[go: up one dir, main page]

JP2004182783A - Epoxyfluorene compound and its manufacturing method - Google Patents

Epoxyfluorene compound and its manufacturing method Download PDF

Info

Publication number
JP2004182783A
JP2004182783A JP2002348483A JP2002348483A JP2004182783A JP 2004182783 A JP2004182783 A JP 2004182783A JP 2002348483 A JP2002348483 A JP 2002348483A JP 2002348483 A JP2002348483 A JP 2002348483A JP 2004182783 A JP2004182783 A JP 2004182783A
Authority
JP
Japan
Prior art keywords
compound
fluorene
epoxyfluorene
epoxy
ppm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002348483A
Other languages
Japanese (ja)
Other versions
JP3669360B2 (en
Inventor
Tatsuhiro Iketani
達宏 池谷
Kentaro Furue
健太郎 古江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Highpolymer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Highpolymer Co Ltd filed Critical Showa Highpolymer Co Ltd
Priority to JP2002348483A priority Critical patent/JP3669360B2/en
Publication of JP2004182783A publication Critical patent/JP2004182783A/en
Application granted granted Critical
Publication of JP3669360B2 publication Critical patent/JP3669360B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Epoxy Compounds (AREA)
  • Epoxy Resins (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an epoxyfluorene compound which gives a cured product having excellent heat resistance, low hygroscopicity, chemical resistance, optical properties and the like, and its manufacturing method. <P>SOLUTION: For example, 9,9-diglycidylfluorene can be obtained by the epoxidation of 9,9-diallylfluorene with the use of an oxidizing agent such as a peracid. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、新規なエポキシフルオレン化合物およびその製造方法に関するものであり、詳しくは、耐熱性、低吸湿性、耐薬品性、光学特性等に優れた硬化物を与えるエポキシフルオレン化合物およびその製造方法に関するものである。
本発明のエポキシフルオレン化合物は、塗料、接着剤等のいわゆる従来のエポキシ樹脂が使用されていた分野ばかりではなく、殊に注型品、封止材、積層板、レジストインク等の電気・電子材料用途に好適に使用され得る。
【0002】
【従来の技術】
エポキシ樹脂は、多くの分野で用いられ、その用途に応じて樹脂の改良・改質がなされてきた(例えば下記特許文献1〜5参照)。
殊に、半導体素子、液晶表示素子等の電子部品用途分野では、回路の高集積化、高性能化と併せて高微細化、高信頼化が進み、成形材、注型材料、ワニス、封止材料、絶縁膜、回路基板材あるいはレジスト材等への要求性能も一段と厳しいものが求められている。従ってこれらに必要な材料性能としては、例えば硬化物の耐熱性、低吸湿性、高強度、安定な電気特性、低収縮性、耐薬品性、基板への密着性など多くの性能であるが、これらの諸性能を満たすエポキシ樹脂は未だ存在しないのが実情である。
【0003】
特に、これらの電子部品用途分野において、エポキシ樹脂中の加水分解性塩素あるいはアルカリ金属等の不純物の存在は、素子の信頼性を損なわせるため、一層の高純度化が要求されつつある。例えば半導体素子内に加水分解性塩素が存在すると吸湿により分解遊離した塩素イオンが回路を腐食する原因となり、その結果、断線、剥離等の不具合を生じる恐れがあることが指摘されており、これらの不純物を可及的に低減させることが重要である。
【0004】
またナトリウムイオン等のアルカリ金属イオンの存在も耐湿性の低下をもたらすばかりでなく、トランジスタについていえば、閾値電圧を変動させることから好ましくない。
【0005】
ところが現在使用されているエポキシ樹脂は、エピクロルヒドリンをアルカリ金属水酸化物存在下でフェノール、アルコール、アミン、あるいはカルボン酸等の活性水素化合物と反応させることによる所謂グリシジルエーテル型、グリシジルアミン型あるいはグリシジルエステル型エポキシ樹脂であり、前記用途に使用し得るような高純度品とするには、製造方法に起因する副生アルカリ金属ハロゲン化物あるいは好ましくない副反応物等を生成物から除去するために、多大のエネルギーを必要とする問題がある。
【0006】
また近年、電子材料用の高耐熱性エポキシ樹脂として、9,9−ジフェノ−ルフルオレンにエピクロルヒドリンを縮合させて得られるフルオレン骨格を有するグリシジルエーテル型エポキシ樹脂が開発されている(例えば下記特許文献6参照)。確かにこのエポキシ樹脂の硬化物は、耐熱性、機械的強度、透明性に優れており、その理由としてフルオレン化合物の所謂カルド型構造と呼ばれる特異的な化学構造に起因するとされている。しかしながらこのエポキシ樹脂の製造もやはり従来法によることから、その問題点は解決されていない。
【0007】
その他のエポキシ樹脂の製造方法としては、炭素―炭素二重結合を有機または無機の過酸化物あるいは過酸化水素等を用いて直接酸化する所謂酸化法のエポキシ樹脂の製造方法が知られている。この方法では、エピクロルヒドリンを使用しないことによるアルカリ金属ハロゲン化物等の不純物量が極めて少ない特徴を有しているものの、原料が特定構造のポリエン化合物あるいは脂環式オレフィン化合物に限られることからエポキシ樹脂としての例は未だ多くないのが実情である。
【0008】
これとは別に、活性炭化水素化合物に直接エポキシ基を導入するため、K.Bangertらは、シクロペンタジエニルナトリウム塩にエピクロルヒドリンを作用させることを試みたが、反応生成物は予期したエポキシ化合物ではなく、シクロプロパン環を橋頭部に有するスピロヘプタジエン誘導体であるとしている(下記非特許文献1参照)。
【0009】
また、本発明者らもG.W.H.Sherfらの方法(下記非特許文献2参照)に準じて4級アンモニウム塩とアルカリ金属水酸化物存在下、無水ジメチルスルフォキサイド中、フルオレンとエピクロルヒドリンとの反応を試みたが、予期したエポキシ化合物は得られなかった。
【0010】
【特許文献1】
特開2002−194049号公報
【特許文献2】
特開2002−105166号公報
【特許文献3】
特開2001−164091号公報
【特許文献4】
特開2001−354754号公報
【特許文献5】
特開平9−328534号公報
【特許文献6】
特開昭63−218725号
【非特許文献1】
テトラヘドロン レターズ(Tetrahedron Lett.),#17,pp.1119(1963)
【非特許文献2】
カナディアン・ジャーナル・オブ・ケミストリー(Can.J.Chem.),38,697(1960))
【0011】
【発明が解決しようとする課題】
したがって本発明の目的は、前記従来技術における問題点を解決することのできる、新規なエポキシフルオレン化合物およびその製造方法を提供することにあり、とくに例えば電子部品用途分野において、耐熱性、低吸湿性、耐薬品性、光学特性等に優れた硬化物を与えるエポキシフルオレン化合物およびその製造方法を提供することにある。
【0012】
【課題を解決するための手段】
請求項1の発明は、下記一般式(I)
【0013】
【化3】

Figure 2004182783
【0014】
(式中、Rはそれぞれ独立して水素またはメチル基であり、Zは9,9−フルオレニリデン基または芳香核置換9,9−フルオレニリデン基を示す)
で示されるエポキシフルオレン化合物である。
【0015】
請求項2の発明は、下記一般式(II)
【0016】
【化4】
Figure 2004182783
【0017】
(式中、Rはそれぞれ独立して水素またはメチル基であり、Zは9,9−フルオレニリデン基または芳香核置換9,9−フルオレニリデン基を示す)
で示される9,9−ジ(メタ)アリルフルオレンまたは9,9−ジ(メタ)アリル芳香核置換フルオレンの(メタ)アリル基の炭素−炭素二重結合をエポキシ化することを特徴とする請求項1に記載のエポキシフルオレン化合物を製造する方法である。
【0018】
請求項3の発明は、得られたエポキシフルオレン化合物の加水分解性塩素濃度が500ppm未満である請求項2に記載のエポキシ型フルオレン化合物の製造方法である。
【0019】
請求項4の発明は、得られたエポキシフルオレン化合物のアルカリ金属含有量が3ppm未満である請求項2または3に記載のエポキシフルオレン化合物の製造方法である。
【0020】
【発明の実施の形態】
本発明のエポキシフルオレン化合物を製造するための出発物質として使用されるフルオレンは、フルオレン、芳香核置換フルオレン例えば1−メチルフルオレン、2,3−ベンゾフルオレン、1,2−ベンゾフルオレン、2,7−ジブロモフルオレン、2−アセチルフルオレン、1−ベンジルフルオレン、1−フェニルフルオレン等が挙げられる。
【0021】
9,9−ジ(メタ)アリルフルオレンまたは芳香核置換9,9−ジ(メタ)アリルフルオレンは、フルオレンまたは芳香核置換フルオレンと(メタ)アリルハライドをアルカリ存在下、縮合させることによって得られる。この反応は公知であり、例えばL.J.Mathias and G.J.Tregre、J.Polym.Sci.,Part B.Polym.Physics、36,2869(1998)、M.Makosza,Bull.De L‘Acad.Polonaise des sci.ser.chim.,XV(4)、165(1967)、G.W.H.Sherf et al.,Can.J.Chem.,38、697(1960)等に記載されている。得られた9,9−ジ(メタ)アリルフルオレンまたは芳香核置換9,9−ジ(メタ)アリルフルオレンは、水洗、蒸留、再結晶等の方法で不純物を除去するのがよい。
【0022】
このようにして得られたジ(メタ)アリルフルオレンまたは芳香核置換9,9−ジ(メタ)アリルフルオレンの(メタ)アリル基の炭素―炭素二重結合を、エポキシ化することにより、本発明のエポキシフルオレン化合物が得られる。該エポキシ化は、例えば次の(1)〜(3)の方法により達成することができる。
【0023】
(1)過酸等の酸化剤を用いてエポキシ化する方法。
該方法は、例えばD.Swern,J.Am.Chem.Soc.,69,1692(1947)、D.Swern,OR,,378(1951)、Y.Tanaka,“Epoxy Resins”p.16(1973)(Marcel& Dekker Inc.)、D.Swern,J.Am.Chem.Soc.,67,412(1945)等に記載されている。
過酸としては、公知の化合物を利用することが可能であり、無機過酸、有機過酸例えば、過酢酸、過ギ酸、モノ過フタル酸、トリフルオロ過酢酸、過安息香酸、m−クロル過安息香酸等が挙げられる。また有機過酸としては、有機酸と過酸化水素とを混合使用することにより、有機過酸と同様の目的を達成し得る。中でも、入手性等の面から過酢酸、過安息香酸、過酸化水素と酢酸の混合物等が好ましく用いられる。
過酸等の酸化剤量は、例えば過酸の種類、あるいは反応系の濃度、反応温度等により変化するため、一概に規定できないが、オレフィン1当量に対して過酸あるいは過酸化水素水を1.0〜2.0当量、好ましくは1.0〜1.8当量、さらに好ましくは、1.1〜1.5当量である。オレフィンに対して過酸または過酸化水素水が1当量未満では、エポキシ化が不完全となりがちである一方、2当量を超える量を使用しても、さしたる効果は認められないばかりか、反応性の高いオレフィン化合物では過度の反応が行われることもあり好ましくない。
有機酸と過酸化水素とを混合使用して酸化剤とする場合、過酸化水素水は通常入手し得る3〜50重量%、好ましくは10〜35重量%の濃度品が使用される。濃度が3重量%未満では、酸化剤濃度が低く、エポキシ化に長時間を要することから生産的でない。一方50重量%を超える濃度の過酸化水素水は、酸化性が強いため、取り扱いに注意を要することから好ましくない。
【0024】
(2)ニッケル(II)錯体触媒存在下での分子状酸素による直接エポキシ化法該方法は公知であり、例えば(i)T.Mukaiyama,et al.,Bull.Chem.Soc.Jpn.,63,179(1990);あるいはT.Mukaiyama,et al.,Chemistry Letters,1664(1990)に記載されている。
【0025】
(3)酸化剤として過酸化水素を用い、有機溶媒中で4級アンモニウム塩およびリン酸存在下タングステンのナトリウム塩からなる酸化触媒を用いてエポキシ化する方法
該方法は公知であり、例えばIshii,et al.、J.Org.Chem.53,3587(1988);あるいはR.Noyoriet al.、J.Org.Chem.,61,8310(1996);あるいは特開昭57−156475号公報に記載されている。
【0026】
なお、ジ(メタ)アリルフルオレンまたは芳香核置換9,9−ジ(メタ)アリルフルオレンの(メタ)アリル基の炭素―炭素二重結合を、次亜塩素酸などによりハロヒドリン化合物とし、次いで苛性ソーダ等のアルカリで脱塩酸環化するエポキシ化(ハロヒドリン法)も可能であるが、アルカリによるエポキシへの閉環時に残留ハロヒドリン化合物の精製除去がしばしば困難であり、不純物が増加するため好ましくない。
これに対し、前記(1)〜(3)の方法は高選択性であり、さらに加水分解性塩素およびアルカリ金属含有量が低減できることから好ましく用いられる。
【0027】
本発明に使用される反応溶媒としては、例えばベンゼン、トルエン、クロルベンゼンのような(ハロゲン化)芳香族炭化水素類、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン系溶剤、ジオキサン、ジフェニルエーテルなどのエーテル類、塩化メチレン、クロロフォルム、トリクレン等の塩素系炭化水素類、酢酸等のエポキシ化反応に不活性な溶媒が挙げられ、これらを適宜選定もしくは必要に応じて、混合して使用することができる。
【0028】
9,9−ジ(メタ)アリルフルオレンまたは芳香核置換9,9−ジ(メタ)アリルフルオレンの仕込み濃度は、使用する溶媒種、酸化剤種類、濃度、酸化反応の環境にもより異なるため、一概に規定できないが、溶媒に対して通常5〜100重量%、好ましくは10〜100重量%、さらに好ましくは15〜100重量%である。5重量%未満の濃度では、エポキシ化反応が遅く生産的でない。
一方、例えば4級アンモニウム塩共存下でのタングステン酸ナトリウム塩触媒利用の過酸化水素水によるエポキシ化反応では、過酸化水素水中の水が溶媒または分散媒としても作用するため、事実上無溶媒での反応も可能である。
【0029】
本発明で使用される反応温度は、酸化剤として使用する過酸化水素水あるいは過酸の分解による活性酸素の喪失あるいは要らざる副反応の抑制のため、通常0〜100℃、好ましくは10〜90℃、さらに好ましくは10〜85℃である。反応温度が0℃未満では、エポキシ化反応が遅く、生産的でない。
【0030】
エポキシ化に要する反応時間は、使用するジ(メタ)アリルフルオレンまたは芳香核置換9,9−ジ(メタ)アリルフルオレンの種類、反応温度、酸化剤種およびその濃度、反応溶媒種等によって異なるため、一概に規定できないが、通常0.02〜72時間、好ましくは0.05〜70時間、さらに好ましくは0.1〜60時間である。エポキシ化反応は一種の酸化反応であるため、例えば反応時間を0.01時間未満で行う条件設定は、要らざる副反応を生起することから好ましくない。一方長時間の反応は、過酸を使用する場合には、生成エポキシ基に分解生成した酸が付加し、エポキシ化合物の収率が低下する場合があることから好ましくない。
【0031】
このようにして得られた本発明のエポキシフルオレン化合物は、加水分解性塩素量が500ppm未満となり、および/または熱水抽出のアルカリ金属量が3ppm未満に低減されるため、電子部品用途分野に有用である。
【0032】
【実施例】
以下、本発明を合成例および実施例によりさらに詳しく説明するが、本発明はこれらの例に限定されるものではない。なお合成例および実施例に記載の化合物の同定方法は以下の方法によった。
(1)H−NMRおよび13C−NMR:テトラメチルシラン(TMS)を内部標準物質として、日本電子社製JNM―LA300核磁気共鳴装置で測定した。
(2)IRスペクトル:日本電子社製FTIR測定装置 JIR−RFX3002FT−IR Spectrophotometerを用いて測定した。
(3)DSC測定:SII社製DSC装置を用い、窒素気流下、温度範囲30〜300℃、昇温速度10℃/分で測定した。
(4)HPLC測定:昭和電工社製Shodex RISE―51(カラムKF−801、KF−802)を用い、カラム温度40℃、溶出液テトラヒドロフラン(THF)、溶出速度 1ml/分で測定した。
(5)エポキシ当量:塩酸法から求めた。
(6)Na濃度:原子吸光法で測定した。
(7)加水分解性塩素濃度:定法に従い、1N KOH−エタノール/ジオキサン法で鹸化後、硝酸銀水溶液で電位差滴定して求めた。
【0033】
(合成例1)9,9−ジアリルフルオレンの合成
前出文献(Can.J.Chem.,38,697(1960))に記載の方法に準じて合成した。即ち、温度調節器、攪拌機、ジムロート冷却管、滴下ロートを付した2lの四つ口フラスコに、精製フルオレン166.2g(1.00モル)、トルエン400ml、テトラ−n−ブチルアンモニウムブロマイド9.68g(0.03モル)、精製ジメチルスルホキサイド22.0gを仕込み、窒素気流下で攪拌しながら30℃まで加熱してフルオレンを溶解した。これに50重量%のNaOH水溶液320g(NaOH160g)を滴下ロートより滴下した。次いで攪拌下アリルクロライド168.4g(2.2モル)を滴下した。フラスコの加熱で還流と共に内温は64℃から最高78℃まで上昇した。その後9時間反応させてから反応生成物を25%リン酸水溶液で中和、次いで1.2lのイオン交換水で2回水洗した後、トルエンを減圧留去し、50℃で真空乾燥することにより、242.32gのオレンジ色の室温で油状の液体を得た。化合物のH−NMRスペクトル、IR−スペクトルから9,9−ジアリルフルオレンであること、H−NMRスペクトルから純度は93%(残りはモノアリルフルオレン)ことを確認した。HPLCの保持時間は32.60分であった。
【0034】
(合成例2)9,9−ジメタリルフルオレンの合成
合成例1に記載の方法をわずかに変更して合成した。即ち温度調節機、攪拌装置、ジムロート冷却管、滴下ロートを付した500mlの四つ口フラスコに、フルオレン41.6g(0.25モル),テトラ−n−ブチルアンモニウムブロマイド2.42g(7.5ミリモル)、50重量%NaOH水溶液80g、ジメチルスルホキサイド5.5gを仕込み、攪拌しながら40℃まで昇温した。そこにβ―メタリルクロライド57.4g(0.75モル)を10分かけて滴下し、滴下終了後70℃で4.5時間反応させた。得られた反応生成物に300mlのトルエンを加えて希釈してから溶液を2規定塩酸で中和した後、イオン交換水300mlで2回水洗した後、トルエンを減圧留去した。得られたオレンジ色の結晶を50℃で真空乾燥することによりDSCで68℃(ピークトップ)に融点を持つ目的物を得た。化合物のH−NMRスペクトル、IR−スペクトルから9,9−ジメタリルフルオレンであること、H−NMRスペクトルから純度は93%(残りはモノ−メタリルフルオレン)であることを確認した。HPLCの保持時間は32.00分であった。
【0035】
(実施例1)9,9−ジグリシジルフルオレンの合成−1
表示純度77%のm−クロロ過安息香酸11.21g(0.05モル)をトルエン450mlに溶解し、500mlの三角フラスコに仕込んだ。そこに合成例1で得た純度93%の9,9−ジアリルフルオレン6.62g(0.025モル)を5分で滴下し、時々攪拌しながら室温で48時間放置した。反応終了後、未反応のm−クロロ過安息香酸を亜硫酸水素ナトリウム水溶液で処理した。続いて10重量%NaOH水溶液で中和、イオン交換水で2回洗浄し、トルエンを留去した。得られた白色個体をヘキサンで3回再結晶し、50℃で真空乾燥することにより、融点が94℃の白色結晶1.55g(収率27.8%)を得た。HPLCは1スポットであり、その保持時間は33.06分であった。元素分析結果は実測値C:81.80%、H:6.41%(9,9−ジグリシジルフルオレンとした時の理論値C:81.99%、H:6.52%)と良く一致し、さらにエポキシ当量は148(理論値は139.2)であった。本実施例で得られた化合物のH−NMRスペクトルを図1に、IRスペクトルを図2に示す。また13C−NMRスペクトルからフルオレン部分(52、120〜149ppm)以外に43,47,49ppmにピークがフルオレン部に対して2個分認められ、9,9−ジグリシジルフルオレンであると同定された。加水分解性塩素濃度は100ppmであり、Na濃度は2ppmであった。
【0036】
(実施例2)9,9−ジ(メチルグリシジル)フルオレンの合成−1
実施例1と同様に、表示純度77%のm−クロロ過安息香酸11.21g(0.05モル)を塩化メチレン130mlに溶解し、500mlの三角フラスコに仕込んだ。そこに塩化メチレン20mlに溶解した純度93%の9,9−ジメタリルフルオレン6.85g(0.025モル)を5分間かけて滴下しながら時々攪拌して、室温で2.5時間放置した。反応修了後、析出したm−クロロ安息香酸を炉別した。続いて10重量%NaOH水溶液で中和、イオン交換水で2回水洗し塩化メチレンを留去した。得られた白色個体をヘキサンから再結晶を3回行い、50℃で真空乾燥することにより、融点が139℃の5.08gの白色生成物を得た(収率65.3%)。H−NMRスペクトル、IR−スペクトル、元素分析から9,9−ジ(メチルグリシジル)フルオレンであることを確認した。またHPLCは1スポットであり、その保持時間は31.90分であった。元素分析結果は実測値C:82.01%、H:7.01%(9,9−(メチルグリシジル)フルオレンとした時の理論値C:82.32%、H:7.24%)と良く一致した。理由は不明であるが、エポキシ当量は160(理論値153.2)であった。13C−NMRスペクトルの測定結果からアルコール性OH基は不在で、9,9−ジ(メチルグリシジル)フルオレンと同定された。本実施例で得られた化合物のH−NMRスペクトルを図3に、IRスペクトルを図4に示す。また13C−NMRスペクトルから22ppm(CH)、49,54ppm(CH)、55ppm(メチルグリシジル基の4級炭素の>C<)がフルオレン部に対して2個分認められ、目的物はできていると考えられる(60〜70ppmのアルコール領域にはピークは認められないことからエポキシはアルコールではなく環として2個分存在する)。加水分解性塩素濃度は120ppmであり、Na濃度は1ppmであった。
【0037】
(実施例3)9,9−ジグリシジルフルオレンの合成−2
無水酢酸400mlに93%純度の9,9−ジアリルフルオレン26.48g(0.10モル)を溶解し、外部冷却により内温を40℃以下に維持しながら、30%の過酸化水素水溶液24.5ml(0.24モル相当)を30分かけて滴下した後、10時間この温度を保持した。反応後溶液を亜硫酸水素ナトリウム水溶液で処理し、次いで10重量%NaOH水溶液で中和後、イオン交換水で洗浄した。得られた白色結晶を実施例1と同様にヘキサンから再結晶することにより、9,9−ジグリシジルフルオレン20.9g(収率75%)を得た。融点、H−NMR、HPLCによる保持時間は実施例1と同一の結果を示した。加水分解性塩素濃度は100ppmであり、Na濃度は2ppmであった。
【0038】
(実施例4)9,9−ジ(メチルグリシジル)フルオレンの合成―2
実施例3で使用した9,9−ジアリルフルオレンに代えて、93%純度の9,9−ジメタリルフルオレン27.40gを用い、反応を室温で5時間とした他は、実施例3を繰り返すことにより、9,9−ジ(メチルグリシジルフルオレン)26.00g(収率85%)を得た。融点、H−NMR、HPLCによる保持時間は実施例2と同一の結果を示した。加水分解性塩素濃度は130ppmであり、Na濃度は2ppmであった。
【0039】
(実施例5)9,9−ジグリシジルフルオレンの合成―3
温度調節器、攪拌装置、冷却コンデンサーを付した2リットル四つ口フラスコに35重量%過酸化水素水197.5g(2.05モル)、タングステン酸ナトリウム・2水和物6.0gを加え、さらに75重量%リン酸4gを加えて水溶液を黄色から無色透明に変色させた。その水溶液に9,9−ジアリルフルオレン165.5g(0.665モル)、トリオクチルメチルアンモニウムクロリド(Aliquat 336)5.5gを加え、激しく攪拌しながら70℃で7時間反応させた。反応液を室温に冷却し、生成した固体をろ別し、固体をイオン交換水で2回洗浄した。固体をイソプロピルアルコールで洗浄し、次いで50℃で真空乾燥することにより、融点が93.5℃の9,9−ジグリシジルフルオレンを71.8%の収率で得た。同定は実施例1および実施例3と同様にして行った。なおエポキシ当量は143.3g/eqであった。加水分解性塩素濃度は100ppmであり、Na濃度は2ppmであった。
【0040】
(実施例6)9,9−ジ(メチルグリシジル)フルオレンの合成―3
実施例5で使用した9,9−ジアリルフルオレンに代えて、93%純度の9,9−ジメタリルフルオレン27.40gを用い他は、実施例5に記載の反応条件を踏襲することにより、9,9−ジ(メチルグリシジルフルオレン)26.00g(収率85%)を得た。融点、H−NMR、HPLCによる保持時間は実施例2と同一の結果を示した。加水分解性塩素濃度は110ppmであり、Na濃度は2ppmであった。
【0041】
(比較例1)
温度調節器、攪拌装置、上部にジムロート冷却管を付したDean−Starkトラップ、滴下ロート、窒素導入管を付した300ml四つ口フラスコに、エピクロルヒドリン92.5g(1モル)、フルオレン16,6g(0.1モル)、テトラ−n−ブチルアンモニウムブロマイド2.42g(7.5ミリモル)、を仕込み窒素気流下で攪拌しながら120℃に加熱した。この温度で50wt%のNaOH水溶液50wt%NaOH水溶液80g(1モル)を滴下し、エピクロルヒドリン/水を共沸除去した。8時間後に過剰のエピクロルヒドリンを留去した。反応生成物をろ過し、200mlのメタノールに投ずることにより、褐色沈殿を得たが、HPLCは多数のピークが存在し、またFTIRスペクトル、H−NMRスペクトルからはエポキシ基の存在は認められなかった。
【0042】
(比較例2)
温度調節器、攪拌装置、上部にジムロート冷却管を付したDean−Starkトラップ、滴下ロート、窒素導入管を付した300ml四つ口フラスコに、フルオレン16.6g(0.1モル)、トルエン150g、ジメチルスルフォキサイド20gを仕込み、窒素気流下で攪拌しながら60℃に加熱してフルオレンを溶解させた。この温度を保ったまま、50wt%のNaOH水溶液32g(0.4モル)を加え、内温を120℃まで上げて、トルエン/水を共沸させた。水を除去した後、エピクロルヒドリン74g(0.8モル)を90分かけて滴下し、100℃で6時間後反応した時点で、反応液が紫色から赤橙色に変化し、その後4時間さらに反応させた。室温に戻した後、塩酸で中和し、沈殿物をろ過してイオン交換水にて5回洗浄を行った。50℃で真空乾燥して得られた固体は、クロロフォルム等に殆ど不溶であった。トルエン分別から可溶部は3.8g橙色の固体であり、トルエン不溶部は17.7gの淡黄色の固体であった。トルエン可溶部のHPLCスペクトルは多数のピークが存在し、またH−NMRスペクトルも非常に複雑であり、エポキシ基の存在は認められなかった。
【0043】
【発明の効果】
本発明によれば、耐熱性、低吸湿性、耐薬品性、光学特性等に優れた硬化物を与える新規なエポキシフルオレン化合物が提供される。
本発明のエポキシフルオレン化合物は、塗料、接着剤等のいわゆる従来のエポキシ樹脂が使用されていた分野ばかりではなく、殊に注型品、封止材、積層板、レジストインク等の電気・電子材料用途に好適に使用され得る。また精密成形材料、接着剤等の原料としても有用である。
また、本発明のエポキシフルオレン化合物は、従来公知のエポキシ樹脂と同様に、アミン、カルボン酸、カルボン酸無水物、フェノール樹脂等のエポキシ硬化剤及び硬化促進剤(触媒)による硬化が可能である。
さらに、本発明の新規なエポキシフルオレン化合物の製造方法によれば、加水分解性塩素が500ppm未満および/またはアルカリ金属が3ppm未満の不純物量である化合物が得られるので、該化合物は、封止材料、層間絶縁膜、パッシベーション膜等の絶縁材料、カラーフィルター用材料等にも有用である。
【図面の簡単な説明】
【図1】実施例1で得られた化合物のH−NMRスペクトルである。
【図2】実施例1で得られた化合物のIRスペクトルである。
【図3】実施例2で得られた化合物のH−NMRスペクトルである。
【図4】実施例2で得られた化合物のIRスペクトルである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a novel epoxyfluorene compound and a method for producing the same, and more particularly, to an epoxyfluorene compound which gives a cured product having excellent heat resistance, low moisture absorption, chemical resistance, optical properties, and the like, and a method for producing the same. Things.
The epoxy fluorene compound of the present invention is used not only in fields where so-called conventional epoxy resins such as paints and adhesives are used, but also in particular in electric and electronic materials such as cast products, sealing materials, laminates, resist inks, etc. It can be suitably used for applications.
[0002]
[Prior art]
Epoxy resins are used in many fields, and the resins have been improved and modified according to their uses (for example, see Patent Documents 1 to 5 below).
In particular, in the field of electronic components such as semiconductor devices and liquid crystal display devices, high integration and high performance of circuits have been accompanied by miniaturization and high reliability, and molding materials, casting materials, varnishes, encapsulations, etc. The performance requirements for materials, insulating films, circuit board materials, resist materials and the like are also required to be even more severe. Therefore, as the material performance required for these, for example, heat resistance of the cured product, low moisture absorption, high strength, stable electrical properties, low shrinkage, chemical resistance, many properties such as adhesion to the substrate, There is no epoxy resin that satisfies these various properties.
[0003]
In particular, in these electronic component application fields, the presence of impurities such as hydrolyzable chlorine or alkali metal in the epoxy resin impairs the reliability of the device, and thus higher purity is required. For example, it has been pointed out that if hydrolyzable chlorine is present in a semiconductor element, chlorine ions decomposed and released due to moisture absorption cause corrosion of a circuit, and as a result, a problem such as disconnection or peeling may occur. It is important to reduce impurities as much as possible.
[0004]
Further, the presence of alkali metal ions such as sodium ions not only causes a decrease in moisture resistance, but also changes the threshold voltage of a transistor, which is not preferable.
[0005]
However, the epoxy resin currently used is a so-called glycidyl ether type, glycidylamine type or glycidyl ester obtained by reacting epichlorohydrin with an active hydrogen compound such as phenol, alcohol, amine or carboxylic acid in the presence of an alkali metal hydroxide. It is a type epoxy resin, and in order to obtain a high-purity product that can be used for the above-mentioned applications, it is necessary to remove by-product alkali metal halides or undesired by-products resulting from the production method from the product. There is a problem that requires energy.
[0006]
In recent years, a glycidyl ether type epoxy resin having a fluorene skeleton obtained by condensing epichlorohydrin with 9,9-diphenolfluorene has been developed as a highly heat-resistant epoxy resin for electronic materials (for example, see Patent Document 6 below). ). Certainly, the cured product of this epoxy resin is excellent in heat resistance, mechanical strength, and transparency, and this is attributed to the specific chemical structure of the fluorene compound, which is called a cardo structure. However, since the production of this epoxy resin is also based on the conventional method, the problem has not been solved.
[0007]
As another method for producing an epoxy resin, there is known a method for producing an epoxy resin by a so-called oxidation method in which a carbon-carbon double bond is directly oxidized using an organic or inorganic peroxide or hydrogen peroxide. This method has a feature that the amount of impurities such as alkali metal halides is extremely small by not using epichlorohydrin.However, since the raw material is limited to a polyene compound having a specific structure or an alicyclic olefin compound, it is used as an epoxy resin. The fact is that there are not many examples yet.
[0008]
Separately from this, in order to directly introduce an epoxy group into an active hydrocarbon compound, K.I. Bangert et al. Tried to make epichlorohydrin act on cyclopentadienyl sodium salt, but found that the reaction product was not an expected epoxy compound but a spiroheptadiene derivative having a cyclopropane ring at the bridgehead (see below). Non-Patent Document 1).
[0009]
In addition, the present inventors also disclose G.S. W. H. A reaction between fluorene and epichlorohydrin in anhydrous dimethyl sulfoxide in the presence of a quaternary ammonium salt and an alkali metal hydroxide was attempted according to the method of Sherf et al. No compound was obtained.
[0010]
[Patent Document 1]
JP-A-2002-194049
[Patent Document 2]
JP 2002-105166 A
[Patent Document 3]
JP 2001-164091 A
[Patent Document 4]
JP 2001-354754 A
[Patent Document 5]
JP-A-9-328534
[Patent Document 6]
JP-A-63-218725
[Non-patent document 1]
Tetrahedron Letters, # 17, pp. 1119 (1963)
[Non-patent document 2]
Canadian Journal of Chemistry (Can. J. Chem.), 38 , 697 (1960))
[0011]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to provide a novel epoxyfluorene compound and a method for producing the same, which can solve the problems in the above-mentioned conventional technology. An epoxy fluorene compound which gives a cured product excellent in chemical resistance, optical properties and the like, and a method for producing the same.
[0012]
[Means for Solving the Problems]
The invention of claim 1 provides the following general formula (I)
[0013]
Embedded image
Figure 2004182783
[0014]
(In the formula, R is each independently hydrogen or a methyl group, and Z represents a 9,9-fluorenylidene group or an aromatic nucleus-substituted 9,9-fluorenylidene group.)
Is an epoxyfluorene compound represented by the formula:
[0015]
The invention of claim 2 provides the following general formula (II)
[0016]
Embedded image
Figure 2004182783
[0017]
(In the formula, R is each independently hydrogen or a methyl group, and Z represents a 9,9-fluorenylidene group or an aromatic nucleus-substituted 9,9-fluorenylidene group.)
Epoxidizing the carbon-carbon double bond of the (meth) allyl group of 9,9-di (meth) allylfluorene or 9,9-di (meth) allyl aromatic nucleus-substituted fluorene represented by the formula: Item 10. A method for producing the epoxyfluorene compound according to item 1.
[0018]
The invention of claim 3 is the method for producing an epoxy-type fluorene compound according to claim 2, wherein the obtained epoxyfluorene compound has a hydrolyzable chlorine concentration of less than 500 ppm.
[0019]
The invention according to claim 4 is the method for producing an epoxy fluorene compound according to claim 2 or 3, wherein the obtained epoxy fluorene compound has an alkali metal content of less than 3 ppm.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
Fluorene used as a starting material for producing the epoxyfluorene compound of the present invention is fluorene, aromatic nucleus-substituted fluorene such as 1-methylfluorene, 2,3-benzofluorene, 1,2-benzofluorene, 2,7-fluorene. Examples include dibromofluorene, 2-acetylfluorene, 1-benzylfluorene, 1-phenylfluorene and the like.
[0021]
9,9-di (meth) allylfluorene or an aromatic nucleus-substituted 9,9-di (meth) allylfluorene can be obtained by condensing fluorene or an aromatic nucleus-substituted fluorene with (meth) allyl halide in the presence of an alkali. This reaction is known and is described, for example, in L. J. Mathias and G. J. Tregre, J.M. Polym. Sci. , Part B .; Polym. Physics, 36 , 2869 (1998); Makosza, Bull. De L'Acad. Polonaise des sci. ser. chim. , XV (4), 165 (1967); W. H. Sherf et al. , Can. J. Chem. , 38 , 697 (1960). The obtained 9,9-di (meth) allylfluorene or the aromatic nucleus-substituted 9,9-di (meth) allylfluorene is preferably removed of impurities by washing, distillation, recrystallization or the like.
[0022]
By subjecting the thus obtained di (meth) allylfluorene or the aromatic nucleus-substituted 9,9-di (meth) allylfluorene to the epoxidation of the carbon-carbon double bond of the (meth) allyl group, the present invention Is obtained. The epoxidation can be achieved, for example, by the following methods (1) to (3).
[0023]
(1) A method of epoxidation using an oxidizing agent such as peracid.
The method is described, for example, in D. Swern, J.A. Am. Chem. Soc. , 69 , 1692 (1947); Swern, OR, 7 378 (1951); Tanaka, "Epoxy Resins" p. 16 (1973) (Marcel & Dekker Inc.); Swern, J.A. Am. Chem. Soc. , 67 , 412 (1945).
As the peracid, known compounds can be used, and inorganic peracids and organic peracids such as peracetic acid, formic acid, monoperphthalic acid, trifluoroperacetic acid, perbenzoic acid, and m-chloroperacid Benzoic acid and the like can be mentioned. The same purpose as the organic peracid can be achieved by mixing and using the organic acid and hydrogen peroxide as the organic peracid. Among them, peracetic acid, perbenzoic acid, a mixture of hydrogen peroxide and acetic acid, etc. are preferably used from the viewpoint of availability and the like.
Since the amount of the oxidizing agent such as peracid changes depending on, for example, the type of peracid, the concentration of the reaction system, the reaction temperature, etc., it cannot be unconditionally specified. 0.0 to 2.0 equivalents, preferably 1.0 to 1.8 equivalents, more preferably 1.1 to 1.5 equivalents. If the amount of the peracid or the aqueous hydrogen peroxide is less than 1 equivalent to the olefin, the epoxidation tends to be incomplete. On the other hand, if the amount exceeds 2 equivalents, not only the effect is not remarkable but also the reactivity is lowered. In the case of olefin compounds having a high content, an excessive reaction may occur, which is not preferable.
When an oxidizing agent is used by mixing and using an organic acid and hydrogen peroxide, the concentration of hydrogen peroxide aqueous solution is usually 3 to 50% by weight, preferably 10 to 35% by weight. When the concentration is less than 3% by weight, the oxidizing agent concentration is low and the epoxidation requires a long time, so that it is not productive. On the other hand, aqueous hydrogen peroxide having a concentration of more than 50% by weight is not preferable since it has a high oxidizing property and requires careful handling.
[0024]
(2) Direct epoxidation method using molecular oxygen in the presence of a nickel (II) complex catalyst This method is known. See Mukaiyama, et al. Bull. Chem. Soc. Jpn. , 63 179 (1990); See Mukaiyama, et al. , Chemistry Letters, 1664 (1990).
[0025]
(3) A method in which hydrogen peroxide is used as an oxidizing agent and epoxidation is performed in an organic solvent using an oxidation catalyst comprising a quaternary ammonium salt and a sodium salt of tungsten in the presence of phosphoric acid.
The method is known and described, for example, in Ishii, et al. J. Org. Chem. 53 , 3587 (1988); Noyori et al. J. Org. Chem. , 61 8310 (1996); or JP-A-57-156475.
[0026]
The carbon-carbon double bond of the (meth) allyl group of di (meth) allylfluorene or the aromatic nucleus-substituted 9,9-di (meth) allylfluorene is converted into a halohydrin compound with hypochlorous acid or the like, followed by sodium hydroxide or the like. Although the epoxidation (halohydrin method) of dehydrochlorination with an alkali is also possible, it is often difficult to purify and remove the residual halohydrin compound at the time of ring closure to the epoxy with the alkali, which is not preferable because impurities increase.
On the other hand, the methods (1) to (3) are preferably used because they have high selectivity and can further reduce the content of hydrolyzable chlorine and alkali metal.
[0027]
Examples of the reaction solvent used in the present invention include (halogenated) aromatic hydrocarbons such as benzene, toluene, and chlorobenzene; ketone solvents such as acetone, methyl ethyl ketone and cyclohexanone; ethers such as dioxane and diphenyl ether; Chlorinated hydrocarbons such as methylene chloride, chloroform and trichlene, and solvents inert to the epoxidation reaction such as acetic acid can be mentioned, and these can be appropriately selected or used by mixing as necessary.
[0028]
The charging concentration of 9,9-di (meth) allylfluorene or aromatic nucleus-substituted 9,9-di (meth) allylfluorene varies depending on the type of solvent used, the type of oxidizing agent, the concentration, and the environment of the oxidation reaction. Although it cannot be specified unconditionally, it is usually 5 to 100% by weight, preferably 10 to 100% by weight, more preferably 15 to 100% by weight based on the solvent. At concentrations below 5% by weight, the epoxidation reaction is slow and not productive.
On the other hand, for example, in an epoxidation reaction using aqueous hydrogen peroxide using a sodium tungstate salt catalyst in the presence of a quaternary ammonium salt, water in the aqueous hydrogen peroxide also acts as a solvent or a dispersion medium, so that it is practically solvent-free. Is also possible.
[0029]
The reaction temperature used in the present invention is usually 0 to 100 ° C., preferably 10 to 90 ° C., for suppressing active oxygen loss or unnecessary side reaction due to decomposition of hydrogen peroxide solution or peracid used as an oxidizing agent. ° C, more preferably 10 to 85 ° C. When the reaction temperature is lower than 0 ° C., the epoxidation reaction is slow and not productive.
[0030]
The reaction time required for epoxidation varies depending on the type of di (meth) allylfluorene or aromatic nucleus-substituted 9,9-di (meth) allylfluorene used, the reaction temperature, the type of oxidizing agent and its concentration, the type of reaction solvent, and the like. The time is generally 0.02 to 72 hours, preferably 0.05 to 70 hours, more preferably 0.1 to 60 hours. Since the epoxidation reaction is a kind of oxidation reaction, it is not preferable to set the conditions in which the reaction time is shorter than 0.01 hour, for example, since unnecessary side reactions occur. On the other hand, a long-term reaction is not preferable when a peracid is used, since the acid generated by decomposition is added to the formed epoxy group, and the yield of the epoxy compound may be reduced.
[0031]
The epoxyfluorene compound of the present invention thus obtained has a hydrolyzable chlorine content of less than 500 ppm and / or a reduced alkali metal content of hot water extraction to less than 3 ppm, and is therefore useful in the field of electronic component applications. It is.
[0032]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Synthesis Examples and Examples, but the present invention is not limited to these Examples. The compounds described in the Synthesis Examples and Examples were identified by the following methods.
(1) 1 H-NMR and Thirteen C-NMR: Measured with a JNM-LA300 nuclear magnetic resonance apparatus manufactured by JEOL Ltd. using tetramethylsilane (TMS) as an internal standard substance.
(2) IR spectrum: FTIR measurement device manufactured by JEOL Ltd. JIR-RFX3002 FT-IR Spectrophotometer was used for measurement.
(3) DSC measurement: Measured using a DSC apparatus manufactured by SII under a nitrogen stream at a temperature range of 30 to 300 ° C. and a heating rate of 10 ° C./min.
(4) HPLC measurement: Measurement was performed using Showex Denko Co., Ltd. Shodex RISE-51 (columns KF-801 and KF-802) at a column temperature of 40 ° C., an eluent of tetrahydrofuran (THF), and an elution rate of 1 ml / min.
(5) Epoxy equivalent: determined by a hydrochloric acid method.
(6) Na + Concentration: Measured by the atomic absorption method.
(7) Hydrolyzable chlorine concentration: saponified by the 1N KOH-ethanol / dioxane method and determined by potentiometric titration with an aqueous silver nitrate solution according to a standard method.
[0033]
(Synthesis Example 1) Synthesis of 9,9-diallylfluorene
Supra (Can. J. Chem., 38 , 697 (1960)). That is, in a 2 l four-necked flask equipped with a temperature controller, a stirrer, a Dimroth condenser, and a dropping funnel, 166.2 g (1.00 mol) of purified fluorene, 400 ml of toluene, and 9.68 g of tetra-n-butylammonium bromide. (0.03 mol) and 22.0 g of purified dimethyl sulfoxide, and heated to 30 ° C. while stirring under a nitrogen stream to dissolve fluorene. To this, 320 g of a 50% by weight aqueous NaOH solution (160 g of NaOH) was dropped from a dropping funnel. Then, 168.4 g (2.2 mol) of allyl chloride was added dropwise with stirring. The internal temperature rose from 64 ° C. to a maximum of 78 ° C. together with the reflux by heating the flask. After reacting for 9 hours, the reaction product was neutralized with a 25% phosphoric acid aqueous solution, and then washed twice with 1.2 l of ion-exchanged water. Then, toluene was distilled off under reduced pressure, and vacuum drying was performed at 50 ° C. To give 242.32 g of an orange oily liquid at room temperature. Compound 1 From H-NMR spectrum and IR-spectra, it is 9,9-diallylfluorene; 1 From the 1 H-NMR spectrum, it was confirmed that the purity was 93% (the remainder was monoallylfluorene). HPLC retention time was 32.60 minutes.
[0034]
(Synthesis Example 2) Synthesis of 9,9-dimethallylfluorene
The synthesis was carried out by slightly changing the method described in Synthesis Example 1. That is, 41.6 g (0.25 mol) of fluorene and 2.42 g (7.5 mol of tetra-n-butylammonium bromide) were placed in a 500 ml four-necked flask equipped with a temperature controller, a stirrer, a Dimroth condenser, and a dropping funnel. Mmol), 80 g of a 50% by weight aqueous solution of NaOH, and 5.5 g of dimethyl sulfoxide, and the mixture was heated to 40 ° C. with stirring. Thereto, 57.4 g (0.75 mol) of β-methallyl chloride was added dropwise over 10 minutes, and after completion of the addition, the mixture was reacted at 70 ° C. for 4.5 hours. The obtained reaction product was diluted by adding 300 ml of toluene, and the solution was neutralized with 2N hydrochloric acid, washed with 300 ml of ion-exchanged water twice, and then toluene was distilled off under reduced pressure. The obtained orange crystal was dried under vacuum at 50 ° C. to obtain the desired product having a melting point of 68 ° C. (peak top) by DSC. Compound 1 H-NMR spectrum and IR-spectra show that the substance is 9,9-dimethallylfluorene; 1 From the 1 H-NMR spectrum, it was confirmed that the purity was 93% (the remainder was mono-methallylfluorene). HPLC retention time was 32.00 minutes.
[0035]
Example 1 Synthesis of 9,9-diglycidylfluorene-1
11.21 g (0.05 mol) of m-chloroperbenzoic acid having the indicated purity of 77% was dissolved in 450 ml of toluene and charged in a 500 ml Erlenmeyer flask. Thereto, 6.62 g (0.025 mol) of 93% pure 9,9-diallylfluorene obtained in Synthesis Example 1 was added dropwise over 5 minutes, and the mixture was left at room temperature for 48 hours with occasional stirring. After completion of the reaction, unreacted m-chloroperbenzoic acid was treated with an aqueous sodium hydrogen sulfite solution. Subsequently, the mixture was neutralized with a 10% by weight aqueous NaOH solution and washed twice with ion-exchanged water, and toluene was distilled off. The obtained white solid was recrystallized three times with hexane and dried at 50 ° C. in vacuo to obtain 1.55 g (yield 27.8%) of white crystals having a melting point of 94 ° C. HPLC was one spot, and the retention time was 33.06 minutes. The elemental analysis results were well in agreement with the actually measured values C: 81.80% and H: 6.41% (theoretical values C: 81.99% and H: 6.52% when 9,9-diglycidylfluorene was used). Further, the epoxy equivalent was 148 (theoretical value was 139.2). Of the compound obtained in this example 1 The H-NMR spectrum is shown in FIG. 1 and the IR spectrum is shown in FIG. Also Thirteen From the C-NMR spectrum, two peaks were observed at 43, 47, and 49 ppm in addition to the fluorene portion (52, 120 to 149 ppm) relative to the fluorene portion, and it was identified as 9,9-diglycidylfluorene. Hydrolysable chlorine concentration is 100 ppm, Na + The concentration was 2 ppm.
[0036]
Example 2 Synthesis of 9,9-di (methylglycidyl) fluorene-1
As in Example 1, 11.21 g (0.05 mol) of m-chloroperbenzoic acid having a purity of 77% was dissolved in 130 ml of methylene chloride and charged in a 500 ml Erlenmeyer flask. Then, 6.85 g (0.025 mol) of 93% pure 9,9-dimethallylfluorene dissolved in 20 ml of methylene chloride was dropwise added over 5 minutes, and the mixture was occasionally stirred and left at room temperature for 2.5 hours. After completion of the reaction, the precipitated m-chlorobenzoic acid was filtered off. Subsequently, the mixture was neutralized with a 10% by weight aqueous NaOH solution and washed twice with ion-exchanged water to distill off methylene chloride. The obtained white solid was recrystallized three times from hexane and dried under vacuum at 50 ° C. to obtain 5.08 g of a white product having a melting point of 139 ° C. (yield 65.3%). 1 From H-NMR spectrum, IR-spectrum and elemental analysis, it was confirmed to be 9,9-di (methylglycidyl) fluorene. HPLC showed one spot, and the retention time was 31.90 minutes. The elementary analysis results were as follows: actual measurement value C: 82.01%, H: 7.01% (theoretical value C: 82.32%, H: 7.24% when 9,9- (methylglycidyl) fluorene was used). Good agreement. For unknown reasons, the epoxy equivalent was 160 (theoretical value 153.2). Thirteen From the measurement results of the C-NMR spectrum, it was identified as 9,9-di (methylglycidyl) fluorene without an alcoholic OH group. Of the compound obtained in this example 1 The H-NMR spectrum is shown in FIG. 3 and the IR spectrum is shown in FIG. Also Thirteen From the C-NMR spectrum, 22 ppm (CH 3 ), 49, 54 ppm (CH 2 ) And 55 ppm (> C <of the quaternary carbon of the methylglycidyl group) for two fluorene moieties, and it is considered that the target product is completed (peak is recognized in the alcohol region of 60 to 70 ppm). Since there is no epoxy, there are two rings, not alcohols). Hydrolysable chlorine concentration is 120 ppm, Na + The concentration was 1 ppm.
[0037]
Example 3 Synthesis of 9,9-diglycidylfluorene-2
26.48 g (0.10 mol) of 93% pure 9,9-diallylfluorene was dissolved in 400 ml of acetic anhydride, and the internal temperature was kept at 40 ° C. or lower by external cooling, and a 30% aqueous hydrogen peroxide solution was used. After 5 ml (corresponding to 0.24 mol) was added dropwise over 30 minutes, the temperature was maintained for 10 hours. After the reaction, the solution was treated with an aqueous solution of sodium hydrogen sulfite, then neutralized with an aqueous solution of 10% by weight of NaOH, and washed with ion-exchanged water. The obtained white crystals were recrystallized from hexane in the same manner as in Example 1 to obtain 20.9 g (75% yield) of 9,9-diglycidylfluorene. Melting point, 1 The retention time by H-NMR and HPLC showed the same results as in Example 1. Hydrolysable chlorine concentration is 100 ppm, Na + The concentration was 2 ppm.
[0038]
Example 4 Synthesis of 9,9-di (methylglycidyl) fluorene-2
Example 3 was repeated, except that 27.40 g of 93% pure 9,9-dimethallylfluorene was used instead of 9,9-diallylfluorene used in Example 3 and the reaction was carried out at room temperature for 5 hours. As a result, 26.00 g of 9,9-di (methylglycidylfluorene) was obtained (yield: 85%). Melting point, 1 The retention time by H-NMR and HPLC showed the same results as in Example 2. Hydrolysable chlorine concentration is 130 ppm, Na + The concentration was 2 ppm.
[0039]
(Example 5) Synthesis of 9,9-diglycidylfluorene-3
197.5 g (2.05 mol) of 35% by weight aqueous hydrogen peroxide and 6.0 g of sodium tungstate dihydrate were added to a 2 liter four-necked flask equipped with a temperature controller, a stirrer, and a cooling condenser. Further, 4 g of 75% by weight phosphoric acid was added to change the aqueous solution from yellow to colorless and transparent. 165.5 g (0.665 mol) of 9,9-diallylfluorene and 5.5 g of trioctylmethylammonium chloride (Aliquat 336) were added to the aqueous solution and reacted at 70 ° C. for 7 hours with vigorous stirring. The reaction solution was cooled to room temperature, the generated solid was filtered off, and the solid was washed twice with ion-exchanged water. The solid was washed with isopropyl alcohol and then dried in vacuo at 50 ° C. to obtain 9,9-diglycidylfluorene having a melting point of 93.5 ° C. in a yield of 71.8%. Identification was performed in the same manner as in Example 1 and Example 3. The epoxy equivalent was 143.3 g / eq. Hydrolysable chlorine concentration is 100 ppm, Na + The concentration was 2 ppm.
[0040]
Example 6 Synthesis of 9,9-di (methylglycidyl) fluorene-3
Following the reaction conditions described in Example 5, except that 27.40 g of 93% pure 9,9-dimethallylfluorene was used instead of 9,9-diallylfluorene used in Example 5, 26,00 g (85% yield) of 9,9-di (methylglycidylfluorene) were obtained. Melting point, 1 The retention time by H-NMR and HPLC showed the same results as in Example 2. Hydrolysable chlorine concentration is 110 ppm, Na + The concentration was 2 ppm.
[0041]
(Comparative Example 1)
92.5 g (1 mol) of epichlorohydrin and 16.6 g of fluorene were placed in a 300 ml four-necked flask equipped with a temperature controller, a stirrer, a Dean-Stark trap equipped with a Dimroth condenser tube, a dropping funnel, and a nitrogen inlet tube. 0.1 mol) and 2.42 g (7.5 mmol) of tetra-n-butylammonium bromide were charged and heated to 120 ° C. while stirring under a nitrogen stream. At this temperature, 50 g of a 50 wt% NaOH aqueous solution and 80 g (1 mol) of a 50 wt% NaOH aqueous solution were added dropwise to azeotropically remove epichlorohydrin / water. After 8 hours, the excess epichlorohydrin was distilled off. The reaction product was filtered and poured into 200 ml of methanol to obtain a brown precipitate. However, HPLC showed many peaks, and FTIR spectrum, 1 From the H-NMR spectrum, the presence of the epoxy group was not recognized.
[0042]
(Comparative Example 2)
In a 300 ml four-necked flask equipped with a temperature controller, a stirrer, a Dean-Stark trap equipped with a Dimroth condenser at the top, a dropping funnel, and a nitrogen inlet tube, 16.6 g (0.1 mol) of fluorene, 150 g of toluene, 20 g of dimethyl sulfoxide was charged and heated to 60 ° C. while stirring under a nitrogen stream to dissolve fluorene. While maintaining this temperature, 32 g (0.4 mol) of a 50 wt% NaOH aqueous solution was added, the internal temperature was raised to 120 ° C., and toluene / water was azeotroped. After water was removed, 74 g (0.8 mol) of epichlorohydrin was added dropwise over 90 minutes, and at the time of reacting at 100 ° C. for 6 hours, the reaction solution changed from purple to red-orange, followed by further reaction for 4 hours. Was. After returning to room temperature, the mixture was neutralized with hydrochloric acid, and the precipitate was filtered and washed five times with ion-exchanged water. The solid obtained by vacuum drying at 50 ° C. was almost insoluble in chloroform and the like. From the toluene fractionation, the soluble portion was 3.8 g of an orange solid, and the toluene insoluble portion was 17.7 g of a pale yellow solid. The HPLC spectrum of the toluene-soluble part has many peaks, 1 The H-NMR spectrum was also very complicated, and the presence of an epoxy group was not recognized.
[0043]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the novel epoxy fluorene compound which provides the hardened | cured material excellent in heat resistance, low moisture absorption, chemical resistance, optical characteristics, etc. is provided.
The epoxy fluorene compound of the present invention is used not only in fields where so-called conventional epoxy resins such as paints and adhesives are used, but also in particular in electric and electronic materials such as cast products, sealing materials, laminates, resist inks, etc. It can be suitably used for applications. It is also useful as a raw material for precision molding materials, adhesives and the like.
The epoxy fluorene compound of the present invention can be cured with an epoxy curing agent such as an amine, a carboxylic acid, a carboxylic acid anhydride, or a phenol resin and a curing accelerator (catalyst), similarly to conventionally known epoxy resins.
Further, according to the novel method for producing an epoxyfluorene compound of the present invention, a compound having a hydrolyzable chlorine content of less than 500 ppm and / or an alkali metal content of less than 3 ppm can be obtained. It is also useful as an insulating material such as an interlayer insulating film and a passivation film, and a material for a color filter.
[Brief description of the drawings]
FIG. 1 shows the results of the compound obtained in Example 1. 1 It is an H-NMR spectrum.
FIG. 2 is an IR spectrum of the compound obtained in Example 1.
FIG. 3 shows the results of the compound obtained in Example 2. 1 It is an H-NMR spectrum.
FIG. 4 is an IR spectrum of the compound obtained in Example 2.

Claims (4)

下記一般式(I)
Figure 2004182783
(式中、Rはそれぞれ独立して水素またはメチル基であり、Zは9,9−フルオレニリデン基または芳香核置換9,9−フルオレニリデン基を示す)
で示されるエポキシフルオレン化合物。
The following general formula (I)
Figure 2004182783
(In the formula, R is each independently hydrogen or a methyl group, and Z represents a 9,9-fluorenylidene group or an aromatic nucleus-substituted 9,9-fluorenylidene group.)
An epoxyfluorene compound represented by the formula:
下記一般式(II)
Figure 2004182783
(式中、Rはそれぞれ独立して水素またはメチル基であり、Zは9,9−フルオレニリデン基または芳香核置換9,9−フルオレニリデン基を示す)
で示される9,9−ジ(メタ)アリルフルオレンまたは9,9−ジ(メタ)アリル芳香核置換フルオレンの(メタ)アリル基の炭素−炭素二重結合をエポキシ化することを特徴とする請求項1に記載のエポキシフルオレン化合物を製造する方法。
The following general formula (II)
Figure 2004182783
(In the formula, R is each independently hydrogen or a methyl group, and Z represents a 9,9-fluorenylidene group or an aromatic nucleus-substituted 9,9-fluorenylidene group.)
Epoxidizing the carbon-carbon double bond of the (meth) allyl group of 9,9-di (meth) allylfluorene or 9,9-di (meth) allyl aromatic nucleus-substituted fluorene represented by the formula: Item 10. A method for producing the epoxyfluorene compound according to Item 1.
得られたエポキシフルオレン化合物の加水分解性塩素濃度が500ppm未満である請求項2に記載のエポキシ型フルオレン化合物の製造方法。The method for producing an epoxy-type fluorene compound according to claim 2, wherein the hydrolyzable chlorine concentration of the obtained epoxy-fluorene compound is less than 500 ppm. 得られたエポキシフルオレン化合物のアルカリ金属含有量が3ppm未満である請求項2または3に記載のエポキシフルオレン化合物の製造方法。The method for producing an epoxyfluorene compound according to claim 2 or 3, wherein the alkali metal content of the obtained epoxyfluorene compound is less than 3 ppm.
JP2002348483A 2002-11-29 2002-11-29 Epoxyfluorene compound and method for producing the same Expired - Fee Related JP3669360B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002348483A JP3669360B2 (en) 2002-11-29 2002-11-29 Epoxyfluorene compound and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002348483A JP3669360B2 (en) 2002-11-29 2002-11-29 Epoxyfluorene compound and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004182783A true JP2004182783A (en) 2004-07-02
JP3669360B2 JP3669360B2 (en) 2005-07-06

Family

ID=32751390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002348483A Expired - Fee Related JP3669360B2 (en) 2002-11-29 2002-11-29 Epoxyfluorene compound and method for producing the same

Country Status (1)

Country Link
JP (1) JP3669360B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007224193A (en) * 2006-02-24 2007-09-06 Showa Highpolymer Co Ltd Curable resin composition and optical device
JP2009155254A (en) * 2007-12-26 2009-07-16 Osaka Gas Co Ltd Epoxy compound having fluorene skeleton
JP2009155255A (en) * 2007-12-26 2009-07-16 Osaka Gas Co Ltd Epoxy compound having fluorene skeleton
JP2011046823A (en) * 2009-08-27 2011-03-10 Sanyo Chem Ind Ltd Epoxy resin and epoxy resin composition
WO2012148521A3 (en) * 2011-04-25 2012-12-27 General Electric Company Materials for optoelectronic devices
JP2015212367A (en) * 2014-04-16 2015-11-26 三菱化学株式会社 Oligofluorene epoxy resin, epoxy resin composition, and cured product thereof
JP2021120363A (en) * 2020-01-30 2021-08-19 国立大学法人信州大学 Fluorene compounds and polymers thereof and methods for producing them

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07196771A (en) * 1993-11-25 1995-08-01 Minnesota Mining & Mfg Co <3M> Toughened epoxy compostion having fluorene skeleton and cured resin obtained therefrom
JPH09194570A (en) * 1996-01-18 1997-07-29 Minnesota Mining & Mfg Co <3M> Epoxy resin composition, modified epoxy resin composition and production thereof
JPH09328534A (en) * 1996-06-11 1997-12-22 Nippon Steel Chem Co Ltd High purity heat resistant epoxy resin and molding material for electronic materials
JP2002517387A (en) * 1998-05-29 2002-06-18 ザ ダウ ケミカル カンパニー Epoxidation of aryl allyl ethers

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07196771A (en) * 1993-11-25 1995-08-01 Minnesota Mining & Mfg Co <3M> Toughened epoxy compostion having fluorene skeleton and cured resin obtained therefrom
JPH09194570A (en) * 1996-01-18 1997-07-29 Minnesota Mining & Mfg Co <3M> Epoxy resin composition, modified epoxy resin composition and production thereof
JPH09328534A (en) * 1996-06-11 1997-12-22 Nippon Steel Chem Co Ltd High purity heat resistant epoxy resin and molding material for electronic materials
JP2002517387A (en) * 1998-05-29 2002-06-18 ザ ダウ ケミカル カンパニー Epoxidation of aryl allyl ethers

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007224193A (en) * 2006-02-24 2007-09-06 Showa Highpolymer Co Ltd Curable resin composition and optical device
JP2009155254A (en) * 2007-12-26 2009-07-16 Osaka Gas Co Ltd Epoxy compound having fluorene skeleton
JP2009155255A (en) * 2007-12-26 2009-07-16 Osaka Gas Co Ltd Epoxy compound having fluorene skeleton
JP2011046823A (en) * 2009-08-27 2011-03-10 Sanyo Chem Ind Ltd Epoxy resin and epoxy resin composition
WO2012148521A3 (en) * 2011-04-25 2012-12-27 General Electric Company Materials for optoelectronic devices
JP2014518593A (en) * 2011-04-25 2014-07-31 ゼネラル・エレクトリック・カンパニイ Materials for optoelectronic devices
US8940411B2 (en) 2011-04-25 2015-01-27 General Electric Company Materials for optoelectronic devices
TWI567160B (en) * 2011-04-25 2017-01-21 京東方科技集團股份有限公司 Material for photovoltaic devices
JP2015212367A (en) * 2014-04-16 2015-11-26 三菱化学株式会社 Oligofluorene epoxy resin, epoxy resin composition, and cured product thereof
JP2021120363A (en) * 2020-01-30 2021-08-19 国立大学法人信州大学 Fluorene compounds and polymers thereof and methods for producing them
JP7457318B2 (en) 2020-01-30 2024-03-28 国立大学法人信州大学 Fluorene compounds and polymers thereof, and methods for producing them

Also Published As

Publication number Publication date
JP3669360B2 (en) 2005-07-06

Similar Documents

Publication Publication Date Title
US6646102B2 (en) Process for manufacturing an alpha-dihydroxy derivative and epoxy resins prepared therefrom
JP5354868B2 (en) Method for producing alicyclic diepoxy compound, method for producing epoxy resin composition, and method for producing cured product
WO2007094173A1 (en) Adamantane derivative, composition comprising the derivative, and optical and electronic member using the composition
JP3669360B2 (en) Epoxyfluorene compound and method for producing the same
JP5894144B2 (en) Production process of divinylarene dioxide
KR101144420B1 (en) High-purity alicyclic epoxy compound, process for producing the same, curable epoxy resin composition, cured article thereof, and use
US20090137774A1 (en) Adamantane derivative, resin composition containing same, and optoelectronic component using same
CN102341426A (en) epoxy resin composition
US8759553B2 (en) Method for producing epoxy compound
JP2022087349A (en) Method for producing polyvalent glycidyl compound
JP2004099445A (en) Tricyclopentadiene diepoxide
JP3905772B2 (en) New multifunctional epoxy compounds
US20060074149A1 (en) Process for manufacturing an alpha-dihydroxy derivative and epoxy resins prepared therefrom
US8669384B2 (en) Process for preparing divinylarene dioxides
EP1795548B1 (en) Curable diamantane compound
JP4553432B2 (en) Method for producing novel alicyclic epoxy compound
WO2016063957A1 (en) Decalin derivative and method for producing same
JPH11116561A (en) Production of epoxy compound
JPS62205071A (en) Novel epoxy compound and production thereof
JP2001181227A (en) Novel alicyclic group-containing compound and method for producing the same
JP2003286276A (en) New alicyclic epoxy compounds
JPH04279590A (en) Production of 2-oxo(2.2.2)bicyclooctan-6-ol
JPH06345846A (en) Epoxy resin, its production, resin composition and its cured material
JPS61291614A (en) Dicyclopentadiene-modified epoxy resin and its production
JP2004035787A (en) Process for producing a mixture of cycloepodecatriene diepoxy and triepoxy compounds, curable resin composition and cured product

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050404

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080422

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090422

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090422

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100422

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110422

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110422

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110422

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110422

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees