20150270201A1 (en) Semiconductor module package and method of manufacturing the same
US20230327350A1 (en) Transfer molded power modules and methods of manufacture
JP2004039700A (en) Semiconductor power module
JP4110513B2 (en) Manufacturing method of semiconductor power module
KR102464477B1 (en) Dual side cooling power module and manufacturing method of the same
JP2012238737A (en) Semiconductor module and manufacturing method therefor
CN216145615U (en) Semiconductor circuit having a plurality of transistors
JP7523406B2 (en) Semiconductor device and method for manufacturing the same
CN112582386B (en) Power module, preparation method thereof and electrical equipment
CN110957277B (en) Inverter power system and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050329

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050708

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051101