JP2004188286A - Thermally conductive coat and method for forming the same - Google Patents
Thermally conductive coat and method for forming the same Download PDFInfo
- Publication number
- JP2004188286A JP2004188286A JP2002357757A JP2002357757A JP2004188286A JP 2004188286 A JP2004188286 A JP 2004188286A JP 2002357757 A JP2002357757 A JP 2002357757A JP 2002357757 A JP2002357757 A JP 2002357757A JP 2004188286 A JP2004188286 A JP 2004188286A
- Authority
- JP
- Japan
- Prior art keywords
- carbon
- resin
- forming
- coating
- same
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims description 17
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 44
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 24
- 239000002086 nanomaterial Substances 0.000 claims abstract description 23
- 229910021393 carbon nanotube Inorganic materials 0.000 claims abstract description 20
- 239000002041 carbon nanotube Substances 0.000 claims abstract description 20
- 229920005989 resin Polymers 0.000 claims abstract description 19
- 239000011347 resin Substances 0.000 claims abstract description 19
- 239000011159 matrix material Substances 0.000 claims abstract description 11
- 239000011812 mixed powder Substances 0.000 claims abstract description 7
- 239000000203 mixture Substances 0.000 claims abstract description 7
- 239000002134 carbon nanofiber Substances 0.000 claims abstract description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical class C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims abstract description 4
- 239000011248 coating agent Substances 0.000 claims description 30
- 238000000576 coating method Methods 0.000 claims description 30
- -1 polyethylene Polymers 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 6
- 238000007751 thermal spraying Methods 0.000 claims description 5
- 239000004698 Polyethylene Substances 0.000 claims description 4
- 239000004743 Polypropylene Substances 0.000 claims description 4
- 229920000573 polyethylene Polymers 0.000 claims description 4
- 229920001155 polypropylene Polymers 0.000 claims description 4
- 239000004677 Nylon Substances 0.000 claims description 2
- 239000003822 epoxy resin Substances 0.000 claims description 2
- 229920001778 nylon Polymers 0.000 claims description 2
- 229920000647 polyepoxide Polymers 0.000 claims description 2
- 229920005992 thermoplastic resin Polymers 0.000 claims description 2
- 229920001187 thermosetting polymer Polymers 0.000 claims description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims 1
- 229910052731 fluorine Inorganic materials 0.000 claims 1
- 239000011737 fluorine Substances 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 abstract description 4
- 239000000835 fiber Substances 0.000 description 5
- 239000000843 powder Substances 0.000 description 4
- 229930182556 Polyacetal Natural products 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 229920006324 polyoxymethylene Polymers 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000007598 dipping method Methods 0.000 description 2
- 238000010289 gas flame spraying Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 229920004943 Delrin® Polymers 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 239000000805 composite resin Substances 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000007750 plasma spraying Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000011342 resin composition Substances 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000001721 transfer moulding Methods 0.000 description 1
Images
Landscapes
- Application Of Or Painting With Fluid Materials (AREA)
- Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、迅速な吸熱・放熱が要求される加熱用製品・放熱用製品の伝導表面に形成される熱伝導性被膜及びその形成方法に関する。
【0002】
【従来の技術】
【特許文献1】
特開2002−38033号公報(特許文献1)には、カーボンナノチューブ、カーボンマイクロコイルのカーボンナノ材料から選ばれた少なくとも一種と、被膜のマトリックス(母組織)成分としてのシリコーンゴム組成物とを混合し、スプレー法、ディッピング法等の方法により、その混合物を部材に塗布したり、流し込んで硬化させたりして、熱伝導性シートをつくることが開示されている。カーボンナノ材料は大きい熱伝導性を有し、カーボンナノ材料が混合された混合物を部材に塗布すれば、その被膜は熱伝導性に優れる。しかし、カーボンナノチューブの配列方向がまちまちであり、またスプレー法、ディッピング法を用いる場合、塗布物質が液状であることが必要である。そして、被膜のマトリックス成分が樹脂の場合、それらを溶解する溶剤が存在しないため、特許文献1の被膜形成方法を適用することは出来ない。
【0003】
【特許文献2】
特開2002−60639号公報(特許文献2)には、硬化性樹脂・硬化性樹脂組成物とカーボンナノ材料とを混練した後に射出成形・圧縮成形・トランスファー成形のいずれかの成形方法で硬化体を成形することが開示されている。カーボンナノ材料はナノメートルサイズの非常に微小な材料で、比重も非常に小さいため、樹脂複合材料を特許文献2の方法で成形しても、樹脂の流れの方向(部材表面と平行方向)にカーボンナノ材料の配列を制御することはできない。従って、特許文献2の方法で成形された被膜は、カーボンナノチューブの配列方向がまちまちである。
【0004】
【特許文献3】
特開2001−272840号公報(特許文献3)には、カーボンナノチューブを平行配列させ、導電性ゴムの表面に1μmの厚みで導電性接着剤を塗布し、その後に平行配列されたカーボンナノチューブを導電性接着剤に押しつけて接着させ、カーボンナノチューブを任意の方向に平行配列させることが開示されている。そして、カーボンナノチューブを平行配列させるには、まずカーボンナノチューブをエタノールに分散させたものを、孔径0.2μmのセラミックフィルタにかけると、セラミックフィルタの孔にカーボンナノチューブが直立して平行配列する。ポリアセタール(商品名デルリン)にて静電吸着することで、カーボンナノチューブはポリアセタール上に直立したまま転写される。これをラビング(rubbing) すると、直立していたカーボンナノチューブはポリアセタールに対して平行配列される。しかし、こうした顕微鏡下での作業は、通常の機械部品の製造現場には適合しない。
【0005】
【発明が解決しようとする課題】
熱伝導性被膜及びその形成方法において、被膜のマトリックス成分が樹脂であり、機械部品の製造現場で、カーボンナノ材料が部材表面と平行方向に配向され、部材表面と平行方向の熱伝導性に優れる被膜及びその形成方法を提供することを課題とする。
【0006】
【課題を解決するための手段】
カーボンナノ材料は、炭素原子で構成され、ナノメートルサイズの非常に微細でアスペクト比(縦と横の長さの比)が大きく、熱伝導率が非常に大きい繊維である。例えば、カーボンナノチューブは中空形状で縦方向の繊維径が0.5〜10nm、横方向の繊維長が0.01〜10μmであり、カーボンナノファイバーは縦方向の繊維径が15〜200nm、横方向の繊維長が0.01〜30μmである。
本発明では、カーボンナノ材料と樹脂との混合(複合)粉末を混合機・混練機に利用して均一に混合させた後に細粒化し、この細粒化された混合粉末を部材表面に垂直方向からガス炎溶射又はプラズマ溶射をする。溶射により混合粉末が加熱されて溶滴となり、この溶滴は加速されて部材表面に衝突する。溶滴は非常に大きな運動量を有しているため、溶滴は衝突部位から偏平に変形し急激に放射状方向へ広がりながら流れて部材表面に密着し被膜を形成する。溶融樹脂の流れに伴って、溶滴中のカーボンナノ材料の横長部分が部材表面と平行方向に配向され、その結果、部材表面と平行方向の熱伝導性が優れる異方性熱伝導性被膜が形成される。そして、溶滴の運動量の大きさを変えることによりカーボンナノチューブの平行度合が調節される。
【0007】
混合粉末中のカーボンナノ材料の含有率が、2体積%未満では熱伝導性が劣り、また50体積%以上では被膜の密着性が劣るため、混合粉末中のカーボンナノ材料の含有率は2〜50体積%であることが好ましい。なお、熱伝導性被膜から部材への熱伝導を阻止するため、熱伝導性被膜と部材との間に、樹脂等の熱伝導率が低い材料を溶射して下地被膜を形成してもよい。また、熱伝導性被膜の表面の耐摩耗性・耐擦傷性等の機能向上のために、樹脂等の材料で構成される被膜を熱伝導性被膜上に形成してもよい。本発明の熱伝導性被膜で被覆された部材は、加熱用製品・放熱用製品の迅速な伝導部品として利用できる。
【0008】
本発明は、カーボンナノ材料とマトリックス成分とを混合し、その混合物から成形された熱伝導性被膜及びその形成方法において、
カーボンナノ材料をカーボンナノチューブ、カーボンナノファイバーから選択された少なくとも一種とし、マトリックス成分を樹脂とし、混合粉末を部材表面に垂直方向から溶射して被膜を形成し、被膜中にカーボンナノ材料の横長部分が部材表面と平行方向に配向された異方性熱伝導性被膜及びその形成方法を第1構成とする。ここに、「カーボンナノ材料の横長部分が部材表面と平行方向に配向された」とは、アスペクト比が大きいカーボンナノ材料の非常に長い横長部分が、部材表面と概ね平行方向に配列されたことを意味する。
本発明は、第1構成において、溶射をガス炎溶射又はプラズマ溶射とし、樹脂をナイロン、ポリエチレン、ポリプロピレン、フッ素樹脂を含む熱可塑性樹脂、エポキシ樹脂を含む熱硬化性樹脂から選択された一種とすることを第2構成とする。
本発明は、第1及び第2構成において、混合粉末におけるカーボンナノ材料の含有率を2〜50体積%とすることを第3構成とする。
【0009】
【実施例】
図1(a) に示すように、ポリエチレン70体積%、カーボンナノチューブ30体積%で構成される混合(複合)粉末を、ガス炎溶射法により溶射して、ポリプロピレンからなる部材1の表面上に熱伝導性被膜2を形成した。ここに、部材寸法は30mm×30mm×150mm、熱伝導性被膜の寸法は30mm×150mm、溶射された熱伝導性被膜の厚みは1.5mmである。また、基材予熱温度70°Cである。
【0010】
図1(b) に示すように、熱伝導性被膜2が被覆された部材1を、上面温度50°Cのヒーター3の上面に垂直方向に向けて載置し、ヒーター3の上面より80mm離れた地点Aの熱伝導性被膜2の表面温度の経時変化を求めた。部材1及び熱伝導性被膜2の試験前温度は10°Cである。図1(c) の試験結果に示すように、本発明の実施例は部材1表面と平行方向の熱伝導性に非常に優れていることが確認された。
【0011】
比較例1として、カーボンナノチューブは未含有で、ポリエチレンのみで構成される粉末を用いた他は、実施例と同一の成膜条件で溶射被膜を形成した部材を作成し、試験品と同一の試験を行った。また、比較例2として、カーボンナノチューブは未含有で、ポリプロピレンのみで構成される粉末を用いた他は、実施例と同一の成膜条件で溶射被膜を形成した部材を作成し、試験品と同一の試験を行った。比較例1,2の試験結果は図1(c) に示すとおり、地点Aの30秒後の温度上昇は見られなかった。
【0012】
【発明の効果】
カーボンナノ材料の横長部分が部材表面と平行方向に配向された本発明の異方性熱伝導性被膜は、部材表面と平行方向の熱伝導性が部材の厚み方向の熱伝導性よりも優れている。そして、この異方性熱伝導性被膜は、被膜のマトリックス成分が強度が高い樹脂であり、機械部品の製造現場にある設備を用いて製造することができる。
【図面の簡単な説明】
【図1】図1は本発明の実施例及びその試験を示し、図1(a) は本発明の実施例の概要を示す図であり、図1(b) は試験方法を示す図であり、図1(c) はA地点での試験品表面の温度の計測結果を示す。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a heat conductive film formed on a conductive surface of a heating product or a heat radiating product that requires rapid heat absorption and heat radiation, and a method of forming the same.
[0002]
[Prior art]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2002-38033 (Patent Document 1) discloses that at least one selected from carbon nanotubes and carbon nano materials of carbon microcoils is mixed with a silicone rubber composition as a matrix (matrix) component of a coating. It is disclosed that the mixture is applied to a member by a method such as a spray method or a dipping method, or the mixture is poured and cured to form a heat conductive sheet. Carbon nanomaterials have high thermal conductivity, and if a mixture in which carbon nanomaterials are mixed is applied to a member, the coating has excellent thermal conductivity. However, when the arrangement direction of the carbon nanotubes varies, and when the spray method or the dipping method is used, it is necessary that the coating material is liquid. When the matrix component of the coating is a resin, the solvent for dissolving them is not present, so that the coating forming method of Patent Document 1 cannot be applied.
[0003]
[Patent Document 2]
Japanese Patent Application Laid-Open No. 2002-60639 (Patent Document 2) discloses a method of kneading a curable resin / curable resin composition and a carbon nanomaterial, and then molding the cured product by any one of injection molding, compression molding, and transfer molding. Is disclosed. Since carbon nanomaterials are very minute materials having a nanometer size and have a very small specific gravity, even if a resin composite material is molded by the method of
[0004]
[Patent Document 3]
Japanese Patent Application Laid-Open No. 2001-272840 (Patent Document 3) discloses that carbon nanotubes are arranged in parallel, a conductive adhesive is applied to the surface of conductive rubber with a thickness of 1 μm, and then the carbon nanotubes arranged in parallel are made conductive. It is disclosed that the carbon nanotubes are pressed against and adhered to a conductive adhesive to arrange the carbon nanotubes in parallel in an arbitrary direction. In order to arrange the carbon nanotubes in parallel, first, a dispersion of the carbon nanotubes in ethanol is applied to a ceramic filter having a pore size of 0.2 μm, and the carbon nanotubes are arranged upright and in parallel in the holes of the ceramic filter. The carbon nanotube is transferred to the polyacetal while standing upright by electrostatically adsorbing the polyacetal (trade name: Delrin). When this is rubbed, the upright carbon nanotubes are arranged parallel to the polyacetal. However, working under such a microscope is not suitable for the production site of ordinary mechanical parts.
[0005]
[Problems to be solved by the invention]
In the heat conductive coating and the method for forming the same, the matrix component of the coating is a resin, and at the manufacturing site of a mechanical component, the carbon nano material is oriented in a direction parallel to the member surface, and has excellent thermal conductivity in a direction parallel to the member surface. It is an object to provide a coating and a method for forming the coating.
[0006]
[Means for Solving the Problems]
Carbon nanomaterials are fibers composed of carbon atoms, having a very fine size of nanometers, a large aspect ratio (ratio of length to width), and a very high thermal conductivity. For example, carbon nanotubes are hollow and have a vertical fiber diameter of 0.5 to 10 nm and a horizontal fiber length of 0.01 to 10 μm, and carbon nanofibers have a vertical fiber diameter of 15 to 200 nm and a horizontal direction. Has a fiber length of 0.01 to 30 μm.
In the present invention, a mixed (composite) powder of a carbon nanomaterial and a resin is uniformly mixed using a mixer / kneader, and then finely divided. Gas or thermal spraying. The mixed powder is heated by spraying to form droplets, and the droplets are accelerated and collide with the member surface. Since the droplet has a very large momentum, the droplet deforms flatly from the collision site, flows while spreading rapidly in the radial direction, and adheres to the member surface to form a coating. With the flow of the molten resin, the horizontally long part of the carbon nanomaterial in the droplet is oriented in the direction parallel to the member surface, and as a result, an anisotropic heat conductive film with excellent heat conductivity in the direction parallel to the member surface is formed. It is formed. Then, the degree of parallelism of the carbon nanotubes is adjusted by changing the magnitude of the momentum of the droplet.
[0007]
When the content of the carbon nanomaterial in the mixed powder is less than 2% by volume, the thermal conductivity is poor, and when the content is more than 50% by volume, the adhesion of the coating is poor. Preferably, it is 50% by volume. In addition, in order to prevent heat conduction from the heat conductive film to the member, an undercoat film may be formed between the heat conductive film and the member by spraying a material having low heat conductivity such as a resin. Further, a coating made of a material such as a resin may be formed on the thermal conductive coating in order to improve the functions of the surface of the thermal conductive coating such as abrasion resistance and scratch resistance. The member coated with the heat conductive coating of the present invention can be used as a quick conductive part for a product for heating and a product for heat radiation.
[0008]
The present invention provides a heat conductive coating formed from a mixture of a carbon nanomaterial and a matrix component, and a method for forming the same.
The carbon nanomaterial is at least one selected from carbon nanotubes and carbon nanofibers, the matrix component is a resin, and the mixed powder is sprayed on the surface of the member from a vertical direction to form a coating. A first configuration is an anisotropic heat conductive coating in which is oriented in a direction parallel to the member surface and a method for forming the same. Here, "the horizontally elongated portion of the carbon nanomaterial is oriented in the direction parallel to the member surface" means that the extremely long horizontally elongated portion of the carbon nanomaterial having a large aspect ratio is arranged in a direction substantially parallel to the member surface. Means
According to the present invention, in the first configuration, the thermal spraying is performed by gas flame spraying or plasma spraying, and the resin is selected from nylon, polyethylene, polypropylene, a thermoplastic resin including a fluororesin, and a thermosetting resin including an epoxy resin. This is the second configuration.
According to a third aspect of the present invention, in the first and second aspects, the content of the carbon nanomaterial in the mixed powder is set to 2 to 50% by volume.
[0009]
【Example】
As shown in FIG. 1 (a), a mixed (composite) powder composed of 70% by volume of polyethylene and 30% by volume of carbon nanotubes is sprayed by a gas flame spraying method, and heat is sprayed on the surface of a member 1 made of polypropylene. A
[0010]
As shown in FIG. 1B, the member 1 coated with the heat
[0011]
As Comparative Example 1, a member having a sprayed coating formed under the same film forming conditions as in the example was prepared except that a powder composed of only polyethylene was used without containing carbon nanotubes. Was done. Also, as Comparative Example 2, a member having a sprayed coating formed under the same film forming conditions as in the example was prepared, except that a powder composed of only polypropylene was used without containing carbon nanotubes. Was tested. As shown in FIG. 1 (c), the test results of Comparative Examples 1 and 2 did not show a temperature rise 30 seconds after point A.
[0012]
【The invention's effect】
The anisotropic heat conductive coating of the present invention in which the horizontally long portions of the carbon nano material are oriented in the direction parallel to the member surface, the heat conductivity in the direction parallel to the member surface is superior to the heat conductivity in the thickness direction of the member. I have. The anisotropic heat conductive coating is a resin having a high matrix component of the coating, and can be manufactured using equipment at a manufacturing site for mechanical parts.
[Brief description of the drawings]
1 shows an embodiment of the present invention and a test thereof, FIG. 1 (a) is a diagram showing an outline of the embodiment of the present invention, and FIG. 1 (b) is a diagram showing a test method. FIG. 1C shows the measurement result of the temperature of the surface of the test piece at the point A.
Claims (3)
カーボンナノ材料をカーボンナノチューブ、カーボンナノファイバーから選択された少なくとも一種とし、マトリックス成分を樹脂とし、混合粉末を部材表面に垂直方向から溶射して被膜を形成し、被膜中にカーボンナノ材料の横長部分が部材表面と平行方向に配向された異方性熱伝導性被膜及びその形成方法。Mixing a carbon nanomaterial and a matrix component, in a heat conductive coating formed from the mixture and a method for forming the same,
The carbon nanomaterial is at least one selected from carbon nanotubes and carbon nanofibers, the matrix component is a resin, and the mixed powder is sprayed on the surface of the member from a vertical direction to form a coating. Anisotropically heat-conductive coating in which is oriented in a direction parallel to the surface of the member, and a method for forming the same.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2002357757A JP4167048B2 (en) | 2002-12-10 | 2002-12-10 | Thermally conductive coating and method for forming the same |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2002357757A JP4167048B2 (en) | 2002-12-10 | 2002-12-10 | Thermally conductive coating and method for forming the same |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2004188286A true JP2004188286A (en) | 2004-07-08 |
| JP4167048B2 JP4167048B2 (en) | 2008-10-15 |
Family
ID=32757668
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2002357757A Expired - Fee Related JP4167048B2 (en) | 2002-12-10 | 2002-12-10 | Thermally conductive coating and method for forming the same |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP4167048B2 (en) |
Cited By (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2006086471A (en) * | 2004-09-17 | 2006-03-30 | Yaskawa Electric Corp | Radiation fin and method of manufacturing the same |
| JP2006527912A (en) * | 2003-06-17 | 2006-12-07 | キュラミック エレクトロニックス ゲーエムベーハー | A device comprising at least one heat source formed by a functional element to be cooled, at least one heat sink, and at least one intermediate layer made of a heat-conducting material placed between the heat source and the heat sink, and in particular Materials used in such devices |
| KR100771113B1 (en) | 2006-10-19 | 2007-10-29 | 대진공업 주식회사 | Coating method of carbon nanotube reinforced plastic |
| JP2008530352A (en) * | 2005-01-10 | 2008-08-07 | ジオム コーポレイション | Powder spray composition |
| EP1659158A3 (en) * | 2004-11-22 | 2008-10-22 | Nissin Kogyo Co., Ltd | Method of manufacturing thin film, substrate having thin-film, electron emission material, method of manufacturing electron emission material, and electron emission device |
| WO2008136912A1 (en) * | 2007-05-07 | 2008-11-13 | Massachusetts Institute Of Technology | Polymer sheets and other bodies having oriented chains and method and apparatus for producing same |
| JP2010228449A (en) * | 2009-03-04 | 2010-10-14 | Kobe Steel Ltd | Resin-coated metallic material with excellent planar-direction thermal conductivity |
| JP2013524439A (en) * | 2010-04-02 | 2013-06-17 | ジーイー ライティング ソリューションズ エルエルシー | Light weight heat sink and LED lamp using the same |
| US8808605B2 (en) | 2003-04-09 | 2014-08-19 | Nissin Kogyo Co., Ltd. | Carbon fiber composite material and process for producing the same |
| JP2016093774A (en) * | 2014-11-13 | 2016-05-26 | 有限会社久保井塗装工業所 | Coating method, coating apparatus and paint for improving heat dissipation |
| JP2017054816A (en) * | 2010-04-02 | 2017-03-16 | ジーイー ライティング ソリューションズ エルエルシー | Light weight heat sink and LED lamp using the same |
| US9841175B2 (en) | 2012-05-04 | 2017-12-12 | GE Lighting Solutions, LLC | Optics system for solid state lighting apparatus |
| US9951938B2 (en) | 2009-10-02 | 2018-04-24 | GE Lighting Solutions, LLC | LED lamp |
| US10340424B2 (en) | 2002-08-30 | 2019-07-02 | GE Lighting Solutions, LLC | Light emitting diode component |
-
2002
- 2002-12-10 JP JP2002357757A patent/JP4167048B2/en not_active Expired - Fee Related
Cited By (18)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10340424B2 (en) | 2002-08-30 | 2019-07-02 | GE Lighting Solutions, LLC | Light emitting diode component |
| US8808605B2 (en) | 2003-04-09 | 2014-08-19 | Nissin Kogyo Co., Ltd. | Carbon fiber composite material and process for producing the same |
| JP2006527912A (en) * | 2003-06-17 | 2006-12-07 | キュラミック エレクトロニックス ゲーエムベーハー | A device comprising at least one heat source formed by a functional element to be cooled, at least one heat sink, and at least one intermediate layer made of a heat-conducting material placed between the heat source and the heat sink, and in particular Materials used in such devices |
| JP2006086471A (en) * | 2004-09-17 | 2006-03-30 | Yaskawa Electric Corp | Radiation fin and method of manufacturing the same |
| US8253318B2 (en) | 2004-11-22 | 2012-08-28 | Nissin Kogyo Co., Ltd. | Method of manufacturing thin film, substrate having thin film, electron emission material, method of manufacturing electron emission material, and electron emission device |
| US7927169B2 (en) | 2004-11-22 | 2011-04-19 | Nissin Kogyo Co., Ltd. | Method of manufacturing thin film, substrate having thin film, electron emission material, method of manufacturing electron emission material, and electron emission device |
| EP1659158A3 (en) * | 2004-11-22 | 2008-10-22 | Nissin Kogyo Co., Ltd | Method of manufacturing thin film, substrate having thin-film, electron emission material, method of manufacturing electron emission material, and electron emission device |
| JP2008530352A (en) * | 2005-01-10 | 2008-08-07 | ジオム コーポレイション | Powder spray composition |
| KR100771113B1 (en) | 2006-10-19 | 2007-10-29 | 대진공업 주식회사 | Coating method of carbon nanotube reinforced plastic |
| US9109846B2 (en) | 2007-05-07 | 2015-08-18 | Massachusetts Institute Of Technology | Polymer sheets and other bodies having oriented chains and method and apparatus for producing same |
| WO2008136912A1 (en) * | 2007-05-07 | 2008-11-13 | Massachusetts Institute Of Technology | Polymer sheets and other bodies having oriented chains and method and apparatus for producing same |
| JP2010228449A (en) * | 2009-03-04 | 2010-10-14 | Kobe Steel Ltd | Resin-coated metallic material with excellent planar-direction thermal conductivity |
| US9951938B2 (en) | 2009-10-02 | 2018-04-24 | GE Lighting Solutions, LLC | LED lamp |
| JP2013524439A (en) * | 2010-04-02 | 2013-06-17 | ジーイー ライティング ソリューションズ エルエルシー | Light weight heat sink and LED lamp using the same |
| JP2017054816A (en) * | 2010-04-02 | 2017-03-16 | ジーイー ライティング ソリューションズ エルエルシー | Light weight heat sink and LED lamp using the same |
| US9841175B2 (en) | 2012-05-04 | 2017-12-12 | GE Lighting Solutions, LLC | Optics system for solid state lighting apparatus |
| US10139095B2 (en) | 2012-05-04 | 2018-11-27 | GE Lighting Solutions, LLC | Reflector and lamp comprised thereof |
| JP2016093774A (en) * | 2014-11-13 | 2016-05-26 | 有限会社久保井塗装工業所 | Coating method, coating apparatus and paint for improving heat dissipation |
Also Published As
| Publication number | Publication date |
|---|---|
| JP4167048B2 (en) | 2008-10-15 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP4167048B2 (en) | Thermally conductive coating and method for forming the same | |
| Guo et al. | One‐step liquid metal transfer printing: toward fabrication of flexible electronics on wide range of substrates | |
| KR102580897B1 (en) | Thickness-limited electrospray deposition | |
| Odom et al. | Rapid curing and additive manufacturing of thermoset systems using scanning microwave heating of carbon nanotube/epoxy composites | |
| Chang et al. | Direct writing and repairable paper flexible electronics using nickel–liquid metal ink | |
| Mathkar et al. | Synthesis of fluorinated graphene oxide and its amphiphobic properties | |
| Nguyen et al. | Direct printing of thermal management device using low‐cost composite ink | |
| CN101456277B (en) | Method for preparing carbon nanotube composite material | |
| Tiwari et al. | Highly liquid-repellent, large-area, nanostructured poly (vinylidene fluoride)/poly (ethyl 2-cyanoacrylate) composite coatings: particle filler effects | |
| TW200923030A (en) | Compositions and processes for manufacturing printed electronics | |
| Makrygianni et al. | On‐Demand Laser Printing of Picoliter‐Sized, Highly Viscous, Adhesive Fluids: Beyond Inkjet Limitations | |
| CN106211606A (en) | A thermosonic sintering method and device for nano-silver/graphene composite ink | |
| Abshirini et al. | 3D printed flexible microscaled porous conductive polymer nanocomposites for piezoresistive sensing applications | |
| JP2008201635A (en) | Method for forming fine carbon monomolecular film, surface coating method, and coated body | |
| KR20180010560A (en) | 3D Printing of Highly Conductive CNT Microarchitecture And Ink Therefor | |
| Rajakaruna et al. | Fabrication of hydrophobic PLA filaments for additive manufacturing | |
| Lugli et al. | And yet it moves! Microfluidics without channels and troughs | |
| Chen et al. | In situ filler addition for homogeneous dispersion of carbon nanotubes in multi jet fusion–printed elastomer composites | |
| US7323246B2 (en) | Nano horn carrier and method of manufacturing the carrier | |
| Polsen et al. | Laser printing of nanoparticle toner enables digital control of micropatterned carbon nanotube growth | |
| Zheng et al. | Fluid-assisted one-step fabrication of fused deposition molding 3D printing parts with conductive networks and gradient functionalities | |
| JP2008529772A (en) | Polymerized film deposition | |
| Hu et al. | Continuous and patterned deposition of functional block copolymer thin films using electrospray | |
| Guohua et al. | Preparation and performance study of carbon nanotube/polyphenylene sulfidecomposite materials based on floating catalytic chemical vapor deposition and continuous dusting powder | |
| Zhuang et al. | A simple method to make mechanically robust, adhesive and superhydrophobic surface based on epoxy resin |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050325 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070410 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070424 |
|
| A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070622 Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20070622 |
|
| RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20070622 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080722 |
|
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080731 |
|
| R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110808 Year of fee payment: 3 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140808 Year of fee payment: 6 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| LAPS | Cancellation because of no payment of annual fees |