[go: up one dir, main page]

JP2004140911A - AC motor - Google Patents

AC motor Download PDF

Info

Publication number
JP2004140911A
JP2004140911A JP2002302398A JP2002302398A JP2004140911A JP 2004140911 A JP2004140911 A JP 2004140911A JP 2002302398 A JP2002302398 A JP 2002302398A JP 2002302398 A JP2002302398 A JP 2002302398A JP 2004140911 A JP2004140911 A JP 2004140911A
Authority
JP
Japan
Prior art keywords
ring
motor
polar anisotropic
circumferential direction
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002302398A
Other languages
Japanese (ja)
Inventor
Nobuyuki Irie
入江 信幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2002302398A priority Critical patent/JP2004140911A/en
Publication of JP2004140911A publication Critical patent/JP2004140911A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

【課題】極異方性マグネットを軸方向に2個段積した構造のACモータにおいて、コギングトルクを低減する。
【解決手段】ロータ側に界磁とするリング状マグネット3を備え、ステータ側に電機子を備えたACモータにおいて、リング状マグネット3を、ロータ本体2の外周面に、2個のリング状の極異方性マグネット3a,3bを、周方向に所定角度ずらせて、軸方向に段積みするように嵌合固着して構成し、かつ、所定角度を、2個の極異方性マグネット3a,3bの互いの磁極の中心を、円周方向に、360°を磁極数とスロット数の最小公倍数で割るとともに、磁極対数を乗じ、更に2で割った角度とする。
【選択図】   図1
A cogging torque is reduced in an AC motor having a structure in which two polar anisotropic magnets are stacked in the axial direction.
In an AC motor having a ring-shaped magnet as a field on a rotor side and an armature on a stator side, the ring-shaped magnet is attached to an outer peripheral surface of a rotor body by two ring-shaped magnets. The polar anisotropic magnets 3a, 3b are configured so as to be shifted by a predetermined angle in the circumferential direction and fitted and fixed so as to be stacked in the axial direction. The center of each of the magnetic poles of 3b is defined as an angle obtained by dividing 360 ° in the circumferential direction by the least common multiple of the number of magnetic poles and the number of slots, multiplying the number of magnetic pole pairs, and further dividing by 2.
[Selection diagram] Fig. 1

Description

【0001】
【発明の属する技術分野】
本発明は、高精度位置決めが要求される半導体製造装置などに使用されるACサーボモータなどのACモータに関するものである。
【0002】
【従来の技術】
ロータ側に界磁とするリング状マグネットを備え、ステータ側に電機子を備えた、例えばACサーボモータなどのACモータにおいては、鉄損を改善して高効率化を図るために、リング状マグネットに極異方性マグネットを用いることが行われている(例えば特許文献1)。
【0003】
【特許文献1】
特開2001−178040号公報(図1、図2)
【0004】
【発明が解決しようとする課題】
ところが、このような従来技術においては、リング状マグネットのコストを下げるために、長さの短いリング状の極異方性マグネットを軸方向に2個段積した場合、スキュー着磁を施すことができないため、また、互いの磁極の中心が円周方向で一致しているため、スキュー効果が全く得られずコギングトルクが非常に大きいという問題があった。
本発明は、このような問題を解決するためになされたもので、リング状の極異方性マグネットを軸方向に2個段積した構造のACモータにおいて、コギングトルクを低減することを目的とするものである。
【0005】
【課題を解決するための手段】
上記問題を解決するため、本発明は、ロータ側に界磁とするリング状マグネットを備え、ステータ側に電機子を備えたACモータにおいて、前記リング状マグネットを、ロータ本体の外周面に、2個のリング状の極異方性マグネットを、周方向に所定角度ずらせて、軸方向に段積みするように嵌合固着して構成し、かつ、前記所定角度を、2個の極異方性マグネットの互いの磁極の中心を、円周方向に、360°を磁極数とスロット数の最小公倍数で割るとともに、磁極対数を乗じ、更に2で割った角度としたものである。
【0006】
【発明の実施の形態】
以下、本発明の実施例を図に基づいて説明する。
図1は、本発明におけるACモータのロータを示す斜視図である。図2は、図1における極異方性マグネットを示す図で、(a)は平面図で、(b)は正面図である。
図1および図2において、1はACモータのロータ、2はロータ本体で、シャフトで構成されている。3はリング状マグネットで、前記ロータ本体2の外周面に、2個のリング状の極異方性マグネット3a,3bを、周方向に所定角度ずらせて、軸方向に段積みするように嵌合固着して構成している。
2個のリング状の極異方性マグネット3a,3bを周方向にずらす角度θは、次のとおりである。
まず、2個の極異方性マグネット3a,3bの互いの磁極の中心を、円周方向に、360°を磁極数とスロット数の最小公倍数で割る。
次に、その値に、磁極対数を乗じ、更に2で割る。
これによって得た数値が、2個のリング状の極異方性マグネット3a,3bを周方向にずらす角度θである。
つまり、θ=(360/磁極数とスロット数の最小公倍数)×磁極対数×1/2[°]となる。
ロータ1は、リング状マグネット3をこのような構成にしているので、適切なスキュー効果を得ることができ、ロータ1に発生するコギングトルクは小さくなる。
なお、本発明においては、ロータ本体2は、シャフトのみで構成されるものに限らず、シャフトの外周面にロータコアを嵌合固着して構成したものでもよい。
【0007】
【発明の効果】
以上述べたように、本発明によれば、2個のリング状の極異方性マグネットを互いの磁極の中心を円周方向に360°を磁極数とスロット数の最小公倍数で割り、磁極対数を乗じ、更に2で割った角度だけずらして軸方向に段積するように構成しているので、スキュー効果を得ることができ、コギングトルクを低減することができるという効果がある。
【図面の簡単な説明】
【図1】本発明におけるACモータのロータを示す斜視図である。
【図2】図1における極異方性マグネットを示す図で、(a)は平面図で、(b)は正面図である。
【符号の説明】
1 ACモータのロータ
2 ロータ本体
3 リング状マグネット
3a,3b リング状の極異方性マグネット
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an AC motor such as an AC servomotor used for a semiconductor manufacturing device or the like that requires high-precision positioning.
[0002]
[Prior art]
In an AC motor such as an AC servo motor, which has a ring-shaped magnet as a field on the rotor side and an armature on the stator, for example, a ring-shaped magnet for improving iron loss and increasing efficiency. (Patent Document 1).
[0003]
[Patent Document 1]
JP 2001-178040 A (FIGS. 1 and 2)
[0004]
[Problems to be solved by the invention]
However, in such a conventional technique, in order to reduce the cost of the ring-shaped magnet, when two ring-shaped polar anisotropic magnets having a short length are stacked in the axial direction, skew magnetization may be performed. In addition, there is a problem that the skew effect cannot be obtained at all and the cogging torque is extremely large because the centers of the magnetic poles are mutually aligned in the circumferential direction.
The present invention has been made to solve such a problem, and an object of the present invention is to reduce cogging torque in an AC motor having a structure in which two ring-shaped polar anisotropic magnets are stacked in the axial direction. Is what you do.
[0005]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the present invention provides an AC motor having a ring-shaped magnet as a field on the rotor side and an armature on the stator side, wherein the ring-shaped magnet is attached to the outer peripheral surface of the rotor body. The ring-shaped polar anisotropic magnets are shifted and fixed by a predetermined angle in the circumferential direction and are fitted and fixed so as to be stacked in the axial direction, and the predetermined angle is adjusted by two polar anisotropic magnets. The center of the magnetic poles of the magnets is defined as an angle obtained by dividing 360 ° in the circumferential direction by the least common multiple of the number of magnetic poles and the number of slots, multiplying the number of magnetic pole pairs, and further dividing by 2.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a perspective view showing a rotor of an AC motor according to the present invention. 2A and 2B are diagrams showing the polar anisotropic magnet in FIG. 1, wherein FIG. 2A is a plan view and FIG. 2B is a front view.
1 and 2, reference numeral 1 denotes a rotor of an AC motor, and 2 denotes a rotor main body, which is constituted by a shaft. Reference numeral 3 denotes a ring-shaped magnet, which is fitted on the outer peripheral surface of the rotor body 2 so that two ring-shaped polar anisotropic magnets 3a and 3b are shifted by a predetermined angle in the circumferential direction and stacked in the axial direction. It is fixed and configured.
The angle θ at which the two ring-shaped polar anisotropic magnets 3a and 3b are shifted in the circumferential direction is as follows.
First, the center of the magnetic poles of the two polar anisotropic magnets 3a and 3b is circumferentially divided by 360 ° by the least common multiple of the number of magnetic poles and the number of slots.
Next, the value is multiplied by the number of magnetic pole pairs and further divided by two.
The numerical value thus obtained is the angle θ at which the two ring-shaped polar anisotropic magnets 3a and 3b are shifted in the circumferential direction.
That is, θ = (360 / the least common multiple of the number of magnetic poles and the number of slots) × the number of magnetic pole pairs × 1 / [°].
Since the rotor 1 has the ring-shaped magnet 3 having such a configuration, an appropriate skew effect can be obtained, and cogging torque generated in the rotor 1 is reduced.
In the present invention, the rotor main body 2 is not limited to the one composed only of the shaft, but may be one having a rotor core fitted and fixed to the outer peripheral surface of the shaft.
[0007]
【The invention's effect】
As described above, according to the present invention, two ring-shaped polar anisotropic magnets are divided into 360 ° in the circumferential direction by dividing the center of each magnetic pole by the least common multiple of the number of magnetic poles and the number of slots to obtain the number of magnetic pole pairs. , And further, the stacking is performed in the axial direction by shifting by an angle divided by 2, so that a skew effect can be obtained and a cogging torque can be reduced.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a rotor of an AC motor according to the present invention.
FIGS. 2A and 2B are views showing the polar anisotropic magnet in FIG. 1, wherein FIG. 2A is a plan view and FIG. 2B is a front view.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 AC motor rotor 2 Rotor main body 3 Ring-shaped magnet 3a, 3b Ring-shaped polar anisotropic magnet

Claims (1)

ロータ側に界磁とするリング状マグネットを備え、ステータ側に電機子を備えたACモータにおいて、
前記リング状マグネットは、ロータ本体の外周面に、2個のリング状の極異方性マグネットを、周方向に所定角度ずらせて、軸方向に段積みするように嵌合固着して構成されており、
前記所定角度が、2個の極異方性マグネットの互いの磁極の中心を、円周方向に、360°を磁極数とスロット数の最小公倍数で割るとともに、磁極対数を乗じ、更に2で割った角度であることを特徴とするACモータ。
In an AC motor having a ring-shaped magnet as a field on the rotor side and an armature on the stator side,
The ring-shaped magnet is formed by fitting two ring-shaped polar anisotropic magnets on the outer peripheral surface of the rotor body so as to be shifted by a predetermined angle in the circumferential direction and to be stacked in the axial direction. Yes,
The predetermined angle is obtained by dividing the center of each magnetic pole of the two polar anisotropic magnets in the circumferential direction by dividing 360 ° by the least common multiple of the number of magnetic poles and the number of slots, multiplying by the number of magnetic pole pairs, and further dividing by 2. An AC motor characterized by an angle.
JP2002302398A 2002-10-17 2002-10-17 AC motor Pending JP2004140911A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002302398A JP2004140911A (en) 2002-10-17 2002-10-17 AC motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002302398A JP2004140911A (en) 2002-10-17 2002-10-17 AC motor

Publications (1)

Publication Number Publication Date
JP2004140911A true JP2004140911A (en) 2004-05-13

Family

ID=32450465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002302398A Pending JP2004140911A (en) 2002-10-17 2002-10-17 AC motor

Country Status (1)

Country Link
JP (1) JP2004140911A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7569961B2 (en) * 2006-05-31 2009-08-04 Sanyo Denki Co., Ltd. Rotor for motors
CN104158318A (en) * 2014-07-30 2014-11-19 合肥工业大学 Method for reducing cogging torque of permanent magnet motor
CN115664072A (en) * 2022-10-21 2023-01-31 华为数字能源技术有限公司 Rotor, motor, power assembly and power device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7569961B2 (en) * 2006-05-31 2009-08-04 Sanyo Denki Co., Ltd. Rotor for motors
CN104158318A (en) * 2014-07-30 2014-11-19 合肥工业大学 Method for reducing cogging torque of permanent magnet motor
CN115664072A (en) * 2022-10-21 2023-01-31 华为数字能源技术有限公司 Rotor, motor, power assembly and power device

Similar Documents

Publication Publication Date Title
JP4310611B2 (en) Permanent magnet motor
US7005764B2 (en) Electrodynamic apparatus and method of manufacture
JP5813254B2 (en) Permanent magnet rotating electric machine
CN110808643A (en) Stator core for rotating electrical machine and rotating electrical machine
WO2015104956A1 (en) Rotary electric machine
US10069365B2 (en) Three-phase electromagnetic motor with 8*n permanent magnet rotor and 6*n magnetic pole stator with 3*n windings around every other magnetic pole
JP2013230047A (en) Rotor for motor, and motor
JP2011091911A (en) Permanent-magnet rotary electric machine
JP2007236073A (en) Hybrid rotary electric machine
JPH08223831A (en) Iron cores and rotor cores for rotating electrical machines
JP2003284274A (en) Permanent magnet synchronous motor rotor
JPH07255158A (en) Permanent magnet type synchronous rotating electric machine
JP2015233368A (en) Permanent magnet type motor
JPH0479741A (en) permanent magnet rotor
JP2003164085A (en) Rotating electric machine
JP3818341B2 (en) Permanent magnet motor
JPH1189133A (en) Permanent magnet type motor
JP4080273B2 (en) Permanent magnet embedded motor
JP2005051929A (en) Electric motor
JP2000253608A (en) Brushless motor
JPH0847185A (en) Motor core
JP5128800B2 (en) Hybrid permanent magnet rotating electric machine
JP2004140911A (en) AC motor
CN213521423U (en) Motors, machine tools
JP4042279B2 (en) Brushless motor