[go: up one dir, main page]

JP2004188286A - Thermally conductive coat and method for forming the same - Google Patents

Thermally conductive coat and method for forming the same Download PDF

Info

Publication number
JP2004188286A
JP2004188286A JP2002357757A JP2002357757A JP2004188286A JP 2004188286 A JP2004188286 A JP 2004188286A JP 2002357757 A JP2002357757 A JP 2002357757A JP 2002357757 A JP2002357757 A JP 2002357757A JP 2004188286 A JP2004188286 A JP 2004188286A
Authority
JP
Japan
Prior art keywords
carbon
resin
forming
coating
same
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002357757A
Other languages
Japanese (ja)
Other versions
JP4167048B2 (en
Inventor
Yasuaki Okada
恭明 岡田
Shigeki Yamada
茂樹 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisan Industry Co Ltd
Original Assignee
Aisan Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisan Industry Co Ltd filed Critical Aisan Industry Co Ltd
Priority to JP2002357757A priority Critical patent/JP4167048B2/en
Publication of JP2004188286A publication Critical patent/JP2004188286A/en
Application granted granted Critical
Publication of JP4167048B2 publication Critical patent/JP4167048B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a coat the matrix component of which is a resin, the carbon nanomaterial of which is oriented parallel to the surface of a member at the site of mechanical part production, and which is excellent in thermal conductivity in the direction parallel to the surface of the member. <P>SOLUTION: The carbon nanomaterial selected from carbon nanotubes and carbon nanofibers is mixed with a resin being the matrix component, and the thermally conductive coat is molded from the resulting mixture. The mixed powder is thermally sprayed in the direction vertical to the surface of a member to form an anisotropically thermally conductive coat in which the longitudinal parts of the carbon nanomaterial are oriented in the direction parallel to the surface of the member. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、迅速な吸熱・放熱が要求される加熱用製品・放熱用製品の伝導表面に形成される熱伝導性被膜及びその形成方法に関する。
【0002】
【従来の技術】
【特許文献1】
特開2002−38033号公報(特許文献1)には、カーボンナノチューブ、カーボンマイクロコイルのカーボンナノ材料から選ばれた少なくとも一種と、被膜のマトリックス(母組織)成分としてのシリコーンゴム組成物とを混合し、スプレー法、ディッピング法等の方法により、その混合物を部材に塗布したり、流し込んで硬化させたりして、熱伝導性シートをつくることが開示されている。カーボンナノ材料は大きい熱伝導性を有し、カーボンナノ材料が混合された混合物を部材に塗布すれば、その被膜は熱伝導性に優れる。しかし、カーボンナノチューブの配列方向がまちまちであり、またスプレー法、ディッピング法を用いる場合、塗布物質が液状であることが必要である。そして、被膜のマトリックス成分が樹脂の場合、それらを溶解する溶剤が存在しないため、特許文献1の被膜形成方法を適用することは出来ない。
【0003】
【特許文献2】
特開2002−60639号公報(特許文献2)には、硬化性樹脂・硬化性樹脂組成物とカーボンナノ材料とを混練した後に射出成形・圧縮成形・トランスファー成形のいずれかの成形方法で硬化体を成形することが開示されている。カーボンナノ材料はナノメートルサイズの非常に微小な材料で、比重も非常に小さいため、樹脂複合材料を特許文献2の方法で成形しても、樹脂の流れの方向(部材表面と平行方向)にカーボンナノ材料の配列を制御することはできない。従って、特許文献2の方法で成形された被膜は、カーボンナノチューブの配列方向がまちまちである。
【0004】
【特許文献3】
特開2001−272840号公報(特許文献3)には、カーボンナノチューブを平行配列させ、導電性ゴムの表面に1μmの厚みで導電性接着剤を塗布し、その後に平行配列されたカーボンナノチューブを導電性接着剤に押しつけて接着させ、カーボンナノチューブを任意の方向に平行配列させることが開示されている。そして、カーボンナノチューブを平行配列させるには、まずカーボンナノチューブをエタノールに分散させたものを、孔径0.2μmのセラミックフィルタにかけると、セラミックフィルタの孔にカーボンナノチューブが直立して平行配列する。ポリアセタール(商品名デルリン)にて静電吸着することで、カーボンナノチューブはポリアセタール上に直立したまま転写される。これをラビング(rubbing) すると、直立していたカーボンナノチューブはポリアセタールに対して平行配列される。しかし、こうした顕微鏡下での作業は、通常の機械部品の製造現場には適合しない。
【0005】
【発明が解決しようとする課題】
熱伝導性被膜及びその形成方法において、被膜のマトリックス成分が樹脂であり、機械部品の製造現場で、カーボンナノ材料が部材表面と平行方向に配向され、部材表面と平行方向の熱伝導性に優れる被膜及びその形成方法を提供することを課題とする。
【0006】
【課題を解決するための手段】
カーボンナノ材料は、炭素原子で構成され、ナノメートルサイズの非常に微細でアスペクト比(縦と横の長さの比)が大きく、熱伝導率が非常に大きい繊維である。例えば、カーボンナノチューブは中空形状で縦方向の繊維径が0.5〜10nm、横方向の繊維長が0.01〜10μmであり、カーボンナノファイバーは縦方向の繊維径が15〜200nm、横方向の繊維長が0.01〜30μmである。
本発明では、カーボンナノ材料と樹脂との混合(複合)粉末を混合機・混練機に利用して均一に混合させた後に細粒化し、この細粒化された混合粉末を部材表面に垂直方向からガス炎溶射又はプラズマ溶射をする。溶射により混合粉末が加熱されて溶滴となり、この溶滴は加速されて部材表面に衝突する。溶滴は非常に大きな運動量を有しているため、溶滴は衝突部位から偏平に変形し急激に放射状方向へ広がりながら流れて部材表面に密着し被膜を形成する。溶融樹脂の流れに伴って、溶滴中のカーボンナノ材料の横長部分が部材表面と平行方向に配向され、その結果、部材表面と平行方向の熱伝導性が優れる異方性熱伝導性被膜が形成される。そして、溶滴の運動量の大きさを変えることによりカーボンナノチューブの平行度合が調節される。
【0007】
混合粉末中のカーボンナノ材料の含有率が、2体積%未満では熱伝導性が劣り、また50体積%以上では被膜の密着性が劣るため、混合粉末中のカーボンナノ材料の含有率は2〜50体積%であることが好ましい。なお、熱伝導性被膜から部材への熱伝導を阻止するため、熱伝導性被膜と部材との間に、樹脂等の熱伝導率が低い材料を溶射して下地被膜を形成してもよい。また、熱伝導性被膜の表面の耐摩耗性・耐擦傷性等の機能向上のために、樹脂等の材料で構成される被膜を熱伝導性被膜上に形成してもよい。本発明の熱伝導性被膜で被覆された部材は、加熱用製品・放熱用製品の迅速な伝導部品として利用できる。
【0008】
本発明は、カーボンナノ材料とマトリックス成分とを混合し、その混合物から成形された熱伝導性被膜及びその形成方法において、
カーボンナノ材料をカーボンナノチューブ、カーボンナノファイバーから選択された少なくとも一種とし、マトリックス成分を樹脂とし、混合粉末を部材表面に垂直方向から溶射して被膜を形成し、被膜中にカーボンナノ材料の横長部分が部材表面と平行方向に配向された異方性熱伝導性被膜及びその形成方法を第1構成とする。ここに、「カーボンナノ材料の横長部分が部材表面と平行方向に配向された」とは、アスペクト比が大きいカーボンナノ材料の非常に長い横長部分が、部材表面と概ね平行方向に配列されたことを意味する。
本発明は、第1構成において、溶射をガス炎溶射又はプラズマ溶射とし、樹脂をナイロン、ポリエチレン、ポリプロピレン、フッ素樹脂を含む熱可塑性樹脂、エポキシ樹脂を含む熱硬化性樹脂から選択された一種とすることを第2構成とする。
本発明は、第1及び第2構成において、混合粉末におけるカーボンナノ材料の含有率を2〜50体積%とすることを第3構成とする。
【0009】
【実施例】
図1(a) に示すように、ポリエチレン70体積%、カーボンナノチューブ30体積%で構成される混合(複合)粉末を、ガス炎溶射法により溶射して、ポリプロピレンからなる部材1の表面上に熱伝導性被膜2を形成した。ここに、部材寸法は30mm×30mm×150mm、熱伝導性被膜の寸法は30mm×150mm、溶射された熱伝導性被膜の厚みは1.5mmである。また、基材予熱温度70°Cである。
【0010】
図1(b) に示すように、熱伝導性被膜2が被覆された部材1を、上面温度50°Cのヒーター3の上面に垂直方向に向けて載置し、ヒーター3の上面より80mm離れた地点Aの熱伝導性被膜2の表面温度の経時変化を求めた。部材1及び熱伝導性被膜2の試験前温度は10°Cである。図1(c) の試験結果に示すように、本発明の実施例は部材1表面と平行方向の熱伝導性に非常に優れていることが確認された。
【0011】
比較例1として、カーボンナノチューブは未含有で、ポリエチレンのみで構成される粉末を用いた他は、実施例と同一の成膜条件で溶射被膜を形成した部材を作成し、試験品と同一の試験を行った。また、比較例2として、カーボンナノチューブは未含有で、ポリプロピレンのみで構成される粉末を用いた他は、実施例と同一の成膜条件で溶射被膜を形成した部材を作成し、試験品と同一の試験を行った。比較例1,2の試験結果は図1(c) に示すとおり、地点Aの30秒後の温度上昇は見られなかった。
【0012】
【発明の効果】
カーボンナノ材料の横長部分が部材表面と平行方向に配向された本発明の異方性熱伝導性被膜は、部材表面と平行方向の熱伝導性が部材の厚み方向の熱伝導性よりも優れている。そして、この異方性熱伝導性被膜は、被膜のマトリックス成分が強度が高い樹脂であり、機械部品の製造現場にある設備を用いて製造することができる。
【図面の簡単な説明】
【図1】図1は本発明の実施例及びその試験を示し、図1(a) は本発明の実施例の概要を示す図であり、図1(b) は試験方法を示す図であり、図1(c) はA地点での試験品表面の温度の計測結果を示す。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a heat conductive film formed on a conductive surface of a heating product or a heat radiating product that requires rapid heat absorption and heat radiation, and a method of forming the same.
[0002]
[Prior art]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2002-38033 (Patent Document 1) discloses that at least one selected from carbon nanotubes and carbon nano materials of carbon microcoils is mixed with a silicone rubber composition as a matrix (matrix) component of a coating. It is disclosed that the mixture is applied to a member by a method such as a spray method or a dipping method, or the mixture is poured and cured to form a heat conductive sheet. Carbon nanomaterials have high thermal conductivity, and if a mixture in which carbon nanomaterials are mixed is applied to a member, the coating has excellent thermal conductivity. However, when the arrangement direction of the carbon nanotubes varies, and when the spray method or the dipping method is used, it is necessary that the coating material is liquid. When the matrix component of the coating is a resin, the solvent for dissolving them is not present, so that the coating forming method of Patent Document 1 cannot be applied.
[0003]
[Patent Document 2]
Japanese Patent Application Laid-Open No. 2002-60639 (Patent Document 2) discloses a method of kneading a curable resin / curable resin composition and a carbon nanomaterial, and then molding the cured product by any one of injection molding, compression molding, and transfer molding. Is disclosed. Since carbon nanomaterials are very minute materials having a nanometer size and have a very small specific gravity, even if a resin composite material is molded by the method of Patent Document 2, the resin flows in the resin flow direction (parallel to the member surface). It is not possible to control the arrangement of carbon nanomaterials. Therefore, the coating formed by the method of Patent Document 2 has a different arrangement direction of the carbon nanotubes.
[0004]
[Patent Document 3]
Japanese Patent Application Laid-Open No. 2001-272840 (Patent Document 3) discloses that carbon nanotubes are arranged in parallel, a conductive adhesive is applied to the surface of conductive rubber with a thickness of 1 μm, and then the carbon nanotubes arranged in parallel are made conductive. It is disclosed that the carbon nanotubes are pressed against and adhered to a conductive adhesive to arrange the carbon nanotubes in parallel in an arbitrary direction. In order to arrange the carbon nanotubes in parallel, first, a dispersion of the carbon nanotubes in ethanol is applied to a ceramic filter having a pore size of 0.2 μm, and the carbon nanotubes are arranged upright and in parallel in the holes of the ceramic filter. The carbon nanotube is transferred to the polyacetal while standing upright by electrostatically adsorbing the polyacetal (trade name: Delrin). When this is rubbed, the upright carbon nanotubes are arranged parallel to the polyacetal. However, working under such a microscope is not suitable for the production site of ordinary mechanical parts.
[0005]
[Problems to be solved by the invention]
In the heat conductive coating and the method for forming the same, the matrix component of the coating is a resin, and at the manufacturing site of a mechanical component, the carbon nano material is oriented in a direction parallel to the member surface, and has excellent thermal conductivity in a direction parallel to the member surface. It is an object to provide a coating and a method for forming the coating.
[0006]
[Means for Solving the Problems]
Carbon nanomaterials are fibers composed of carbon atoms, having a very fine size of nanometers, a large aspect ratio (ratio of length to width), and a very high thermal conductivity. For example, carbon nanotubes are hollow and have a vertical fiber diameter of 0.5 to 10 nm and a horizontal fiber length of 0.01 to 10 μm, and carbon nanofibers have a vertical fiber diameter of 15 to 200 nm and a horizontal direction. Has a fiber length of 0.01 to 30 μm.
In the present invention, a mixed (composite) powder of a carbon nanomaterial and a resin is uniformly mixed using a mixer / kneader, and then finely divided. Gas or thermal spraying. The mixed powder is heated by spraying to form droplets, and the droplets are accelerated and collide with the member surface. Since the droplet has a very large momentum, the droplet deforms flatly from the collision site, flows while spreading rapidly in the radial direction, and adheres to the member surface to form a coating. With the flow of the molten resin, the horizontally long part of the carbon nanomaterial in the droplet is oriented in the direction parallel to the member surface, and as a result, an anisotropic heat conductive film with excellent heat conductivity in the direction parallel to the member surface is formed. It is formed. Then, the degree of parallelism of the carbon nanotubes is adjusted by changing the magnitude of the momentum of the droplet.
[0007]
When the content of the carbon nanomaterial in the mixed powder is less than 2% by volume, the thermal conductivity is poor, and when the content is more than 50% by volume, the adhesion of the coating is poor. Preferably, it is 50% by volume. In addition, in order to prevent heat conduction from the heat conductive film to the member, an undercoat film may be formed between the heat conductive film and the member by spraying a material having low heat conductivity such as a resin. Further, a coating made of a material such as a resin may be formed on the thermal conductive coating in order to improve the functions of the surface of the thermal conductive coating such as abrasion resistance and scratch resistance. The member coated with the heat conductive coating of the present invention can be used as a quick conductive part for a product for heating and a product for heat radiation.
[0008]
The present invention provides a heat conductive coating formed from a mixture of a carbon nanomaterial and a matrix component, and a method for forming the same.
The carbon nanomaterial is at least one selected from carbon nanotubes and carbon nanofibers, the matrix component is a resin, and the mixed powder is sprayed on the surface of the member from a vertical direction to form a coating. A first configuration is an anisotropic heat conductive coating in which is oriented in a direction parallel to the member surface and a method for forming the same. Here, "the horizontally elongated portion of the carbon nanomaterial is oriented in the direction parallel to the member surface" means that the extremely long horizontally elongated portion of the carbon nanomaterial having a large aspect ratio is arranged in a direction substantially parallel to the member surface. Means
According to the present invention, in the first configuration, the thermal spraying is performed by gas flame spraying or plasma spraying, and the resin is selected from nylon, polyethylene, polypropylene, a thermoplastic resin including a fluororesin, and a thermosetting resin including an epoxy resin. This is the second configuration.
According to a third aspect of the present invention, in the first and second aspects, the content of the carbon nanomaterial in the mixed powder is set to 2 to 50% by volume.
[0009]
【Example】
As shown in FIG. 1 (a), a mixed (composite) powder composed of 70% by volume of polyethylene and 30% by volume of carbon nanotubes is sprayed by a gas flame spraying method, and heat is sprayed on the surface of a member 1 made of polypropylene. A conductive coating 2 was formed. Here, the dimensions of the member are 30 mm × 30 mm × 150 mm, the dimensions of the heat conductive film are 30 mm × 150 mm, and the thickness of the thermally sprayed heat conductive film is 1.5 mm. The substrate preheating temperature is 70 ° C.
[0010]
As shown in FIG. 1B, the member 1 coated with the heat conductive film 2 is placed vertically on the upper surface of the heater 3 having an upper surface temperature of 50 ° C., and is separated from the upper surface of the heater 3 by 80 mm. The change with time of the surface temperature of the thermally conductive film 2 at the point A was determined. The temperature before the test of the member 1 and the heat conductive coating 2 is 10 ° C. As shown in the test results of FIG. 1C, it was confirmed that the example of the present invention was very excellent in thermal conductivity in the direction parallel to the surface of the member 1.
[0011]
As Comparative Example 1, a member having a sprayed coating formed under the same film forming conditions as in the example was prepared except that a powder composed of only polyethylene was used without containing carbon nanotubes. Was done. Also, as Comparative Example 2, a member having a sprayed coating formed under the same film forming conditions as in the example was prepared, except that a powder composed of only polypropylene was used without containing carbon nanotubes. Was tested. As shown in FIG. 1 (c), the test results of Comparative Examples 1 and 2 did not show a temperature rise 30 seconds after point A.
[0012]
【The invention's effect】
The anisotropic heat conductive coating of the present invention in which the horizontally long portions of the carbon nano material are oriented in the direction parallel to the member surface, the heat conductivity in the direction parallel to the member surface is superior to the heat conductivity in the thickness direction of the member. I have. The anisotropic heat conductive coating is a resin having a high matrix component of the coating, and can be manufactured using equipment at a manufacturing site for mechanical parts.
[Brief description of the drawings]
1 shows an embodiment of the present invention and a test thereof, FIG. 1 (a) is a diagram showing an outline of the embodiment of the present invention, and FIG. 1 (b) is a diagram showing a test method. FIG. 1C shows the measurement result of the temperature of the surface of the test piece at the point A.

Claims (3)

カーボンナノ材料とマトリックス成分とを混合し、その混合物から成形された熱伝導性被膜及びその形成方法において、
カーボンナノ材料をカーボンナノチューブ、カーボンナノファイバーから選択された少なくとも一種とし、マトリックス成分を樹脂とし、混合粉末を部材表面に垂直方向から溶射して被膜を形成し、被膜中にカーボンナノ材料の横長部分が部材表面と平行方向に配向された異方性熱伝導性被膜及びその形成方法。
Mixing a carbon nanomaterial and a matrix component, in a heat conductive coating formed from the mixture and a method for forming the same,
The carbon nanomaterial is at least one selected from carbon nanotubes and carbon nanofibers, the matrix component is a resin, and the mixed powder is sprayed on the surface of the member from a vertical direction to form a coating. Anisotropically heat-conductive coating in which is oriented in a direction parallel to the surface of the member, and a method for forming the same.
前記溶射をガス炎溶射又はプラズマ溶射とし、前記樹脂をナイロン、ポリエチレン、ポリプロピレン、フッ素樹脂を含む熱可塑性樹脂、エポキシ樹脂を含む熱硬化性樹脂から選択された一種とする請求項1の異方性熱伝導性被膜及びその形成方法。The anisotropic material according to claim 1, wherein the thermal spraying is gas flame thermal spraying or plasma thermal spraying, and the resin is one selected from nylon, polyethylene, polypropylene, a thermoplastic resin containing a fluorine resin, and a thermosetting resin containing an epoxy resin. Thermal conductive film and method for forming the same. 混合粉末におけるカーボンナノ材料の含有率を2〜50体積%とする請求項1又は2の異方性熱伝導性被膜及びその形成方法。The anisotropic heat conductive coating according to claim 1 or 2, wherein the content of the carbon nanomaterial in the mixed powder is 2 to 50% by volume.
JP2002357757A 2002-12-10 2002-12-10 Thermally conductive coating and method for forming the same Expired - Fee Related JP4167048B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002357757A JP4167048B2 (en) 2002-12-10 2002-12-10 Thermally conductive coating and method for forming the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002357757A JP4167048B2 (en) 2002-12-10 2002-12-10 Thermally conductive coating and method for forming the same

Publications (2)

Publication Number Publication Date
JP2004188286A true JP2004188286A (en) 2004-07-08
JP4167048B2 JP4167048B2 (en) 2008-10-15

Family

ID=32757668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002357757A Expired - Fee Related JP4167048B2 (en) 2002-12-10 2002-12-10 Thermally conductive coating and method for forming the same

Country Status (1)

Country Link
JP (1) JP4167048B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006086471A (en) * 2004-09-17 2006-03-30 Yaskawa Electric Corp Radiation fin and method of manufacturing the same
JP2006527912A (en) * 2003-06-17 2006-12-07 キュラミック エレクトロニックス ゲーエムベーハー A device comprising at least one heat source formed by a functional element to be cooled, at least one heat sink, and at least one intermediate layer made of a heat-conducting material placed between the heat source and the heat sink, and in particular Materials used in such devices
KR100771113B1 (en) 2006-10-19 2007-10-29 대진공업 주식회사 Coating method of carbon nanotube reinforced plastic
JP2008530352A (en) * 2005-01-10 2008-08-07 ジオム コーポレイション Powder spray composition
EP1659158A3 (en) * 2004-11-22 2008-10-22 Nissin Kogyo Co., Ltd Method of manufacturing thin film, substrate having thin-film, electron emission material, method of manufacturing electron emission material, and electron emission device
WO2008136912A1 (en) * 2007-05-07 2008-11-13 Massachusetts Institute Of Technology Polymer sheets and other bodies having oriented chains and method and apparatus for producing same
JP2010228449A (en) * 2009-03-04 2010-10-14 Kobe Steel Ltd Resin-coated metallic material with excellent planar-direction thermal conductivity
JP2013524439A (en) * 2010-04-02 2013-06-17 ジーイー ライティング ソリューションズ エルエルシー Light weight heat sink and LED lamp using the same
US8808605B2 (en) 2003-04-09 2014-08-19 Nissin Kogyo Co., Ltd. Carbon fiber composite material and process for producing the same
JP2016093774A (en) * 2014-11-13 2016-05-26 有限会社久保井塗装工業所 Coating method, coating apparatus and paint for improving heat dissipation
JP2017054816A (en) * 2010-04-02 2017-03-16 ジーイー ライティング ソリューションズ エルエルシー Light weight heat sink and LED lamp using the same
US9841175B2 (en) 2012-05-04 2017-12-12 GE Lighting Solutions, LLC Optics system for solid state lighting apparatus
US9951938B2 (en) 2009-10-02 2018-04-24 GE Lighting Solutions, LLC LED lamp
US10340424B2 (en) 2002-08-30 2019-07-02 GE Lighting Solutions, LLC Light emitting diode component

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10340424B2 (en) 2002-08-30 2019-07-02 GE Lighting Solutions, LLC Light emitting diode component
US8808605B2 (en) 2003-04-09 2014-08-19 Nissin Kogyo Co., Ltd. Carbon fiber composite material and process for producing the same
JP2006527912A (en) * 2003-06-17 2006-12-07 キュラミック エレクトロニックス ゲーエムベーハー A device comprising at least one heat source formed by a functional element to be cooled, at least one heat sink, and at least one intermediate layer made of a heat-conducting material placed between the heat source and the heat sink, and in particular Materials used in such devices
JP2006086471A (en) * 2004-09-17 2006-03-30 Yaskawa Electric Corp Radiation fin and method of manufacturing the same
US8253318B2 (en) 2004-11-22 2012-08-28 Nissin Kogyo Co., Ltd. Method of manufacturing thin film, substrate having thin film, electron emission material, method of manufacturing electron emission material, and electron emission device
US7927169B2 (en) 2004-11-22 2011-04-19 Nissin Kogyo Co., Ltd. Method of manufacturing thin film, substrate having thin film, electron emission material, method of manufacturing electron emission material, and electron emission device
EP1659158A3 (en) * 2004-11-22 2008-10-22 Nissin Kogyo Co., Ltd Method of manufacturing thin film, substrate having thin-film, electron emission material, method of manufacturing electron emission material, and electron emission device
JP2008530352A (en) * 2005-01-10 2008-08-07 ジオム コーポレイション Powder spray composition
KR100771113B1 (en) 2006-10-19 2007-10-29 대진공업 주식회사 Coating method of carbon nanotube reinforced plastic
US9109846B2 (en) 2007-05-07 2015-08-18 Massachusetts Institute Of Technology Polymer sheets and other bodies having oriented chains and method and apparatus for producing same
WO2008136912A1 (en) * 2007-05-07 2008-11-13 Massachusetts Institute Of Technology Polymer sheets and other bodies having oriented chains and method and apparatus for producing same
JP2010228449A (en) * 2009-03-04 2010-10-14 Kobe Steel Ltd Resin-coated metallic material with excellent planar-direction thermal conductivity
US9951938B2 (en) 2009-10-02 2018-04-24 GE Lighting Solutions, LLC LED lamp
JP2013524439A (en) * 2010-04-02 2013-06-17 ジーイー ライティング ソリューションズ エルエルシー Light weight heat sink and LED lamp using the same
JP2017054816A (en) * 2010-04-02 2017-03-16 ジーイー ライティング ソリューションズ エルエルシー Light weight heat sink and LED lamp using the same
US9841175B2 (en) 2012-05-04 2017-12-12 GE Lighting Solutions, LLC Optics system for solid state lighting apparatus
US10139095B2 (en) 2012-05-04 2018-11-27 GE Lighting Solutions, LLC Reflector and lamp comprised thereof
JP2016093774A (en) * 2014-11-13 2016-05-26 有限会社久保井塗装工業所 Coating method, coating apparatus and paint for improving heat dissipation

Also Published As

Publication number Publication date
JP4167048B2 (en) 2008-10-15

Similar Documents

Publication Publication Date Title
JP4167048B2 (en) Thermally conductive coating and method for forming the same
Guo et al. One‐step liquid metal transfer printing: toward fabrication of flexible electronics on wide range of substrates
KR102580897B1 (en) Thickness-limited electrospray deposition
Odom et al. Rapid curing and additive manufacturing of thermoset systems using scanning microwave heating of carbon nanotube/epoxy composites
Chang et al. Direct writing and repairable paper flexible electronics using nickel–liquid metal ink
Mathkar et al. Synthesis of fluorinated graphene oxide and its amphiphobic properties
Nguyen et al. Direct printing of thermal management device using low‐cost composite ink
CN101456277B (en) Method for preparing carbon nanotube composite material
Tiwari et al. Highly liquid-repellent, large-area, nanostructured poly (vinylidene fluoride)/poly (ethyl 2-cyanoacrylate) composite coatings: particle filler effects
TW200923030A (en) Compositions and processes for manufacturing printed electronics
Makrygianni et al. On‐Demand Laser Printing of Picoliter‐Sized, Highly Viscous, Adhesive Fluids: Beyond Inkjet Limitations
CN106211606A (en) A thermosonic sintering method and device for nano-silver/graphene composite ink
Abshirini et al. 3D printed flexible microscaled porous conductive polymer nanocomposites for piezoresistive sensing applications
JP2008201635A (en) Method for forming fine carbon monomolecular film, surface coating method, and coated body
KR20180010560A (en) 3D Printing of Highly Conductive CNT Microarchitecture And Ink Therefor
Rajakaruna et al. Fabrication of hydrophobic PLA filaments for additive manufacturing
Lugli et al. And yet it moves! Microfluidics without channels and troughs
Chen et al. In situ filler addition for homogeneous dispersion of carbon nanotubes in multi jet fusion–printed elastomer composites
US7323246B2 (en) Nano horn carrier and method of manufacturing the carrier
Polsen et al. Laser printing of nanoparticle toner enables digital control of micropatterned carbon nanotube growth
Zheng et al. Fluid-assisted one-step fabrication of fused deposition molding 3D printing parts with conductive networks and gradient functionalities
JP2008529772A (en) Polymerized film deposition
Hu et al. Continuous and patterned deposition of functional block copolymer thin films using electrospray
Guohua et al. Preparation and performance study of carbon nanotube/polyphenylene sulfidecomposite materials based on floating catalytic chemical vapor deposition and continuous dusting powder
Zhuang et al. A simple method to make mechanically robust, adhesive and superhydrophobic surface based on epoxy resin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070622

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070622

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080722

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080731

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140808

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees