[go: up one dir, main page]

JP2004191893A - 撮像装置 - Google Patents

撮像装置 Download PDF

Info

Publication number
JP2004191893A
JP2004191893A JP2002363117A JP2002363117A JP2004191893A JP 2004191893 A JP2004191893 A JP 2004191893A JP 2002363117 A JP2002363117 A JP 2002363117A JP 2002363117 A JP2002363117 A JP 2002363117A JP 2004191893 A JP2004191893 A JP 2004191893A
Authority
JP
Japan
Prior art keywords
image
imaging
image sensor
lens
pixels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002363117A
Other languages
English (en)
Other versions
JP2004191893A5 (ja
Inventor
Yasuo Suda
康夫 須田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2002363117A priority Critical patent/JP2004191893A/ja
Priority to US10/733,421 priority patent/US7233359B2/en
Publication of JP2004191893A publication Critical patent/JP2004191893A/ja
Publication of JP2004191893A5 publication Critical patent/JP2004191893A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/703SSIS architectures incorporating pixels for producing signals other than image signals
    • H04N25/704Pixels specially adapted for focusing, e.g. phase difference pixel sets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • H04N23/672Focus control based on electronic image sensor signals based on the phase difference signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Focusing (AREA)
  • Studio Devices (AREA)
  • Automatic Focus Adjustment (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

【課題】焦点検出性能と高精細かつ高品位な画質を両立させた撮像装置を実現する。
【解決手段】複数の画素を有する撮像素子106と、撮像素子の複数の画素のうちの所定数の画素毎に1つずつ対応する複数の光学要素156cを有する光学要素アレイ156と、複数の光学要素毎に、光学要素を通過した光から1組の焦点検出用信号を画素173−2,173−3で生成し、光学要素毎に1組ずつ生成された焦点検出用信号に基づいて焦点合わせを行なう焦点合わせ装置とを備える。
【選択図】 図6

Description

【0001】
【発明の属する技術分野】
本発明は撮像装置に関し、詳しくは、撮像素子による撮像機能に加えて焦点検出機能を有した撮像装置に関する。
【0002】
【従来の技術】
デジタルカメラでは、レリーズボタンの押下に応動して、CCDやCMOSセンサなどの撮像素子に被写界像を所望の時間露光し、これより得られた1つの画面の静止画像を表わす画像信号をデジタル信号に変換して、YC処理などの所定の処理を施して、所定の形式の画像信号を得る。撮像された画像を表わすデジタルの画像信号は、それぞれの画像毎に、半導体メモリに記録される。記録された画像信号は、随時読み出されて表示または印刷可能な信号に再生され、また、ディスプレイ装置などに出力されて表示される。
【0003】
従来よりデジタルカメラでは撮像素子の出力を利用して焦点検出を行っているが、ここではコントラスト検出方式の焦点検出が用いられている。コントラスト検出方式の焦点調節とは撮像光学系によって形成された物体像の鮮鋭度を撮像素子の出力を所定の関数で評価することによって求め、関数値が極値をとるように撮像光学系の光軸上位置を調節するものである。
【0004】
評価関数としては、隣接する輝度信号の差の絶対値を焦点検出領域内で加算するものや、隣接する輝度信号の差の2乗を焦点検出領域内で加算するもの、あるいはR、G、Bの各画像信号について隣接する信号の差を同様に処理するもの等がある。
【0005】
【特許文献1】
特開2001−215406号公報
【特許文献2】
USP4410804号公報
【特許文献3】
特開平07−168125号公報
【特許文献4】
特開平11−119089号公報
【発明が解決しようとする課題】
一般に、このようなコントラスト検出方式の焦点検出においては、撮像光学系の光軸上位置を僅かに移動させながら評価関数値を求めていくために、合焦するまでの焦点調節にかなりの時間を要するという問題がある。
【0006】
特開2001−215406号公報は、合焦制御における方向判定を高速化するために、撮像素子の光検出面に段差をもたせた構成を開示している。すなわち、光路長を微小距離だけ異ならせて複数の画像信号を収集し、該収集された画像信号に基づき合焦方向を判定し、判定された合焦方向に向かって撮像レンズを合焦位置まで移動させるものである。しかしながら、短光路長の画素と長光路長の画素とが混在するために高品の高い画像を得るための装置には適合しない。また、短光路長の画素と長光路長の画素との光路長差を短くすれば、画質は向上するが、今度は、合焦制御における方向判定がし難くなり、高速な合焦制御と画質を両立させることはできない。
【0007】
一方、USP4410804号公報に開示されているように、一組あるいは二組の受光部を2次元的に配列したマイクロレンズアレイ毎に設け、このマイクロレンズによって受光部を撮像光学系の瞳に投影することで瞳を分割する、いわゆる位相差検出方式の焦点検出装置を組み込んだ撮像装置もある。位相差検出方式とは撮像光学系の瞳の異なる部分を通過した2光束を用いて物体像をそれぞれ形成し、二つの物体像間の位置的位相差を撮像素子の出力に基づいて検出し、これを撮像光学系のデフォーカス量に換算するものである。
【0008】
位相差検出方式の焦点検出ではデフォーカス量を求めることができるので、コントラスト検出方式に比して合焦するまでの時間を大幅に短縮することができるという利点がある。
【0009】
しかしながら、USP4410804号公報に開示されている構造の撮像素子にあっては、撮像光学系の瞳の一部分を通った光束で形成される一組あるいは二組の画像が出力されるために、これらを物体像の撮像性能という視点で評価した場合には、極めて低品位の画像となる。これは、特にピントが合っていない背景や前景において、偏心した光束による不自然な像のボケが生じることが主な原因である。
【0010】
このような不自然なボケを解消するためには、瞳の一部分を使って形成された一組あるいは二組の画像を合成し、擬似的に撮像光学系の瞳の全光束を使った画像を得る方法がある。しかし、撮像素子から出力された後の信号を合成するために撮像素子内外のアンプによるノイズレベルが高く、元々撮像光学系の瞳の全光束を使った画像を得るように設計された撮像素子で得られるのと同レベルのS/N的に優れた高品位画像を得ることは難しい。
【0011】
特開平07−168125号公報は、撮像素子のマイクロレンズと光検出面の間に複数の画素を持つ液晶空間光変調器を備え、三次元イメージを形成する構成を開示している。撮像素子のマイクロレンズと受光部との間の位置において光路を遮る空間光変調器と、空間光変調器のあるセグメントのみを選択的に透過させる制御回路を有し、空間光変調器がシャッターとして作用する。
【0012】
このような構成は、撮影レンズの瞳の一部分を通過した光束による画像と、全光束によって形成された画像とが切り替え可能であることを示唆するが、液晶層と偏光子で構成した空間光変調器で光の吸収を生じるために、十分に明るい物体しか捉えることができないといった問題がある。
【0013】
また、特開平11−119089号公報には、一眼レフカメラのミラーボックス内で再結像光学系を進退させ、単一の撮像素子を撮像のためだけでなく焦点検出にも利用する技術が開示されている。この技術によれば、位相差検出方式による高速なピント調節が可能となるが、大型の再結像光学系を高速に移動させるために、大きな退避スペースと多くのエネルギーが必要であって、撮像機器が大型化せざるを得ないと言う欠点がある。
【0014】
本発明は、このような従来の問題点に鑑みてなされたものであり、その目的は、焦点検出性能と高精細かつ高品位な画質を両立させた撮像装置を実現することである。
【0015】
また、本発明の他の目的は、単一の撮像素子で焦点検出動作と画像のディスプレイとを並行して行うことができる撮像装置を実現することである。
【0016】
また、本発明のさらに他の目的は、撮像装置の小型化を実現することである。
【0017】
【課題を解決するための手段】
上述した課題を解決し、目的を達成するために、本発明に係わる撮像装置は、複数の画素を有する撮像素子と、該撮像素子の複数の画素のうちの所定数の画素毎に1つずつ対応する複数の光学要素を有する光学要素アレイと、前記複数の光学要素毎に、該光学要素を通過した光から1組の焦点検出用信号を前記画素で生成し、前記光学要素毎に1組ずつ生成された焦点検出用信号に基づいて焦点合わせを行なう焦点合わせ手段とを備えることを特徴としている。
【0018】
【発明の実施の形態】
以下、本発明の好適な実施形態について説明する。
【0019】
まず、本実施形態の概要について説明する。
【0020】
本実施形態の撮像装置は、複数の画素を配列した撮像素子を備えた撮像装置であって、該撮像素子の複数の画素を包含する複数の光学要素が並列配置された光学要素アレイを有し、該光学要素アレイの複数の光学要素毎に該光学要素を介して受光した光束による一組の撮像素子信号出力を得て、該信号出力に基づいて焦点検出信号を生成する。
【0021】
この構成において、光学要素アレイの複数の光学要素毎に光学要素を介して受光した光束による一組の撮像素子信号出力を得て、この信号出力に基づいて焦点検出信号を生成するように構成したので、単一の撮像素子を用いながらも高い焦点検出性能と高精細かつ高品位な画質の両方を満たすことができ、さらには、小型の撮像装置を実現することが可能である。
【0022】
また、本実施形態の撮像装置は、複数の画素を配列した撮像素子を備えた撮像装置であって、該撮像素子の複数の画素を包含する複数の光学要素よりなる光学要素アレイを透して受光する際、該光学要素アレイに形成された複数の光学要素の間隙を通して受光する画素の出力に基づいて画像信号を形成する。
【0023】
この構成において、光学要素アレイに形成された複数の光学要素の間隙を通して受光する画素の出力に基づいて画像信号を形成するように構成したので、撮影画像をモニタするためのディスプレイ動作と焦点検出動作とを並行して行うことができる。
【0024】
また、本実施形態では、前記光学要素アレイは複数の再結像光学系を並列配置して成る。
【0025】
この構成において、光学要素アレイに複数の再結像光学系を並列配置したので、位相差検出方式による高速な焦点検出が実現でき、しかも光学要素アレイが小型であるために多くの機構スペースを必要とせず、光学要素アレイを退避させた時には撮像素子が持っている画素を全て使った状態での高い撮像画質を得ることができる。
【0026】
また、本実施形態では、前記撮像素子が前記撮像素子の複数の画素を包含する複数の光学要素よりなる光学要素アレイを透さずに受光する第1の光学構成の状態と、前記撮像素子が該光学要素アレイを透して受光する第2の光学構成の状態とを切り換え可能とした。
【0027】
この構成において、第1の光学構成の状態と第2の光学構成の状態とを切り換え可能としたので、単一の撮像素子を用いながら焦点検出性能と画質を両立させた撮像装置を実現することができる。
【0028】
また、本実施形態では、前記撮像素子上に物体像を形成する結像光学系の結像状態に応じて信号出力が変化する一組の撮像素子信号出力値配列を用いて焦点検出信号を生成する。
【0029】
この構成において、撮像素子上に物体像を形成する結像光学系の結像状態に応じて信号出力が変化する一組の撮像素子信号出力値配列を用いて焦点検出信号を生成するように構成したので、位相差検出方式による高速な焦点検出を実現することができる。
また、本実施形態では、前記撮像素子の複数の画素のうち離散的に位置する複数の画素の出力値を連結して得た信号出力値配列を用いて焦点検出信号を形成する。
【0030】
この構成において、撮像素子の複数の画素のうち離散的に位置する複数の画素の出力値を連結して得た信号出力値配列を用いて焦点検出信号を形成するように構成したので、焦点検出のための機構を小型化しながらも、十分な大きさの焦点検出視野を備えることによる高い焦点検出性能を得ることができる。
【0031】
以下、本発明の実施形態について、具体的に説明する。
【0032】
(第1の実施形態)
図1は本発明の第1の実施形態に係わる撮像装置を搭載した撮像機器であるデジタルカラーカメラの概略構成を示す図である。本カメラは、CCDあるいはCMOSセンサなどの撮像素子を用いた単板式のデジタルカラーカメラであり、撮像素子を連続的または単発的に駆動して動画像または静止画像を表わす画像信号を得る。ここで、撮像素子は、露光した光を各画素毎に電気信号に変換してその光量に応じた電荷をそれぞれ蓄積し、その電荷を読み出すタイプのエリアセンサである。
【0033】
図1において、101はカメラ本体、102は内部に結像光学系103を有した取り外し可能な撮影レンズである。撮影レンズ102は、公知のマウントを介してカメラ本体101に電気的、機械的に接続されている。焦点距離の異なる撮影レンズに交換することによって、様々な画角の撮影画面を得ることが可能である。また、撮影レンズ102は不図示の駆動機構を有し、結像光学系103の一部の要素であるフォーカシングレンズを光軸L1に沿って移動させることや、フォーカシングレンズを柔軟性のある透明弾性部材や液体レンズで構成し、界面形状を変化させ屈折力を変えることで、物体に対するピント合わせを行う。
【0034】
106は撮像素子である。結像光学系103から撮像素子106に至る光路中には、撮像素子106上に必要以上に高い物体像の空間周波数成分が形成されないように結像光学系103のカットオフ周波数を制限する光学ローパスフィルター(不図示)が設けられている。また、結像光学系103には赤外線カットフィルターも配置されている。
【0035】
撮像素子106の受光面の直前には、レンズアレイプレート156が進退可能に配設され、後述するリニア超音波モータとともに外部からの塵や湿気の進入無く有効に光を取り込むことができるパッケージ104に収められている。レンズアレイプレート156は、撮像素子106の前に挿入されたときに、撮像素子106の全面を覆う大きさを有する。なお、レンズアレイプレート156は、光学要素アレイと呼ぶこともできる。
【0036】
撮像素子106で捉えられた物体像はディスプレイ装置107上に表示される。ディスプレイ装置107は有機EL空間変調素子や液晶空間変調素子、微粒子の電気泳動を利用した空間変調素子、あるいはデジタルマイクロミラーデバイスなどで構成すると消費電力が小さく都合が良い。
【0037】
撮像素子106は、増幅型固体撮像素子の1つであるCMOSプロセスコンパチブルのセンサ(以降CMOSセンサと略す)である。CMOSセンサの特長の1つに、エリアセンサ部のMOSトランジスタと周辺回路のMOSトランジスタを同一工程で形成できるため、マスク枚数、プロセス工程がCCDと比較して大幅に削減できるということが挙げられる。また、任意の画素へのランダムアクセスが可能といった特長を有し、焦点検出視野に限定した信号の読み出しや、ディスプレイ用に間引いた信号読み出しが容易である。
【0038】
撮像素子106は、この特長を利用し、焦点検出動作、ディスプレイ画像出力動作、高精彩画像出力動作を行う。
【0039】
108、109はディスプレイ装置107を観察するための凹レンズと凸レンズであって、総合的に正のパワーを有し、これらはファインダー光学系を構成する。凸レンズ109をファインダー光軸L2に沿って移動させることにより視度を調節し、観察者に対して適切なディスプレイ装置107の見え具合を提供することができる。
【0040】
119はメインスイッチ、120はレリーズボタンである。
【0041】
図2はデジタルカラーカメラの電気的構成を示すブロック図である。
【0042】
まず、カメラの撮像、記録に関する部分から説明する。カメラは、撮像系、画像処理系、記録再生系、制御系を有する。撮像系は、結像光学系103、撮像素子106を含み、画像処理系は、A/D 変換器130、RGB画像処理回路131、およびYC処理回路132を含む。また、記録再生系は、記録処理回路133および再生処理回路134 を含み、制御系は、カメラシステム制御回路135、操作検出回路136および撮像素子駆動回路137を含む。138は外部のコンピュータ等に接続して、データの送受信をするための規格化された接続端子である。これらの電気回路は不図示の小型燃料電池によって駆動される。
【0043】
撮像系は、物体からの光を結像光学系103を介して撮像素子106の撮像面に結像する光学処理系であり、撮影レンズ102の不図示の絞りと、必要に応じてさらに不図示のメカニカルシャッターを調節し、適切な光量の物体像を撮像素子106に露光する。撮像素子106は、正方形画素が長辺方向に3700個、短辺方向にそれぞれ2800個の合計約1000万個の画素数を有する撮像素子が適用されて、各画素にR(赤色)、G(緑色)、B(青色)のカラーフィルターを交互に配して、図11に示すように4画素が一組となる所謂ベイヤー配列を形成している。
【0044】
ベイヤー配列では、観察者が画像を見たときに強く感じやすいGの画素をRやBの画素よりも多く配置することで、総合的な画像性能を上げている。一般に、この方式の撮像素子を用いる画像処理では、輝度信号は主にGから生成し、色信号はR,G,Bから生成する。
【0045】
撮像素子106から読み出された画像信号は、それぞれA/D変換器130を介して画像処理系に供給される。A/D 変換器130 は、露光した各画素の信号の振幅に応じた、たとえば10ビットのデジタル信号に変換して出力する信号変換回路であり、以降の画像信号処理はデジタル処理にて実行される。
【0046】
画像処理系は、R,G,B のデジタル信号から所望の形式の画像信号を得る信号処理回路であり、R,G,B の色信号を輝度信号Yおよび色差信号(R−Y),(B−Y) にて表わされるYC信号などに変換する。
【0047】
RGB画像処理回路131 は、A/D 変換器130を介して撮像素子106から受けた3700×2800画素の画像信号を処理する信号処理回路であり、ホワイトバランス回路、ガンマ補正回路、補間演算による高解像度化を行う補間演算回路を有する。
【0048】
YC処理回路132は、輝度信号Yおよび色差信号R−Y,B−Y を生成する信号処理回路である。高域輝度信号YHを生成する高域輝度信号発生回路、低域輝度信号YLを生成する低域輝度信号発生回路、および、色差信号R−Y,B−Y を生成する色差信号発生回路で構成されている。輝度信号Yは高域輝度信号YHと低域輝度信号YLを合成することによって形成される。
【0049】
記録再生系は、メモリへの画像信号の出力と、ディスプレイ装置107への画像信号の出力とを行う処理系であり、記録処理回路133はメモリへの画像信号の書き込み処理および読み出し処理を行ない、再生処理回路134 はメモリから読み出された画像信号を再生して、ディスプレイ装置107に出力する。
【0050】
記録処理回路133は、静止画像および動画像を表わすYC信号を所定の圧縮形式にて圧縮し、また、圧縮データを読み出した際に伸張する圧縮伸張回路を内部に有する。圧縮伸張回路は、信号処理のためのフレームメモリなどを含み、このフレームメモリに画像処理系からのYC信号をフレーム毎に蓄積して、それぞれ複数のブロック毎に読み出して圧縮符号化する。圧縮符号化は、たとえば、ブロック毎の画像信号を2次元直交変換、正規化およびハフマン符号化することにより行なわれる。
【0051】
再生処理回路134は、輝度信号Y および色差信号R−Y,B−Y をマトリックス変換して、例えばRGB 信号に変換する回路である。再生処理回路134によって変換された信号はディスプレイ装置107に出力され、可視画像が表示再生される。再生処理回路134とディスプレイ装置107の間はBluetoothなどの無線通信手段を介して接続されてもよく、このように構成すれば、このデジタルカラーカメラで撮像する画像を離れたところからモニタすることができる。
【0052】
一方、制御系は、レリーズボタン120等の操作を検出する操作検出回路136と、その検出信号に応動してレンズアレイプレート156の位置を含む各部を制御し、撮像の際のタイミング信号などを生成して出力するカメラシステム制御回路135と、このカメラシステム制御回路135の制御の下に撮像素子106を駆動する駆動信号を生成する撮像素子駆動回路137とを含む。
【0053】
制御系は、外部操作に応動して撮像系、画像処理系、記録再生系をそれぞれ制御し、例えば、レリーズボタン120の押下を検出して、撮像素子106の駆動、RGB画像処理回路131の動作、記録処理回路133の圧縮処理などを制御する。
【0054】
次に、焦点調節に関する部分について説明する。カメラシステム制御回路135にはさらにAF制御回路140とレンズシステム制御回路141が接続されている。これらはカメラシステム制御回路135を中心にして各々の処理に必要とされるデータを相互に通信している。
【0055】
AF制御回路140は撮影画面上の任意の位置に設定された焦点検出視野での撮像素子信号出力を得て、この信号出力に基づいて焦点検出信号を生成し、結像状態を検出する。デフォーカスが検出されると、これを結像光学系103の一部の要素であるフォーカシングレンズの駆動量に変換し、カメラシステム制御回路135を中継してレンズシステム制御回路141に送信する。また、移動する物体に対しては、レリーズボタン120が押下されてから実際の撮像制御が開始されるまでのタイムラグを勘案し、適切なレンズ位置を予測した結果によるフォーカシングレンズ駆動量を指示する。物体の輝度が低く十分な焦点検出精度が得られないと判定されるときには、物体を不図示の白色LEDや蛍光管によって照明する。
【0056】
レンズシステム制御回路141はフォーカシングレンズの駆動量を受信すると、撮影レンズ102の不図示の駆動機構によってフォーカシングレンズを光軸L1に沿って移動させるなどの動作によって、物体にピントを合わせる。
【0057】
また、AF制御回路140によって、物体にピントが合ったことが検出されると、この情報はカメラシステム制御回路135に伝えられる。このとき、レリーズボタン120が押下されれば、前述のごとく撮像系、画像処理系、記録再生系による撮像制御が成される。
【0058】
図3は第1の実施形態における撮像装置の部分構成を示す斜視図である。
【0059】
撮像装置には、撮像素子106とリニア超音波モータで駆動されるレンズアレイプレート156および画像信号や焦点検出信号を生成する電気回路を含み、このうち撮像素子106とレンズアレイプレート156は、前述のように光を取り込む窓を有するパッケージ104に収納されている。
【0060】
リニア超音波モータは、レンズアレイプレート156を撮像素子106上から進退させて、結像光学系103からの光束を直接的に撮像素子106に入射させる第1の光学構成の状態と、レンズアレイプレート156を透過させてから撮像素子106に入射させる第2の光学構成の状態とを切り替える。第1の光学構成の状態は大型のプリントなどに好適な高精細な画像を生成するために、第2の光学構成の状態は焦点検出のための信号とディスプレイ用の比較的データ量の少ない画像信号を生成するためにそれぞれ用いられる。レンズアレイプレート156は撮像素子106の前面を覆う大きさの薄板であるので、極めて小型の撮像装置を実現することができる。また、撮像素子106そのものには、特殊な構造を必要としないので、極めて入手しやすく安価である。
【0061】
リニア超音波モータの構成は、基板151上に直方体のセラミックからなる圧電振動体152a,152bが平行に配置され、圧電振動体152a,152b上には、金属体の振動体153a,153bが、圧電振動体152a,152bの下には電極154a,154bが圧電振動体152a,152bに平行に重なるようにそれぞれ密着して取り付けられている。また、振動体153a,153bにまたがって、レンズアレイプレート156の支持部材としての役割を果たすポリフェニレンサルファイト樹脂質の可動部155が、振動体153a,153bの長手方向のみに直線移動できるように支持されている。さらに、この可動部155は振動体153a,153bからずれることがないように、可動部155の両端が振動体153a,153b側へ鍵状に折れ曲がっている。
【0062】
撮像素子106は、基板151上の圧電振動体152a,152bに挟まれる位置に配置され、可動部155で支えられたレンズアレイプレート156と撮像素子106とが数μmから数100μmの距離を隔てて対峙するようになっている。
【0063】
以上のように構成された撮像装置のレンズアレイプレート駆動動作を説明する。
【0064】
図4は動作中のリニア超音波モータの振動体と可動部の接触面を示す斜視図である。
【0065】
圧電振動体152は数極に分かれて分極されており、分極方向を交互に逆にしながら配置されている。圧電振動体152に密着接合された電極154と振動体153に電圧を印加すると、分極方向の違いによって、圧電振動体152内部に歪みが発生して、振動体153にこの歪みが伝わる。この動作を歪みの方向を変えつつ連続して行うと振動体153に振動を発生させ、進行波及び超音波振動158a,158bを励起させる。この超音波振動158a,158bが駆動力源となり、摩擦力を介して可動部155を移動させる。このとき、進行波の移動方向と超音波振動158a,158bの回転方向が逆向きであるので、可動部155は進行波の移動方向とは逆向きに移動する。
【0066】
一般に、リニア超音波モータは高トルクを有するので高速応答性があり、可動部155に支持されたレンズアレイプレート156の移動を高速に効率良く行うことができる。
【0067】
このように構成されたデジタルカラーカメラの主な撮影シーケンスを以下に示す。
(1)メインスイッチ119をオンにする。
(2)カメラシステム制御回路135がレンズアレイプレート156の位置を制御して第2の光学構成の状態を設定する。
(3)撮像系、画像処理系、記録再生系により、ディスプレイ装置107にモニタ画像を表示する。
(4)撮像系、AF制御回路140及びレンズシステム制御回路141は結像光学系のフォーカシングレンズを制御して、ピント合わせを行う。
(5)操作検出回路136がレリーズボタン120の押下を検出すると、カメラシステム制御回路135はレンズアレイプレート156の位置を制御して第1の光学構成の状態に切り換える。
(6)撮像系、画像処理系は高精彩画像の取り込みを行う。
(7)(2)に戻る。
【0068】
上記構成と以上のような撮影シーケンスによれば、焦点調節と撮像画像のディスプレイ装置でのモニタ、および、高精彩画像の撮像を単一の撮像素子からの信号で可能にし、しかも、位相差検出方式による高速な焦点調節と、画像モニタでの光学像との被写界深度の同一性や小さいタイムラグ、さらには滑らかな動画像表示を同時に得ることができる。
【0069】
次に、撮像素子106の構造について述べる。
【0070】
図5は撮像素子106の断面図であって、断面方向は画素配列を斜め45度に横切る方向である。図は、結像光学系からの光束を直接撮像素子106に入射させる第1の光学構成の状態を示し、結像光学系103は図の左側に位置し、撮像素子106上には画素174−1、174−2、174−3、174−4、174−5、174−6が密に配列されている。
【0071】
撮像素子106の画素は、それぞれがマイクロレンズ、カラーフィルター、受光部のセットで構成されている。
【0072】
結像光学系103を射出した光束は、不図示の光学ローパスフィルターを通って、マイクロレンズ171−1、171−2、171−3、171−4、171−5、171−6に入射する。各マイクロレンズの後方にはカラーフィルターが配置され、ここで所望の波長域のみが選択されて172−1から172−6の各受光部に到達する。カラーフィルターには、RGBの3種があるが、前述のようにベイヤー配列であることから、この断面に現れているのはこのうちの1種であって、図の場合は緑色透過カラーフィルター172−1g、172−2g、172−3g、172−4g、172−5g、172−6gである。
【0073】
各マイクロレンズの屈折力は撮像素子の各受光部173−1、173−2、173−3、173−4、173−5、173−6を結像光学系103の射出瞳に投影するように設定されている。このとき、各受光部の投影像が結像光学系103の絞り開放時の射出瞳よりも大きくなるように投影倍率を設定して、受光部に入射する光量と結像光学系103の絞りの開口面積との関係をおおよそ線形にすると良い。第1の光学構成の状態においては、画素174−2に代表させて受光光束を斜線部175で示すように、結像光学系103の射出瞳の全体を通った光束による高精細かつ高品位な画像出力を得ることができる。
【0074】
なお、各マイクロレンズの表面に可視光の波長よりも小さなピッチを持つ微細な角錐状の周期構造を形成し、いわゆるフォトニック結晶として作用させることによって、空気とマイクロレンズの屈折率差による光の表面反射を低減して、光の利用効率を高めることも可能である。
【0075】
さて、次に、焦点検出処理とディスプレイ用等のデータ量の少ない画像出力を行う第2の光学構成の状態について説明する。
【0076】
図6は、結像光学系103を射出した光束がレンズアレイプレート156を透過してから撮像素子106に入射する状態を示す断面図である。図5に示した撮像素子106に近接してレンズアレイプレート156が挿入されている。撮像素子106については図5を用いてすでに説明したので、ここではレンズアレイプレート156とその作用について詳述する。
【0077】
図において、156はレンズアレイプレート、156aはレンズアレイプレートの基板ガラス、156bは基板ガラス156aにレプリカや印刷といった製法で付加された光学ローパスフィルター、156cは基板ガラス156aにレプリカ形成されたレンズ、156dは基板ガラス156aにレプリカ形成された平面部である。ここでレプリカ製法とは単純な形状の基板に樹脂で形状を付加し一体化する製造技術である。一般には紫外線硬化性の樹脂や熱硬化性の樹脂が用いられ、金型と基板とするガラスとの間に樹脂を挟み込んだ状態で紫外線を照射するなどして硬化させて、ガラス上に金型の形状を転写する。光学ローパスフィルター156bは、元々結像光学系の光路に組み込まれているものとは異なり、第2の光学構成の状態では撮像素子106の全画素を用いて撮像しないことに対応して、さらに強いローパス効果を付与するためのものである。
【0078】
レンズ156cは、光学要素ということもできる。
【0079】
レプリカ製法でレンズアレイプレート156を作製することにより製造コストを低く抑えられる。また、樹脂は一般に比較的大きい線膨張係数と低いヤング率を有するが、一般に比較的小さい線膨張係数と高いヤング率を有するガラス基板と一体化することで、熱変形が抑えられ、一般的に結晶シリコンをベースとして作られる撮像素子106に対する温度変化の位置ずれを小さくできるという利点がある。これは、広い温度範囲での使用を可能とすることを意味する。
【0080】
また、レンズアレイプレート156の光射出面側には、レンズ156cとその間隙である平面部156dがあり、それぞれ、焦点検出のための画素に至る光束と、ディスプレイ用の画素に至る光束が独立に透過する。
【0081】
図7と図8はレンズアレイプレート156と撮像素子106を重ねて描いた平面図である。撮像素子の多数の画素のうちの一部分を拡大して示しており、光線は紙面表側から入射する。
【0082】
先ず、図7を用いて焦点検出のために用いる画素について説明する。
【0083】
図7において、174−1から174−6は断面図5にも示した画素である。また、太線の枠を付した画素は焦点検出のために用いる画素を表し、先の図5に現れた画素174−1から174−6の中では画素174−2と174−3がこれに該当する。
【0084】
レンズアレイプレート156のレンズ156cは縦方向横方向ともに撮像素子106の画素の5倍のピッチをもって規則的に形成されており、画素数に対するレンズ156cの数の割合は25画素に1となる。レンズアレイプレート156は撮像素子106の全面を覆う大きさを持っているので、撮像素子106の画素数1000万画素に対してレンズ156cの数は40万個である。
【0085】
焦点検出のために用いる画素の受光部への入射光路は、図6に示したような形となり、何れの画素についてもレンズアレイプレート156のレンズ156cを透過する。この結果、画素174−2に代表させて受光光束を斜線部176で示したように、図6においてレンズ156cの右下方に位置する画素は、図の左上方からの光束を受光し、逆に、画素174−3のようにレンズ156cの右上方に位置する画素は、図の左下方からの光束を受光することになる。
【0086】
撮像素子106の画面全体に渡って、レンズ156c毎にこのような光路は形成され、レンズ156cの右下方に位置する画素は、図の左上方からの光束を、レンズ156cの右上方に位置する画素は、図の左下方からの光束をそれぞれ受光する。図5、図6の断面方向は撮像素子106の画素配列を斜め45度に横切る方向であったので、図6の光路は、焦点検出用画素が結像光学系103の瞳を斜めに分割した半月状の瞳からの光束を受光することを意味している。
【0087】
さて、次に焦点検出視野と信号処理について述べる。
【0088】
図7に楕円161で示した画素列{174−2、174−3、174−7、174−8、174−12、174−13、174−17、174−18、・・・・・・・・}は焦点検出視野を構成する焦点検出用画素列である。画素列を構成する画素はすべて緑色透過カラーフィルターを備えている。
【0089】
焦点検出信号処理の第1の段階として、結像光学系103の瞳上の領域別に画素を分類し、この画素列を2つのグループに分ける。レンズ156c−1に対する画素174−2と174−3、レンズ156c−2に対する画素174−7と174−8、レンズ156c−3に対する画素174−12と174−13、レンズ156c−4に対する画素174−17と174−18、・・・・のそれぞれが結像光学系103の瞳上の領域で区別された一組の画素であって、複数のレンズ156c毎にレンズ156cを介して受光した撮像素子106からの一組の信号出力を得ることができる。
【0090】
すなわち、これらは光学要素アレイの複数の光学要素毎に光学要素を介して受光した光束による一組の撮像素子信号出力である。
【0091】
焦点検出信号は、上記の画素を一まとめにして再構成画素列{174−2、174−7、174−12、174−17、・・・・}と再構成画素列{174−3、174−8、174−13、174−18、・・・・}を得て、これらの信号出力波形を処理することによって生成する。つまり、撮像素子106の複数の画素のうち離散的に位置する複数の画素を連結して再構成画素列を形成し、こうして得られる信号出力値配列を用いて焦点検出信号を形成する。より詳しくは、2つの再構成画素列の信号出力波形の間には、焦点検出視野上に結像光学系102によって形成された物体像の結像状態に応じて、相対的に横シフトした状態が観測され、前ピン、後ピンでは信号出力波形のシフト方向が逆になる。相関演算などの手法を用いてこの位相差(シフト量)を検出するのが焦点検出の原理である。
【0092】
なお、一つの焦点検出視野内の焦点検出用画像信号を実質的に同一タイミングで光電変換したものとすることで、物体が移動している場合にも高い焦点検出精度を保つことができる。
【0093】
また、縦方向や横方向に焦点検出視野を設定すると、画素列には赤色透過カラーフィルターや青色透過カラーフィルターを備えたものとすることができる。この場合には、先ず画素をカラーフィルター別に分類した後、さらに瞳上の領域別の観点で分類して、再構成画素列を形成すればよい。
【0094】
撮像素子106上の任意の位置に焦点検出視野を設定し、一組の画像信号の相対的位置変化を調べれば、この位置における結像光学系103の結像状態を知ることができる。
【0095】
図7に示した楕円161だけではなく、例えば楕円162で示した焦点検出用画素の画素列を同時に抽出すれば、一方の画素列に平行な物体像パターンが投影されて信号出力波形の振幅が発生せず、この画素列による焦点検出ができない場合でも、他方の画素列では信号出力波形に振幅が発生して、焦点検出が可能となる。
【0096】
焦点検出信号処理の位相差検出部分について説明する。再構成画素列{174−2、174−7、174−12、174−17、・・・・}の信号出力値配列を第1の撮像素子信号出力波形、再構成画素列{174−3、174−8、174−13、174−18、・・・・}の信号出力値配列を第2の撮像素子信号出力波形としたとき、焦点検出処理は、結像光学系103の射出瞳を分離した領域を通過した光束による第1の撮像素子信号出力波形と、前記結像光学系の射出瞳を分離した他の領域を通過した光束による第2の撮像素子信号出力波形との相対的位置変化すなわち位相差を検出する演算手段を用いる。
【0097】
図9と図10はAF制御部40に入力された撮像素子信号出力値配列の値である画像信号を表す図である。図9は物体像にピントが合っていない状態での撮像素子信号出力波形、図10は物体像にピントが合った状態での撮像素子信号出力波形をそれぞれ表している。
【0098】
図9の撮像素子信号出力波形181は再構成画素列{174−2、174−7、174−12、174−17、・・・・}の信号出力値配列{598、496、210、602、784、402、95、487}、撮像素子信号出力波形182は再構成画素列{174−3、174−8、174−13、174−18、・・・・}の信号出力値配列{385、301、387、719、655、264、246、579}である。図の状態ではピントが合っていないので、撮像素子信号出力波形181と撮像素子信号出力波形182は一致せず、横シフトした関係になっている。
【0099】
一方、図10の撮像素子信号出力波形183は再構成画素列{174−2、174−7、174−12、174−17、・・・・}の信号出力値配列{500、403、289、675、776、297、204、501}、撮像素子信号出力波形184は再構成画素列{174−3、174−8、174−13、174−18、・・・・}の信号出力値配列{486、403、268、698、754、321、204、521}であって、ここではピントが合っているため、撮像素子信号出力波形183と撮像素子信号出力波形184は実質的に一致している。
【0100】
したがって、一組の信号の同一性を判定することで合焦検知を行うことができる。さらには、相関演算を用いた公知の手法、例えば特公平05−088445号公報に開示されている手法を用いて位相差を検出することにより、デフォーカス量を求めることができる。すなわち、撮像素子106上に物体像を形成する結像光学系103の結像状態に応じて信号出力波形の位相が変化する一組の撮像素子信号出力値配列を用いて焦点検出信号を生成する。得られたデフォーカス量を結像光学系103のフォーカシングレンズを駆動すべき量に換算すれば、自動焦点調節が可能である。レンズを駆動すべき量をあらかじめ知ることができるので、通常、合焦位置までのレンズ駆動はほぼ一回で済み、極めて高速な焦点調節を実現できる。
【0101】
第2の光学構成の状態では、焦点検出の他にディスプレイ用などに用いられるデータ量の少ない画像出力が可能である。図8はディスプレイ用の画像出力を得る画素を説明するための図である。
【0102】
図8において、174−1から174−6は断面図である図5にも示した画素である。また、太線で示した画素はデータ量の少ない画像出力のために用いる画素を表し、画素174−1から174−6の中では画素174−5がこれに該当する。
【0103】
データ量の少ない画像出力のために用いる画素の受光部への入射光路は、図6に示したようにレンズアレイプレート156の平面部156dを透過する。この結果、画素174−5に代表させて受光光束を斜線部177で示したように、先に図5に示した画素174−2の受光光束を示す斜線部175とほぼ同様の広がりを有する。すなわち、レンズアレイプレート156が無い第1の光学構成の状態に比べて、光学ローパスフィルター156bの作用による高い空間周波数成分の減少と、レンズアレイプレート156の屈折率が空気と異なることによる僅かな光路長差だけが異なり、結像光学系103の瞳の全体からの光束を受光する構成になっている。
【0104】
撮像素子106の画面全体に渡って、各平面部156dでは、このような光路が形成されているので、平面部156dの背後に図示のような位置関係に置かれた全ての画素は、結像光学系103の瞳全体からの光束を受光する。つまり、撮像素子106の複数の画素を包含する複数のレンズ156cよりなるレンズアレイを透して受光する際、このレンズアレイに形成された複数のレンズ156cの間隙を通して受光する画素の出力に基づいて画像信号を形成することができる。
【0105】
一般にディスプレイ装置107で画像を表示する際には、画像をプリントするときほど精細なものでなくて良く、むしろ、光学像と表示画像との被写界深度の同一性や物体像を捉えてから液晶空間変調素子などに映し出すまでの表示タイムラグの小ささが求められる。
【0106】
この画像をディスプレイ装置107に表示すれば、瞳全体からの光束を受光するので、第1の光学構成の状態で撮像する高精細な画像と同じ画像のボケ具合を得ることができる。したがって、背景をぼかして主被写体を引き立たせるといった絞り効果をディスプレイ装置107を観察することによって完全に知ることが可能である。
【0107】
第2の光学構成の状態から、レンズアレイプレート156が退避し、高精彩画像を取り込むための第1の光学構成の状態に移行すると、レンズアレイプレート156と空気の光路長差分だけ結像光学系103のピントがずれるが、この光路長差は既知の固定値であるので、レンズアレイプレート156が退避するタイミングに同期して結像光学系103のピントを所定量だけ補正すればよい。
【0108】
また、画像のデータ量が少ないので、処理時間が短く、光学像と表示画像とのタイムラグは極めて短い。したがって、1秒間に60フレーム程度の滑らかな動画像を表示することも可能である。データ量が少ないとはいえ、テレビ放送などには充分に耐えられる画質を得ることができるので、この撮像装置を利用して静止画像/動画像兼用の撮像機器を構成しても良い。
【0109】
さらに、図8に戻って、太線で示した画素の配列に注目すると、縦方向、横方向ともに5画素に1画素を使用していることから、抽出されたこれらの画素の並びもまたベイヤー配列になる。したがって、カラー画像を得るための信号処理は、第1の光学構成の状態で高精細な画像を得るときと変わらない。この結果、信号処理回路を第1の光学構成の状態と第2の光学構成の状態で共通に使用できるという利点がある。
【0110】
以上の説明では、光学要素アレイとしてレプリカ製法で作製したレンズアレイプレート156を用いた例を挙げたが、これに限定されるものではなく、例えば、光学要素アレイを屈折率分布型のレンズや液晶レンズで構成することもできる。何れも小さい機構スペースしか必要としないので撮像機器を小型化できる。液晶レンズを用いれば、レンズアレイプレートを機械的に駆動する代わりに、液晶を電気的に制御すればよく、機構スペースをさらに省くことが可能である。
【0111】
(第2の実施形態)
図12と図13は本発明の第2の実施形態に係わる撮像装置を搭載したデジタルカラーカメラの概略構成を示す図であって、図12はカメラの側方視断面図、図13は図12の左方向から見たカメラの正面透視図である。本カメラは、CCDあるいはCMOSセンサなどの撮像素子を用いた単板式のデジタルカラーカメラであり、撮像素子を連続的または単発的に駆動して動画像または静止画像を表わす画像信号を得る。ここで、撮像素子は、露光した光を各画素毎に電気信号に変換してその光量に応じた電荷をそれぞれ蓄積し、その電荷を読み出すタイプのエリアセンサである。。
【0112】
図12において、203は結像光学系であって、不図示の駆動機構を有し、結像光学系203の一部の要素であるフォーカシングレンズを光軸方向に移動させることや、フォーカシングレンズを柔軟性のある透明弾性部材や液体レンズで構成し、界面形状を変化させ屈折力を変えることで、物体に対するピント合わせを行う。
【0113】
206は撮像素子である。撮像素子206は光を取り込む窓部材となるカバーガラス224を有したパッケージに収納されている。また、結像光学系203から撮像素子206に至る光路中には、撮像素子206上に必要以上に高い物体像の空間周波数成分が形成されないように結像光学系203のカットオフ周波数を制限する光学ローパスフィルター(不図示)が設けられ、さらに、結像光学系203には赤外線カットフィルターも配置されている。
【0114】
撮像素子206の受光面の前方には、撮像素子206のパッケージに隣接してレンズアレイプレート256が進退可能に配設されている。撮像装置には、撮像素子206、レンズアレイプレート256、および画像信号や焦点検出信号を生成する電気回路を含む。レンズアレイプレート256は、撮像素子206の前方に挿入されたときに、撮像素子206の全面を覆う大きさを有する薄板であるので、極めて小型の撮像装置を実現することができる。
【0115】
撮像素子206で捉えられた物体像はディスプレイ装置207上に表示される。ディスプレイ装置207はカメラの背面に取り付けられており、直接観察できる。ディスプレイ装置207は有機EL空間変調素子や液晶空間変調素子、微粒子の電気泳動を利用した空間変調素子などで構成すると消費電力が小さく都合が良い。
【0116】
撮像素子206は、増幅型固体撮像装置の1つであるCMOSプロセスコンパチブルのセンサ(以降CMOSセンサと略す)である。CMOSセンサの特長の1つに、エリアセンサ部のMOSトランジスタと周辺回路のMOSトランジスタを同一工程で形成できるため、マスク枚数、プロセス工程がCCDと比較して大幅に削減できるということが挙げられる。また、任意の画素へのランダムアクセスが可能といった特長も有する。また、カラーフィルター配列はベイヤー配列である。
【0117】
撮像素子206は、この特長を利用し、焦点検出動作、ディスプレイ画像出力動作、高精彩画像出力動作を行う。
【0118】
なお、第1の実施形態とは異なって、レンズアレイプレート256は撮像素子206のパッケージの外側に位置し、撮像素子206と一緒にパッケージに収納されているわけではない。レンズアレイプレート256の駆動機構は種々のものから選択可能であって、例えば電磁モータとギア列で構成される回転駆動機構が採用できる。214はレンズアレイプレート256を駆動する機構の回転軸であり、不図示の回転駆動機構によりレンズアレイプレート256は256'で示す位置まで移動し、撮像素子206上から退避する。なお、撮像素子206には、そのパッケージも含めて、特殊な構造を必要とせず、第1の実施の形態での撮像素子よりもさらに入手しやすく安価である。
【0119】
211は光学ファインダーに結像光学系203からの光路を分割するハーフミラー、212はペンタプリズム、209は光学ファインダー像を観察するための凸レンズである。
【0120】
デジタルカラーカメラの電気的構成は基本的に第1の実施形態と同じである。
【0121】
不図示の電磁モータとギア列からなる回転駆動機構は、レンズアレイプレート256を撮像素子206上から進退させて、結像光学系203からの光束を直接的に撮像素子206に入射させる第1の光学構成の状態と、レンズアレイプレート256を透過させてから撮像素子206に入射させる第2の光学構成の状態とを切り替える。レンズアレイプレート256'で示す位置は第1の光学構成の状態、256で示す位置は第2の光学構成の状態である。第1の光学構成の状態は大型のプリントなどに好適な高精細な画像を生成するために、第2の光学構成の状態は焦点検出のための信号とディスプレイ用の比較的データ量の少ない画像信号を生成するためにそれぞれ用いられる。
【0122】
第1の光学構成の状態と第2の光学構成の状態とを切り替え可能とすることにより、焦点調節と撮像画像のディスプレイ装置でのモニタ、および、高精彩画像の撮像を単一の撮像素子からの信号で可能にし、しかも、位相差検出方式による高速な焦点調節と、画像モニタの小さいタイムラグ、さらには滑らかな動画像表示を同時に得ることができる。デジタルカラーカメラの主な撮影シーケンスは第1の実施形態と同じであって、撮像素子がこの撮像素子の複数の画素を包含する複数の光学要素よりなる光学要素アレイを透さずに受光する第1の光学構成の状態と、撮像素子が光学要素アレイを透して受光する第2の光学構成の状態とを適宜切り換える動作を行う。
【0123】
次に、撮像素子206とレンズアレイプレート256の構造について述べる。
図14は光学要素アレイであるところのレンズアレイプレート256の分解斜視図である。
【0124】
レンズアレイプレート256は3層構造を有し、光入射側から、コンデンサレンズアレイプレート221、隔壁集合体222、再結像レンズアレイプレート223で構成されている。隔壁集合体222で仕切られた光学ユニット一つひとつがコンデンサレンズアレイプレート221の光入射面に接する平面を撮像素子206上に結像する再結像光学系である。すなわち、光学要素アレイは複数の再結像光学系を並列配置して成る。再結像する面を細分化し、これらのそれぞれに小型の再結像光学系を対応させているので、全体としては薄い板状となり、必要な機構スペースは極めて小さい。
【0125】
結像光学系203による物体像は撮像素子206の近傍に形成され、特にピント調節後は撮像素子206上に形成される。レンズアレイプレート256による再結像は、結像光学系203によってコンデンサレンズアレイプレート221上に形成された物体像を撮像素子206上に再結像し、多くの場合、コンデンサレンズアレイプレート221上に形成された物体像はボケ像である。しかも、合焦時には必ずボケ像を再結像することになるが、位相差検出方式による焦点検出においてはこの対処として初期位相差を設定するだけなので、全く障害とはならない。
【0126】
図15はレンズアレイプレート256と撮像素子206のさらに詳しい構造を説明するための部分断面図である。図において光線は左から右に進む。
【0127】
コンデンサレンズアレイプレート221は平板基板ガラス221aにレンズ部をレプリカ成形したものである。レンズ部(例えば221−1)は入射側に凸の形状となっており、背後にある再結像レンズアレイプレート223の再結像レンズに効率よく光を導くための所謂コンデンサーレンズとなっている。隣接するレンズ部間に隙間は無く、コンデンサレンズアレイプレート上に形成されている物体像は遮蔽されること無く撮像素子206に導かれる。
【0128】
再結像レンズアレイプレート223もコンデンサレンズアレイプレート221と同様に平板基板ガラス223aにレンズ部をレプリカ成形したものである。ただし、再結像レンズアレイプレート223では基板ガラスの両面にレンズ部を形成していることが異なる。再結像レンズアレイプレート223の再結像レンズは光入射面側に1軸、光射出側に4軸の光軸を有する両凸レンズ構造となっており、撮像素子206上には射出側の光軸の数に相当する4つの物体像を形成する。
【0129】
図16は再結像レンズアレイプレート223を光入射面から見た平面図であって、入射側のレンズ部223−1と射出側のレンズ部223−1−A、223−1−B、223−1−C、223−1−Dの位置関係を示している。
【0130】
また、基板ガラス223aの光射出側には酸化クロムとクロムの多層蒸着膜による4つの絞り開口223bが形成されており、通過した光を上記4軸レンズの各々に導く。なお、遮光性の絞りがあるため、射出面側のレプリカ成形には熱硬化性の樹脂を使用し、加熱によって金型の形状を転写することとなる。
【0131】
コンデンサレンズアレイプレート221のレンズ部221−1を透過して、基板ガラス221aから射出した光束は、再結像レンズアレイプレート223のレンズ部223−1に入射し、基板ガラス223aの絞り223bを通って、レンズ部223−1−A、223−1−B、223−1−C、223−1−Dから射出する。なお、図15にはレンズ部223−1−A、223−1−Bのみを示した。
【0132】
レンズアレイプレート256から射出した光束は、撮像素子206のパッケージのカバーガラス224を透過して、撮像素子206のエリアセンサ領域に到る。
【0133】
以上のように、再結像光学系は、コンデンサレンズ、絞り開口、再結像レンズで構成され、この構造が密に並んでいる。
【0134】
図17は撮像素子206上に投影される物体像の様子を示す平面図である。
【0135】
先ず、領域229−1は一つの再結像光学系226−1(221−1、222−1、223−1、223−1−A、223−1−B、223−1−C、223−1−D)を射影した時の大きさであって、これと同じ大きさの領域が隙間を空けずに密に並んでいる。
【0136】
225−1−A、225−1−B、225−1−C、225−1−Dは再結像光学系によるコンデンサレンズアレイプレート221のレンズ部221−1の外周の像である。再結像レンズアレイプレート223のレンズ部223−1−A、223−1−B、223−1−C、223−1−Dの作用によって、4個の像が形成される。この4個の像の内部には、結像光学系203によってレンズ部221−1に接する平面に形成されている物体像が再結像されている。なお、再結像レンズアレイプレート223のレンズ部の符号A、B、C、Dと像の符号A、B、C、Dはそれぞれが対応していることを表している。
【0137】
一つの再結像光学系を射影したスペースの中に4つのコンデンサレンズアレイプレート221のレンズ部221−1の外周の像を形成するので、再結像倍率βは少なくとも
β≧−0.5
である必要がある。ただし、隣接する像間の光の漏れ込みを抑えるためには
β≧−0.4
であることが、望ましい。また、焦点検出に用いる画素の数を多くするために、
−0.1≧β
に設定すると、焦点検出精度を高く維持することができる。したがって、再結像倍率βは−0.1倍から−0.4倍の範囲、望ましくは−0.25倍程度に設定するのが良い。
【0138】
コンデンサレンズアレイプレート221のレンズ部221−1は絞り223bを結像光学系203の瞳に投影しているので、4個の像225−1−A、225−1−B、225−1−C、225−1−Dは結像光学系203の異なる瞳領域を通過した光束による像ということになる。したがって、2個の像225−1−Aと225−1−Cに注目すれば、結像光学系203による物体の結像状態が変化すると、これに応じて矢印227Aと227Cのように互いに近づいたり遠ざかったりする動きを示す。この像を光電変換し、光学要素アレイの複数の光学要素毎にこの光学要素を介して受光した光束による一組の撮像素子信号出力を得る。さらに、他の2個の像225−1−Bと225−1−Dに注目して、矢印227Bと227Dの方向に移動する他の一組の撮像素子信号出力を得る。
【0139】
ところで、像225−1−A、225−1−B、225−1−C、225−1−Dは一つの再結像光学系226−1による物体像であって、この大きさの中には物体像の輝度分布のごく一部しか投影されない。すなわち、信号出力に振幅が現れるのは物体像に十分に高い周波数成分を含んでいたときだけであって、偶然性のものである。低い空間周波数の輝度分布を短い窓で切り出したときには、信号出力に振幅が無い。この状態で物体像の位相差を検出することは勿論不可能である。
【0140】
そこで、撮像素子の複数の画素のうち離散的に位置する複数の画素の出力値を連結することによって焦点検出視野を拡大し、物体の輝度分布を捉えやすくする。
【0141】
図18は複数の再結像光学系、ここでは3×3の9個の再結像光学系によって撮像素子206上に投影された物体像の様子を示す平面図である。
【0142】
図17で説明した物体像は図の左上に示されている。また、結像光束が通過する結像光学系203の瞳上の領域を区別するために、A、B、C、Dのレンズ部によって投影された像をそれぞれ異なるハッチングで示した。
【0143】
焦点検出視野を拡大するためには、物体像が投影されている位置の画素出力を繋げて使用すればよい。このとき、画素出力を繋げることが可能であるためには、対象となる2つの画素列がそれぞれ光電変換する2つの物体像について、次の条件が必要である。
(1)2つの物体像が、再結像光学系の結像面と共役な物体側の面上において連続した面を結像して得られた像であること。
(2)2つの物体像が、結像光学系203の同じ瞳上の領域を通った光束によって形成された像であること。
【0144】
図19と図20はこの条件に当てはまるように、物体像が投影されている位置の画素列の出力値を演算処理上で連結した状態を表す説明図である。
【0145】
これらの図において、例えば228−1−Aは、図18の物体像225−1−Aを光電変換する画素列の信号出力値配列を表している。なお、ここでは、焦点検出に2次元の配列を使用し、良好な検出精度を得る。
【0146】
図19では、符号Aと符号Cを有する信号出力値配列を繋げて、全体としてデータ配列231Aと231Cを形成しており、図の左上と右下を結ぶ方向に像が移動して出力値に反映される。また、図20では、符号Bと符号Dを有する信号出力値配列を繋げて、全体としてデータ配列231Bと231Dを形成しており、図の左下と右上を結ぶ方向に像が移動して出力値に反映される。データ配列231A、231C、231B、231Dには、それぞれ連続した全体として意味を持つデータが格納される。
【0147】
なお、図19と図20で示したように、2つの方向の像の移動を捉えれば、一方の画素列に平行な物体像パターンが投影されて信号出力波形の振幅が発生せず、この画素列による焦点検出ができない場合でも、他方の画素列では信号出力波形に振幅が発生して、焦点検出が可能である。
【0148】
図21は連続した全体として意味を持つデータが格納される状態をより分かりやすく説明するための図で、一例として、結像光学系203が人間を捉え、焦点調節がためされた状態を示している。
【0149】
図19に示した信号出力値配列には、人間の像230Aと230Cを光電変換した値が格納される。このように、上述の2つの条件を満たすことによって、撮像素子206上で不連続な領域の出力値を繋げても、連続した信号を得ることができる。
【0150】
また、結像光学系203の焦点調節がためされているにもかかわらず、信号出力値配列231A、231C上の物体像230Aと230Cの位置が異なっているのは、次の理由による。
【0151】
再結像光学系(226−1、226−2、226−3、・・・)はコンデンサレンズアレイプレート221のレンズ部221−1に接する平面に形成されている物体像を撮像素子206上に再結像する。一方、結像光学系203の焦点調節は、レンズアレイプレート256が撮像素子206上から図13の256'で示す位置まで退避したしたときに、撮像素子206上に鮮明な物体像を形成するようにためされる。したがって、結像光学系203の焦点調節が撮像素子206に対して成された状態では、コンデンサレンズアレイプレート221のレンズ部221−1に接する平面上における物体像は若干ピントがずれた状態となる。この結果、信号出力値配列231A、231C内の物体像データは、図21に示すように互いに若干離れた位置に対応する情報を有することになる。ただし、この位相差を初期位相差として記憶しておき、検出された位相差から差し引くようにすれば、実際の焦点検出処理での不都合はない。
【0152】
撮像素子は、各種のカラーフィルターを備えた画素を備えているので、カラーフィルター別に位相差を検出する処理を行っても、あるいは輝度信号を用いて位相差を検出する処理を行っても良い。
【0153】
以上のように、像225−1−A、225−1−B、225−1−C、225−1−D、225−2−A、225−2−B、225−2−C、225−2−D、225−3−A、225−3−B、225−3−C、225−3−D、・・・が投影されている位置の画素出力を抽出し、これらを連結して得た信号出力値配列を用いて、信号出力波形の間の横シフトした状態を観測し、像の位置関係を調べることによって、結像光学系203の結像状態を知ることができる。つまり、一組の信号の同一性を判定することで合焦検知を行うことができる。さらには、相関演算を用いた公知の手法、例えば特公平05−088445号公報に開示されている手法を用いて相対的な位置変化量を検出することにより、デフォーカス量を求めることができる。得られたデフォーカス量を結像光学系203のフォーカシングレンズを駆動すべき量に換算すれば、自動焦点調節が可能である。レンズの駆動量をあらかじめ知ることができるので、通常、合焦位置までのレンズ駆動はほぼ一回で済み、極めて高速な焦点調節を実現できる。
【0154】
焦点検出視野を形成する合成信号出力値配列は、撮像素子206上の任意位置の出力値から設定可能である。
【0155】
第2の光学構成の状態では、焦点検出の他にディスプレイ用途などに使用されるデータ量の少ない画像出力が可能である。ディスプレイのためには、図19と図20に示した信号出力値配列231A、231B、231C、231Dの対応する位置のデータを足し合わせて、新たに一つのデータ配列を形成すれば、等価的に結像光学系203の瞳を均等に使った物体像を光電変換した画像データを得ることができる。特に撮像素子206の全体に渡ってこの演算処理を行えば、撮像しようとしている高精細画像をモニタするための画像として好適である。データ量が少ないので処理時間は短く、物体像を捉えてから液晶空間変調素子などに映し出すまでの表示タイムラグを小さく抑えることができる。
【0156】
第2の光学構成の状態から、レンズアレイプレート256が退避し、高精細画像を取り込むための第1の光学構成の状態に移行すると、レンズアレイプレート256と空気の光路長差分だけ結像光学系203のピントがずれるが、この光路長差は既知の固定値であるので、レンズアレイプレート256が退避するタイミングに同期して結像光学系203のピントを所定量だけ補正すればよい。
【0157】
また、逆に、画像をモニタする機能を必要とせず、焦点検出のみで十分な場合には、レンズアレイプレート256は撮像素子206の全面をカバーする大きさである必要は無く、例えば中央部の50%の面積を覆えればよい。
【0158】
なお、以上の説明では、カラーカメラを例に挙げたが、本発明はこれに限定されるものではなく赤外線撮像機器やモノクロカメラに適用できることは言うまでも無い。
【0159】
なお、本発明の実施態様を以下に列挙する。
【0160】
(実施態様1) 複数の画素を有する撮像素子と、
該撮像素子の複数の画素のうちの所定数の画素毎に1つずつ対応する複数の光学要素を有する光学要素アレイと、
前記複数の光学要素毎に、該光学要素を通過した光から1組の焦点検出用信号を前記画素で生成し、前記光学要素毎に1組ずつ生成された焦点検出用信号に基づいて焦点合わせを行なう焦点合わせ手段とを備えることを特徴とする撮像装置。
【0161】
(実施態様2) 前記光学要素アレイにおける前記複数の光学要素の間隙を通過した光から前記画素で画像信号を生成することを特徴とする実施態様1に記載の撮像装置。
【0162】
(実施態様3) 前記光学要素は、再結像光学系であることを特徴とする実施態様1に記載の撮像装置。
【0163】
(実施態様4) 前記光学要素アレイを透さずに前記撮像素子に光を受光させる第1の状態と、前記光学要素アレイを透して前記撮像素子に光を受光させる第2の状態とを切り換える切り換え手段をさらに備えることを特徴とする実施態様1に記載の撮像装置。
【0164】
(実施態様5) 前記撮像素子の複数の画素のうち、離散的に配置された複数の画素から得られる前記焦点検出用信号を連結して生成された信号を用いて前記焦点合わせを行なうことを特徴とする実施態様1に記載の撮像装置
【発明の効果】
以上説明したように、本発明によれば、焦点検出性能と高精細かつ高品位な画質を両立させた撮像装置を実現することができる。
【0165】
また、単一の撮像素子で焦点検出動作と画像のディスプレイとを並行して行うことができる撮像装置を実現することができる。
【0166】
さらには、撮像装置の小型化を実現することができる。
【図面の簡単な説明】
【図1】本発明の実施形態に係わるデジタルカラーカメラの概略構成を示す図である。
【図2】デジタルカラーカメラの電気的構成を示すブロック図である。
【図3】撮像部の構成を示す斜視図である。
【図4】動作中のリニア超音波モータの振動体と可動部の接触面を示す斜視図である。
【図5】撮像素子の断面図である。
【図6】レンズアレイプレートを透過させてから撮像素子に入射させる第2の光学構成の状態を示す断面図である。
【図7】レンズアレイプレートと撮像素子を重ねて描いた平面図である。
【図8】レンズアレイプレートと撮像素子を重ねて描いた平面図である。
【図9】AF制御部に入力された画像のデジタル信号を表す図である。
【図10】AF制御部に入力された画像のデジタル信号を表す図である。
【図11】ベイヤー配列の説明図である。
【図12】カメラの側方視断面図である。
【図13】図12の左方向から見たカメラの正面透視図である。
【図14】レンズアレイプレートの分解斜視図である。
【図15】レンズアレイプレートと撮像素子の部分断面図である。
【図16】再結像レンズアレイプレートを光入射面から見た平面図である。
【図17】撮像素子上に投影される物体像の様子を示す平面図である。
【図18】9個の再結像光学系によって撮像素子上に投影された物体像の様子を示す平面図である。
【図19】物体像が投影されている位置の画素列の出力値を演算処理上で連結した状態を表す説明図である。
【図20】物体像が投影されている位置の画素列の出力値を演算処理上で連結した状態を表す説明図である。
【図21】結像光学系が人間を捉え、焦点調節がためされた状態での信号出力値配列を説明する図である。
【符号の説明】
106,206 撮像素子
156,256 レンズアレイプレート

Claims (1)

  1. 複数の画素を有する撮像素子と、
    該撮像素子の複数の画素のうちの所定数の画素毎に1つずつ対応する複数の光学要素を有する光学要素アレイと、
    前記複数の光学要素毎に、該光学要素を通過した光から1組の焦点検出用信号を前記画素で生成し、前記光学要素毎に1組ずつ生成された焦点検出用信号に基づいて焦点合わせを行なう焦点合わせ手段とを備えることを特徴とする撮像装置。
JP2002363117A 2002-12-13 2002-12-13 撮像装置 Pending JP2004191893A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002363117A JP2004191893A (ja) 2002-12-13 2002-12-13 撮像装置
US10/733,421 US7233359B2 (en) 2002-12-13 2003-12-10 Image sensing apparatus having image signals generated from light between optical elements of an optical element array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002363117A JP2004191893A (ja) 2002-12-13 2002-12-13 撮像装置

Publications (2)

Publication Number Publication Date
JP2004191893A true JP2004191893A (ja) 2004-07-08
JP2004191893A5 JP2004191893A5 (ja) 2006-01-26

Family

ID=32652594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002363117A Pending JP2004191893A (ja) 2002-12-13 2002-12-13 撮像装置

Country Status (2)

Country Link
US (1) US7233359B2 (ja)
JP (1) JP2004191893A (ja)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006054562A1 (ja) * 2004-11-16 2006-05-26 Citizen Watch Co., Ltd. 自動合焦点装置
WO2006137481A1 (ja) * 2005-06-23 2006-12-28 Nikon Corporation 画像入力装置、光検出装置、画像合成方法
JP2007127746A (ja) * 2005-11-02 2007-05-24 Nikon Corp 焦点検出用信号の生成機能を有する固体撮像装置
JP2007158109A (ja) * 2005-12-06 2007-06-21 Nikon Corp 焦点検出用信号の生成機能を有する固体撮像装置、および電子カメラ
JP2007158597A (ja) * 2005-12-02 2007-06-21 Nikon Corp 焦点検出用信号の生成機能を有する固体撮像装置、および電子カメラ
WO2007105804A1 (ja) * 2006-03-13 2007-09-20 Citizen Holdings Co., Ltd. 自動合焦点装置及び光学素子
WO2007132717A1 (ja) * 2006-05-16 2007-11-22 Panasonic Corporation 撮像装置及び半導体回路素子
JP2008071920A (ja) * 2006-09-14 2008-03-27 Sony Corp 撮像素子および撮像装置
JP2008116616A (ja) * 2006-11-02 2008-05-22 Nikon Corp 焦点検出装置および撮像装置
CN100447606C (zh) * 2004-11-16 2008-12-31 西铁城控股株式会社 自动调焦点装置
JP2009025415A (ja) * 2007-07-17 2009-02-05 Olympus Corp 撮像装置及び撮像方法
JP2009047978A (ja) * 2007-08-21 2009-03-05 Ricoh Co Ltd 撮像装置、合焦装置、撮像方法および合焦方法
JP2010057067A (ja) * 2008-08-29 2010-03-11 Sony Corp 撮像装置および画像処理装置
JP2010078856A (ja) * 2008-09-25 2010-04-08 Canon Inc 撮像装置
JP2010263501A (ja) * 2009-05-08 2010-11-18 Sony Corp 撮像装置
JP2011227513A (ja) * 2011-06-27 2011-11-10 Ricoh Co Ltd 撮像装置、合焦装置、撮像方法および合焦方法
WO2012017577A1 (ja) * 2010-08-06 2012-02-09 パナソニック株式会社 撮像装置および撮像方法
JP2012118477A (ja) * 2010-12-03 2012-06-21 Nikon Corp 撮像装置
WO2012147245A1 (ja) * 2011-04-27 2012-11-01 パナソニック株式会社 撮像装置、撮像装置を備える撮像システム、及び撮像方法
WO2012176355A1 (ja) * 2011-06-23 2012-12-27 パナソニック株式会社 撮像装置
US8379084B2 (en) 2008-06-18 2013-02-19 Ricoh Company, Limited Image pickup
WO2013080552A1 (ja) * 2011-11-30 2013-06-06 パナソニック株式会社 撮像装置及び撮像システム
JP2013222133A (ja) * 2012-04-18 2013-10-28 Toshiba Corp カメラモジュール
JP2014032297A (ja) * 2012-08-03 2014-02-20 Casio Comput Co Ltd 撮像装置
JP2014106478A (ja) * 2012-11-29 2014-06-09 Canon Inc 焦点検出装置、撮像装置、撮像システム、および、焦点検出方法
US9113066B2 (en) 2007-06-18 2015-08-18 Sony Corporation Imaging device and method with transporting microlens array

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3890333B2 (ja) * 2004-02-06 2007-03-07 キヤノン株式会社 固体撮像装置
US8289399B2 (en) * 2004-08-09 2012-10-16 Hewlett-Packard Development Company, L.P. System and method for image capture device
US7609302B2 (en) * 2004-08-11 2009-10-27 Micron Technology, Inc. Correction of non-uniform sensitivity in an image array
US7297910B2 (en) * 2005-12-30 2007-11-20 General Electric Company System and method for utilizing an autofocus feature in an automated microscope
JP4720508B2 (ja) * 2006-01-05 2011-07-13 株式会社ニコン 撮像素子および撮像装置
TW200740189A (en) * 2006-04-04 2007-10-16 Benq Corp Scan modules
US7787031B2 (en) * 2006-04-11 2010-08-31 Canon Kabushiki Kaisha Image-pickup apparatus for dust prevention
JP4946313B2 (ja) * 2006-09-27 2012-06-06 株式会社ニコン 撮像装置
US20080079840A1 (en) * 2006-10-03 2008-04-03 Olympus Imaging Corp. Focus detection device
WO2009020031A1 (en) * 2007-08-06 2009-02-12 Canon Kabushiki Kaisha Image sensing apparatus
US8072503B2 (en) * 2007-10-23 2011-12-06 At&T Intellectual Property I, L.P. Methods, apparatuses, systems, and computer program products for real-time high dynamic range imaging
JP5256711B2 (ja) * 2007-11-28 2013-08-07 株式会社ニコン 撮像素子および撮像装置
JP5033598B2 (ja) 2007-11-28 2012-09-26 株式会社日立製作所 表示装置および映像機器
JP5543098B2 (ja) * 2008-11-14 2014-07-09 キヤノン株式会社 撮像装置
JP2010128122A (ja) * 2008-11-27 2010-06-10 Olympus Corp 撮像装置
JP2011197080A (ja) * 2010-03-17 2011-10-06 Olympus Corp 撮像装置及びカメラ
US20140192238A1 (en) * 2010-10-24 2014-07-10 Linx Computational Imaging Ltd. System and Method for Imaging and Image Processing
JP5762002B2 (ja) * 2011-01-06 2015-08-12 キヤノン株式会社 撮像装置
JP5744545B2 (ja) * 2011-01-31 2015-07-08 キヤノン株式会社 固体撮像装置およびカメラ
JP2012195921A (ja) * 2011-02-28 2012-10-11 Sony Corp 固体撮像素子およびカメラシステム
US20120288693A1 (en) 2011-04-12 2012-11-15 Stanley Scott K Flexible barrier packaging derived from renewable resources
JP5917125B2 (ja) * 2011-12-16 2016-05-11 キヤノン株式会社 画像処理装置、画像処理方法、撮像装置および表示装置
JP5871625B2 (ja) * 2012-01-13 2016-03-01 キヤノン株式会社 撮像装置、その制御方法および撮像システム
US9091862B2 (en) 2012-07-24 2015-07-28 Trustees Of Boston University Partitioned aperture wavefront imaging method and system
EP2693396A1 (en) * 2012-07-30 2014-02-05 Nokia Corporation Method, apparatus and computer program product for processing of multimedia content
JP6033038B2 (ja) * 2012-10-26 2016-11-30 キヤノン株式会社 焦点検出装置、撮像装置、撮像システム、および、焦点検出方法
US10148864B2 (en) 2015-07-02 2018-12-04 Pixart Imaging Inc. Imaging device having phase detection pixels and regular pixels, and operating method thereof
US9978154B2 (en) * 2015-07-02 2018-05-22 Pixart Imaging Inc. Distance measurement device base on phase difference and distance measurement method thereof
US9651534B1 (en) * 2015-12-02 2017-05-16 Sani-Hawk Optical Solutions LLC Optical chemical test systems and methods

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4410804A (en) * 1981-07-13 1983-10-18 Honeywell Inc. Two dimensional image panel with range measurement capability
US4542983A (en) * 1983-09-29 1985-09-24 Xerox Corporation Multi-magnification reproduction device utilizing linear lens assembly
US4653911A (en) * 1983-12-15 1987-03-31 Fortin Michael A Autocollimation method and apparatus
JPH0773734B2 (ja) 1988-02-19 1995-08-09 株式会社日立製作所 タンデムミルの速度制御装置
US5083150A (en) * 1989-03-03 1992-01-21 Olympus Optical Co., Ltd. Automatic focusing apparatus
US5257133A (en) * 1991-09-11 1993-10-26 Hughes Aircraft Company Re-imaging optical system employing refractive and diffractive optical elements
JPH0581685A (ja) * 1991-09-24 1993-04-02 Sony Corp 光学式デイスク装置
JP2693302B2 (ja) 1991-09-30 1997-12-24 三田工業株式会社 自己修復システムを有する画像形成装置
US5686960A (en) * 1992-01-14 1997-11-11 Michael Sussman Image input device having optical deflection elements for capturing multiple sub-images
GB2282505A (en) 1993-09-23 1995-04-05 Sharp Kk Three dimensional imaging apparatus
IL115332A0 (en) * 1994-09-30 1995-12-31 Honeywell Inc Compact thermal camera
EP0788008B1 (en) * 1996-01-31 2006-04-26 Canon Kabushiki Kaisha Stereoscopic image display apparatus whose observation area is widened
GB9618717D0 (en) * 1996-09-07 1996-10-16 Philips Electronics Nv Image sensor
JPH11119089A (ja) 1997-10-13 1999-04-30 Canon Inc 撮像装置及びコンピュータ読み取り可能な記憶媒体
JP2001215406A (ja) 2000-02-02 2001-08-10 Olympus Optical Co Ltd 撮像素子および自動焦点調節装置
US6987258B2 (en) * 2001-12-19 2006-01-17 Intel Corporation Integrated circuit-based compound eye image sensor using a light pipe bundle

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2006054562A1 (ja) * 2004-11-16 2008-08-07 シチズンホールディングス株式会社 自動合焦点装置
JP4607900B2 (ja) * 2004-11-16 2011-01-05 シチズンホールディングス株式会社 自動合焦点装置
CN100447606C (zh) * 2004-11-16 2008-12-31 西铁城控股株式会社 自动调焦点装置
WO2006054562A1 (ja) * 2004-11-16 2006-05-26 Citizen Watch Co., Ltd. 自動合焦点装置
US7910868B2 (en) 2004-11-16 2011-03-22 Citizen Holdings Co., Ltd. Autofocus device detecting focus point with liquid crystal lens
WO2006137481A1 (ja) * 2005-06-23 2006-12-28 Nikon Corporation 画像入力装置、光検出装置、画像合成方法
US7732744B2 (en) 2005-06-23 2010-06-08 Nikon Corporation Image input apparatus, photodetection apparatus, and image synthesis method
JP2007127746A (ja) * 2005-11-02 2007-05-24 Nikon Corp 焦点検出用信号の生成機能を有する固体撮像装置
JP2007158597A (ja) * 2005-12-02 2007-06-21 Nikon Corp 焦点検出用信号の生成機能を有する固体撮像装置、および電子カメラ
JP2007158109A (ja) * 2005-12-06 2007-06-21 Nikon Corp 焦点検出用信号の生成機能を有する固体撮像装置、および電子カメラ
JP5106113B2 (ja) * 2006-03-13 2012-12-26 シチズンホールディングス株式会社 自動合焦点装置及び光学素子
US7911526B2 (en) 2006-03-13 2011-03-22 Citizen Holdings Co., Ltd. Automatic focusing apparatus and optical device
WO2007105804A1 (ja) * 2006-03-13 2007-09-20 Citizen Holdings Co., Ltd. 自動合焦点装置及び光学素子
WO2007132717A1 (ja) * 2006-05-16 2007-11-22 Panasonic Corporation 撮像装置及び半導体回路素子
US8107000B2 (en) 2006-05-16 2012-01-31 Panasonic Corporation Image pickup apparatus and semiconductor circuit element
JP2008071920A (ja) * 2006-09-14 2008-03-27 Sony Corp 撮像素子および撮像装置
JP2008116616A (ja) * 2006-11-02 2008-05-22 Nikon Corp 焦点検出装置および撮像装置
US9113066B2 (en) 2007-06-18 2015-08-18 Sony Corporation Imaging device and method with transporting microlens array
JP2009025415A (ja) * 2007-07-17 2009-02-05 Olympus Corp 撮像装置及び撮像方法
JP2009047978A (ja) * 2007-08-21 2009-03-05 Ricoh Co Ltd 撮像装置、合焦装置、撮像方法および合焦方法
US8379084B2 (en) 2008-06-18 2013-02-19 Ricoh Company, Limited Image pickup
JP2010057067A (ja) * 2008-08-29 2010-03-11 Sony Corp 撮像装置および画像処理装置
US9077886B2 (en) 2008-08-29 2015-07-07 Sony Corporation Image pickup apparatus and image processing apparatus
US8830382B2 (en) 2008-08-29 2014-09-09 Sony Corporation Image pickup apparatus and image processing apparatus
JP2010078856A (ja) * 2008-09-25 2010-04-08 Canon Inc 撮像装置
US8804027B2 (en) 2008-09-25 2014-08-12 Canon Kabushiki Kaisha Imaging apparatus
JP2010263501A (ja) * 2009-05-08 2010-11-18 Sony Corp 撮像装置
WO2012017577A1 (ja) * 2010-08-06 2012-02-09 パナソニック株式会社 撮像装置および撮像方法
US8711215B2 (en) 2010-08-06 2014-04-29 Panasonic Corporation Imaging device and imaging method
CN103026170A (zh) * 2010-08-06 2013-04-03 松下电器产业株式会社 摄像装置以及摄像方法
JP5159986B2 (ja) * 2010-08-06 2013-03-13 パナソニック株式会社 撮像装置および撮像方法
JP2012118477A (ja) * 2010-12-03 2012-06-21 Nikon Corp 撮像装置
JPWO2012147245A1 (ja) * 2011-04-27 2014-07-28 パナソニック株式会社 撮像装置、撮像装置を備える撮像システム、及び撮像方法
WO2012147245A1 (ja) * 2011-04-27 2012-11-01 パナソニック株式会社 撮像装置、撮像装置を備える撮像システム、及び撮像方法
US9270948B2 (en) 2011-04-27 2016-02-23 Panasonic Intellectual Property Management Co., Ltd. Image pick-up device, method, and system utilizing a lens having plural regions each with different focal characteristics
JP5406383B2 (ja) * 2011-06-23 2014-02-05 パナソニック株式会社 撮像装置
WO2012176355A1 (ja) * 2011-06-23 2012-12-27 パナソニック株式会社 撮像装置
US8836825B2 (en) 2011-06-23 2014-09-16 Panasonic Corporation Imaging apparatus
JP2011227513A (ja) * 2011-06-27 2011-11-10 Ricoh Co Ltd 撮像装置、合焦装置、撮像方法および合焦方法
WO2013080552A1 (ja) * 2011-11-30 2013-06-06 パナソニック株式会社 撮像装置及び撮像システム
US9142582B2 (en) 2011-11-30 2015-09-22 Panasonic Intellectual Property Management Co., Ltd. Imaging device and imaging system
JP2013222133A (ja) * 2012-04-18 2013-10-28 Toshiba Corp カメラモジュール
JP2014032297A (ja) * 2012-08-03 2014-02-20 Casio Comput Co Ltd 撮像装置
JP2014106478A (ja) * 2012-11-29 2014-06-09 Canon Inc 焦点検出装置、撮像装置、撮像システム、および、焦点検出方法

Also Published As

Publication number Publication date
US7233359B2 (en) 2007-06-19
US20040125230A1 (en) 2004-07-01

Similar Documents

Publication Publication Date Title
JP2004191893A (ja) 撮像装置
KR101691551B1 (ko) 촬상장치 및 방법
JP4720508B2 (ja) 撮像素子および撮像装置
KR100875938B1 (ko) 광학기기 및 빔 스플리터
US8558915B2 (en) Photographing apparatus and method
JP2002209226A (ja) 撮像装置
JP3703424B2 (ja) 撮像装置及びその制御方法及び制御プログラム及び記憶媒体
US20110050856A1 (en) Stereoscopic imaging apparatus
CN100460984C (zh) 自动聚焦方法和自动聚焦照相机
JP2011199755A (ja) 撮像装置
JP2010220192A (ja) 撮像素子および撮像装置
JP2012015819A (ja) 立体画像撮像装置
JP2000032354A (ja) 撮像装置
JP2006126652A (ja) 撮像装置
JP4995002B2 (ja) 撮像装置、合焦装置、撮像方法および合焦方法
JP4019235B2 (ja) 撮像デバイスの駆動方法及び電子カメラ
JP5507761B2 (ja) 撮像装置
JP2001078212A (ja) 撮像装置
JP2001078217A (ja) 撮像装置
JP2001078213A (ja) 撮像装置
JP4879513B2 (ja) 撮像装置
JP4040638B2 (ja) 撮像装置
JP2002158913A (ja) 撮像装置及び撮像方法
JP5907668B2 (ja) 撮像装置及び撮像素子
JP2007140176A (ja) 電子カメラ

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051207

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070813

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080111