JP2004190133A - Method of treating selenium, tellurium, and platinum group-containing material - Google Patents
Method of treating selenium, tellurium, and platinum group-containing material Download PDFInfo
- Publication number
- JP2004190133A JP2004190133A JP2003396812A JP2003396812A JP2004190133A JP 2004190133 A JP2004190133 A JP 2004190133A JP 2003396812 A JP2003396812 A JP 2003396812A JP 2003396812 A JP2003396812 A JP 2003396812A JP 2004190133 A JP2004190133 A JP 2004190133A
- Authority
- JP
- Japan
- Prior art keywords
- platinum group
- alkali
- selenium
- leaching
- tellurium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical group [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 title claims abstract description 146
- 239000011669 selenium Substances 0.000 title claims abstract description 91
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 title claims abstract description 86
- 229910052711 selenium Inorganic materials 0.000 title claims abstract description 85
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 title claims abstract description 62
- 229910052714 tellurium Inorganic materials 0.000 title claims abstract description 60
- 238000000034 method Methods 0.000 title claims abstract description 50
- 239000000463 material Substances 0.000 title claims abstract description 15
- 238000002386 leaching Methods 0.000 claims abstract description 76
- 239000003513 alkali Substances 0.000 claims abstract description 68
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims abstract description 57
- 238000002844 melting Methods 0.000 claims abstract description 34
- 230000008018 melting Effects 0.000 claims abstract description 33
- 239000000203 mixture Substances 0.000 claims abstract description 24
- 235000011121 sodium hydroxide Nutrition 0.000 claims abstract description 19
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 15
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 65
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 35
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 claims description 28
- 239000000706 filtrate Substances 0.000 claims description 25
- 229910052697 platinum Inorganic materials 0.000 claims description 24
- 239000002893 slag Substances 0.000 claims description 24
- 229910052763 palladium Inorganic materials 0.000 claims description 19
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 18
- 239000000126 substance Substances 0.000 claims description 18
- 238000000605 extraction Methods 0.000 claims description 17
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 17
- 229910052737 gold Inorganic materials 0.000 claims description 17
- 239000010931 gold Substances 0.000 claims description 17
- 235000010344 sodium nitrate Nutrition 0.000 claims description 14
- 239000004317 sodium nitrate Substances 0.000 claims description 14
- 239000007800 oxidant agent Substances 0.000 claims description 12
- 238000001914 filtration Methods 0.000 claims description 11
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 claims description 8
- 238000003672 processing method Methods 0.000 claims description 7
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 claims description 6
- 238000011084 recovery Methods 0.000 claims description 6
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 5
- 235000019270 ammonium chloride Nutrition 0.000 claims description 4
- 238000002156 mixing Methods 0.000 claims description 4
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical compound OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 claims description 3
- 229910000510 noble metal Inorganic materials 0.000 claims description 3
- 229910021529 ammonia Inorganic materials 0.000 claims description 2
- 239000007788 liquid Substances 0.000 abstract description 17
- 238000010438 heat treatment Methods 0.000 abstract description 8
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 abstract description 4
- 229910017604 nitric acid Inorganic materials 0.000 abstract description 4
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 abstract 1
- 229940091258 selenium supplement Drugs 0.000 description 72
- 239000000243 solution Substances 0.000 description 43
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 28
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 18
- 239000010948 rhodium Substances 0.000 description 18
- 229910052703 rhodium Inorganic materials 0.000 description 15
- 239000002244 precipitate Substances 0.000 description 13
- 229910052707 ruthenium Inorganic materials 0.000 description 13
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 12
- 229910052802 copper Inorganic materials 0.000 description 12
- 239000010949 copper Substances 0.000 description 12
- 229910052751 metal Inorganic materials 0.000 description 10
- 239000002184 metal Substances 0.000 description 10
- 238000004821 distillation Methods 0.000 description 9
- 239000012065 filter cake Substances 0.000 description 9
- 239000007789 gas Substances 0.000 description 8
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 8
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 7
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 6
- 230000004907 flux Effects 0.000 description 6
- 230000001590 oxidative effect Effects 0.000 description 6
- -1 selenide Chemical class 0.000 description 6
- 229910052709 silver Inorganic materials 0.000 description 6
- 239000004332 silver Substances 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- BVTBRVFYZUCAKH-UHFFFAOYSA-L disodium selenite Chemical compound [Na+].[Na+].[O-][Se]([O-])=O BVTBRVFYZUCAKH-UHFFFAOYSA-L 0.000 description 5
- 230000005496 eutectics Effects 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 229960001471 sodium selenite Drugs 0.000 description 5
- 235000015921 sodium selenite Nutrition 0.000 description 5
- 239000011781 sodium selenite Substances 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000000460 chlorine Substances 0.000 description 4
- 229910052801 chlorine Inorganic materials 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 238000004090 dissolution Methods 0.000 description 4
- 238000001556 precipitation Methods 0.000 description 4
- 238000007670 refining Methods 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 238000000638 solvent extraction Methods 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 239000000155 melt Substances 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 230000001376 precipitating effect Effects 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000002351 wastewater Substances 0.000 description 3
- 101150003085 Pdcl gene Proteins 0.000 description 2
- 238000003723 Smelting Methods 0.000 description 2
- 229910000288 alkali metal carbonate Inorganic materials 0.000 description 2
- 150000008041 alkali metal carbonates Chemical class 0.000 description 2
- 239000012670 alkaline solution Substances 0.000 description 2
- QZPSXPBJTPJTSZ-UHFFFAOYSA-N aqua regia Chemical compound Cl.O[N+]([O-])=O QZPSXPBJTPJTSZ-UHFFFAOYSA-N 0.000 description 2
- 238000005660 chlorination reaction Methods 0.000 description 2
- 150000001805 chlorine compounds Chemical class 0.000 description 2
- 229910052741 iridium Inorganic materials 0.000 description 2
- MUSFRELEIXGPKU-UHFFFAOYSA-N selanylidenepalladium Chemical compound [Pd]=[Se] MUSFRELEIXGPKU-UHFFFAOYSA-N 0.000 description 2
- LFGRDRAXRZFPAB-UHFFFAOYSA-N selanylideneplatinum Chemical group [Pt]=[Se] LFGRDRAXRZFPAB-UHFFFAOYSA-N 0.000 description 2
- 150000003346 selenoethers Chemical class 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- OAYXUHPQHDHDDZ-UHFFFAOYSA-N 2-(2-butoxyethoxy)ethanol Chemical compound CCCCOCCOCCO OAYXUHPQHDHDDZ-UHFFFAOYSA-N 0.000 description 1
- PMYDPQQPEAYXKD-UHFFFAOYSA-N 3-hydroxy-n-naphthalen-2-ylnaphthalene-2-carboxamide Chemical compound C1=CC=CC2=CC(NC(=O)C3=CC4=CC=CC=C4C=C3O)=CC=C21 PMYDPQQPEAYXKD-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229910001854 alkali hydroxide Inorganic materials 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000033116 oxidation-reduction process Effects 0.000 description 1
- SJLOMQIUPFZJAN-UHFFFAOYSA-N oxorhodium Chemical compound [Rh]=O SJLOMQIUPFZJAN-UHFFFAOYSA-N 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229910003450 rhodium oxide Inorganic materials 0.000 description 1
- 229910001925 ruthenium oxide Inorganic materials 0.000 description 1
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- JPJALAQPGMAKDF-UHFFFAOYSA-N selenium dioxide Chemical compound O=[Se]=O JPJALAQPGMAKDF-UHFFFAOYSA-N 0.000 description 1
- 125000003748 selenium group Chemical group *[Se]* 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229960001881 sodium selenate Drugs 0.000 description 1
- 235000018716 sodium selenate Nutrition 0.000 description 1
- 239000011655 sodium selenate Substances 0.000 description 1
- VPQBLCVGUWPDHV-UHFFFAOYSA-N sodium selenide Chemical compound [Na+].[Na+].[Se-2] VPQBLCVGUWPDHV-UHFFFAOYSA-N 0.000 description 1
- VOADVZVYWFSHSM-UHFFFAOYSA-L sodium tellurite Chemical compound [Na+].[Na+].[O-][Te]([O-])=O VOADVZVYWFSHSM-UHFFFAOYSA-L 0.000 description 1
- AKHNMLFCWUSKQB-UHFFFAOYSA-L sodium thiosulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=S AKHNMLFCWUSKQB-UHFFFAOYSA-L 0.000 description 1
- 235000019345 sodium thiosulphate Nutrition 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- XSOKHXFFCGXDJZ-UHFFFAOYSA-N telluride(2-) Chemical compound [Te-2] XSOKHXFFCGXDJZ-UHFFFAOYSA-N 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
本発明は、セレンテルル白金族含有物について、効率よくセレンテルルと白金族とを分離することができる処理方法に関する。本発明の処理方法は、銅電解スライムから貴金属を回収するプロセスにおいて、金抽出後液を還元処理して得た還元滓からセレンテルルと白金族とを分離回収する方法として好適である。なお、本発明においてセレンテルル白金族含有物(液)とは、少なくともセレンとテルルの何れかと白金族元素の何れかを含有するものをいう。また、セレンテルルとはセレンおよび/またはテルルをいう。 The present invention relates to a treatment method capable of efficiently separating selentell and platinum from a substance containing platinum in the selentellurium. The treatment method of the present invention is suitable as a method of separating and recovering selentell and platinum group from reduced slag obtained by reducing a liquid after gold extraction in a process of recovering a noble metal from copper electrolytic slime. In the present invention, the selenium tellurium platinum group-containing substance (liquid) refers to a substance containing at least one of selenium and tellurium and one of platinum group elements. Further, selenium and tellurium refer to selenium and / or tellurium.
銅製錬の銅電解工程では、電解液に不溶な不純物が残渣として副生する。この副生物中にはPt、Rh、Irなどの白金族元素、セレン、テルル、金、銀、銅がかなりの量含まれており、これらの金属を分離回収する方法がこれまで多数提案されている。例えば、白金族元素は、銀精錬工程からでる銀アノードスライムやこのスライムに硝酸を加えて金以外の金属成分を浸出した後に還元して得たスライムなどから回収されている。従来、これらのスライムを溶解するには、王水による溶解、塩酸と過酸化水素による溶解または塩酸と塩素ガス吹き込みによる溶解が利用されている。 In the copper electrolysis step of copper smelting, impurities insoluble in the electrolytic solution are by-produced as residues. The by-products contain a considerable amount of platinum group elements such as Pt, Rh, and Ir, selenium, tellurium, gold, silver, and copper. Many methods for separating and recovering these metals have been proposed. I have. For example, platinum group elements are recovered from silver anode slime obtained from a silver refining process, slime obtained by leaching metal components other than gold by adding nitric acid to the slime, and reducing the slime. Conventionally, to dissolve these slimes, dissolution with aqua regia, dissolution with hydrochloric acid and hydrogen peroxide, or dissolution by blowing hydrochloric acid and chlorine gas has been used.
ところが、白金族元素と共にセレンやテルルが共存しているセレンテルル白金族含有物の場合、これを還元して沈殿させると白金族元素がセレンテルルと化合物を形成してしまい、王水や塩酸および過酸化水素では溶解し難くなって分離回収ができなくなる欠点がある。とくに過酸化水素はセレン化物等の化合物表面で分解するため酸化剤としての効果を殆ど発揮することができない。また、このような化合物を焙焼して酸化セレンや酸化テルルの形で気化分離する方法があるが、その毒性による環境汚染の問題がある。 However, in the case of selenium or tellurium containing selenium or tellurium coexisting with the platinum group element, if this is reduced and precipitated, the platinum group element will form a compound with selenium and the aqua regia, hydrochloric acid and peroxide There is a disadvantage in that it is difficult to dissolve in hydrogen and cannot be separated and recovered. In particular, hydrogen peroxide decomposes on the surface of a compound such as selenide, and thus can hardly exhibit the effect as an oxidizing agent. Further, there is a method in which such a compound is roasted and vaporized and separated in the form of selenium oxide or tellurium oxide, but there is a problem of environmental pollution due to its toxicity.
銅電解澱物の金抽出後液に含まれる白金族元素とセレンテルルを分離する方法として、液中の塩素イオン濃度を1.5モル/L以下とし、60〜90℃の温度下で8〜12%濃度の亜硫酸ガスを液中に吹込み、白金族元素を還元して沈殿させる方法(特許文献1)や、銅電解スライムの塩酸浸出液から溶媒抽出によって金および白金族を回収した抽出残液に二酸化イオウを導入し、セレンテルルを還元して沈殿させる方法(特許文献2、特許文献3)などが知られている。 As a method of separating the platinum group element and selentellur contained in the solution after the gold extraction of the copper electrolytic deposit, the chloride ion concentration in the solution is set to 1.5 mol / L or less, and the solution is heated to 8 to 12 at a temperature of 60 to 90 ° C. % Sulfuric acid gas is blown into the solution to reduce and precipitate the platinum group elements (Patent Document 1), or to the extraction residue obtained by recovering gold and platinum group by solvent extraction from hydrochloric acid leaching solution of copper electrolytic slime. There are known methods of introducing sulfur dioxide and reducing and precipitating selentellur (Patent Documents 2 and 3).
しかし、これらの方法では、塩酸濃度、温度、亜硫酸ガス濃度、亜硫酸ガス量などのセレン還元時に制御するパラメータが多いため制御が難しく、白金族元素とセレンテルルの回収率が低下するなどの問題がある。さらに、二酸化イオウによる二段階還元処理は工程の管理が非常に難しく、しかも何れの沈殿においてもセレンテルルまたは白金族元素の混入が避けられず、二酸化イオウによる還元だけでは分離が不十分である。また、溶媒抽出によって白金族とセレンテルルとを分離する方法はコスト高であり、抽出後の回収処理も煩雑で手間がかかる欠点がある。 However, in these methods, there are many parameters to be controlled at the time of selenium reduction, such as hydrochloric acid concentration, temperature, sulfurous acid gas concentration, and sulfurous acid gas amount, so that control is difficult, and there is a problem that the recovery rate of the platinum group element and selenium is reduced. . Further, in the two-step reduction treatment with sulfur dioxide, it is very difficult to control the process, and furthermore, in any precipitation, the incorporation of selentellur or a platinum group element is unavoidable, and the separation by sulfur dioxide alone is insufficient. Further, the method of separating the platinum group and selentellurium by solvent extraction is expensive, and the recovery process after the extraction is complicated and troublesome.
さらに、銅電解スライムに対して塩酸および二酸化イオウ処理する代わりに硫酸酸性溶液で酸素富化ガス加圧条件下浸出処理する方法(特許文献4)、銅電解スライムに硫酸酸性溶液で酸素富化ガス加圧条件下浸出処理した後、塩素イオン、チオ硫酸ナトリウム溶液処理して脱銀した後、銅を添加する方法(特許文献5)も提案されている。しかし、このような酸素富化ガス加圧条件下に銅を使用する方法は工程管理が難しく、非常なコスト高になり、実用性は乏しいという欠点がある。 Furthermore, instead of treating copper electrolytic slime with hydrochloric acid and sulfur dioxide, a method of leaching with an oxygen-enriched gas under a pressurized condition of oxygen-enriched gas instead of treating with hydrochloric acid and sulfur dioxide (Patent Document 4). A method has also been proposed in which leaching is performed under pressure and then treated with a solution of chlorine ions and sodium thiosulfate to remove silver, and then copper is added (Patent Document 5). However, such a method of using copper under the oxygen-enriched gas pressurized condition has disadvantages in that process control is difficult, cost is extremely high, and practicality is poor.
この他に、酸化剤を用いて金属セレンを酸化し、これをアルカリ金属の炭酸塩または水酸化物で中和してアルカリ金属セレン酸塩を製造する方法(特許文献6)、セレン含有物をアルカリ金属炭酸塩と反応させて水溶性スラリーにし、これを酸化雰囲気下でばい焼してペレットにした後に水浸出する方法(特許文献7)、含テルル銅スライムを酸化剤の存在下に鉱酸に溶解し、これにアルカリを加えて銅を沈殿分離した後に中和してテルルを沈殿下する方法(特許文献8)、銅電解スライム等の原料に塩酸などの強酸処理し、化合物を含むものについては塩素などの酸化剤を併用し、テルルの抽出溶媒としてブチルカルビトールを使用する方法(特許文献9)などが知られている。しかし、これらの方法は工程数が多く、しかも、セレンテルルのの回収効率が低い。
本発明は、従来の上記処理方法の問題を解決したものであり、セレンテルル白金族含有物について、アルカリ溶融処理とアルカリ浸出処理とを組み合わせることによって、容易にかつ効率よくセレンテルルと白金族元素とを分離することができるようにした処理方法を提供する。 The present invention has solved the problem of the above-mentioned conventional treatment method, and for selentellurium platinum group-containing materials, by combining alkali melting treatment and alkali leaching treatment, easily and efficiently convert selentellurium and a platinum group element. Provided is a processing method capable of being separated.
本発明は以下の構成からなるセレンテルル白金族含有物の処理方法に関する。
(1)セレンテルル白金族含有物からセレンテルルと白金族とを分離する処理方法において、(イ)セレンテルル白金族含有物をアルカリ溶液に混合してアルカリ浸出し、セレンテルルを含む浸出液と白金族を含む浸出残渣とに分離するアルカリ浸出工程と、(ロ)セレンテルル白金族含有物に苛性ソーダと硝酸ソーダの混合物を加え、該混合物の溶融温度以上に加熱してセレンテルルを溶解し、これを水浸出してセレンテルルを含む浸出液と白金族を含む浸出残渣とに分離するアルカリ溶融工程とを有することを特徴とするセレンテルル白金族含有物の処理方法。
(2)セレンテルル白金族含有物をアルカリ濃度5〜8モル/Lの強アルカリ溶液に混合し、60〜90℃の温度下でアルカリ浸出を行う上記(1)の処理方法。
(3)セレンテルル白金族含有物に苛性ソーダと硝酸ソーダの混合物を加え、350〜450℃に加熱してアルカリ溶融を行う上記(1)または(2)の処理方法。
(4)セレンテルル白金族含有溶液を還元処理し、主にセレンを含む還元滓の一部を蒸留処理した残物をアルカリ溶融処理し、主にテルルを含む還元滓の残部をアルカリ浸出処理する上記(1)〜(3)の何れかに記載する処理方法。
(5)脱銅電解スライムの貴金属回収処理系における金抽出後液に亜硫酸ガスを導入して還元処理し、先に沈澱したセレン滓を蒸留して高純度のセレンを分離した残物をアルカリ溶融処理し、次に生じたテルル滓をアルカリ浸出処理する上記(1)〜(4)の何れかに記載する処理方法。
(6)アルカリ溶融工程の水浸出で得た浸出液をアルカリ浸出工程に循環し、セレンテルル白金族含有物と共にアルカリ浸出を行う上記(1)〜(5)の何れかに記載する処理方法。
(7)アルカリ浸出工程で得た浸出液に硫酸または塩酸を加えて中和し、セレンテルルを沈殿させる上記(1)〜(6)の何れかに記載する処理方法。
(8)アルカリ浸出工程およびアルカリ溶融工程において生じた浸出残渣に酸化剤の存在下で塩酸を加えて白金族を溶解させる上記(1)〜(7)の何れかに記載する処理方法。
(9)上記(8)の処理工程において得た白金族浸出液に塩化アンモニウムを添加して塩化白金酸アンモニウムを沈澱させ、これを濾別回収して洗浄後、800℃以上に加熱してスポンジ状の高純度白金を得る工程を含む処理方法。
(10)上記(9)の処理工程において、塩化白金酸アンモニウムを分離した濾液にアンモニアを添加してジクロロジアミンパラジウムを沈澱させ、これを濾別回収して洗浄後、800℃以上に加熱してスポンジ状の高純度パラジウムを得る工程を含む処理方法。
The present invention relates to a method for treating a substance containing selentellurium platinum group having the following constitution.
(1) In a treatment method for separating selentell and platinum group from selentell platinum group-containing substance, (a) mixing selentellurium platinum group-containing substance with an alkali solution and alkali leaching, leaching solution containing selentellur and leaching containing platinum group An alkaline leaching step for separating into a residue, and (b) adding a mixture of caustic soda and sodium nitrate to the platinum group containing selentellurium, heating the mixture to a temperature higher than the melting temperature to dissolve the selentellurium, and leaching the selentellurium with water. A method for treating a substance containing selentellurium platinum group, comprising: an alkali melting step of separating into a leaching solution containing benzene and a leaching residue containing platinum group.
(2) The treatment method according to the above (1), wherein the substance containing the selentellurium platinum group is mixed with a strong alkali solution having an alkali concentration of 5 to 8 mol / L, and alkali leaching is performed at a temperature of 60 to 90 ° C.
(3) The treatment method according to the above (1) or (2), wherein a mixture of caustic soda and sodium nitrate is added to the platinum group containing selentellurium, and the mixture is heated to 350 to 450 ° C. to carry out alkali melting.
(4) The above-mentioned method comprising subjecting a selenium tellurium-containing solution to a reduction treatment, subjecting a residue obtained by distilling a part of the reduction slag containing mainly selenium to an alkali melting treatment, and subjecting the remainder of the reduction slag containing mainly tellurium to alkali leaching treatment. The processing method according to any one of (1) to (3).
(5) Sulfuric acid gas is introduced into the solution after gold extraction in the noble metal recovery treatment system for the decopperized electrolytic slime to reduce the solution, and the selenium slag previously precipitated is distilled to separate the high-purity selenium residue into an alkali melt. The method according to any one of the above (1) to (4), wherein the treated tellurium residue is subjected to an alkaline leaching treatment.
(6) The treatment method according to any one of (1) to (5) above, wherein the leachate obtained in the water leaching in the alkali melting step is circulated to the alkali leaching step, and alkali leaching is performed together with the selentellurium platinum group-containing material.
(7) The treatment method according to any one of the above (1) to (6), wherein sulfuric acid or hydrochloric acid is added to the leachate obtained in the alkaline leaching step to neutralize the precipitate, thereby precipitating selentellurium.
(8) The treatment method according to any one of (1) to (7), wherein hydrochloric acid is added to the leaching residue generated in the alkali leaching step and the alkali melting step in the presence of an oxidizing agent to dissolve the platinum group.
(9) Ammonium chloride is added to the platinum group leachate obtained in the treatment step (8) to precipitate ammonium chloroplatinate, which is collected by filtration, washed, and heated to 800 ° C. or more to form a sponge. Processing method including a step of obtaining high-purity platinum of the above.
(10) In the treatment step (9), ammonia is added to the filtrate from which ammonium chloroplatinate has been separated to precipitate dichlorodiaminepalladium, which is collected by filtration, washed, and heated to 800 ° C. or higher. A treatment method including a step of obtaining sponge-like high-purity palladium.
〔発明の具体的な説明〕
以下、本発明を具体的に説明する。
本発明の処理方法の概略を図1に示す。図示するように、本処理方法は、セレンテルル白金族含有物からセレンテルルと白金族とを分離する処理方法において、セレンテルル白金族含有物を高温下でアルカリ処理し、セレンテルルを含む浸出液と白金族を含む浸出残渣とに分離するアルカリ浸出工程(イ)と、セレン白金族含有物を蒸留処理した残物に苛性ソーダと硝酸ソーダの混合物を加え、該混合物の溶融(共晶)温度以上に加熱してセレンテルルを溶解し、これを水浸出してセレンテルルを含む浸出液と白金族を含む浸出残渣とに分離するアルカリ溶融工程(ロ)とを有する。
[Specific description of the invention]
Hereinafter, the present invention will be described specifically.
FIG. 1 shows an outline of the processing method of the present invention. As shown in the figure, the present treatment method is a treatment method for separating selentell and platinum group from selentellur platinum group-containing material, wherein the selentellurium platinum group-containing material is alkali-treated at a high temperature, and includes a leachate containing selentellur and a platinum group. An alkaline leaching step (a) for separating into leaching residues, a mixture of caustic soda and sodium nitrate is added to the residue obtained by distilling the selenium platinum group-containing substance, and the mixture is heated to a temperature equal to or higher than the melting (eutectic) temperature of the selenium telluride. Is dissolved and water is leached to separate into a leachate containing selentellur and a leach residue containing platinum group (b).
セレンテルル白金族含有物
上記セレンテルル白金族含有物としては、例えば脱銅電解精錬スライムの塩酸浸出液から溶媒抽出によって金を分離した抽出残液の還元処理滓などを用いることができる。この脱銅電解スライムにはロジウム、ルテニウム、パラジウム、イリジウム、白金などの白金族元素、金、銀、セレン、テルルなどの有価金属が多量に含まれている。具体的には、セレンテルル白金族含有物は、例えば脱銅精錬スライムを次のように処理して得られる。まず、脱銅精錬スライムを塩酸および過酸化水素によってスラリーにし、これを濾過して主に銀を含む浸出滓と、金、白金族元素およびセレン、テルルを含む浸出液とに分離する。次に、この浸出液の液性を調整し、DBC等を用いた溶媒抽出によって浸出液から金を分離する。このようにして金を分離した抽出残液には白金族元素およびセレン、テルルが液中に溶存している。そこで、この抽出残液に二酸化イオウ、具体的には例えば亜硫酸ガスを液中のセレン濃度を3g/L以上に保つ量で導入し、セレンを還元して沈殿させ、抽出残液から分離する。セレンを分離した濾液にさらに二酸化イオウを導入し、残りのセレンと共にテルルを還元して沈澱させ、濾別する。
Selentellurium Platinum-Group-Containing Material As the above-mentioned selentellurium-platinum-group-containing material, for example, a reduction slag of an extraction residue obtained by separating gold from a hydrochloric acid leachate of a copper-free electrolytic refining slime by solvent extraction can be used. This copper-free electrolytic slime contains a large amount of platinum group elements such as rhodium, ruthenium, palladium, iridium and platinum, and valuable metals such as gold, silver, selenium and tellurium. Specifically, the selentellurium platinum group-containing material can be obtained, for example, by treating copper-free refining slime as follows. First, the copper-free refining slime is slurried with hydrochloric acid and hydrogen peroxide, and then filtered to separate into a leach slag containing mainly silver and a leach liquor containing gold, a platinum group element and selenium and tellurium. Next, the liquid property of the leachate is adjusted, and gold is separated from the leachate by solvent extraction using DBC or the like. The platinum group element, selenium, and tellurium are dissolved in the extraction residue from which gold has been separated in this manner. Therefore, sulfur dioxide, specifically, sulfur dioxide gas, for example, is introduced into the extraction residue in an amount to keep the selenium concentration in the solution at 3 g / L or more, and selenium is reduced and precipitated, and separated from the extraction residue. Sulfur dioxide is further introduced into the filtrate from which selenium has been separated, and tellurium is reduced and precipitated together with the remaining selenium, followed by filtration.
本発明はセレンテルル白金族含有物として上記金抽出後液を用いることができる。さらに、セレンテルル白金族含有物として上記金抽出後液の還元処理滓や、これをさらに蒸留処理した蒸留滓を用いることができる。この他に、セレンテルル白金族含有液として、例えばメッキ工場の排水や製錬排水などのセレンテルルおよび白金族を含有する溶液を用いることができる。 In the present invention, the above-mentioned solution after gold extraction can be used as a substance containing platinum group selentellurium. Further, as the selentellurium platinum group-containing substance, a reduced slag of the above-mentioned liquid after gold extraction or a scum obtained by further subjecting the reduced slag to distillation can be used. In addition, as the selentellurium platinum group-containing solution, for example, a solution containing selentellurium and a platinum group, such as wastewater from a plating plant or smelting wastewater, can be used.
なお、上記金抽出後液の還元処理において、セレンとテルルを還元して沈澱させる際、テルルはセレンより還元電位が低く、セレンが沈澱した後にテルルが沈澱するので、セレン沈澱を濾別した後に、この濾液にさらに二酸化イオウを添加してテルルを沈澱化することによってセレンとテルルを分離回収することができる。この還元により白金族元素はセレン、テルルと共に沈殿する。 In the reduction treatment of the solution after gold extraction, when reducing and precipitating selenium and tellurium, tellurium has a lower reduction potential than selenium, and tellurium precipitates after selenium precipitates. By further adding sulfur dioxide to the filtrate to precipitate tellurium, selenium and tellurium can be separated and recovered. This reduction causes the platinum group element to precipitate together with selenium and tellurium.
このようにして得たセレンテルル白金族含有物を次のアルカリ浸出工程およびアルカリ溶融工程において処理する。この場合、上記抽出残液の還元によって先に沈澱したセレン滓を蒸留して高純度のセレンを回収し、残物(蒸留残)をアルカリ溶融処理し、その後に沈澱したテルル滓をアルカリ浸出処理するのが好ましい。この蒸留残はセレン化パラジウム等の化合物を形成しており、安定であるためアルカリ浸出してもセレンの溶出が進まない。一方、蒸留滓をアルカリ溶融処理することによってセレンを効率よく処理することができる。なお、テルル滓中のロジウムおよびルテニウムはセレン滓中に含まれる場合よりも相対的に品位が高く、このためアルカリ溶融すると難溶性の酸化物になりやすく、後の塩酸浸出が難しくなる。従って、テルル滓はアルカリ浸出処理するのが好ましい。 The thus obtained selentellurium platinum group-containing material is treated in the following alkali leaching step and alkali melting step. In this case, the selenium slag previously precipitated by the reduction of the extraction residue is distilled to recover selenium of high purity, the residue (distillation residue) is subjected to alkali melting treatment, and then the precipitated tellurium slag is subjected to alkali leaching treatment. Is preferred. This distillation residue forms a compound such as palladium selenide and is stable, so that selenium does not elute even with alkaline leaching. On the other hand, selenium can be efficiently treated by subjecting the distillation residue to alkali melting treatment. It should be noted that rhodium and ruthenium in tellurium slag are relatively higher in quality than those contained in selenium slag, so that they become easily insoluble oxides when alkali-molten, and subsequent leaching of hydrochloric acid becomes difficult. Therefore, the tellurium residue is preferably subjected to an alkali leaching treatment.
アルカリ浸出工程
セレンテルル白金族含有物を苛性ソーダ溶液などのアルカリ溶液に混合してアルカリ浸出を行う。アルカリ浸出は1モル/L以上のアルカリ濃度下で行うのが良く、例えば5モル/L〜8モル/Lの範囲が好ましい。アルカリ濃度を1モル/L以上にすることによってpH14以上の強アルカリ性となり、セレンやテルルの酸化還元電位が下がり、常圧下において酸化剤を用いずに、セレンおよびテルルをアルカリ溶液中に溶出させることができる。なお、常温ではこのセレンやテルルの溶出反応の進行が遅いので、60℃以上の温度下、好ましくは60〜90℃、より好ましくは80℃程度の温度下で浸出を行うのが適当である。
Alkali leaching step Alkaline leaching is performed by mixing the selentellurium platinum group-containing substance with an alkali solution such as a sodium hydroxide solution. The alkali leaching is preferably performed under an alkali concentration of 1 mol / L or more, for example, preferably in the range of 5 mol / L to 8 mol / L. By making the alkali concentration 1 mol / L or more, it becomes strongly alkaline at pH 14 or more, the oxidation-reduction potential of selenium and tellurium is lowered, and selenium and tellurium are eluted in an alkaline solution without using an oxidizing agent under normal pressure. Can be. Since the elution reaction of selenium and tellurium progresses slowly at normal temperature, it is appropriate to perform leaching at a temperature of 60 ° C. or more, preferably 60 to 90 ° C., more preferably about 80 ° C.
上記アルカリ浸出によって、セレンおよびテルルはアルカリ溶液中に溶出してコロイド状に分散する。一方、ロジウムやパラジウムなどの白金族元素は溶出せずに残留する。これを濾別して、セレンないしテルルを含む浸出液と、白金族元素を含む固形分とに分離する。 Due to the alkaline leaching, selenium and tellurium are eluted and dispersed in a colloidal form in the alkaline solution. On the other hand, platinum group elements such as rhodium and palladium remain without being eluted. This is separated by filtration into a leachate containing selenium or tellurium and a solid containing a platinum group element.
上記固液分離後、セレンテルルを含む濾液(浸出液)に、硫酸または塩酸を加えて中和すると金属セレンないし金属テルルの黒色沈澱を生じ、溶液の色が濃紫色から次第に薄くなり、pH7付近で液は透明になる。このセレン沈澱ないしテルル沈澱の品位は概ね99%以上であり、高品位の金属セレンないし金属テルルを回収することができる。なお、硫酸や塩酸に代えて硝酸を用いると、硝酸の酸化力によってセレンやテルルは酸化溶解するので沈殿化することができない。また、液温は60〜80℃が好ましい。この液温で中和すれば濾過性の良い金属状セレンを得ることができる。 After the solid-liquid separation, sulfuric acid or hydrochloric acid is added to the filtrate (leaching solution) containing selentellurium to neutralize the solution, whereby a black precipitate of selenium metal or tellurium metal is formed, and the color of the solution gradually decreases from dark purple to near pH7. Becomes transparent. The grade of the selenium precipitate or tellurium precipitate is about 99% or more, and high-grade metal selenium or tellurium can be recovered. If nitric acid is used instead of sulfuric acid or hydrochloric acid, selenium or tellurium is oxidized and dissolved by the oxidizing power of nitric acid, so that precipitation cannot be performed. The liquid temperature is preferably from 60 to 80C. If neutralized at this liquid temperature, metallic selenium with good filterability can be obtained.
一方、白金族を含む固形分には過酸化水素などの酸化剤を塩酸と共に添加し、白金、パラジウム、ロジウム、ルテニウムなどの白金族元素を溶出させる。白金族元素は過酸化水素によって酸化されると共に塩素イオンによって塩化物錯体となり、安定化されて液中に溶出する。過酸化水素は白金族元素を安定な酸化数のイオンにするために必要な当量、すなわち、白金を4価、バラジウムを2価、ロジウムおよびルテニウムを3価に酸化するのに必要な当量を用いる。塩酸はそれぞれPtCl6 -,PdCl4 -,RhCl6 3-,RuCl6 3-に相当する量、および遊離塩酸として2モル/L以上を用いるのが好ましい。反応温度は反応を促進するため60℃以上が良く、また過酸化水素の分解を抑制するため80℃以下が適当であり、好ましくは70℃程度の温度下で行うのが良い。この溶解処理によって、白金、パラジウム、ロジウム、ルテニウムなどが溶解した塩酸性溶液を得ることができる。 On the other hand, an oxidizing agent such as hydrogen peroxide is added together with hydrochloric acid to the solids containing the platinum group to elute platinum group elements such as platinum, palladium, rhodium and ruthenium. The platinum group element is oxidized by hydrogen peroxide and becomes a chloride complex by chlorine ions, stabilized, and eluted in the liquid. Hydrogen peroxide uses the equivalent required to convert the platinum group element into an ion having a stable oxidation number, that is, the equivalent required to oxidize platinum to tetravalent, baradium to divalent, and rhodium and ruthenium to trivalent. . Each hydrochloride PtCl 6 -, PdCl 4 -, RhCl 6 3-, amount equivalent to RuCl 6 3-, and to use more than 2 mol / L preferred as free hydrochloric acid. The reaction temperature is preferably 60 ° C. or higher to promote the reaction, and is preferably 80 ° C. or lower to suppress the decomposition of hydrogen peroxide, and is preferably performed at a temperature of about 70 ° C. By this dissolution treatment, a hydrochloric acid solution in which platinum, palladium, rhodium, ruthenium and the like are dissolved can be obtained.
以上のように、セレン白金族含有物を強アルカリ溶液に混合し、60℃〜90℃程度の温度下でアルカリ浸出することによって、常圧下で酸化剤を用いずに、セレンやテルルを溶解して白金族元素から分離することができる。従って、白金族元素と共にセレンやテルルを含有する処理滓から容易にセレンおよびテルルを分離して白金族元素を概ね95%以上の収率で選択的に回収することができる。しかも、このアルカリ浸出の際に白金族元素は酸化されないため、難溶性の酸化ロジウムや酸化ルテニウムを生じることがなく、溶液化が容易である。この浸出残渣中の白金族元素を塩酸酸性下で酸化して塩化物錯体を形成させることによって白金族元素含有液を得ることができる。 As described above, selenium and tellurium are dissolved under normal pressure without using an oxidizing agent by mixing a selenium platinum group-containing substance with a strong alkali solution and leaching the alkali at a temperature of about 60 ° C to 90 ° C. To separate from the platinum group elements. Therefore, selenium and tellurium can be easily separated from the treated slag containing selenium and tellurium together with the platinum group element, and the platinum group element can be selectively recovered with a yield of about 95% or more. Moreover, since the platinum group element is not oxidized during the alkali leaching, hardly soluble rhodium oxide or ruthenium oxide is not generated, and the solution can be easily formed. A platinum group element-containing liquid can be obtained by oxidizing the platinum group element in the leaching residue under hydrochloric acid to form a chloride complex.
一方、浸出液中のセレンやテルルはコロイド状に分散しており、この浸出液を硫酸または塩酸によって中和するとセレンおよびテルルはメタルになって沈澱するので、これらも容易に回収することができる。因みに、従来の酸化剤を用いてアルカリ浸出する方法は加圧下で浸出を行い、セレン酸ソーダないし亜セレン酸ソーダなどが生じ、6価のセレンを含むため排水中に含まれるセレンを除去するのが難しい。一方、本発明の上記処理方法では常圧下で酸化剤を用いずにセレンおよびテルルを溶解して白金族元素と分離するので、6価のセレンを含まず工程の管理および回収処理が容易である。 On the other hand, selenium and tellurium in the leachate are dispersed in a colloidal state, and when the leachate is neutralized with sulfuric acid or hydrochloric acid, selenium and tellurium become metals and precipitate, so that these can be easily recovered. By the way, the conventional method of leaching with an alkali using an oxidizing agent performs leaching under pressure to produce sodium selenate or sodium selenite, which contains hexavalent selenium and thus removes selenium contained in wastewater. Is difficult. On the other hand, in the above treatment method of the present invention, selenium and tellurium are dissolved and separated from the platinum group element without using an oxidizing agent under normal pressure, so that the process management and recovery treatment are easy without containing hexavalent selenium. .
アルカリ溶融工程
次に、上記セレンテルル白金族元素含有物、例えば、上記セレン滓またはセレン蒸留残物をアルカリ溶融処理する。このアルカリ溶融はセレン滓またはセレン蒸留残物に苛性ソーダ(NaOH)と硝酸ソーダ(NaNO3)の混合物からなるフラックスを添加し、これをフラックスの溶融温度(共晶温度)以上に加熱して溶融する。この加熱溶融によってセレンは主に4価になり、亜セレン酸ソーダ(Na2SeO3)を生じて溶解する。苛性ソーダと硝酸ソーダの混合物をフラックスとして使用するのは、苛性ソーダを単独に用いると雰囲気からの酸素の供給が不十分となってセレン化ナトリウム(Na2Se)が生成し、これは水浸出時にセレンがメタルに転化して析出するために白金族とセレンを物理的に分離することができなくなる。また、硝酸ソーダを単独に用いると酸化力が強くなり過ぎ、6価のセレンになる割合が高くなるので好ましくない。
Alkali melting step Next, the above-mentioned selenium tellurium-containing element, for example, the above-mentioned selenium slag or selenium distillation residue is subjected to alkali-melting treatment. In this alkali melting, a flux composed of a mixture of caustic soda (NaOH) and sodium nitrate (NaNO 3 ) is added to selenium slag or selenium distillation residue, and the mixture is heated to a temperature higher than the melting temperature (eutectic temperature) of the flux to be melted. . By this heating and melting, selenium becomes mainly tetravalent, and generates and dissolves sodium selenite (Na 2 SeO 3 ). When a mixture of caustic soda and sodium nitrate is used as a flux, when caustic soda is used alone, the supply of oxygen from the atmosphere becomes insufficient and sodium selenide (Na 2 Se) is generated. Is converted to metal and deposited, so that the platinum group and selenium cannot be physically separated. Further, when sodium nitrate alone is used, the oxidizing power becomes too strong, and the ratio of hexavalent selenium becomes high, which is not preferable.
溶融温度を下げるため、フラックスの組成は共晶組成近傍が好ましい。具体的には、苛性ソーダ:硝酸ソーダ=75:25〜85:15(モル比)であるものが良い。また、加熱温度はフラックスの共晶温度(258℃)以上であり、フラックスが十分な流動性を有してセレン化物を浸出する必要があるため、加熱温度は350℃〜450℃が望ましい。なお、硝酸ソーダ(NaNO3)はこの温度範囲内では酸素を発生するのでNOxは発生し難いが、この温度範囲より高いとNOxが発生する割合が高くなり、かつ酸化力が強くなるため6価のセレンになる割合が大きくなるので好ましくない。 In order to lower the melting temperature, the composition of the flux is preferably near the eutectic composition. Specifically, it is preferable that the ratio of caustic soda: sodium nitrate = 75: 25 to 85:15 (molar ratio). Further, the heating temperature is equal to or higher than the eutectic temperature of the flux (258 ° C.), and it is necessary that the flux has sufficient fluidity to exude selenide. Therefore, the heating temperature is preferably 350 ° C. to 450 ° C. Note that sodium nitrate (NaNO 3 ) generates oxygen in this temperature range and thus hardly generates NOx. However, if the temperature is higher than this temperature range, the rate of generation of NOx increases, and the oxidizing power increases. Is not preferred because the ratio of selenium becomes large.
上記アルカリ溶融の後に、この溶融物を水浸出して固液分離する。亜セレン酸ソーダは水に溶解し、一方、白金族元素は渣物に残るので、上記溶融物を水浸出して濾過することによって、亜セレン酸ソーダを含む濾液と白金族元素を含む残渣とに分離することができる。この濾液には白金族元素が実質的に含まれておらず、セレンと白金族元素の分離性が良い。また、残渣に含まれる白金族元素はこの残渣に過酸化水素等の酸化剤と共に塩酸を加えることによって溶出する。これを濾過して白金族元素を含む濾液を回収することができる。なお、上記アルカリ溶融ではテルルもセレンと同様に溶解するので、水浸出することによってテルルを白金族と分離することができる。 After the alkali melting, the melt is leached with water and separated into solid and liquid. Sodium selenite dissolves in water, while the platinum group element remains in the residue, so that the melt is leached with water and filtered to obtain a filtrate containing sodium selenite and a residue containing the platinum group element. Can be separated. This filtrate does not substantially contain a platinum group element, and has good separability between selenium and the platinum group element. The platinum group elements contained in the residue are eluted by adding hydrochloric acid to the residue together with an oxidizing agent such as hydrogen peroxide. This is filtered to recover a filtrate containing a platinum group element. In addition, tellurium dissolves similarly to selenium in the above alkali melting, so that tellurium can be separated from the platinum group by leaching with water.
このようにアルカリ溶融工程において、セレンないしテルルは亜セレン酸ソーダ、亜テルル酸ソーダの形態で水浸出液に溶解し、白金族元素を含む浸出残渣と分離されるが、分離した水浸出液にはセレン、テルルの他に多少の白金族元素が残留していることがあるので、これを上記アルカリ浸出工程に循環させ、セレンテルル白金族含有物と共にアルカリ浸出を行うようにすると良い。この循環処理によって、セレンテルルが濃縮される。 As described above, in the alkali melting step, selenium or tellurium is dissolved in a water leachate in the form of sodium selenite or sodium tellurite, and is separated from a leach residue containing a platinum group element. Since some platinum group elements may remain in addition to tellurium, this may be circulated to the alkali leaching step to carry out alkali leaching together with the selentellurium platinum group-containing material. By this circulation treatment, selentellur is concentrated.
一方、上記アルカリ溶融工程で得た白金族を含む浸出残渣は、アルカリ浸出工程の残渣と同様に、過酸化水素などの酸化剤を塩酸と共に添加し、白金、パラジウム、ロジウム、ルテニウムなどの白金族元素を溶出させる。白金族元素は過酸化水素によって酸化されると共に塩素イオンによって塩化物錯体となり、安定化されて液中に溶出する。この塩化浸出処理(クロリネーション)によって、白金、パラジウム、ロジウム、ルテニウムなどが溶解した塩酸性溶液を得ることができる。なお、この塩化浸出処理はアルカリ浸出工程で得た浸出残渣と一緒に行えば良い。 On the other hand, the leaching residue containing the platinum group obtained in the alkali melting step is similar to the residue in the alkali leaching step, in which an oxidizing agent such as hydrogen peroxide is added together with hydrochloric acid, and the platinum group such as platinum, palladium, rhodium and ruthenium is added. Elute the elements. The platinum group element is oxidized by hydrogen peroxide and becomes a chloride complex by chlorine ions, stabilized, and eluted in the liquid. By this chloride leaching treatment (chlorination), a hydrochloric acid solution in which platinum, palladium, rhodium, ruthenium or the like is dissolved can be obtained. Note that this chloride leaching treatment may be performed together with the leaching residue obtained in the alkali leaching step.
上記塩化浸出によって得た浸出液には白金族が含まれる。この浸出液に塩化アンモニウムを添加することによって、白金のみを塩化白金酸アンモニウム((NH4)2PtCl6)に転じて選択的に沈殿させることができる。この沈殿を濾別回収してよく洗浄し、加熱炉に入れ、還元性雰囲気中で800℃以上の温度でカ焼すると、スポンジ状の白金が得られる。1回の処理で十分な純度が得られない場合は、塩化白金酸アンモニウムを再溶解して再沈殿させる処理を繰返すことによって白金の純度を高めることが出来る。なお、沈殿の洗浄には塩化アンモニウム液を用いるとよい。 The leaching solution obtained by the chlorination leaching contains a platinum group. By adding ammonium chloride to the leaching solution, only platinum can be converted to ammonium chloroplatinate ((NH 4 ) 2 PtCl 6 ) for selective precipitation. The precipitate is collected by filtration, washed well, placed in a heating furnace, and calcined at a temperature of 800 ° C. or more in a reducing atmosphere to obtain sponge-like platinum. If sufficient purity cannot be obtained by one treatment, the purity of platinum can be increased by repeating the process of re-dissolving and reprecipitating ammonium chloroplatinate. Note that an ammonium chloride solution may be used for washing the precipitate.
また、上記白金を沈殿分離した後の濾液中にはパラジウムが残る。この濾液にアンモニア水を適量添加することによってパラジウムをジクロロジアミンパラジウム((NH3)2PdCl2)に転じて沈殿させることができる。この沈殿を濾別回収してよく洗浄した後に加熱炉に入れ、800℃以上の温度でカ焼すると、スポンジ状のパラジウムを得ることができる。 In addition, palladium remains in the filtrate after precipitation separation of the platinum. By adding an appropriate amount of aqueous ammonia to the filtrate, palladium can be converted to dichlorodiaminepalladium ((NH 3 ) 2 PdCl 2 ) and precipitated. This precipitate is collected by filtration, washed well, placed in a heating furnace, and calcined at a temperature of 800 ° C. or more, whereby sponge-like palladium can be obtained.
本発明の処理方法によれば、セレンテルル白金族含有物を、高温下でアルカリ浸出するアルカリ浸出工程と、苛性ソーダと硝酸ソーダの混合物を加えて溶融(共晶)温度以上に加熱してセレンテルルを溶解処理するアルカリ溶融工程を併用するのでセレンテルルを含む白金族元素をほぼ完全に濃縮回収し精製容易な塩酸性溶液を精製工程に供することができ、セレンテルル白金族含有物から白金族元素とセレンテルルを低コストで、簡便且つ効率的に分離することができる。 According to the treatment method of the present invention, an alkaline leaching step of alkaline leaching of a substance containing platinum from the selentellurium at a high temperature, and a mixture of caustic soda and sodium nitrate are added and heated to a melting (eutectic) temperature or higher to melt the selentellurium. The combined use of the alkali melting step for treatment allows the platinum group element including selentell to be concentrated and recovered almost completely, and a hydrochloric acid solution that is easy to purify can be subjected to the purification step, and the platinum group element and selentellur can be reduced from the selentellur containing platinum group. Separation can be performed simply and efficiently at a low cost.
以下、本発明の実施例および比較例を示す。なお、%は特に示さない限りwt%である。下記実施例に示すように、本発明の処理方法によれば、セレンテルル白金族含有物から白金族元素とセレンテルルを低コストで、簡便且つ効率的に分離することができる。 Hereinafter, Examples and Comparative Examples of the present invention will be described. In addition,% is wt% unless otherwise indicated. As shown in the following examples, according to the treatment method of the present invention, a platinum group element and selentellur can be easily and efficiently separated from a platinum group containing selentellur at low cost.
銅電解スライムの金抽出後液を還元処理して得た還元澱物の蒸留残物(セレン滓蒸留残物:主成分セレン化パラジウム)600gに苛性ソーダ651g、硝酸ソーダ345gを混合して400℃で2時間反応させた。冷却後、ルツボに水15Lを入れて1時間攪拌して濾別し、濾液15Lおよび濾滓348gを得た。この濾液中Se濃度は10.4g/Lであり、蒸留残物中のセレン97.4%が浸出された。また、浸出液にはPtおよびPdは検出されなかった。なお液中の6価Seの割合は10%以下であった。一方、濾滓の成分を分析したところ白金族元素を主成分とし、その濃度はPd44%、Pt5%、Rh0.3%、Ru1.0%であった。
次に、上記還元澱物のテルル滓(Se65%、Te30%、Pd5%、Pt0.5%、Rh0.2%、Ru0.4%)1kgに苛性ソーダ溶液(濃度5モル/L)を10L加えて80℃に保持したところ溶液は濃い紫色になった。これを冷却後に濾過して濾液12.7gと濾滓65gを得た。この濾滓の成分を分析したところ白金族元素を主成分とし、その濃度はPd80%、Pt8%、Rh3%、Ru6%であった。また、濾液中のSe濃度は65g/L、Te濃度は30g/Lであり、白金族元素は検出されなかった
次に、これらの濾滓を混合して3規定濃度の塩酸を加えてリパルプし、液温70℃で過酸化水素を導入して酸化した。これを濾過して得た塩酸性溶液(濾液)中の白金族の濃度はおのおのPd95g/L(95%)、Pt8.5g/L(99%)、Rh3.2g/L(95%)、Ru0.5g/L(95%以上)であった(括弧内は浸出率)。
After the gold extraction of the copper electrolytic slime, 600 g of reduced residue distilled residue (selenium slag distillation residue: palladium selenide as the main component) obtained by subjecting the solution after the gold extraction to 651 g of caustic soda and 345 g of sodium nitrate were mixed at 400 ° C. The reaction was performed for 2 hours. After cooling, 15 L of water was put into the crucible, stirred for 1 hour, and filtered to obtain 15 L of filtrate and 348 g of cake. The Se concentration in this filtrate was 10.4 g / L, and 97.4% of selenium in the distillation residue was leached. Pt and Pd were not detected in the leaching solution. The ratio of hexavalent Se in the liquid was 10% or less. On the other hand, when the components of the filter cake were analyzed, the platinum group element was the main component, and the concentrations were 44% Pd, 5% Pt, 0.3% Rh, and 1.0% Ru.
Next, 10 L of caustic soda solution (concentration: 5 mol / L) was added to 1 kg of the above-mentioned reduced sediment tellurium residue (Se 65%, Te 30%, Pd 5%, Pt 0.5%, Rh 0.2%, Ru 0.4%). The solution turned dark purple when kept at 80 ° C. After cooling, the mixture was filtered to obtain 12.7 g of filtrate and 65 g of filter cake. Analysis of the components of the filter cake revealed that the platinum group element was the main component, and the concentrations were 80% Pd, 8% Pt, 3% Rh, and 6% Ru. In addition, the Se concentration in the filtrate was 65 g / L and the Te concentration was 30 g / L, and no platinum group element was detected. Next, these filter cakes were mixed, and 3 N hydrochloric acid was added thereto to repulp. The solution was oxidized by introducing hydrogen peroxide at a liquid temperature of 70 ° C. The concentration of platinum group in the hydrochloric acid solution (filtrate) obtained by filtration was 95 g / L (95%) of Pd, 8.5 g / L (99%) of Pt, 3.2 g / L (95%) of Rh, and Ru0. It was 0.5 g / L (95% or more) (leaching rate in parentheses).
苛性ソーダ609gと硝酸ソーダ432gとを用いた他は実施例1と同様にして、セレン滓蒸留残物600gを加熱下でアルカリ溶融し、この溶融物を水浸出して濾過した。この濾液中のセレン浸出率は98.2%であった。濾液には白金およびパラジウムは検出されなかった。また濾液中の6価セレンの割合は10%以下であった。また、濾滓の成分を分析したところ白金族元素を主成分とし、その濃度はPd45%、Pt5%、Rh1%、Ru2%であった。
次に、上記還元澱物のテルル滓1kgに苛性ソーダ溶液(濃度5モル/L)を10L加えて80℃に保持したところ溶液は濃い紫色になった。これを冷却後に濾過して濾液12.7gと濾滓65gを回収した。この濾液中のSe濃度は65g/L、Te濃度は30g/Lであり、白金族元素は検出されなかった。一方、濾滓の成分を分析したところ白金族元素を主成分とし、その濃度はPd80%、Pt8%、Rh3%、Ru6%であった。
次に、これらの濾滓を混合して塩酸2L、水500mlを加えてリパルプし、液温を70℃に保ちながら、過酸化水素360mlを徐々に添加して酸化した。過酸化水素の添加後に冷却し、濾過した濾液中の白金族の濃度はおのおのPd81g/L、Pt7g/L、Rh2.1g/L、Ru2.4g/Lであった。
In the same manner as in Example 1 except that 609 g of caustic soda and 432 g of sodium nitrate were used, 600 g of a selenium slag residue was subjected to alkali melting under heating, and the melt was leached with water and filtered. The selenium leaching rate in this filtrate was 98.2%. No platinum or palladium was detected in the filtrate. The ratio of hexavalent selenium in the filtrate was 10% or less. Further, the components of the filter cake were analyzed, and as a result, the platinum group element was the main component, and the concentrations were Pd 45%, Pt 5%, Rh 1%, and Ru 2%.
Next, 10 L of a caustic soda solution (concentration of 5 mol / L) was added to 1 kg of the reduced residue tellurium slag, and the solution was kept at 80 ° C., and the solution turned deep purple. After cooling, the mixture was filtered and 12.7 g of filtrate and 65 g of filter cake were recovered. The Se concentration in the filtrate was 65 g / L, the Te concentration was 30 g / L, and no platinum group element was detected. On the other hand, when the components of the filter cake were analyzed, the platinum group element was the main component, and the concentrations were 80% Pd, 8% Pt, 3% Rh, and 6% Ru.
Next, these filter cakes were mixed, 2 L of hydrochloric acid and 500 ml of water were added to repulp, and 360 ml of hydrogen peroxide was gradually added while maintaining the liquid temperature at 70 ° C. to oxidize. After the addition of hydrogen peroxide, the mixture was cooled and filtered. The filtrates had a platinum group concentration of 81 g / L Pd, 7 g / L Pt, 2.1 g / L Rh, and 2.4 g / L Ru, respectively.
実施例1のアルカリ浸出で得た浸出液(濾液)を80℃に保ち、硫酸を加えて中和していくと黒色沈殿が生じ始め、pH7付近で液が透明になった。この沈殿を濾別して回収し、成分を分析したところ金属セレン68%、金属テルル31%であった。 The leachate (filtrate) obtained by the alkaline leaching of Example 1 was kept at 80 ° C. and neutralized by adding sulfuric acid. As a result, a black precipitate began to form, and the solution became transparent at around pH 7. The precipitate was collected by filtration, and the components were analyzed. As a result, it was found that selenium metal was 68% and metal tellurium was 31%.
実施例3において、硫酸の代わりに塩酸を用いる他は同様にして実施例3と同等品位の金属セレンおよび金属テルルを得た。 In the same manner as in Example 3, except that hydrochloric acid was used instead of sulfuric acid, metal selenium and tellurium of the same grade as in Example 3 were obtained.
〔比較例1〕
実施例1においてセレン蒸留残と同様にテルル滓1kgに苛性ソーダ1085g、硝酸ソーダ575gを混合して400℃で2時間反応させた。冷却後ルツボに水25Lを入れ1時間攪拌して濾別すると、濾液中にSeが97.4%、Teが98.1%浸出された。この濾液にはPtおよびPdは検出されなかった。これらの濾滓を混合して3規定濃度の塩酸でリバルプし、液温70℃で過酸化水素を導入して酸化した。これを濾過して得た塩酸性溶液(濾液)中の白金族の濃度と浸出率はPd95g/L(95%)、Pt8.5g/L(95%)、Rh1.3g/L(39%)、Ru1.5g/L(14%)であり(括弧内は浸出率)、実施例1に比較してRhおよびRuの浸出率が大幅に低下した。
[Comparative Example 1]
In the same manner as in Example 1, 1085 g of sodium hydroxide and 575 g of sodium nitrate were mixed with 1 kg of tellurium slag in the same manner as in the selenium distillation residue, and reacted at 400 ° C. for 2 hours. After cooling, 25 L of water was placed in the crucible, stirred for 1 hour, and filtered, whereby 97.4% of Se and 98.1% of Te were leached out of the filtrate. Pt and Pd were not detected in the filtrate. These filter cakes were mixed, revalped with hydrochloric acid of 3N concentration, and oxidized at a liquid temperature of 70 ° C. by introducing hydrogen peroxide. The platinum group concentration and leaching rate in the hydrochloric acid solution (filtrate) obtained by filtering this were Pd 95 g / L (95%), Pt 8.5 g / L (95%), Rh 1.3 g / L (39%). , Ru 1.5 g / L (14%) (leaching rate in parentheses), and the leaching rates of Rh and Ru were significantly lower than those in Example 1.
〔比較例2〕
実施例1のセレン滓蒸留残物をアルカリ溶融するのに代えて、該セレン滓残留物1kgに5モル/Lの苛性ソーダ溶液10Lを加えて80℃に保持したが、セレンは殆ど溶出しなかった。
[Comparative Example 2]
Instead of alkali melting the selenium slag residue from Example 1, 10 L of a 5 mol / L caustic soda solution was added to 1 kg of the selenium slag residue, and the mixture was kept at 80 ° C., but selenium hardly eluted. .
Claims (10)
In the treatment step of claim 9, ammonia is added to the filtrate from which ammonium chloroplatinate has been separated to precipitate dichlorodiaminepalladium, which is collected by filtration, washed, and then heated to 800 ° C or higher to form a sponge-like high-palladium. A treatment method including a step of obtaining pure palladium.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2003396812A JP4281534B2 (en) | 2002-11-29 | 2003-11-27 | Treatment method for platinum group-containing materials |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2002347546 | 2002-11-29 | ||
| JP2003396812A JP4281534B2 (en) | 2002-11-29 | 2003-11-27 | Treatment method for platinum group-containing materials |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2004190133A true JP2004190133A (en) | 2004-07-08 |
| JP4281534B2 JP4281534B2 (en) | 2009-06-17 |
Family
ID=32774909
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2003396812A Expired - Fee Related JP4281534B2 (en) | 2002-11-29 | 2003-11-27 | Treatment method for platinum group-containing materials |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP4281534B2 (en) |
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2009179880A (en) * | 2008-01-30 | 2009-08-13 | Wc Heraeus Gmbh | Process for the recovery of ruthenium from material containing ruthenium or ruthenium oxide or from ruthenium-containing noble metal ore concentrate |
| JP2010222612A (en) * | 2009-03-20 | 2010-10-07 | Mitsubishi Materials Corp | Refining method for refining and recovering ruthenium |
| JP2010222611A (en) * | 2009-03-20 | 2010-10-07 | Mitsubishi Materials Corp | Method for separating ruthenium |
| JP2018040021A (en) * | 2016-09-05 | 2018-03-15 | 三菱マテリアル株式会社 | Separation recovery method of tellurium |
| JP2018062685A (en) * | 2016-10-12 | 2018-04-19 | 三菱マテリアル株式会社 | Separation recovery method for selenium, tellurium and platinum group element |
| CN111377416A (en) * | 2018-12-27 | 2020-07-07 | 汉能新材料科技有限公司 | Method for recovering selenium from copper indium gallium selenium waste |
| CN114921658A (en) * | 2022-05-13 | 2022-08-19 | 广东先导稀材股份有限公司 | A kind of recovery method of insoluble precious metal |
-
2003
- 2003-11-27 JP JP2003396812A patent/JP4281534B2/en not_active Expired - Fee Related
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2009179880A (en) * | 2008-01-30 | 2009-08-13 | Wc Heraeus Gmbh | Process for the recovery of ruthenium from material containing ruthenium or ruthenium oxide or from ruthenium-containing noble metal ore concentrate |
| TWI402354B (en) * | 2008-01-30 | 2013-07-21 | Heraeus Gmbh W C | Processes for the recovery of ruthenium from materials containing ruthenium or ruthenium oxides or from ruthenium-containing noble metal ore concentrates |
| JP2010222612A (en) * | 2009-03-20 | 2010-10-07 | Mitsubishi Materials Corp | Refining method for refining and recovering ruthenium |
| JP2010222611A (en) * | 2009-03-20 | 2010-10-07 | Mitsubishi Materials Corp | Method for separating ruthenium |
| JP2018040021A (en) * | 2016-09-05 | 2018-03-15 | 三菱マテリアル株式会社 | Separation recovery method of tellurium |
| JP2018062685A (en) * | 2016-10-12 | 2018-04-19 | 三菱マテリアル株式会社 | Separation recovery method for selenium, tellurium and platinum group element |
| CN111377416A (en) * | 2018-12-27 | 2020-07-07 | 汉能新材料科技有限公司 | Method for recovering selenium from copper indium gallium selenium waste |
| CN114921658A (en) * | 2022-05-13 | 2022-08-19 | 广东先导稀材股份有限公司 | A kind of recovery method of insoluble precious metal |
Also Published As
| Publication number | Publication date |
|---|---|
| JP4281534B2 (en) | 2009-06-17 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| KR100956050B1 (en) | Platinum Group Element Separation Method | |
| JP3879126B2 (en) | Precious metal smelting method | |
| JP5132226B2 (en) | Ruthenium recovery method | |
| JP4207959B2 (en) | Method for separating and purifying high-purity silver chloride and method for producing high-purity silver using the same | |
| JP6810887B2 (en) | Separation and recovery methods for selenium, tellurium, and platinum group elements | |
| EP1577408B2 (en) | Method for separating platinum group elements from selenum/tellurium bearing materials | |
| JP4016680B2 (en) | Method for dissolving selenium platinum group element-containing material | |
| JP4269693B2 (en) | Process for treating selenium mixture | |
| JP4158706B2 (en) | Processing method and manufacturing method for separating gold from platinum group-containing solution | |
| JP4281534B2 (en) | Treatment method for platinum group-containing materials | |
| JP2020105587A (en) | Treatment method of acidic solution containing noble metal, selenium and tellurium | |
| JP3975901B2 (en) | Iridium separation and purification method | |
| GB2358874A (en) | Obtaining ultra-pure silver from crude silver halide matrix | |
| JP4269586B2 (en) | Methods for separating platinum group elements | |
| JP4134613B2 (en) | Purification method for selenium, etc. | |
| JP4470749B2 (en) | Rhodium recovery method and metal rhodium production method | |
| JP7247050B2 (en) | Method for treating selenosulfuric acid solution | |
| JP6264566B2 (en) | Method for producing leaching product liquid containing platinum group element | |
| RU2200132C1 (en) | Method of recovering and separating platinum-group metals | |
| JP6708065B2 (en) | Tellurium separation and recovery method | |
| JP2021025069A (en) | Method of treating seleno sulfate solution | |
| JP2019189891A (en) | Method for separating selenium and tellurium from mixture containing selenium and tellurium | |
| JPS646254B2 (en) | ||
| JP5413564B2 (en) | Method for separating copper from aqueous solution containing rhodium and copper | |
| JP2937184B1 (en) | How to remove platinum and palladium |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060331 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080611 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080624 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080822 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090224 |
|
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090309 |
|
| R150 | Certificate of patent or registration of utility model |
Ref document number: 4281534 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120327 Year of fee payment: 3 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120327 Year of fee payment: 3 |
|
| S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120327 Year of fee payment: 3 |
|
| R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120327 Year of fee payment: 3 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130327 Year of fee payment: 4 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140327 Year of fee payment: 5 |
|
| LAPS | Cancellation because of no payment of annual fees |