[go: up one dir, main page]

JP2004192782A - Perpendicular magnetic recording medium and method of manufacturing the same - Google Patents

Perpendicular magnetic recording medium and method of manufacturing the same Download PDF

Info

Publication number
JP2004192782A
JP2004192782A JP2003384973A JP2003384973A JP2004192782A JP 2004192782 A JP2004192782 A JP 2004192782A JP 2003384973 A JP2003384973 A JP 2003384973A JP 2003384973 A JP2003384973 A JP 2003384973A JP 2004192782 A JP2004192782 A JP 2004192782A
Authority
JP
Japan
Prior art keywords
layer
magnetic recording
recording medium
soft magnetic
antiferromagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003384973A
Other languages
Japanese (ja)
Other versions
JP4526262B2 (en
Inventor
Sadayuki Watanabe
貞幸 渡辺
Yasushi Sakai
泰志 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Device Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Device Technology Co Ltd filed Critical Fuji Electric Device Technology Co Ltd
Priority to JP2003384973A priority Critical patent/JP4526262B2/en
Publication of JP2004192782A publication Critical patent/JP2004192782A/en
Application granted granted Critical
Publication of JP4526262B2 publication Critical patent/JP4526262B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

【課題】 スパイクノイズを抑制し、大量生産に適した垂直磁気記録媒体及びその製造方法を提供する。
【解決手段】 非磁性基体1上に少なくとも反強磁性層4、軟磁性層6、磁気記録層8、保護層9及び液体潤滑剤層10が積層されてなる垂直磁気記録媒体において、少なくともNi、Feを含み、B、Nb、Siの少なくとも1つの元素を添加した材料からなり、反強磁性層4の直下に積層された配向制御層3と、Taからなり、配向制御層3の直下に積層されたシード層2とを備えた。
【選択図】 図1
PROBLEM TO BE SOLVED: To provide a perpendicular magnetic recording medium which suppresses spike noise and is suitable for mass production, and a method for manufacturing the same.
SOLUTION: In a perpendicular magnetic recording medium in which at least an antiferromagnetic layer 4, a soft magnetic layer 6, a magnetic recording layer 8, a protective layer 9, and a liquid lubricant layer 10 are laminated on a non-magnetic substrate 1, at least Ni, It is made of a material containing Fe and added with at least one element of B, Nb, and Si, and is made of an orientation control layer 3 laminated just below the antiferromagnetic layer 4 and made of Ta and laminated just below the orientation control layer 3. Seed layer 2 provided.
[Selection diagram] Fig. 1

Description

本発明は、垂直磁気記録媒体及びその製造方法に関し、より詳細には、軟磁性層の磁壁形成を阻止して、低ノイズ化を図った垂直磁気記録媒体及びその製造方法に関する。   The present invention relates to a perpendicular magnetic recording medium and a method of manufacturing the same, and more particularly, to a perpendicular magnetic recording medium and a method of manufacturing the perpendicular magnetic recording medium in which domain walls of a soft magnetic layer are prevented to reduce noise.

磁気記録の高密度化を実現する技術として、従来の長手磁気記録方式に代えて、垂直磁気記録方式が注目されつつある。垂直磁気記録媒体は、硬質磁性材料の磁気記録層と、この記録層への記録に用いられる、磁気ヘッドが発生する磁束を集中させる役割を担う軟磁性材料の裏打ち層から構成される。このような構造の垂直磁気記録媒体において問題となるノイズのひとつであるスパイクノイズは、裏打ち層である軟磁性層に形成された磁壁によるものであることが知られている。そのため垂直磁気記録媒体の低ノイズ化のためには、軟磁性裏打ち層の磁壁形成を阻止する必要がある。
この軟磁性裏打ち層の磁壁の制御については、軟磁性裏打ち層の上層や下層に、Co合金等の強磁性層を形成しこれを所望の方向に磁化させるように着磁する方法(例えば、特許文献1参照)、反強磁性薄膜を形成し交換結合を利用して磁化をピン止めする方法(例えば、特許文献2参照)などが提案されている。
特開平6−180834号公報(段落番号〔0029〕、第1図) 特開平10−214719号公報(段落番号〔0009〕、第2図)
As a technique for realizing a higher density of magnetic recording, a perpendicular magnetic recording method is attracting attention instead of a conventional longitudinal magnetic recording method. The perpendicular magnetic recording medium is composed of a magnetic recording layer of a hard magnetic material and a backing layer of a soft magnetic material used for recording on this recording layer and having a role of concentrating a magnetic flux generated by a magnetic head. It is known that spike noise, which is one of the problems in the perpendicular magnetic recording medium having such a structure, is caused by domain walls formed in a soft magnetic layer serving as a backing layer. Therefore, in order to reduce the noise of the perpendicular magnetic recording medium, it is necessary to prevent the domain walls from being formed in the soft magnetic underlayer.
Regarding the control of the domain wall of the soft magnetic underlayer, a method of forming a ferromagnetic layer of a Co alloy or the like on the upper or lower layer of the soft magnetic underlayer and magnetizing the same in a desired direction (for example, see Patent Reference 1), a method of forming an antiferromagnetic thin film and pinning the magnetization using exchange coupling (for example, see Patent Reference 2) and the like have been proposed.
JP-A-6-180834 (paragraph number [0029], FIG. 1) JP-A-10-214719 (paragraph number [0009], FIG. 2)

磁区制御層としての反強磁性層を用いて軟磁性裏打ち層との交換結合により磁壁の制御を行なう方法は、交換結合が十分に得られた場合、軟磁性裏打ち層の磁壁形成を阻止することができ、非常に効果的である。しかしながら、十分な交換結合を得るためには、例えば特許文献2に示すように、軟磁性裏打ち層の特性を出すために成膜後の加熱処理が必要である。この加熱処理は、半径方向に磁場を印加しながら長時間行わなければならない処理であるため、大量生産には適さないという問題があった。
また、例えば特許文献1に示すように、軟磁性層と反強磁性層とを複数回積層して裏打ち層を構成する方法では、裏打ち層の構造が複雑であり、大量生産には適さないという問題もあった。
本発明は、このような問題に鑑みてなされたもので、その目的とするところは、低ノイズ化された垂直磁気記録媒体、および大量生産に適した垂直磁気記録媒体の製造方法を提供することにある。
The method of controlling the domain wall by exchange coupling with the soft magnetic underlayer using the antiferromagnetic layer as the magnetic domain control layer is to prevent the formation of the domain wall of the soft magnetic underlayer if the exchange coupling is sufficiently obtained. Can be very effective. However, in order to obtain a sufficient exchange coupling, for example, as shown in Patent Document 2, a heat treatment after film formation is necessary in order to obtain characteristics of a soft magnetic underlayer. Since this heat treatment must be performed for a long time while applying a magnetic field in the radial direction, there is a problem that it is not suitable for mass production.
Further, for example, as shown in Patent Document 1, in a method of forming a backing layer by laminating a soft magnetic layer and an antiferromagnetic layer a plurality of times, the structure of the backing layer is complicated and is not suitable for mass production. There were also problems.
The present invention has been made in view of such a problem, and an object of the present invention is to provide a low-noise perpendicular magnetic recording medium and a method of manufacturing a perpendicular magnetic recording medium suitable for mass production. It is in.

本発明は、このような目的を達成するために、請求項1に記載の発明は、非磁性基体上に少なくとも反強磁性層、軟磁性層、磁気記録層、保護層及び液体潤滑剤層が積層されてなる垂直磁気記録媒体において、少なくともNi、Feを含み、B、Nb、Siの少なくとも1つの元素を添加した材料からなり、前記反強磁性層の直下に積層された配向制御層と、Taからなり、前記配向制御層の直下に積層されたシード層とを備えたことを特徴とする。
請求項2に記載の発明は、請求項1に記載の垂直磁気記録媒体において、少なくともFe、Coを含む合金からなり、前記反強磁性層と前記軟磁性層との間に積層された交換結合磁界制御層を含むことを特徴とする。
請求項3に記載の発明は、請求項1または2に記載の前記反強磁性層は、Mn系合金からなり、前記軟磁性層は、NiFe合金、センダスト合金またはCo系アモルファス合金からなることを特徴とする。
In order to achieve such an object, the invention according to claim 1 provides at least an antiferromagnetic layer, a soft magnetic layer, a magnetic recording layer, a protective layer, and a liquid lubricant layer on a nonmagnetic substrate. A stacked perpendicular magnetic recording medium, comprising an alignment control layer comprising a material containing at least Ni and Fe and containing at least one element of B, Nb, and Si, and stacked immediately below the antiferromagnetic layer; A seed layer made of Ta and laminated immediately below the orientation control layer.
According to a second aspect of the present invention, in the perpendicular magnetic recording medium according to the first aspect, an exchange coupling made of an alloy containing at least Fe and Co and laminated between the antiferromagnetic layer and the soft magnetic layer. It is characterized by including a magnetic field control layer.
According to a third aspect of the present invention, the antiferromagnetic layer according to the first or second aspect is made of a Mn-based alloy, and the soft magnetic layer is made of a NiFe alloy, a sendust alloy, or a Co-based amorphous alloy. Features.

請求項4に記載の発明は、請求項1、2または3に記載の前記軟磁性層の磁化は、円盤状の媒体の半径方向に向いて、放射状に印加されていることを特徴とする。
請求項5に記載の発明は、非磁性基体上に少なくとも反強磁性層、軟磁性層、磁気記録層、保護層及び液体潤滑剤層が積層されてなる垂直磁気記録媒体の製造方法において、前記反強磁性層と前記軟磁性層とを成膜した後、ブロッキング温度以上に加熱を行う工程と、円盤状の媒体の半径方向に向いて、放射状に印加された静磁場中において、ブロッキング温度以下に冷却する工程とを備えたことを特徴とする。
According to a fourth aspect of the present invention, the magnetization of the soft magnetic layer according to the first, second, or third aspect is radially applied to a radial direction of the disk-shaped medium.
According to a fifth aspect of the present invention, in the method for manufacturing a perpendicular magnetic recording medium, at least an antiferromagnetic layer, a soft magnetic layer, a magnetic recording layer, a protective layer, and a liquid lubricant layer are laminated on a nonmagnetic substrate. After forming the antiferromagnetic layer and the soft magnetic layer, a step of heating above the blocking temperature, and in the radial direction of the disk-shaped medium, in the static magnetic field applied radially, below the blocking temperature And a step of cooling.

本発明によれば、少なくともNi、Feを含み、B、Nb、Siの少なくとも1つの元素を添加した材料からなる配向制御層と、配向制御層の直下にTaからなるシード層とを備えたので、反強磁性層の結晶性・配向性を向上させ、交換結合磁界を強めることができ、スパイクノイズを抑制することが可能となる。
また、本発明によれば、反強磁性層と軟磁性裏打ち層の間に少なくともFe、Coを含む合金からなる交換結合磁界制御層を備えたので、交換結合磁界を増加させ、スパイクノイズの抑制を向上することが可能となる。
According to the present invention, since the alignment control layer including a material containing at least Ni and Fe and adding at least one element of B, Nb and Si is provided, and the seed layer including Ta is provided immediately below the alignment control layer. In addition, the crystallinity and orientation of the antiferromagnetic layer can be improved, the exchange coupling magnetic field can be increased, and spike noise can be suppressed.
Further, according to the present invention, since the exchange coupling magnetic field control layer made of an alloy containing at least Fe and Co is provided between the antiferromagnetic layer and the soft magnetic underlayer, the exchange coupling magnetic field is increased and the spike noise is suppressed. Can be improved.

以下、図面を参照しながら本発明の実施形態について詳細に説明する。本発明にかかる垂直磁気記録媒体は、反強磁性層の結晶性・配向性を向上させ、交換結合の磁界を強める目的で、反強磁性層の直下に配向制御層を設ける。配向制御層としては、NiFeに、B、Nb、Siの少なくとも1つの元素を添加した材料を用いる。また、配向制御層の結晶性・配向性を向上させるために、Taからなるシード層を設ける。この構成によれば、従来のNiFeまたはNiFeCrからなる配向制御層と比較して、シード層との界面において、Ta原子と、Ni原子及びFe原子との相互拡散が抑制される。さらに、配向制御層の初期成長層、すなわち0〜2nmの薄膜領域であって格子欠陥を有し、結晶性の悪い部分が抑制される。従って、従来の配向制御層と比較して、反強磁性層の結晶性・配向性を向上することができる。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the perpendicular magnetic recording medium according to the present invention, an orientation control layer is provided immediately below the antiferromagnetic layer for the purpose of improving the crystallinity and orientation of the antiferromagnetic layer and increasing the exchange coupling magnetic field. As the orientation control layer, a material obtained by adding at least one element of B, Nb, and Si to NiFe is used. In addition, a seed layer made of Ta is provided to improve the crystallinity and orientation of the orientation control layer. According to this configuration, the interdiffusion of Ta atoms, Ni atoms, and Fe atoms at the interface with the seed layer is suppressed as compared with the conventional orientation control layer made of NiFe or NiFeCr. Furthermore, an initial growth layer of the orientation control layer, that is, a thin film region of 0 to 2 nm, which has a lattice defect and suppresses a portion having poor crystallinity. Therefore, the crystallinity and orientation of the antiferromagnetic layer can be improved as compared with the conventional orientation control layer.

さらに、反強磁性層と軟磁性層との間に、交換結合の磁界を強める目的で、交換結合磁界制御層を設ける。交換結合磁界制御層としては、少なくともFe、Coを含む合金を用いる。
図1に、本発明の一実施形態にかかる垂直磁気記録媒体の構造を示す。垂直磁気記録媒体は、非磁性基体1上に、シード層2、配向制御層3、反強磁性層4、交換結合磁界制御層5、軟磁性裏打ち層6、下地層7、磁気記録層8及び保護層9が順に形成され、さらにその上に液体潤滑剤層10が形成された構造を有している。非磁性基体1としては、通常の磁気記録媒体用に用いられるNiPメッキを施したAl合金や強化ガラス、結晶化ガラス等を用いることができる。
シード層2は、配向制御層3の結晶性・配向性を向上させる。材料は、Taが好ましい。膜厚は、非晶質または微結晶となる10nm以下が望ましい。配向制御層3は、反強磁性層4の結晶性・配向性を向上させる。材料は、少なくともNi、Feを含み、B、Nb、Siの少なくとも1つの元素を添加した材料を用いる。膜厚は、十分に結晶成長がみられる3nm以上が望ましい。反強磁性層4は、FeMn、CoMn、IrMnなどのMn系合金が用いられる。膜厚は特に制限されないが、適度な交換結合が得られ、かつ大量生産に適するためには2nm〜30nm程度が望ましい。
Further, an exchange coupling magnetic field control layer is provided between the antiferromagnetic layer and the soft magnetic layer for the purpose of strengthening the exchange coupling magnetic field. As the exchange coupling magnetic field control layer, an alloy containing at least Fe and Co is used.
FIG. 1 shows the structure of a perpendicular magnetic recording medium according to one embodiment of the present invention. The perpendicular magnetic recording medium has a seed layer 2, an orientation control layer 3, an antiferromagnetic layer 4, an exchange coupling magnetic field control layer 5, a soft magnetic underlayer 6, an underlayer 7, a magnetic recording layer 8, It has a structure in which a protective layer 9 is formed in order, and a liquid lubricant layer 10 is further formed thereon. As the nonmagnetic substrate 1, a NiP-plated Al alloy, tempered glass, crystallized glass, or the like, which is used for a normal magnetic recording medium, can be used.
The seed layer 2 improves the crystallinity and orientation of the orientation control layer 3. The material is preferably Ta. The film thickness is desirably 10 nm or less that becomes amorphous or microcrystalline. The orientation control layer 3 improves the crystallinity and orientation of the antiferromagnetic layer 4. As the material, a material containing at least Ni and Fe and adding at least one element of B, Nb, and Si is used. The film thickness is desirably 3 nm or more where crystal growth is sufficiently observed. For the antiferromagnetic layer 4, a Mn-based alloy such as FeMn, CoMn, and IrMn is used. The film thickness is not particularly limited, but is preferably about 2 nm to 30 nm in order to obtain an appropriate exchange coupling and to be suitable for mass production.

交換結合磁界制御層5は、交換結合の磁界を向上させる。材料は、FeCo、FeCoNi、FeCoB、FeCoNiBなどの、少なくともFe、Coを含む合金が用いられる。膜厚は、生産性を考慮すると、20nm以下とするのが望ましい。軟磁性裏打ち層6としては、NiFe合金、センダスト(FeSiAl)合金等の結晶系の他、CoZrNb、CoTaZr等の非晶質のCo系合金を用いることができる。膜厚は、記録に使用する磁気ヘッドの構造や特性によって最適値が変化するが、10nm以上500nm以下であることが、生産性との兼ね合いから望ましい。反強磁性交換結合により固定される軟磁性裏打ち層6の磁化は、一般的に用いられる円盤状の媒体を想定すると、図2に示すように基板の半径方向に向いて、放射状に印加されていることが好ましい。
磁気記録層8は、一般的に用いられているCoCrPt系材料の他、強磁性を有する結晶粒を取り巻く非磁性粒界が非磁性非金属であるグラニュラー磁気記録層、TbCo等の希土類−遷移金属系合金(RE−TM系合金)、Co/Pt、Co/Pdの多層積層膜、またはFePt規則合金などを用いることができる。なお、垂直磁気記録媒体として用いるためには、強磁性の結晶粒は、膜面に対して垂直異方性を有することが必要である。また、磁気記録材料によって、適宜、下地層7を設けることができる。
The exchange coupling magnetic field control layer 5 improves the exchange coupling magnetic field. As the material, an alloy containing at least Fe and Co, such as FeCo, FeCoNi, FeCoB, and FeCoNiB, is used. The thickness is desirably 20 nm or less in consideration of productivity. As the soft magnetic underlayer 6, an amorphous Co-based alloy such as CoZrNb or CoTaZr can be used in addition to a crystalline system such as a NiFe alloy or a sendust (FeSiAl) alloy. The optimum value of the film thickness varies depending on the structure and characteristics of the magnetic head used for recording. However, it is preferable that the film thickness be 10 nm or more and 500 nm or less in view of productivity. The magnetization of the soft magnetic underlayer 6 fixed by antiferromagnetic exchange coupling is applied radially in the radial direction of the substrate as shown in FIG. 2, assuming a generally used disk-shaped medium. Is preferred.
The magnetic recording layer 8 may be a generally used CoCrPt-based material, a granular magnetic recording layer in which a nonmagnetic grain boundary surrounding a ferromagnetic crystal grain is a nonmagnetic nonmetal, or a rare earth-transition metal such as TbCo. A system alloy (RE-TM system alloy), a multilayered film of Co / Pt, Co / Pd, a FePt ordered alloy, or the like can be used. To be used as a perpendicular magnetic recording medium, the ferromagnetic crystal grains need to have perpendicular anisotropy with respect to the film surface. Further, the underlayer 7 can be provided as appropriate depending on the magnetic recording material.

保護層9は、例えばカーボンを主体とする薄膜が用いられる。液体潤滑剤層10は、例えばパーフルオロポリエーテル系の潤滑剤を用いることができる。
垂直磁気記録媒体の製造方法は、反強磁性交換結合を失う温度であるブロッキング温度以上に加熱を行い、例えば、永久磁石で制御された静磁場の中でブロッキング温度以下まで冷却する方法が用いられる。この方法は、軟磁性裏打ち層6の磁化方向を全て一方向に制御する目的で用いる。反強磁性層4と軟磁性裏打ち層6とを成膜した後、磁気記録層8を成膜する前に加熱を行う場合には、加熱温度がブロッキング温度を超えてしまうと、反強磁性交換結合が消失し、軟磁性裏打ち層6の磁化固定効果を失ってしまう。この状態で、わずかな外部磁場が加えられると、軟磁性裏打ち層6の磁化が乱され、磁壁を生ずる。そして、ブロッキング温度以下となって再度交換結合を生じると、そのまま固定されてしまう。従って、ブロッキング温度以下に冷却されるまでの間、静磁場中で保持するという方法を用いる。この方法によれば、基板全面で、軟磁性裏打ち層6の磁化固定効果を得ることができる。静磁場の強度としては、少なくとも交換結合磁界制御層5と軟磁性裏打ち層6の磁化が飽和する程度の磁界が必要であり、50〜1000Oe程度が望ましい。
As the protective layer 9, for example, a thin film mainly composed of carbon is used. For the liquid lubricant layer 10, for example, a perfluoropolyether-based lubricant can be used.
A method for manufacturing a perpendicular magnetic recording medium uses a method in which heating is performed at a temperature equal to or higher than a blocking temperature, which is a temperature at which antiferromagnetic exchange coupling is lost, and cooling is performed to a temperature equal to or lower than the blocking temperature in a static magnetic field controlled by a permanent magnet. . This method is used for the purpose of controlling the magnetization direction of the soft magnetic underlayer 6 in one direction. When heating is performed after forming the antiferromagnetic layer 4 and the soft magnetic underlayer 6 and before forming the magnetic recording layer 8, if the heating temperature exceeds the blocking temperature, the antiferromagnetic exchange is performed. The coupling is lost, and the magnetization fixing effect of the soft magnetic underlayer 6 is lost. In this state, when a slight external magnetic field is applied, the magnetization of the soft magnetic underlayer 6 is disturbed, and a domain wall is generated. Then, when exchange coupling occurs again below the blocking temperature, it is fixed as it is. Therefore, a method is used in which it is kept in a static magnetic field until it is cooled below the blocking temperature. According to this method, the magnetization fixing effect of the soft magnetic underlayer 6 can be obtained over the entire surface of the substrate. As the strength of the static magnetic field, a magnetic field that saturates the magnetization of at least the exchange coupling magnetic field control layer 5 and the soft magnetic underlayer 6 is required, and is preferably about 50 to 1,000 Oe.

以下に本発明の実施例を記す。なお、本発明は、以下の実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更が可能である。
(実施例1)
非磁性基体として表面が平滑な化学強化ガラス基板(例えば、HOYA社製N−10ガラス基板)を用い、これを洗浄後スパッタ装置内に導入する。Taターゲットを用いてTaシード層を5nm成膜した後、Ni85Fe12ターゲットを用い、NiFeB配向制御層を10nm成膜した。引き続いてランプヒータを用いて、基板表面温度が350℃になるように加熱を行なった後、Ir20Mn80ターゲットを用いてIrMn反強磁性層を10nmの厚さで成膜した後、Co87ZrNbターゲットを用いてCoZrNb非晶質の軟磁性裏打ち層を100nm成膜した。
Hereinafter, examples of the present invention will be described. It should be noted that the present invention is not limited to the following embodiments, and various changes can be made without departing from the gist of the present invention.
(Example 1)
A chemically strengthened glass substrate (for example, N-10 glass substrate manufactured by HOYA) having a smooth surface is used as the non-magnetic substrate, and after washing, it is introduced into a sputtering apparatus. After a Ta seed layer was formed to a thickness of 5 nm using a Ta target, a NiFeB orientation control layer was formed to a thickness of 10 nm using a Ni 85 Fe 12 B 3 target. Subsequently, after heating was performed using a lamp heater so that the substrate surface temperature became 350 ° C., an IrMn antiferromagnetic layer was formed to a thickness of 10 nm using an Ir 20 Mn 80 target, and then Co 87 Using a Zr 5 Nb 8 target, a CoZrNb amorphous soft magnetic underlayer was formed to a thickness of 100 nm.

次に、Tiターゲットを用いて、Ti下地層を10nmの厚さで成膜した後、Co70Cr20Pt10ターゲットを用いてCoCrPt磁気記録層を20nm成膜した。引き続いてランプヒータを用いて基板表面温度が350℃になるように再度加熱を行なった直後、1000Oeの固定磁場中で、150℃まで冷却する。最後にカーボンターゲットを用いて保護層を10nm成膜後、真空装置から取り出した。これらの成膜はすべてArガス圧5mTorr下で、DCマグネトロンスパッタリング法により行なった。その後、パーフルオロポリエーテルからなる液体潤滑剤層2nmをディップ法により形成し、垂直磁気記録媒体とした。
(実施例2)
配向制御層を、Ni79Fe12Nbターゲットを用いて10nm成膜した。その他は、実施例1に同じである。
Next, after forming a Ti underlayer with a thickness of 10 nm using a Ti target, a CoCrPt magnetic recording layer was formed with a thickness of 20 nm using a Co 70 Cr 20 Pt 10 target. Subsequently, the substrate is heated again using a lamp heater so that the substrate surface temperature becomes 350 ° C., and then cooled to 150 ° C. in a fixed magnetic field of 1000 Oe. Finally, a protective layer having a thickness of 10 nm was formed using a carbon target, and then taken out of the vacuum apparatus. All of these films were formed by a DC magnetron sputtering method under an Ar gas pressure of 5 mTorr. Thereafter, a liquid lubricant layer of 2 nm made of perfluoropolyether was formed by dipping to obtain a perpendicular magnetic recording medium.
(Example 2)
An orientation control layer was formed to a thickness of 10 nm using a Ni 79 Fe 12 Nb 9 target. Others are the same as the first embodiment.

(実施例3)
配向制御層を、Ni84Fe12Siターゲットを用いて10nm成膜した。その他は、実施例1に同じである。
(実施例4)
IrMn反強磁性層を成膜した後、CoZrNb軟磁性裏打ち層を成膜する前に、Co90Fe10ターゲットを用いて、CoFe交換結合磁界制御層を2nmの厚さで成膜した。その他は、実施例1に同じである。
(実施例5)
IrMn反強磁性層を成膜した後、CoZrNb軟磁性裏打ち層を成膜する前に、Co90Fe10ターゲットを用いて、CoFe交換結合磁界制御層を2nmの厚さで成膜した。その他は、実施例2に同じである。
(Example 3)
An orientation control layer was formed to a thickness of 10 nm using a Ni 84 Fe 12 Si 4 target. Others are the same as the first embodiment.
(Example 4)
After forming the IrMn antiferromagnetic layer and before forming the CoZrNb soft magnetic underlayer, a CoFe exchange coupling magnetic field control layer was formed to a thickness of 2 nm using a Co 90 Fe 10 target. Others are the same as the first embodiment.
(Example 5)
After forming the IrMn antiferromagnetic layer and before forming the CoZrNb soft magnetic underlayer, a CoFe exchange coupling magnetic field control layer was formed to a thickness of 2 nm using a Co 90 Fe 10 target. Others are the same as the second embodiment.

(実施例6)
IrMn反強磁性層を成膜した後、CoZrNb軟磁性裏打ち層を成膜する前に、Co90Fe10ターゲットを用いて、CoFe交換結合磁界制御層を2nmの厚さで成膜した。その他は、実施例3に同じである。
(実施例7)
交換結合磁界制御層を、Co65Ni13Fe22ターゲットを用いて成膜した。その他は、実施例4に同じである。
(実施例8)
交換結合磁界制御層を、Co65Ni13Fe22ターゲットを用いて成膜した。その他は、実施例5に同じである。
(Example 6)
After forming the IrMn antiferromagnetic layer and before forming the CoZrNb soft magnetic underlayer, a CoFe exchange coupling magnetic field control layer was formed to a thickness of 2 nm using a Co 90 Fe 10 target. Others are the same as the third embodiment.
(Example 7)
The exchange coupling magnetic field control layer was formed using a Co 65 Ni 13 Fe 22 target. Others are the same as the fourth embodiment.
(Example 8)
The exchange coupling magnetic field control layer was formed using a Co 65 Ni 13 Fe 22 target. Others are the same as the fifth embodiment.

(実施例9)
交換結合磁界制御層を、Co65Ni13Fe22ターゲットを用いて成膜した。その他は、実施例6に同じである。
(実施例10)
交換結合磁界制御層を、(Co65Ni13Fe2294ターゲットを用いて成膜した。その他は、実施例4に同じである。
(実施例11)
交換結合磁界制御層を、(Co65Ni13Fe2294ターゲットを用いて成膜した。その他は、実施例5に同じである。
(実施例12)
交換結合磁界制御層を、(Co65Ni13Fe2294ターゲットを用いて成膜した。その他は、実施例6に同じである。
(Example 9)
The exchange coupling magnetic field control layer was formed using a Co 65 Ni 13 Fe 22 target. Others are the same as the sixth embodiment.
(Example 10)
An exchange coupling magnetic field control layer was formed using a (Co 65 Ni 13 Fe 22 ) 94 B 6 target. Others are the same as the fourth embodiment.
(Example 11)
An exchange coupling magnetic field control layer was formed using a (Co 65 Ni 13 Fe 22 ) 94 B 6 target. Others are the same as the fifth embodiment.
(Example 12)
An exchange coupling magnetic field control layer was formed using a (Co 65 Ni 13 Fe 22 ) 94 B 6 target. Others are the same as the sixth embodiment.

(比較例1)
Taシード層を成膜しないこと以外は、実施例1と同じである。
(比較例2)
NiFeB配向制御層を成膜しないこと以外は、実施例1と同じである。
(比較例3)
Taシード層、NiFeB配向制御層、IrMn反強磁性層、CoZrNb軟磁性裏打ち層を成膜しないこと以外は、実施例1と同じである。
各実施例および比較例について、軟磁性裏打ち層に形成される磁壁の有無を確認するために、スピンスタンドテスターを用いて、信号が書き込まれていない状態での読み出し評価を行った。ディスク100回転分について読み出しを行い、出力の平均値に対する変動の割合をCOV%とした。磁壁からのスパイクノイズは、局所的に大きな信号出力として検出され、磁壁が揺らいでいる場合には、その大きさが変動することから、COVの値が大きいほどスパイクノイズが発生していると考えられる。
(Comparative Example 1)
This is the same as Example 1 except that the Ta seed layer is not formed.
(Comparative Example 2)
This is the same as Example 1 except that the NiFeB orientation control layer is not formed.
(Comparative Example 3)
Example 1 is the same as Example 1 except that the Ta seed layer, the NiFeB orientation control layer, the IrMn antiferromagnetic layer, and the CoZrNb soft magnetic underlayer were not formed.
For each of the examples and the comparative examples, in order to confirm the presence or absence of a magnetic domain wall formed in the soft magnetic underlayer, readout evaluation was performed using a spin stand tester in a state where no signal was written. Reading was performed for 100 rotations of the disk, and the ratio of the fluctuation to the average value of the output was defined as COV%. The spike noise from the domain wall is locally detected as a large signal output, and when the domain wall fluctuates, the magnitude fluctuates. Therefore, it is considered that the spike noise is generated as the COV value increases. Can be

また、交換結合磁界の大きさを調べるために、垂直磁気記録媒体の製造工程において、Ti下地層とCoCrPt磁気記録層とを成膜する工程を省略した試料も作製した。これらの各実施例、比較例1および比較例2の試料について、基板半径方向の磁化曲線を振動試料型磁力計にて測定し、得られたM−Hループより交換結合磁界を算出した。結果を表1に示す。   Further, in order to examine the magnitude of the exchange coupling magnetic field, a sample was also prepared in which the step of forming the Ti underlayer and the CoCrPt magnetic recording layer in the manufacturing process of the perpendicular magnetic recording medium was omitted. For each of the samples of Examples and Comparative Examples 1 and 2, magnetization curves in the substrate radial direction were measured by a vibrating sample magnetometer, and an exchange coupling magnetic field was calculated from the obtained MH loop. Table 1 shows the results.

Figure 2004192782
Figure 2004192782

交換結合磁界の大きさと層の構成の関係について述べる。実施例1と比較例2とを比較すると、NiFeB配向制御層を有しない比較例2は、交換結合磁界が0であり、交換結合が生じていないことから、配向制御層の必要性が明らかである。実施例1と比較例1とを比較すると、Taシード層を有する実施例1は、交換結合磁界の向上が見られる。実施例1のNiFeB配向制御層に代えて、NiFeNbを用いた実施例2、NiFeSiを用いた実施例3ともに、実施例1と同等の交換結合が生じている。さらに、CoFe交換結合磁界制御層を付与した実施例4〜6、CoNiFe交換結合磁界制御層を付与した実施例7〜9、CoNiFeB交換結合磁界制御層を付与した実施例10〜12ともに、実施例1〜3と比較して、交換結合磁界が向上している。
次に、交換結合磁界の大きさとCOVの関係について述べる。軟磁性裏打ち層のない比較例3では、スパイクノイズが生じ得ず、このCOVは5%である。これに対して、交換結合磁界が26.5Oe以上の実施例4〜12は、同様に5%であることから、スパイクノイズが完全に抑制されていることがわかる。なお、実施例1〜3と比較例1,2とから、交換結合磁界が大きいほどCOVが小さいことがわかる。
The relationship between the magnitude of the exchange coupling magnetic field and the layer configuration will be described. Comparing Example 1 with Comparative Example 2, Comparative Example 2, which does not have the NiFeB orientation control layer, has an exchange coupling magnetic field of 0 and no exchange coupling occurs. is there. Comparing Example 1 with Comparative Example 1, Example 1 having a Ta seed layer has an improved exchange coupling magnetic field. In both Example 2 using NiFeNb and Example 3 using NiFeSi in place of the NiFeB orientation control layer of Example 1, exchange coupling equivalent to Example 1 occurs. Further, Examples 4 to 6 in which a CoFe exchange coupling magnetic field control layer is provided, Examples 7 to 9 in which a CoNiFe exchange coupling magnetic field control layer is provided, and Examples 10 to 12 in which a CoNiFeB exchange coupling magnetic field control layer is provided Compared with Nos. 1 to 3, the exchange coupling magnetic field is improved.
Next, the relationship between the magnitude of the exchange coupling magnetic field and COV will be described. In Comparative Example 3 having no soft magnetic underlayer, no spike noise could be generated, and the COV was 5%. On the other hand, in Examples 4 to 12 in which the exchange coupling magnetic field is 26.5 Oe or more, the spike noise is completely suppressed since the values are also 5%. From Examples 1 to 3 and Comparative Examples 1 and 2, it is understood that the larger the exchange coupling magnetic field, the smaller the COV.

本発明の一実施形態にかかる垂直磁気記録媒体の構造を示す模式図である。FIG. 1 is a schematic diagram illustrating a structure of a perpendicular magnetic recording medium according to an embodiment of the present invention. 垂直磁気記録媒体の基板の半径方向に磁場を印加している様子を示す模式図である。FIG. 3 is a schematic diagram showing a state where a magnetic field is applied in a radial direction of a substrate of a perpendicular magnetic recording medium.

符号の説明Explanation of reference numerals

1 非磁性基体
2 シード層
3 配向制御層
4 反強磁性層
5 交換結合磁界制御層
6 軟磁性裏打ち層
7 下地層
8 磁気記録層
9 保護層
10 液体潤滑剤層
REFERENCE SIGNS LIST 1 nonmagnetic substrate 2 seed layer 3 orientation control layer 4 antiferromagnetic layer 5 exchange coupling magnetic field control layer 6 soft magnetic underlayer 7 underlayer 8 magnetic recording layer 9 protective layer 10 liquid lubricant layer

Claims (5)

非磁性基体上に少なくとも反強磁性層、軟磁性層、磁気記録層、保護層及び液体潤滑剤層が積層されてなる垂直磁気記録媒体において、
少なくともNi、Feを含み、B、Nb、Siの少なくとも1つの元素を添加した材料からなり、前記反強磁性層の直下に積層された配向制御層と、
Taからなり、前記配向制御層の直下に積層されたシード層と
を備えたことを特徴とする垂直磁気記録媒体。
In a perpendicular magnetic recording medium comprising at least an antiferromagnetic layer, a soft magnetic layer, a magnetic recording layer, a protective layer and a liquid lubricant layer laminated on a nonmagnetic substrate,
An orientation control layer made of a material containing at least Ni and Fe, and added with at least one element of B, Nb, and Si, and stacked immediately below the antiferromagnetic layer;
A perpendicular magnetic recording medium, comprising: a seed layer made of Ta and laminated immediately below the orientation control layer.
少なくともFe、Coを含む合金からなり、前記反強磁性層と前記軟磁性層との間に積層された交換結合磁界制御層を含むことを特徴とする請求項1に記載の垂直磁気記録媒体。 2. The perpendicular magnetic recording medium according to claim 1, further comprising an exchange coupling magnetic field control layer made of an alloy containing at least Fe and Co and laminated between the antiferromagnetic layer and the soft magnetic layer. 前記反強磁性層は、Mn系合金からなり、前記軟磁性層は、NiFe合金、センダスト合金またはCo系アモルファス合金からなることを特徴とする請求項1または2に記載の垂直磁気記録媒体。 The perpendicular magnetic recording medium according to claim 1, wherein the antiferromagnetic layer is made of a Mn-based alloy, and the soft magnetic layer is made of a NiFe alloy, a sendust alloy, or a Co-based amorphous alloy. 前記軟磁性層の磁化は、円盤状の媒体の半径方向に向いて、放射状に印加されていることを特徴とする請求項1、2または3に記載の垂直磁気記録媒体。 4. The perpendicular magnetic recording medium according to claim 1, wherein the magnetization of the soft magnetic layer is radially applied in a radial direction of the disk-shaped medium. 非磁性基体上に少なくとも反強磁性層、軟磁性層、磁気記録層、保護層及び液体潤滑剤層が積層されてなる垂直磁気記録媒体の製造方法において、
前記反強磁性層と前記軟磁性層とを成膜した後、ブロッキング温度以上に加熱を行う工程と、
円盤状の媒体の半径方向に向いて、放射状に印加された静磁場中において、ブロッキング温度以下に冷却する工程と
を備えたことを特徴とする垂直磁気記録媒体の製造方法。
A method for manufacturing a perpendicular magnetic recording medium comprising at least an antiferromagnetic layer, a soft magnetic layer, a magnetic recording layer, a protective layer, and a liquid lubricant layer laminated on a nonmagnetic substrate.
After forming the antiferromagnetic layer and the soft magnetic layer, heating the blocking temperature or higher,
Cooling the magnetic recording medium to a blocking temperature or less in a radially applied static magnetic field in a radial direction of the disk-shaped medium.
JP2003384973A 2002-11-26 2003-11-14 Perpendicular magnetic recording medium and manufacturing method thereof Expired - Fee Related JP4526262B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003384973A JP4526262B2 (en) 2002-11-26 2003-11-14 Perpendicular magnetic recording medium and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002342589 2002-11-26
JP2003384973A JP4526262B2 (en) 2002-11-26 2003-11-14 Perpendicular magnetic recording medium and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004192782A true JP2004192782A (en) 2004-07-08
JP4526262B2 JP4526262B2 (en) 2010-08-18

Family

ID=32774788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003384973A Expired - Fee Related JP4526262B2 (en) 2002-11-26 2003-11-14 Perpendicular magnetic recording medium and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4526262B2 (en)

Also Published As

Publication number Publication date
JP4526262B2 (en) 2010-08-18

Similar Documents

Publication Publication Date Title
US8277961B2 (en) Magnetic recording medium
US7105239B2 (en) Perpendicular magnetic recording medium and magnetic recording/reproducing apparatus using the same
JP4332832B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
JP3653007B2 (en) Perpendicular magnetic recording medium, manufacturing method thereof, and magnetic storage device
US20020160233A1 (en) Magnetic recording medium and magnetic recording apparatus using the same
JP2007273057A (en) Perpendicular magnetic recording medium and magnetic storage device
JP3755449B2 (en) Perpendicular magnetic recording medium
JP2006048900A (en) Perpendicular magnetic recording medium
JP2003162806A (en) Perpendicular magnetic recording medium and magnetic storage device
JP2009087500A (en) Perpendicular magnetic recording medium and magnetic recording and reproducing device
JP4207140B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
US20090226763A1 (en) Perpendicular magnetic recording medium, production process thereof, and magnetic recording and reproducing apparatus
JP2004079043A (en) Perpendicular magnetic recording media
JP4247575B2 (en) Method for manufacturing perpendicular magnetic recording medium
JP2002190108A (en) Magnetic recording medium and method of manufacturing the same
JP2002358617A (en) Perpendicular magnetic recording media
US6428906B1 (en) Magnetic recording media having a layered structure for perpendicular magnetization of a recording layer
JP2003317221A (en) Perpendicular magnetic recording media
US7045225B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
JP2007273056A (en) Perpendicular magnetic recording medium and magnetic storage device
JP2006185489A (en) Magnetic recording medium and magnetic storage device
JP4367326B2 (en) Perpendicular magnetic recording medium
JP2004272957A (en) Perpendicular magnetic recording medium and method of manufacturing the same
JP4526262B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
US8529989B2 (en) Method for manufacturing magnetic recording layer having two or more layers

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070731

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070911

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081216

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090219

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100601

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4526262

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees