[go: up one dir, main page]

JP2004193427A - High frequency component storage container, non-radiative dielectric line, and millimeter wave transceiver - Google Patents

High frequency component storage container, non-radiative dielectric line, and millimeter wave transceiver Download PDF

Info

Publication number
JP2004193427A
JP2004193427A JP2002361334A JP2002361334A JP2004193427A JP 2004193427 A JP2004193427 A JP 2004193427A JP 2002361334 A JP2002361334 A JP 2002361334A JP 2002361334 A JP2002361334 A JP 2002361334A JP 2004193427 A JP2004193427 A JP 2004193427A
Authority
JP
Japan
Prior art keywords
dielectric line
connection portion
wave signal
millimeter wave
circulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002361334A
Other languages
Japanese (ja)
Inventor
Nobuki Hiramatsu
信樹 平松
Toru Hosokawa
徹 細川
Yoshiko Okamoto
佳子 岡本
Takeshi Okamura
健 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002361334A priority Critical patent/JP2004193427A/en
Publication of JP2004193427A publication Critical patent/JP2004193427A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Casings For Electric Apparatus (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Waveguides (AREA)

Abstract

【課題】チョーク空洞を形成する基体および蓋体をダイキャスト加工のような量産技術およびわずかな切削加工によって生産性良く作製することができ、熱応力が基体および蓋体の接合部に加わっても接合部で有効に緩和することができ、また放熱性が向上するものとすること。
【解決手段】高周波部品収納用容器は、上面に高周波信号で作動する高周波部品を収容するための凹部2aが形成された金属製の基体2と、基体2の上面の凹部2aの周囲に接合される、凹部2aの底面に下面が平行な平板状の金属製の蓋体1とを具備し、基体2と蓋体1との接合部に、上端および/または下端に基体2の内側および外側の少なくとも一方に連通する隙間4aが形成された高周波信号の漏洩を防ぐためのチョーク空洞4が全周にわたって設けられている。
【選択図】 図1
A substrate and a lid forming a choke cavity can be manufactured with high productivity by mass production technology such as die casting and slight cutting, so that even if thermal stress is applied to a joint between the substrate and the lid. It should be able to be effectively relieved at the joint and improve heat dissipation.
A high-frequency component storage container is joined to a metal base having an upper surface formed with a concave portion for housing a high-frequency component operated by a high-frequency signal, and a periphery of the concave portion on the upper surface of the base. And a flat metal lid 1 whose lower surface is parallel to the bottom surface of the concave portion 2a, and at the joint between the substrate 2 and the lid 1, the upper and / or lower ends of the inside and outside of the base 2 are provided. A choke cavity 4 having a gap 4a communicating with at least one for preventing leakage of a high-frequency signal is provided over the entire circumference.
[Selection diagram] Fig. 1

Description

【0001】
【発明の属する技術分野】
本発明は、高周波信号で作動する高周波部品を収納するための高周波部品収納用容器、およびそれを用いた非放射性誘電体線路、ならびに非放射性誘電体線路型のミリ波集積回路,ミリ波レーダーモジュール等としてのミリ波送受信器に関する。
【0002】
【従来の技術】
従来、マイクロ波やミリ波の高周波信号を伝送させるためには金属導波管が多く用いられてきたが、近年の高周波モジュールの小型化の要求により、誘電体線路を用いた高周波モジュールが開発されている。なかでも、高周波信号の伝送損失の小さい非放射性誘電体線路(Nonradiative Dielectric Waveguideで、以下、NRDガイドともいう)が注目されている。NRDガイドの基本構成を図3に示す。同図に示すように、所定の間隔aでもって平行配置された平行平板導体11、12の間に、断面が長方形等の矩形状の誘電体線路13を配置した構成であり、この間隔aが高周波信号の波長λに対してa≦λ/2であれば、外部から誘電体線路13へのノイズの侵入をなくしかつ外部への高周波信号の放射をなくして、誘電体線路13中で高周波信号を効率良く伝搬させることができる。なお、高周波信号の波長λは使用周波数における空気中(自由空間)での波長である。
【0003】
このようなNRDガイドにおいて、ノイズの原因となる外部から侵入しようとする電磁波を遮蔽する目的と、高周波信号の外部への漏洩を防止する目的で、図4(a)に示す構成のものが提案されている。即ち、上面に誘電体線路23を収容するための凹部22aが形成された金属製の基体22と、基体22の上面の凹部22aの周囲に接合され、凹部22aの底面に下面が平行な平板状の金属製の蓋体21とを具備しており、基体22の上面で凹部22aの周囲の部位に電磁波遮蔽のためのチョーク溝24を形成した高周波部品収納用容器(以下、容器ともいう)を用いたものである。
【0004】
なお、蓋体21は上側の平行平板導体に相当し、基体22は下側の平行平板導体に相当する。
【0005】
そして、図4(b)に示すように、チョーク溝24の幅W1は高周波信号の波長λに対してλ/4、チョーク溝24の深さDはλ/4、基体22の上面で凹部22aの周囲の部位におけるチョーク溝24の両側の幅W2、W3はそれぞれλ/4である。このようなチョーク溝24は、蓋体21の下面の外周部に形成される場合もあり、基体22に設ける場合と同じ効果が得られる。
【0006】
【非特許文献1】
Futoshi Kuroki,Masayuki Sugioka,Shinji Matsukawa,Kengo Ikeda,andT.Yoneyama,“High−Speed ASK Transceiver Based on the NRD−Guide Technology at 60−GHzBand”,IEEE Transaction on Microwave Theory and Techniqes,USA,IEEE,JUNE 1988,VOL.46,NO.6,pp806−810
【0007】
【発明が解決しようとする課題】
しかしながら、上記従来の容器を用いたNRDガイドにおいては、図4に示すように、チョーク溝24は蓋体21によって密閉された状態となっているため、チョーク溝24を密閉した状態で蓋体21下面と基体22の凹部22a底面とを平行にするために、基体22の上面で凹部22aの周囲の部位を精密に研磨する必要があった。そのため、基体22をダイキャスト加工のような量産技術によって作製することができず、生産性が低いという問題点があった。
【0008】
また、チョーク溝24が蓋体21によって密閉された構成では、基体22と蓋体21との間の熱膨張係数差により生じる熱応力が、基体22および蓋体21の接合部に剪断的に加わるとチョーク溝24の密閉が一部破れてチョーク溝24の機能が劣化するという問題点があった。
【0009】
さらに、容器内部も密閉されることとなるため、容器内部で発生した熱がこもり易くなり、放熱性が低下するという問題点もあった。
【0010】
従って、本発明は上記事情に鑑みて完成されたものであり、その目的は、蓋体と基体との接合部に非密閉構造のチョーク空洞を形成することにより、基体や蓋体をダイキャスト加工のような量産技術およびわずかな切削加工によって生産性良く作製することができ、熱応力が基体および蓋体の接合部に加わっても接合部で有効に緩和することができ、また放熱性が向上するものとすることである。
【0011】
【課題を解決するための手段】
本発明の高周波部品収納用容器は、上面に高周波信号で作動する高周波部品を収容するための凹部が形成された金属製の基体と、該基体の上面の前記凹部の周囲に接合される、前記凹部の底面に下面が平行な平板状の金属製の蓋体とを具備しており、前記基体と前記蓋体との接合部に、上端および/または下端に前記基体の内側および外側の少なくとも一方に連通する隙間が形成された前記高周波信号の漏洩を防ぐためのチョーク空洞が全周にわたって設けられていることを特徴とする。
【0012】
本発明の高周波部品収納用容器は、基体と蓋体との接合部に、上端および/または下端に基体の内側および外側の少なくとも一方に連通する隙間が形成された高周波信号の漏洩を防ぐためのチョーク空洞が全周にわたって設けられていることから、非密閉構造のチョーク空洞となり、その結果、基体や蓋体をダイキャスト加工のような量産技術で作製し、基体の蓋体との接合部にわずかな切削加工を施すことによって蓋体下面と基体の凹部底面とを平行にすることができ、高周波部品収納用容器を生産性良く低コストで作製することができる。
【0013】
また、熱応力が基体および蓋体の接合部に加わっても接合部で有効に緩和することができ、また、チョーク空洞に基体の外側に連通する隙間が形成されていれば、高周波部品収納用容器の表面積が増大し、放熱性が向上することとなる。
【0014】
さらに、チョーク空洞に基体の内側および外側に連通する隙間が形成されていると、高周波部品収納用容器の内部に内外の温度差によって結露が生じるのを防ぐこともできる。
【0015】
本発明の高周波部品収納用容器において、好ましくは、前記チョーク空洞は前記基体の上面の外周部に全周にわたって形成した突部と前記蓋体の下面の外周部に全周にわたって形成した突部とが所定の間隔をもって噛み合うようにして形成されていることを特徴とする。
【0016】
本発明の高周波部品収納用容器は、好ましくはチョーク空洞は基体の上面の外周部に全周にわたって形成した突部と蓋体の下面の外周部に全周にわたって形成した突部とが所定の間隔をもって噛み合うようにして形成されていることから、基体と蓋体との接合部に剪断的に熱応力が加わっても、基体の突部や蓋体の突部で熱応力を有効に緩和することができる。また、例えば複雑な形状の細長いチョーク空洞を容易に形成することができ、接合部における熱応力の緩和効果、放熱性の向上効果、小型化等が促進されたものとなる。
【0017】
本発明の高周波部品収納用容器において、好ましくは、前記チョーク空洞は、上端よりも下端が前記基体の内側寄りに位置するように傾斜していることを特徴とする。
【0018】
本発明の高周波部品収納用容器は、好ましくはチョーク空洞は上端よりも下端が基体の内側寄りに位置するように傾斜していることから、基体や蓋体に斜面を有する段差や突部を成型法で欠けやバリの発生を防いで容易に作製することができ、その結果生産効率が向上することとなる。また、チョーク空洞の幅をλ/4以下として細くしても、その深さをλ/4よりも大きくすることで、十分な電磁波遮蔽効果が得られる。
【0019】
本発明の非放射性誘電体線路は、本発明の高周波部品収納用容器と、該高周波部品収納用容器の内部に収納された前記高周波信号を伝搬させるための誘電体線路とを具備しており、前記凹部の底面と前記蓋体の下面との間の間隔が前記高周波信号の波長の2分の1以下とされていることを特徴とする。
【0020】
本発明の非放射性誘電体線路は、上記の構成により、電磁波遮蔽性に優れるとともに、接合部における熱応力の緩和効果、放熱性の向上効果、小型化等の効果が得られるものとなる。
【0021】
本発明のミリ波送受信器は、
本発明の高周波部品収納用容器であって、前記凹部の底面と前記蓋体の下面との間の間隔がミリ波信号の波長の2分の1以下とされている前記高周波部品収納用容器の内部に、
高周波発生素子から出力され周波数変調されたミリ波信号を伝搬させる第1の誘電体線路と、
該第1の誘電体線路に付設され、前記高周波発生素子から出力された高周波信号を周期的に周波数変調して送信用のミリ波信号として出力し前記第1の誘電体線路中を伝搬させるミリ波信号発振部と、
前記第1の誘電体線路に一端側が電磁結合するように近接配置されるかまたは前記第1の誘電体線路に一端が接合されて、前記ミリ波信号の一部をミキサー側へ伝搬させる第2の誘電体線路と、
前記凹部の底面および前記蓋体の下面に平行に対向配置された2枚のフェライト板の周縁部に所定間隔で配置されかつそれぞれ前記ミリ波信号の入出力端とされた第1の接続部,第2の接続部および第3の接続部を有する第1のサーキュレータであって、前記第1の誘電体線路の前記ミリ波信号の出力端に前記第1の接続部が接続される第1のサーキュレータと、
該第1のサーキュレータの前記第2の接続部に一端が接続され、前記ミリ波信号を振幅変調するショットキーバリアダイオードが他端に接続された第3の誘電体線路と、
前記第1のサーキュレータの前記第3の接続部に一端が接続された第4の誘電体線路と、
前記凹部の底面および前記蓋体の下面に平行に対向配置された2枚のフェライト板の周縁部に所定間隔で配置されかつそれぞれ前記ミリ波信号の入出力端とされた第4の接続部,第5の接続部および第6の接続部を有する第2のサーキュレータであって、前記第4の接続部に前記第4の誘電体線路の他端が接続された第2のサーキュレータと、
前記第2のサーキュレータの前記第5の接続部に一端が接続され、前記ミリ波信号を振幅変調するショットキーバリアダイオードが他端に接続された第5の誘電体線路と、
前記第2のサーキュレータの前記第6の接続部に一端が接続された第6の誘電体線路と、
前記凹部の底面および前記蓋体の下面に平行に対向配置された2枚のフェライト板の周縁部に所定間隔で配置されかつそれぞれ前記ミリ波信号の入出力端とされた第7の接続部,第8の接続部および第9の接続部を有する第3のサーキュレータであって、前記第7の接続部に前記第6の誘電体線路の他端が接続された第3のサーキュレータと、
該第3のサーキュレータの前記第8の接続部に一端が接続され、ミリ波信号を伝搬させるとともに先端部に送受信アンテナを有する第7の誘電体線路と、
前記送受信アンテナで受信され前記第7の誘電体線路を伝搬して前記第3のサーキュレータの前記第9の接続部より出力した受信波をミキサー側へ伝搬させる第8の誘電体線路と、
前記第2の誘電体線路の中途と前記第8の誘電体線路の中途とを近接させて電磁結合させるかまたは接合させて成り、ミリ波信号の一部と受信波とを混合させて中間周波信号を発生させるミキサーと
が設けられていることを特徴とする。
【0022】
本発明のミリ波送受信器は、上記の構成により、高周波帯域および広い帯域幅でミリ波信号の漏れを防止するとともに外部から侵入しようとするノイズを遮断でき、その結果、出力の低下を抑えてミリ波レーダーモジュールとした場合に探知距離を増大し得るものとなる。また、生産性良く低コストで作製することができ、また熱応力によって高周波部品収納用容器の接合部が外れたりするのを防ぐことができ、さらに放熱性が良好なものとなる。さらに、高周波部品収納用容器の内部に内外の温度差によって結露が生じるのを防ぐことできる信頼性の高いミリ波送受信器となる。
【0023】
また、本発明のミリ波送受信器は、
本発明の高周波部品収納用容器であって、前記凹部の底面と前記蓋体の下面との間の間隔がミリ波信号の波長の2分の1以下とされている前記高周波部品収納用容器の内部に、
高周波発生素子から出力され周波数変調されたミリ波信号を伝搬させる第1の誘電体線路と、
該第1の誘電体線路に付設され、前記高周波発生素子から出力された高周波信号を周期的に周波数変調して送信用のミリ波信号として出力し前記第1の誘電体線路中を伝搬させるミリ波信号発振部と、
前記第1の誘電体線路に一端側が電磁結合するように近接配置されるかまたは前記第1の誘電体線路に一端が接合されて、前記ミリ波信号の一部をミキサー側へ伝搬させる第2の誘電体線路と、
前記凹部の底面および前記蓋体の下面に平行に対向配置された2枚のフェライト板の周縁部に所定間隔で配置されかつそれぞれ前記ミリ波信号の入出力端とされた第1の接続部,第2の接続部および第3の接続部を有する第1のサーキュレータであって、前記第1の誘電体線路の前記ミリ波信号の出力端に前記第1の接続部が接続される第1のサーキュレータと、
該第1のサーキュレータの前記第2の接続部に一端が接続され、前記ミリ波信号を振幅変調するショットキーバリアダイオードが他端に接続された第3の誘電体線路と、
前記第1のサーキュレータの前記第3の接続部に一端が接続された第4の誘電体線路と、
前記凹部の底面および前記蓋体の下面に平行に対向配置された2枚のフェライト板の周縁部に所定間隔で配置されかつそれぞれ前記ミリ波信号の入出力端とされた第4の接続部,第5の接続部および第6の接続部を有する第2のサーキュレータであって、前記第4の接続部に前記第4の誘電体線路の他端が接続された第2のサーキュレータと、
前記第2のサーキュレータの前記第5の接続部に一端が接続され、前記ミリ波信号を振幅変調するショットキーバリアダイオードが他端に接続された第5の誘電体線路と、
前記第2のサーキュレータの前記第6の接続部に一端が接続された第6の誘電体線路と、
前記凹部の底面および前記蓋体の下面に平行に対向配置された2枚のフェライト板の周縁部に所定間隔で配置されかつそれぞれ前記ミリ波信号の入出力端とされた第7の接続部,第8の接続部および第9の接続部を有する第3のサーキュレータであって、前記第7の接続部に前記第6の誘電体線路の他端が接続された第3のサーキュレータと、
該第3のサーキュレータの前記第8の接続部に一端が接続され、ミリ波信号を伝搬させるとともに先端部に送信アンテナを有する第7の誘電体線路と、
前記第3のサーキュレータの前記第9の接続部に接続され、前記送信アンテナで受信混入した受信波を伝搬させるとともに先端部に設けられた無反射終端部で前記受信波を減衰させる第8の誘電体線路と、
先端部に受信アンテナ、他端部にミキサーが各々設けられた第9の誘電体線路と、
前記第2の誘電体線路の中途と前記第9の誘電体線路の中途とを近接させて電磁結合させるかまたは接合させて成り、ミリ波信号の一部と受信波とを混合させて中間周波信号を発生させるミキサーと
を設けたことを特徴とする。
【0024】
本発明のミリ波送受信器は、上記の構成により、送信アンテナと受信アンテナが独立していることから、送信アンテナで受信された受信波がミキサーへノイズとして混入することがなく、高周波信号の伝送特性に優れたものとなる。その結果、受信波によるノイズが低減し、ミリ波レーダーモジュールとした場合に探知距離がさらに増大するものものとなる。また、生産性良く低コストで作製することができ、また熱応力によって高周波部品収納用容器の接合部が外れたりするのを防ぐことができ、さらに放熱性が良好なものとなる。また、高周波部品収納用容器の内部に内外の温度差によって結露が生じるのを防ぐことできる信頼性の高いミリ波送受信器となる。
【0025】
なお、本発明のミリ波送受信器においては、高周波発生素子を第1の誘電体線路ではなく第2の誘電体線路に付設することができ、その場合、第2の誘電体線路から第1の誘電体線路へ電磁結合によりミリ波信号を伝搬させることで、上記構成のものと同様の機能を有するものとなる。
【0026】
【発明の実施の形態】
本発明の高周波部品収納用容器およびミリ波送受信器について以下に説明する。図1は本発明の容器の断面図であり、同図において、1は上側の平行平板導体としての蓋体、2は下側の平行平板導体としての基体、2aは基体2の上面に形成された凹部、3は誘電体線路である。
【0027】
本発明の容器は、上面に高周波信号で作動する高周波部品を収容するための凹部2aが形成された金属製の基体2と、基体2の上面の凹部2aの周囲に接合される、凹部2aの底面に下面が平行な平板状の金属製の蓋体1とを具備し、基体2と蓋体1との接合部に、上端および/または下端に基体2の内側および外側の少なくとも一方に連通する隙間4aが形成された高周波信号の漏洩を防ぐためのチョーク空洞4が全周にわたって設けられている。
【0028】
本発明の容器は、このような構成により、開放部を有する非密閉構造のチョーク空洞4となり、その結果、基体2や蓋体1をダイキャスト加工のような量産技術で作製し、基体2の蓋体1との接合部にわずかな切削加工を施すことによって蓋体1下面と基体2の凹部2a底面とを平行にすることができ、容器を生産性良く低コストで作製することができる。また、蓋体1の下面に平行な剪断的な熱応力が基体2および蓋体1の接合部に加わっても接合部で有効に緩和することができ、また、チョーク空洞4に基体2の外側に連通する隙間4aが形成されていれば、容器の表面積が増大して放熱性が向上する。さらに、チョーク空洞4に基体2の内側および外側に連通する隙間4aが形成されていると、容器内部に内外の温度差によって結露が生じるのを防ぐこともできる。
【0029】
本発明において、図1(b)に示すように、チョーク空洞4は例えば断面形状が正方形や長方形等の四角形とされており、その幅W1は高周波信号の波長λに対してλ/4、深さDはnλ/4(nは1以上の整数)、チョーク空洞4と容器(基体2)の外側面との間の間隔はλ/4、チョーク空洞4と容器(基体2)の内側面との間の間隔はλ/4である。これにより、チョーク空洞4において、容器外部へ漏洩しようとする高周波信号および容器内部へ侵入しようとする高周波信号が遮蔽される。
【0030】
また、隙間4aの高さHはDよりも小さくかつλ/2以下がよく、λ/2を超えると、高周波信号の遮蔽効果が劣化し易くなる。
【0031】
また、基体2と蓋体1とは、蓋体1にネジを挿通するための貫通孔を、基体2にネジ穴を形成してネジ止めしたり、ボルトとナットにより固定してもよい。または、Pb−Sn半田,Au−Sn半田,Ag−Cuロウ材等のロウ材や樹脂接着剤等によって接合することもできる。
【0032】
本発明において、チョーク空洞4は、基体2の上面の外周部に全周にわたって形成した突部と蓋体1の下面の外周部に全周にわたって形成した突部とが所定の間隔(λ/4)をもって噛み合うようにして形成されていることが好ましい。これにより、基体2と蓋体1との接合部に剪断的に熱応力が加わっても、基体2の突部や蓋体1の突部で熱応力を有効に緩和することができる。また、複雑な形状のチョーク空洞4を容易に形成することができ、熱応力の緩和効果、放熱性の向上効果、小型化等がさらに促進されたものとなる。なお、基体2の突部や蓋体1の突部は段差であってもよい。
【0033】
本発明の基体2および蓋体1は、高い電気伝導度(高い電磁波遮蔽性)および加工性等の点で、Cu,Al,Fe,Ag,Au,Pt,SUS(ステンレススチール),真鍮(Cu−Zn合金),Fe−Ni合金,Fe−Ni−Co合金等の金属、あるいはセラミックス,樹脂等から成る絶縁体の表面にこれらの金属の層をめっき法等で被着形成したものでもよい。
【0034】
また、高周波部品としては、ガンダイオード等の高周波発生素子、ショットキーバリアダイオード,バラクタダイオード等の高周波信号を変調するための高周波変調用素子、高周波信号を伝搬させる誘電体線路、高周波信号の伝搬経路を変換するサーキュレータ等が用いられる。
【0035】
本発明のNRDガイドは、本発明の容器と、その容器の内部に収納された高周波信号を伝搬させるための誘電体線路3とを具備し、凹部2aの底面と蓋体1の下面との間の間隔が高周波信号の波長の2分の1以下とされている。これにより、電磁波遮蔽性に優れるとともに、接合部における熱応力の緩和効果、放熱性の向上効果、小型化等の効果が得られるものとなる。なお、誘電体線路3は基体2と蓋体1の少なくとも一方に樹脂接着剤等で接着されていれば良い。
【0036】
本発明の誘電体線路3は、テフロン,ポリスチレン等の樹脂、または低比誘電率のコーディエライト(2MgO・2Al・5SiO)セラミックス,アルミナ(Al)セラミックス,ガラスセラミックス等のセラミックスから成るのが好ましく、これらは高周波帯域において低損失である。
【0037】
本発明でいう高周波帯域は、数10〜数100GHz帯域のマイクロ波帯域およびミリ波帯域に相当し、例えば30GHz以上、特に50GHz以上、更には70GHz以上の高周波帯域が好適である。
【0038】
また、本発明のNRDガイドは、高周波発生素子としてVCOやガンダイオード等の高周波ダイオードを組み込むことによって、無線LAN,自動車のミリ波レーダ等に使用されるものであり、例えば自動車の周囲の障害物および他の自動車に対しミリ波を照射し、反射波を元のミリ波と合成して中間周波信号を得、この中間周波信号を分析することにより障害物および他の自動車までの距離、それらの移動速度等が測定できる。
【0039】
本発明の容器を用いたNRDガイドについて実施の形態の他の例を図2に示す。
【0040】
図2(a)は、蓋体1の下面の外周端に突部1aを設け、基体2の側壁部の上面の内周端に突部1aよりもわずかに低い突部2aを設けて、容器内部に連通する隙間4aが形成されたチョーク空洞4を設けたものである。この場合、基体2をダイキャスト法で作製し、接合部である突部1aの下端面を研磨することにより、基体2の凹部2a底面と蓋体1下面とを容易に平行にすることができる。また、基体2と蓋体1との接合部である突部1a下端面に熱応力が加わっても、突部1aが適度に変形することによって熱応力を緩和することができる。
【0041】
(b)は、(a)において、突部1aの高さを突部2aよりももわずかに低くして、容器外部に連通する隙間4aが形成されたチョーク空洞4を設けたものである。この場合、上記の効果に加えて、容器の外表面の面積が増大することから容器の放熱性が向上するという効果がある。
【0042】
(c)は、蓋体1の下面で外周端よりも若干内側に突部1aを設け、基体2の側壁部の上面の外周端に突部1aよりもわずかに低い突部2aを設けて、容器外部に連通する隙間4aが形成されたチョーク空洞4を設けたものである。
【0043】
(d)は、(c)において、突部1aの高さを突部2aよりももわずかに低くして、容器内部に連通する隙間4aが形成されたチョーク空洞4を設けたものである。
【0044】
(e)は、蓋体1の下面で外周端よりも若干内側に段差1aを設け、基体2の側壁部の上面の外周端に段差1aよりもわずかに高い突部2aを設けて、容器内部に連通する隙間4aが形成されたチョーク空洞4を設けたものである。この場合、チョーク空洞4は、上端よりも下端が基体2の内側寄りに位置するように傾斜していることから、ダイキャスト法等の金型を用いた成型法で基体2、蓋体1を作製することが容易になる。即ち、斜面を有する段差1aや突部2aは成型法で欠けやバリの発生を防いで容易に作製することができ、その結果生産効率が向上することとなる。また、チョーク空洞4の幅をλ/4以下として細くしても、その深さをλ/4よりも大きくすることで、十分な電磁波遮蔽効果が得られるとともに、小型化された容器となる。
【0045】
(f)は、(e)において、突部2aの高さを段差1aよりもわずかに低くして、容器外部に連通する隙間4aが形成されたチョーク空洞4を設けたものである。この場合、上記の効果に加えて、容器の外表面の面積が増大することから容器の放熱性が向上するという効果がある。
【0046】
(g)は、基体2の側壁部の内側上端を側壁部が若干先細りとなるように斜面とし、蓋体1の下面で外周端よりも若干内側に段差1aを設けて、容器内部に連通する隙間4aが形成された断面形状が細長い逆直角三角形状のチョーク空洞4を設けたものである。この場合、成型法で基体2、蓋体1を作製することが容易になり、また、チョーク空洞4の幅をλ/4以下として細くしても、その深さをλ/4よりも大きくすることで、十分な電磁波遮蔽効果が得られるとともに、小型化された容器となる。
【0047】
(h)は、(g)において、基体2の側壁部上面と蓋体1下面との間にも隙間4bが形成されるように支柱5を基体2の凹部2底面または蓋体1下面に設けたものである。この場合、支柱5の高さをその上端面または下端面を研磨することで容易に調整でき、基体2の凹部2a底面と蓋体1下面とを容易に平行にすることができる。また、チョーク空洞4に基体2の内側および外側に連通する隙間4a,4bが形成されていることから、容器の内部に内外の温度差によって結露が生じるのを防ぐことができ、高周波部品の特性劣化を防いで信頼性が高いものとなる。
【0048】
次に、本発明のミリ波送受信器としてのミリ波レーダーモジュールについて以下に説明する。
【0049】
図5,図6は本発明のミリ波レーダーモジュールを示し、図5は送信アンテナと受信アンテナが一体化されたものの平面図、図6は送信アンテナと受信アンテナが独立したものの平面図、図7はミリ波信号発振部の斜視図、図8はミリ波信号発振部用の可変容量ダイオード(バラクタダイオード)を設けた配線基板の斜視図である。
【0050】
図5のミリ波レーダーモジュールは、送信用のミリ波信号の波長の2分の1以下の間隔で配置された平行平板導体(基体と蓋体に相当する。また他方は省略する。)51間に高周波発生素子から出力され周波数変調されたミリ波信号を伝搬させる第1の誘電体線路53と、第1の誘電体線路53に付設され、ミリ波信号を周期的に周波数変調して送信用のミリ波信号として出力し、第1の誘電体線路53中を伝搬させるミリ波信号発振部52と、第1の誘電体線路53に一端側が電磁結合するように近接配置されるかまたは第1の誘電体線路53に一端が接合されて、ミリ波信号の一部をミキサー62側へ伝搬させる第2の誘電体線路61とが設けられている。
【0051】
また、平行平板導体51間に、平行平板導体51に平行に対向配置された2枚のフェライト板55aの周縁部に所定間隔で配置されかつそれぞれミリ波信号の入出力端とされた第1の接続部55a1、第2の接続部55a2および第3の接続部55a3を有する第1のサーキュレータ(以下、CLTともいう)Aであって、第1の誘電体線路53のミリ波信号の出力端に第1の接続部55a1が接続される第1のCLTAと、第1のCLTAの第2の接続部55a2に一端が接続され、ミリ波信号を振幅変調するショットキーバリアダイオード(以下、SBDともいう)が他端部(先端部)に接続された第3の誘電体線路56と、第1のCLTAの第3の接続部55a3に一端が接続された第4の誘電体線路54cとが設けられている。
【0052】
また、平行平板導体間51に、平行平板導体51に平行に対向配置された2枚のフェライト板55bの周縁部に所定間隔で配置されかつそれぞれミリ波信号の入出力端とされた第4の接続部55b1、第5の接続部55b2および第6の接続部55b3を有する第2のCLTBであって、第4の誘電体線路54cのミリ波信号の出力端に第4の接続部55b1が接続される第2のCLTBと、第2のCLTBの第5の接続部55b2に一端が接続され、ミリ波信号を振幅変調するSBDが他端部(先端部)に接続された第5の誘電体線路58と、第2のCLTBの第6の接続部55b3に一端が接続された第6の誘電体線路54eとが設けられている。
【0053】
また、平行平板導体間51に、平行平板導体51に平行に対向配置された2枚のフェライト板55cの周縁部に所定間隔で配置されかつそれぞれミリ波信号の入出力端とされた第7の接続部55c1、第8の接続部55c2および第9の接続部55c3を有する第3のCLTCであって、第7の接続部55c1に第6の誘電体線路54eの他端が接続された第3のCLTCと、第3のCLTCの第8の接続部55c2に一端が接続され、ミリ波信号を伝搬させるとともに先端部に送受信アンテナ59aを有する第7の誘電体線路59と、送受信アンテナ59aで受信され第7の誘電体線路59を伝搬して第3のCLTCの第9の接続部55c3より出力した受信波をミキサー62側へ伝搬させる第8の誘電体線路60と、第2の誘電体線路61の中途と第8の誘電体線路60の中途とを近接させて電磁結合させるかまたは接合させて成り、ミリ波信号の一部と受信波とを混合させて中間周波数信号を発生させるミキサー62とが設けられている。
【0054】
そして、SBDがそれぞれ設けられた第1および第2のCLTA,Bが振幅変調器である。なお、図中M1は中間周波数信号を発生させるミキサー部、61aは、第2の誘電体線路61のミキサー62と反対側の端部に設けられた無反射終端部(ターミネータ)である。
【0055】
第1の誘電体線路53の一端に設けられた電圧制御型のミリ波信号発振部52は、バイアス電圧印加方向が高周波信号の電界方向に合致するように、第1の誘電体線路53の高周波発生素子(高周波ダイオード等)近傍に配置された可変容量ダイオードのバイアス電圧を周期的に制御して、三角波、正弦波等とすることにより、周波数変調した送信用のミリ波信号として出力する。なお、高周波ダイオードと可変容量ダイオードとの組み合わせと同等の機能を有するVCO(VCOは電圧で周波数を変化させる発振器であり、例えば可変容量ダイオードを用いずにガンダイオード(高周波発生素子)のバイアス電圧を変化させるものもある)をミリ波信号発振部として用いることで、同じ目的を達成できることは言うまでも無い。
【0056】
なお、図6において、54a〜54gはモードサプレッサである。また、57a,57bはミリ波信号を振幅変調するSBDが設けられた配線基板であり、図5のような構成である。例えば、図5の配線基板30の一主面にチョーク型バイアス供給線路33を形成し、その中途にフリップチップ実装、バンプ実装またはハンダ実装されたSBD31を設けたスイッチである。このSBD31の順方向電流を流すまたは流さないという制御をすることにより、ミリ波信号をオフ(吸収)−オン(反射)制御(スイッチング制御)、即ち振幅変調することができる。
【0057】
また、送受信アンテナ59aは、第7の誘電体線路59の先端をテーパー状とすることにより設けられる。または、送受信アンテナ59aは、平行平板導体51に開口を設け、平行平板導体51の外面にその開口に金属導波管を介してホーンアンテナ等のアンテナを接続した構成のものでもよい。
【0058】
第4,第6の誘電体線路54c,54eは接続用誘電体線路であり、その略全体がモードサプレッサとなっている。
【0059】
また、第1の誘電体線路53は第1のCLTAの入力用誘電体線路、第3の誘電体線路56は第1のCLTAの変調用誘電体線路、第4の誘電体線路54cは第1のCLTAの出力用誘電体線路に相当する。第4の誘電体線路54cは第2のCLTBの入力用誘電体線路、第5の誘電体線路58は第2のCLTBの変調用誘電体線路、第6の誘電体線路54eは第2のCLTBの出力用誘電体線路に相当する。
【0060】
また、本発明のミリ波レーダーモジュールの実施の形態の他の例として、送信アンテナと受信アンテナを独立させた図6のタイプがある。
【0061】
図6のものは、送信用のミリ波信号の波長の2分の1以下の間隔で配置された平行平板導体(他方は省略する)65間に高周波発生素子から出力され周波数変調されたミリ波信号を伝搬させる第1の誘電体線路67と、第1の誘電体線路67に付設され、ミリ波信号を周期的に周波数変調して送信用のミリ波信号として出力し、第1の誘電体線路67中を伝搬させるミリ波信号発振部66と、第1の誘電体線路67に一端側が電磁結合するように近接配置されるかまたは第1の誘電体線路67に一端が接合されて、ミリ波信号の一部をミキサー76側へ伝搬させる第2の誘電体線路69とが設けられている。
【0062】
また、平行平板導体65間に、平行平板導体65に平行に対向配置された2枚のフェライト板70aの周縁部に所定間隔で配置されかつそれぞれミリ波信号の入出力端とされた第1の接続部70a1、第2の接続部70a2および第3の接続部70a3を有する第1のCLTAであって、第1の誘電体線路67のミリ波信号の出力端に第1の接続部70a1が接続される第1のCLTAと、第1のCLTAの第2の接続部70a2に一端が接続され、ミリ波信号を振幅変調するSBDが他端部(先端部)に接続された第3の誘電体線路71と、第1のCLTAの第3の接続部70a3に一端が接続された第4の誘電体線路68cとが設けられている。
【0063】
また、平行平板導体65間に、平行平板導体65に平行に対向配置された2枚のフェライト板70bの周縁部に所定間隔で配置されかつそれぞれミリ波信号の入出力端とされた第4の接続部70b1、第5の接続部70b2および第6の接続部70b3を有する第2のCLTBであって、第4の誘電体線路68cのミリ波信号の出力端に第4の接続部70b1が接続される第2のCLTBと、第2のCLTBの第5の接続部70b2に一端が接続され、ミリ波信号を振幅変調するSBDが他端部(先端部)に接続された第5の誘電体線路72と、第2のCLTBの第6の接続部70b3に一端が接続された第6の誘電体線路68eとが設けられている。
【0064】
また、平行平板導体65間に、平行平板導体65に平行に対向配置された2枚のフェライト板70cの周縁部に所定間隔で配置されかつそれぞれミリ波信号の入出力端とされた第7の接続部70c1、第8の接続部70c2および第9の接続部70c3を有する第3のCLTCであって、第7の接続部70c1に第6の誘電体線路68eの他端が接続された第3のCLTCと、第3のCLTCの第8の接続部70c2に一端が接続され、ミリ波信号を伝搬させるとともに先端部に送信アンテナ73aを有する第7の誘電体線路73と、送信アンテナ73aで受信混入した受信波を伝搬させるとともに先端部に設けられた無反射終端74aで受信波を減衰させる第8の誘電体線路74と、先端部に受信アンテナ75a、他端部にミキサー76が各々設けられた第9の誘電体線路75と、第2の誘電体線路69の中途と第9の誘電体線路75の中途とを近接させて電磁結合させるかまたは接合させて成り、ミリ波信号の一部と受信波とを混合させて中間周波数信号を発生させるミキサー76とが設けられている。
【0065】
そして、それぞれSBDが設けられた第1および第2のCLTA,Bが振幅変調器である。なお、図中M2は中間周波数信号を発生させるミキサー部、69aは、第2の誘電体線路69のミキサー76と反対側の端部に設けられた無反射終端部(ターミネータ)である。
【0066】
第1の誘電体線路67の一端に設けられた電圧制御型のミリ波信号発振部66は、バイアス電圧印加方向が高周波信号の電界方向に合致するように、第1の誘電体線路67の高周波発生素子近傍に配置された可変容量ダイオードのバイアス電圧を周期的に制御して、三角波、正弦波等とすることにより、周波数変調した送信用のミリ波信号として出力する。なお、高周波ダイオードと可変容量ダイオードとの組み合わせと同等の機能を有するVCOをミリ波信号発振部として用いることで、同じ目的を達成できることは言うまでもない。
【0067】
なお、図7において、68a〜68gはモードサプレッサである。また、77a,77bはミリ波信号を振幅変調するSBDが設けられた配線基板であり、図5のような構成である。
【0068】
また、送信アンテナ73a、受信アンテナ75aは、第7の誘電体線路73、第9の誘電体線路75の先端をテーパー状とすることによりそれぞれ設けられる。または、送信アンテナ73a、受信アンテナ75aは、平行平板導体65に開口を設け、平行平板導体65の外面にその開口に金属導波管を介してホーンアンテナ等のアンテナを接続した構成のものでもよい。
【0069】
第4,第6の誘電体線路68c,68eは接続用誘電体線路であり、その略全体がモードサプレッサとなっている。
【0070】
また、第1の誘電体線路67は第1のCLTAの入力用誘電体線路、第3の誘電体線路71は第1のCLTAの変調用誘電体線路、第4の誘電体線路68cは第1のCLTAの出力用誘電体線路に相当する。第4の誘電体線路68cは第2のCLTBの入力用誘電体線路、第5の誘電体線路72は第2のCLTBの変調用誘電体線路、第6の誘電体線路68eは第2のCLTBの出力用誘電体線路に相当する。
【0071】
図5,図6のミリ波レーダーモジュール用のミリ波信号発振部52,66をガンダイオードで構成したものを図7,図8に示す。これらの図において、82は、ガンダイオード83を設置(マウント)するための略直方体の金属ブロック等の金属部材、83は、ミリ波を発振する高周波ダイオードの1種であるガンダイオード、84は、金属部材82の一側面に設置され、ガンダイオード83にバイアス電圧を供給するとともに高周波信号の漏れを防ぐローパスフィルタとして機能するチョーク型バイアス供給線路84aを形成した配線基板、85は、チョーク型バイアス供給線路84aとガンダイオード83の上部導体とを接続する金属箔リボン等の帯状導体、86は、誘電体基体に共振用の金属ストリップ線路86aを設けた金属ストリップ共振器、87は、金属ストリップ共振器86により共振した高周波信号をミリ波信号発振部外へ導く誘電体線路である。
【0072】
さらに、誘電体線路87の中途には、周波数変調用ダイオードであって可変容量ダイオードの1種であるバラクタダイオード80を装荷した配線基板88を設置している。このバラクタダイオード80のバイアス電圧印加方向は、誘電体線路87での高周波信号の伝搬方向に垂直かつ平行平板導体の主面に平行な方向(電界方向)とされている。また、バラクタダイオード80のバイアス電圧印加方向は、誘電体線路87中を伝搬するLSM01モードの高周波信号の電界方向と合致しており、これにより高周波信号とバラクタダイオード80とを電磁結合させ、バイアス電圧を制御することによりバラクタダイオード80の静電容量を変化させることで、高周波信号の周波数を制御できる。また、89は、バラクタダイオード80と誘電体線路87とのインピーダンス整合をとるための高比誘電率の誘電体板である。
【0073】
また図8に示すように、配線基板88の一主面には第2のチョーク型バイアス供給線路90が形成され、第2のチョーク型バイアス供給線路90の中途にバラクタダイオード80が配置される。第2のチョーク型バイアス供給線路90のバラクタダイオード80との接続部には、接続用の電極81が形成されている。
【0074】
そして、ガンダイオード83から発振された高周波信号は、金属ストリップ共振器86を通して誘電体線路87に導出される。次に、高周波信号の一部はバラクタダイオード80部で反射されてガンダイオード83側へ戻る。この反射信号がバラクタダイオード80の静電容量の変化に伴って変化し、発振周波数が変化する。
【0075】
また、図5,図6のミリ波レーダーモジュールはFMCW(Frequency Modulation Continuous Waves)方式であり、その動作原理は以下のようなものである。ミリ波信号発振部の変調信号入力用のMODIN端子に、電圧振幅の時間変化が三角波,正弦波等となる入力信号を入力し、その出力信号を周波数変調し、ミリ波信号発振部の出力周波数偏移を三角波,正弦波等になるように偏移させる。そして、送受信アンテナ59a,送信アンテナ75aより出力信号(送信波)を放射した場合、送受信用アンテナ59a,送信アンテナ75aの前方にターゲットが存在すると、電波の伝搬速度の往復分の時間差をともなって、反射波(受信波)が戻ってくる。この時、ミキサー62,76の出力側のIFOUT端子には、送信波と受信波の周波数差が出力される。
【0076】
このIFOUT端子の出力周波数等の周波数成分を解析することで、Fif=4R・fm・Δf/c(Fif:IF(Intermediate Frequency:中間周波数)出力周波数,R:距離,fm:変調周波数,Δf:周波数偏移幅,c:光速)という関係式から距離を求めることができる。
【0077】
本発明のミリ波信号発振部において、チョーク型バイアス供給線路84aおよび帯状導体85の材料は、Cu,Al,Au,Ag,W,Ti,Ni,Cr,Pd,Pt等から成り、特にCu,Agが、電気伝導度が良好であり、損失が小さく、発振出力が大きくなるといった点で好ましい。
【0078】
また、帯状導体85は金属部材82の表面から所定間隔をあけて金属部材82と電磁結合しており、チョーク型バイアス供給線路84aとガンダイオード素子83間に架け渡されている。即ち、帯状導体85の一端はチョーク型バイアス供給線路84aの一端に半田付け等により接続され、帯状導体85の他端はガンダイオード素子83の上部導体に半田付け等により接続されており、帯状導体85の接続部を除く中途部分は宙に浮いた状態となっている。
【0079】
そして、金属部材82は、ガンダイオード素子83の電気的な接地(アース)を兼ねているため金属等の導体であれば良く、その材料は金属(合金を含む)であれば特に限定するものではなく、真鍮(黄銅:Cu−Zn合金),Al,Cu,SUS(ステンレススチール),Ag,Au,Pt等から成る。また金属部材82は、全体が金属から成る金属ブロック、セラミックスやプラスチック等の絶縁基体の表面全体または部分的に金属メッキしたもの、絶縁基体の表面全体または部分的に導電性樹脂材料等をコートしたものであっても良い。
【0080】
かくして、本発明の図5のミリ波レーダーモジュールは、高周波帯域および広い帯域幅でミリ波信号の漏れを防止するとともに外部から侵入しようとするノイズを遮断でき、その結果、出力の低下を抑えて探知距離を増大し得るものとなる。また、生産性良く低コストで作製することができ、また熱応力によって容器の接合部が外れたりするのを防ぐことができ、さらに放熱性が良好なものとなる。また、容器内部に結露が生じるのを防ぐことできる信頼性の高いものとなる。
【0081】
また、本発明の図6のミリ波レーダーモジュールは、上記と同様の効果を有するとともに、送信アンテナで受信された受信波がミキサーへノイズとして混入することがなく、高周波信号の伝送特性に優れたものとなる。その結果、受信波によるノイズが低減し探知距離がさらに増大するものものとなる。
【0082】
【実施例】
本発明の高周波部品収納用容器の実施例を以下に説明する。
【0083】
図1の容器を用いて図5のミリ波レーダーモジュールを作製した。上側の平行平板導体としての蓋体1、下側の平行平板導体としての基体2を、厚さ6mmの2枚のAl板をダイキャスト法で成型して作製し、図1の容器を作製した。基体2の側壁部の上面に形成された突部の上面を若干研磨することにより、基体2の凹部2a底面と蓋体1下面とが平行になり、それらの間隔が1.8mmとなるように調整した。そして、容器内部に断面形状が1.8mm(高さ)×0.8mm(幅)の矩形状であり、比誘電率4.9のコーディエライトセラミックスから成る誘電体線路3から構成される高周波回路を形成した。
【0084】
また、本実施例では76.5GHz±0.5GHz(λ/4が約1mm)を使用周波数としており、W1〜W3が1mm、Dが1mm、Hが0.1mmであるチョーク空洞4を形成した。
【0085】
そして、容器外部においてパワーメーターを用いて容器内部より漏れ出す高周波信号を測定した結果、高周波信号の漏れを検知することはできなかった。したがって、電磁波が遮蔽されていることが判った。
【0086】
なお、本発明は上記実施の形態および実施例に限定されず、本発明の要旨を逸脱しない範囲内で種々の変更を行うことは何等差し支えない。
【0087】
【発明の効果】
本発明の高周波部品収納用容器は、基体と蓋体との接合部に、上端および/または下端に基体の内側および外側の少なくとも一方に連通する隙間が形成された高周波信号の漏洩を防ぐためのチョーク空洞が全周にわたって設けられていることから、非密閉構造のチョーク空洞となり、その結果、基体をダイキャスト加工のような量産技術で作製し、基体の蓋体との接合部にわずかな切削加工を施すことによって蓋体下面と基体の凹部底面とを平行にすることができ、生産性良く低コストで作製することができる。また、熱応力が基体および蓋体の接合部に加わっても接合部で有効に緩和することができ、また、チョーク空洞に基体の外側に連通する隙間が形成されていれば、高周波部品収納用容器の表面積が増大し、放熱性が向上することとなる。さらに、チョーク空洞に基体の内側および外側に連通する隙間が形成されていると、内部に内外の温度差によって結露が生じるのを防ぐこともできる。
【0088】
本発明の高周波部品収納用容器は、好ましくはチョーク空洞は基体の上面の外周部に全周にわたって形成した突部と蓋体の下面の外周部に全周にわたって形成した突部とが所定の間隔をもって噛み合うようにして形成されていることから、基体と蓋体との接合部に剪断的に熱応力が加わっても、基体の突部や蓋体の突部で熱応力を有効に緩和することができる。また、例えば複雑な形状の細長いチョーク空洞を容易に形成することができ、接合部における熱応力の緩和効果、放熱性の向上効果、小型化等が促進されたものとなる。
【0089】
本発明の高周波部品収納用容器は、好ましくはチョーク空洞は上端よりも下端が基体の内側寄りに位置するように傾斜していることから、基体や蓋体に斜面を有する段差や突部を成型法で欠けやバリの発生を防いで容易に作製することができ、その結果生産効率が向上することとなる。また、チョーク空洞の幅をλ/4以下として細くしても、その深さをλ/4よりも大きくすることで、十分な電磁波遮蔽効果が得られるとともに、小型化されたものとなる。
【0090】
本発明の非放射性誘電体線路は、本発明の高周波部品収納用容器と、高周波部品収納用容器の内部に収納された高周波信号を伝搬させるための誘電体線路とを具備し、凹部の底面と蓋体の下面との間の間隔が高周波信号の波長の2分の1以下とされていることにより、電磁波遮蔽性に優れるとともに、接合部における熱応力の緩和効果、放熱性の向上効果、小型化等の効果が得られるものとなる。
【0091】
本発明の送受信アンテナを有するミリ波送受信器は、高周波帯域および広い帯域幅でミリ波信号の漏れを防止するとともに外部から侵入しようとするノイズを遮断でき、その結果、出力の低下を抑えてミリ波レーダーモジュールとした場合に探知距離を増大し得るものとなる。また、生産性良く低コストで作製することができ、また熱応力によって高周波部品収納用容器の接合部が外れたりするのを防ぐことができ、さらに放熱性が良好なものとなる。さらに、高周波部品収納用容器の内部に内外の温度差によって結露が生じるのを防ぐことできる信頼性の高いものとなる。
【0092】
また、本発明の送信アンテナと受信アンテナが独立したミリ波送受信器は、上記の効果を有するとともに、送信アンテナで受信された受信波がミキサーへノイズとして混入することがなく、高周波信号の伝送特性に優れたものとなる。その結果、受信波によるノイズが低減し、ミリ波レーダーモジュールとした場合に探知距離がさらに増大するものものとなる。
【図面の簡単な説明】
【図1】(a)は本発明の高周波部品収納用容器について実施の形態の例を示す断面図、(b)は(a)の高周波部品収納用容器の要部断面図である。
【図2】(a)〜(h)は本発明の高周波部品収納用容器について実施の形態の各種例を示す要部断面図である。
【図3】従来の非放射性誘電体線路の一部透視斜視図である。
【図4】(a)は従来の高周波部品収納用容器の断面図、(b)は(a)の高周波部品収納用容器の要部断面図である。
【図5】本発明のミリ波送受信器について実施の形態の例を示す平面図である。
【図6】本発明のミリ波送受信器について実施の形態の他の例を示す平面図である。
【図7】本発明の電圧制御型のミリ波信号発振部の斜視図である。
【図8】図7のミリ波信号発振部用のバラクタダイオードを設けた配線基板の斜視図である。
【符号の説明】
1:蓋体
2:基体
2a:凹部
3:誘電体線路
4:チョーク空洞
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a high-frequency component storage container for storing a high-frequency component operated by a high-frequency signal, a nonradiative dielectric line using the same, a nonradiative dielectric line type millimeter-wave integrated circuit, and a millimeter-wave radar module. And a millimeter-wave transceiver.
[0002]
[Prior art]
Conventionally, metal waveguides have often been used to transmit microwave or millimeter-wave high-frequency signals, but due to recent demands for downsizing high-frequency modules, high-frequency modules using dielectric lines have been developed. ing. Above all, non-radiative dielectric waveguides (Nonradiative Dielectric Waveguides, hereinafter also referred to as NRD guides) with small transmission loss of high-frequency signals have been receiving attention. FIG. 3 shows the basic configuration of the NRD guide. As shown in FIG. 1, a rectangular dielectric line 13 having a rectangular cross section is arranged between parallel plate conductors 11 and 12 arranged in parallel at a predetermined interval a. If a ≦ λ / 2 with respect to the wavelength λ of the high-frequency signal, the intrusion of noise from the outside into the dielectric line 13 and the emission of the high-frequency signal to the outside are eliminated, and the high-frequency signal in the dielectric line 13 is eliminated. Can be efficiently propagated. The wavelength λ of the high-frequency signal is the wavelength in the air (free space) at the operating frequency.
[0003]
In such an NRD guide, a configuration shown in FIG. 4A is proposed for the purpose of shielding electromagnetic waves which are likely to enter from the outside, which causes noise, and for preventing leakage of high frequency signals to the outside. Have been. That is, a metal base 22 having a concave portion 22a for accommodating the dielectric line 23 formed on the upper surface thereof, and a flat plate having a lower surface parallel to the lower surface of the concave portion 22a and joined to the periphery of the concave portion 22a on the upper surface of the base 22. And a high-frequency component storage container (hereinafter, also referred to as a container) having a choke groove 24 for shielding electromagnetic waves at a position around the concave portion 22a on the upper surface of the base 22. It was used.
[0004]
The lid 21 corresponds to the upper parallel plate conductor, and the base 22 corresponds to the lower parallel plate conductor.
[0005]
Then, as shown in FIG. 4B, the width W1 of the choke groove 24 is λ / 4 with respect to the wavelength λ of the high-frequency signal, the depth D of the choke groove 24 is λ / 4, and the concave portion 22a is formed on the upper surface of the base 22. The widths W2 and W3 on both sides of the choke groove 24 in the region around are respectively λ / 4. Such a choke groove 24 may be formed in the outer peripheral portion of the lower surface of the lid 21, and the same effect as that provided in the base 22 can be obtained.
[0006]
[Non-patent document 1]
Futoshi Kuroki, Masayuki Sugioka, Shinji Matsukawa, Kengo Ikeda, andT. Yoneyama, "High-Speed ASK Transceiver Based on the NRD-Guide Technology at 60-GHz Band", IEEE Transaction on Microwave Theory and Techniqes, USA, IEEE, JUNE 1988, VOL. 46, NO. 6, pp806-810
[0007]
[Problems to be solved by the invention]
However, in the above-mentioned conventional NRD guide using a container, the choke groove 24 is sealed by the lid 21 as shown in FIG. In order to make the lower surface parallel to the bottom surface of the concave portion 22a of the base 22, it is necessary to precisely polish a portion around the concave portion 22a on the upper surface of the base 22. Therefore, there was a problem that the base 22 could not be manufactured by a mass production technique such as die casting, and the productivity was low.
[0008]
In the configuration in which the choke groove 24 is hermetically closed by the lid 21, thermal stress generated by a difference in thermal expansion coefficient between the base 22 and the lid 21 is applied to the joint between the base 22 and the lid 21 in a shearing manner. In addition, there is a problem that the sealing of the choke groove 24 is partially broken and the function of the choke groove 24 is deteriorated.
[0009]
Furthermore, since the inside of the container is also hermetically sealed, the heat generated inside the container is liable to be trapped, and there is a problem that heat dissipation is reduced.
[0010]
Accordingly, the present invention has been completed in view of the above circumstances, and an object of the present invention is to form a base and a lid by die-casting by forming an unsealed choke cavity at a joint between the lid and the base. It can be manufactured with high productivity by mass production technology and a small amount of cutting, and even if thermal stress is applied to the joint of the base and the lid, it can be effectively relieved at the joint, and the heat dissipation is improved It is to do.
[0011]
[Means for Solving the Problems]
The high-frequency component storage container of the present invention is a metal base having a concave portion formed therein for receiving a high-frequency component operated by a high-frequency signal on an upper surface, and is joined to a periphery of the concave portion on the upper surface of the base. At least one of the inside and the outside of the base at an upper end and / or a lower end at a joint between the base and the lid at a joint between the base and the lid. And a choke cavity for preventing leakage of the high-frequency signal, which is provided with a gap communicating with the choke, is provided over the entire circumference.
[0012]
The high-frequency component storage container according to the present invention is configured to prevent leakage of a high-frequency signal in which a gap communicating with at least one of the inside and the outside of the base is formed at an upper end and / or a lower end at a joint between the base and the lid. Since the choke cavity is provided over the entire circumference, the choke cavity has an unsealed structure. As a result, the base and the lid are manufactured by mass production technology such as die casting, and the base and the lid are joined to the joint with the lid. By performing a slight cutting process, the lower surface of the lid and the bottom surface of the concave portion of the base can be made parallel, and a high-frequency component storage container can be manufactured with high productivity and at low cost.
[0013]
In addition, even if thermal stress is applied to the joint between the base and the lid, it can be effectively alleviated at the joint, and if a gap communicating with the outside of the base is formed in the choke cavity, it is possible to store high-frequency components. The surface area of the container is increased, and the heat dissipation is improved.
[0014]
Further, when a gap communicating with the inside and outside of the base is formed in the choke cavity, it is possible to prevent dew condensation from occurring inside and outside of the high-frequency component housing due to a temperature difference between the inside and outside.
[0015]
In the high-frequency component housing of the present invention, preferably, the choke cavity has a protrusion formed over the entire outer periphery of the upper surface of the base and a protrusion formed over the entire outer periphery of the lower surface of the lid. Are formed so as to engage with each other at a predetermined interval.
[0016]
In the high-frequency component housing of the present invention, preferably, the choke cavity has a predetermined interval between a projection formed over the entire periphery of the upper surface of the base and a projection formed over the entire periphery of the lower surface of the lid. Even when thermal stress is applied to the joint between the base and the lid in a shearing manner, the thermal stress can be effectively relieved at the projection of the base and the projection of the lid. Can be. Further, for example, an elongated choke cavity having a complicated shape can be easily formed, so that the effect of reducing thermal stress at the junction, the effect of improving heat dissipation, the downsizing, and the like are promoted.
[0017]
In the high frequency component storage container according to the present invention, preferably, the choke cavity is inclined such that a lower end is located closer to the inside of the base than an upper end.
[0018]
In the high frequency component storage container of the present invention, preferably, the choke cavity is inclined such that the lower end is located closer to the inside of the base than the upper end, so that a step or a projection having an inclined surface is formed on the base or the lid. It can be easily manufactured by preventing the generation of chips and burrs by the method, and as a result, the production efficiency is improved. Even if the width of the choke cavity is reduced to λ / 4 or less, a sufficient electromagnetic wave shielding effect can be obtained by making the depth larger than λ / 4.
[0019]
The non-radiative dielectric line of the present invention includes the high-frequency component housing of the present invention, and a dielectric line for transmitting the high-frequency signal stored inside the high-frequency component housing, An interval between a bottom surface of the concave portion and a lower surface of the lid is set to be equal to or less than a half of a wavelength of the high frequency signal.
[0020]
The non-radiative dielectric waveguide of the present invention has excellent electromagnetic wave shielding properties, as well as an effect of reducing thermal stress at the junction, an effect of improving heat radiation, and an effect of miniaturization.
[0021]
The millimeter wave transceiver according to the present invention includes:
The high-frequency component housing container according to the present invention, wherein a distance between a bottom surface of the concave portion and a lower surface of the lid is equal to or less than half a wavelength of a millimeter wave signal. Inside,
A first dielectric line that outputs a frequency-modulated millimeter-wave signal output from the high-frequency generation element;
A millimeter that is attached to the first dielectric line, periodically modulates a high-frequency signal output from the high-frequency generation element, outputs the modulated high-frequency signal as a millimeter wave signal for transmission, and propagates the signal through the first dielectric line. A wave signal oscillator,
One end is disposed close to the first dielectric line so that one end side is electromagnetically coupled to the first dielectric line, or one end is joined to the first dielectric line to propagate a part of the millimeter wave signal to the mixer side. And a dielectric line of
A first connecting portion disposed at a predetermined interval on a peripheral portion of two ferrite plates opposed to each other in parallel to the bottom surface of the concave portion and the lower surface of the lid, and each of the first connecting portions is an input / output end of the millimeter wave signal; A first circulator having a second connection portion and a third connection portion, wherein the first connection portion is connected to an output end of the millimeter wave signal of the first dielectric line. A circulator,
A third dielectric line having one end connected to the second connection portion of the first circulator, and a Schottky barrier diode for amplitude-modulating the millimeter wave signal connected to the other end;
A fourth dielectric line having one end connected to the third connection portion of the first circulator;
A fourth connecting portion which is disposed at a predetermined interval on a peripheral portion of two ferrite plates disposed so as to face in parallel with the bottom surface of the concave portion and the lower surface of the lid, and each of which is an input / output end of the millimeter wave signal; A second circulator having a fifth connection portion and a sixth connection portion, wherein a second circulator having the other end of the fourth dielectric line connected to the fourth connection portion;
A fifth dielectric line having one end connected to the fifth connection portion of the second circulator, and a Schottky barrier diode for amplitude-modulating the millimeter wave signal connected to the other end;
A sixth dielectric line having one end connected to the sixth connection portion of the second circulator;
A seventh connecting portion which is disposed at a predetermined interval on a peripheral portion of two ferrite plates disposed in parallel to the bottom surface of the concave portion and the lower surface of the lid, and serves as an input / output end of the millimeter wave signal; A third circulator having an eighth connection portion and a ninth connection portion, wherein a third circulator having the other end of the sixth dielectric line connected to the seventh connection portion;
A seventh dielectric line having one end connected to the eighth connection portion of the third circulator, for transmitting a millimeter wave signal, and having a transmitting and receiving antenna at a tip end;
An eighth dielectric line that is received by the transmission / reception antenna, propagates through the seventh dielectric line, and propagates a reception wave output from the ninth connection part of the third circulator to the mixer side;
The middle part of the second dielectric line and the middle part of the eighth dielectric line are electromagnetically coupled or joined in close proximity to each other, and a part of the millimeter wave signal and the reception wave are mixed to form an intermediate frequency. A mixer that generates a signal
Is provided.
[0022]
The millimeter-wave transceiver according to the present invention can prevent the leakage of the millimeter-wave signal in the high-frequency band and the wide bandwidth and can cut off the noise intruding from the outside by the above-mentioned configuration. When a millimeter wave radar module is used, the detection distance can be increased. Further, it can be manufactured with good productivity at low cost, and it can be prevented that the joint of the high-frequency component housing container is detached due to thermal stress, and the heat radiation property is further improved. Furthermore, a highly reliable millimeter-wave transmitter / receiver that can prevent dew condensation from occurring inside and outside of the high-frequency component storage container due to a temperature difference between the inside and the outside.
[0023]
Further, the millimeter wave transceiver of the present invention,
The high-frequency component housing container according to the present invention, wherein a distance between a bottom surface of the concave portion and a lower surface of the lid is equal to or less than half a wavelength of a millimeter wave signal. Inside,
A first dielectric line that outputs a frequency-modulated millimeter-wave signal output from the high-frequency generation element;
A millimeter that is attached to the first dielectric line, periodically modulates a high-frequency signal output from the high-frequency generation element, outputs the modulated high-frequency signal as a millimeter wave signal for transmission, and propagates the signal through the first dielectric line. A wave signal oscillator,
One end is disposed close to the first dielectric line so that one end side is electromagnetically coupled to the first dielectric line, or one end is joined to the first dielectric line to propagate a part of the millimeter wave signal to the mixer side. And a dielectric line of
A first connecting portion disposed at a predetermined interval on a peripheral portion of two ferrite plates opposed to each other in parallel to the bottom surface of the concave portion and the lower surface of the lid, and each of the first connecting portions is an input / output end of the millimeter wave signal; A first circulator having a second connection portion and a third connection portion, wherein the first connection portion is connected to an output end of the millimeter wave signal of the first dielectric line. A circulator,
A third dielectric line having one end connected to the second connection portion of the first circulator, and a Schottky barrier diode for amplitude-modulating the millimeter wave signal connected to the other end;
A fourth dielectric line having one end connected to the third connection portion of the first circulator;
A fourth connecting portion which is disposed at a predetermined interval on a peripheral portion of two ferrite plates disposed so as to face in parallel with the bottom surface of the concave portion and the lower surface of the lid, and each of which is an input / output end of the millimeter wave signal; A second circulator having a fifth connection portion and a sixth connection portion, wherein a second circulator having the other end of the fourth dielectric line connected to the fourth connection portion;
A fifth dielectric line having one end connected to the fifth connection portion of the second circulator, and a Schottky barrier diode for amplitude-modulating the millimeter wave signal connected to the other end;
A sixth dielectric line having one end connected to the sixth connection portion of the second circulator;
A seventh connecting portion which is disposed at a predetermined interval on a peripheral portion of two ferrite plates disposed in parallel to the bottom surface of the concave portion and the lower surface of the lid, and serves as an input / output end of the millimeter wave signal; A third circulator having an eighth connection portion and a ninth connection portion, wherein a third circulator having the other end of the sixth dielectric line connected to the seventh connection portion;
A seventh dielectric line having one end connected to the eighth connection portion of the third circulator, for transmitting a millimeter wave signal, and having a transmission antenna at a tip end;
An eighth dielectric connected to the ninth connection part of the third circulator for transmitting the reception wave mixed in by the transmission antenna and attenuating the reception wave at a non-reflection terminal provided at the tip end. Body tracks,
A ninth dielectric line having a receiving antenna at the tip and a mixer at the other end,
The middle portion of the second dielectric line and the middle portion of the ninth dielectric line are electromagnetically coupled or joined in close proximity to each other, and a part of the millimeter wave signal and the reception wave are mixed to form an intermediate frequency. A mixer that generates a signal
Is provided.
[0024]
According to the millimeter wave transceiver of the present invention, since the transmitting antenna and the receiving antenna are independent by the above configuration, the received wave received by the transmitting antenna does not enter the mixer as noise, and the transmission of the high frequency signal is prevented. It has excellent characteristics. As a result, the noise due to the received wave is reduced, and the detection distance is further increased when a millimeter wave radar module is used. Further, it can be manufactured with good productivity at low cost, and it can be prevented that the joint of the high-frequency component housing container is detached due to thermal stress, and the heat radiation property is further improved. Further, a highly reliable millimeter-wave transceiver that can prevent dew condensation from occurring inside and outside of the high-frequency component housing due to a temperature difference between the inside and outside can be obtained.
[0025]
Note that, in the millimeter wave transceiver of the present invention, the high frequency generating element can be attached to the second dielectric line instead of the first dielectric line. Propagating the millimeter wave signal to the dielectric line by electromagnetic coupling has the same function as that of the above configuration.
[0026]
BEST MODE FOR CARRYING OUT THE INVENTION
The container for storing high-frequency components and the millimeter wave transceiver of the present invention will be described below. FIG. 1 is a cross-sectional view of the container of the present invention. In FIG. 1, reference numeral 1 denotes a lid as an upper parallel plate conductor, 2 denotes a base as a lower parallel plate conductor, and 2a is formed on the upper surface of the base 2. The recess 3 is a dielectric line.
[0027]
The container of the present invention includes a metal base 2 having a concave portion 2a formed on the upper surface for accommodating a high-frequency component operated by a high-frequency signal, and a concave portion 2a joined to the periphery of the concave portion 2a on the upper surface of the base 2. A flat-plate-shaped metal lid 1 having a lower surface parallel to the bottom surface is provided, and the upper and / or lower ends of the joint between the substrate 2 and the lid 1 communicate with at least one of the inside and the outside of the base 2. A choke cavity 4 for preventing leakage of a high-frequency signal having a gap 4a is provided all around.
[0028]
The container of the present invention has a choke cavity 4 of an unsealed structure having an open portion by such a configuration. As a result, the base 2 and the lid 1 are manufactured by a mass production technique such as die casting, and By performing a slight cutting process on the joint portion with the lid 1, the lower surface of the lid 1 and the bottom surface of the concave portion 2a of the base 2 can be made parallel, and the container can be manufactured with good productivity and at low cost. Even if a shearing thermal stress parallel to the lower surface of the lid 1 is applied to the junction between the base 2 and the lid 1, it can be effectively reduced at the junction. Is formed, the surface area of the container is increased, and the heat dissipation is improved. Further, when the gap 4a communicating with the inside and the outside of the base 2 is formed in the choke cavity 4, it is possible to prevent dew condensation from occurring due to a temperature difference between the inside and the outside of the container.
[0029]
In the present invention, as shown in FIG. 1 (b), the choke cavity 4 has, for example, a rectangular cross section such as a square or a rectangle, and has a width W1 of λ / 4 with respect to the wavelength λ of the high-frequency signal and a depth of λ / 4. The distance D is nλ / 4 (n is an integer of 1 or more), the distance between the choke cavity 4 and the outer surface of the container (base 2) is λ / 4, and the distance between the choke cavity 4 and the inner surface of the container (base 2) is Is λ / 4. As a result, in the choke cavity 4, a high-frequency signal that is about to leak to the outside of the container and a high-frequency signal that is about to enter the inside of the container are shielded.
[0030]
Further, the height H of the gap 4a is preferably smaller than D and equal to or smaller than λ / 2, and if it exceeds λ / 2, the shielding effect of the high-frequency signal is easily deteriorated.
[0031]
Further, the base 2 and the lid 1 may be formed by forming a screw hole in the base 2 with a through hole for inserting a screw into the lid 1 and screwing the through hole, or may be fixed with a bolt and a nut. Alternatively, bonding may be performed using a brazing material such as Pb-Sn solder, Au-Sn solder, or Ag-Cu brazing material, or a resin adhesive.
[0032]
In the present invention, the choke cavity 4 has a predetermined interval (λ / 4) between a protrusion formed on the entire outer periphery of the upper surface of the base 2 and a protrusion formed on the entire outer periphery of the lower surface of the lid 1. ) Are preferably formed so as to engage with each other. Thereby, even if a thermal stress is applied to the joint between the base 2 and the lid 1 in a shearing manner, the thermal stress can be effectively relieved at the projection of the base 2 and the projection of the lid 1. Further, the choke cavity 4 having a complicated shape can be easily formed, and the effect of reducing the thermal stress, the effect of improving the heat radiation, the downsizing, and the like are further promoted. The protrusion of the base 2 and the protrusion of the lid 1 may be steps.
[0033]
The base 2 and the lid 1 of the present invention are made of Cu, Al, Fe, Ag, Au, Pt, SUS (stainless steel), brass (Cu) in terms of high electric conductivity (high electromagnetic wave shielding property) and workability. -Zn alloy), a metal such as an Fe-Ni alloy, an Fe-Ni-Co alloy, or an insulator made of ceramics, resin, or the like, which is formed by depositing a layer of these metals by plating or the like.
[0034]
The high frequency components include a high frequency generating element such as a Gunn diode, a high frequency modulating element for modulating a high frequency signal such as a Schottky barrier diode and a varactor diode, a dielectric line for transmitting a high frequency signal, and a propagation path of the high frequency signal. Is used.
[0035]
The NRD guide of the present invention includes the container of the present invention and a dielectric line 3 for transmitting a high-frequency signal stored in the container, and a gap between the bottom surface of the concave portion 2 a and the lower surface of the lid 1. Are set to be equal to or less than half the wavelength of the high-frequency signal. Thereby, while being excellent in the electromagnetic wave shielding property, the effect of relaxing the thermal stress at the joint, the effect of improving the heat radiation, the effect of miniaturization, and the like can be obtained. Note that the dielectric line 3 may be bonded to at least one of the base 2 and the lid 1 with a resin adhesive or the like.
[0036]
The dielectric line 3 of the present invention is made of resin such as Teflon or polystyrene, or cordierite (2MgO.2Al) having a low relative dielectric constant. 2 O 3 ・ 5SiO 2 ) Ceramics, alumina (Al 2 O 3 ) It is preferably made of ceramics such as ceramics and glass ceramics, which have low loss in a high frequency band.
[0037]
The high frequency band referred to in the present invention corresponds to a microwave band and a millimeter wave band of several tens to several hundreds of GHz, and for example, a high frequency band of 30 GHz or more, particularly 50 GHz or more, and more preferably 70 GHz or more is suitable.
[0038]
The NRD guide of the present invention is used for a wireless LAN, a millimeter wave radar of an automobile, and the like by incorporating a high frequency diode such as a VCO or a Gunn diode as a high frequency generating element. And irradiate the other vehicle with millimeter waves, combine the reflected wave with the original millimeter wave to obtain an intermediate frequency signal, and analyze the intermediate frequency signal to determine the distance to obstacles and other vehicles, The moving speed and the like can be measured.
[0039]
FIG. 2 shows another example of the embodiment of the NRD guide using the container of the present invention.
[0040]
FIG. 2A shows a container in which a protrusion 1a is provided on the outer peripheral end of the lower surface of the lid 1 and a protrusion 2a slightly lower than the protrusion 1a is provided on the inner peripheral end of the upper surface of the side wall of the base 2. It is provided with a choke cavity 4 in which a gap 4a communicating with the inside is formed. In this case, the base 2 is manufactured by a die casting method, and the lower end surface of the projection 1a, which is a joining portion, is polished, so that the bottom surface of the concave portion 2a of the base 2 and the lower surface of the lid 1 can be easily made parallel. . Further, even if a thermal stress is applied to the lower end surface of the projection 1a, which is a joint between the base 2 and the lid 1, the thermal stress can be reduced by appropriately deforming the projection 1a.
[0041]
(B) is the same as (a), except that the height of the protrusion 1a is slightly lower than that of the protrusion 2a, and the choke cavity 4 in which the gap 4a communicating with the outside of the container is formed. In this case, in addition to the above effects, there is an effect that the heat radiation of the container is improved because the area of the outer surface of the container is increased.
[0042]
(C), a protrusion 1a is provided on the lower surface of the lid 1 slightly inside the outer peripheral end, and a protrusion 2a slightly lower than the protrusion 1a is provided on the outer peripheral end of the upper surface of the side wall of the base 2; A choke cavity 4 having a gap 4a communicating with the outside of the container is provided.
[0043]
(D) is that in (c), the height of the protrusion 1a is slightly lower than that of the protrusion 2a, and the choke cavity 4 in which the gap 4a communicating with the inside of the container is formed.
[0044]
(E), a step 1a is provided on the lower surface of the lid 1 slightly inside the outer peripheral end, and a projection 2a slightly higher than the step 1a is provided on the outer peripheral end of the upper surface of the side wall portion of the base 2, so that the inside of the container is Is provided with a choke cavity 4 formed with a gap 4a communicating with the choke cavity. In this case, since the choke cavity 4 is inclined such that the lower end is located closer to the inside of the base 2 than the upper end, the base 2 and the lid 1 are formed by a molding method using a die such as a die casting method. It is easy to manufacture. That is, the steps 1a and the protrusions 2a having the slopes can be easily manufactured by a molding method while preventing chipping or burrs from occurring, and as a result, the production efficiency is improved. Further, even if the width of the choke cavity 4 is reduced to λ / 4 or less, by making the depth larger than λ / 4, a sufficient electromagnetic wave shielding effect can be obtained and the container can be downsized.
[0045]
(F) is that in (e), the height of the protrusion 2a is slightly lower than the step 1a, and the choke cavity 4 in which the gap 4a communicating with the outside of the container is formed. In this case, in addition to the above effects, there is an effect that the heat radiation of the container is improved because the area of the outer surface of the container is increased.
[0046]
(G), the upper end on the inner side of the side wall portion of the base 2 is inclined so that the side wall portion is slightly tapered, and a step 1a is provided on the lower surface of the lid 1 slightly inside the outer peripheral end to communicate with the inside of the container. In this embodiment, a choke cavity 4 having an elongated right-angled triangular cross section in which a gap 4a is formed is provided. In this case, it is easy to manufacture the base 2 and the lid 1 by a molding method, and even if the width of the choke cavity 4 is reduced to λ / 4 or less, the depth thereof is made larger than λ / 4. Thus, a sufficient electromagnetic wave shielding effect can be obtained, and the container can be reduced in size.
[0047]
(H), in (g), a column 5 is provided on the bottom surface of the concave portion 2 or the bottom surface of the lid 1 so that a gap 4b is also formed between the upper surface of the side wall portion of the substrate 2 and the lower surface of the lid 1. It is something. In this case, the height of the column 5 can be easily adjusted by polishing the upper end surface or the lower end surface, and the bottom surface of the concave portion 2a of the base 2 and the lower surface of the lid 1 can be easily made parallel. Further, since the gaps 4a and 4b communicating with the inside and the outside of the base 2 are formed in the choke cavity 4, it is possible to prevent the occurrence of dew condensation due to a temperature difference between the inside and the outside of the container, and the characteristics of the high-frequency component. Deterioration is prevented and reliability is high.
[0048]
Next, a millimeter wave radar module as a millimeter wave transceiver of the present invention will be described below.
[0049]
5 and 6 show a millimeter wave radar module according to the present invention. FIG. 5 is a plan view of an integrated transmitting antenna and receiving antenna. FIG. 6 is a plan view of an independent transmitting antenna and receiving antenna. FIG. 8 is a perspective view of a millimeter wave signal oscillating unit, and FIG. 8 is a perspective view of a wiring board provided with a variable capacitance diode (varactor diode) for the millimeter wave signal oscillating unit.
[0050]
The millimeter wave radar module shown in FIG. 5 is arranged between parallel plate conductors (corresponding to a base and a cover, and the other is omitted) 51 arranged at an interval of one half or less of the wavelength of the millimeter wave signal for transmission. A first dielectric line 53 for transmitting a frequency-modulated millimeter-wave signal output from a high-frequency generation element, and a first dielectric line 53 provided for periodically modulating the frequency of the millimeter-wave signal for transmission. A millimeter-wave signal oscillating section 52 that outputs the signal as a millimeter-wave signal and propagates through the first dielectric line 53; And a second dielectric line 61 for transmitting a part of the millimeter wave signal to the mixer 62 side.
[0051]
In addition, a first ferrite plate 55a is disposed between the parallel plate conductors 51 at a predetermined interval on the peripheral portions of two ferrite plates 55a opposed to each other in parallel with the parallel plate conductor 51, and the first ferrite plate 55a is used as a millimeter wave signal input / output end. A first circulator (hereinafter, also referred to as CLT) A having a connection portion 55a1, a second connection portion 55a2, and a third connection portion 55a3, which is connected to an output end of a millimeter wave signal of the first dielectric line 53. One end is connected to a first CLTA to which the first connection portion 55a1 is connected, and a Schottky barrier diode (hereinafter also referred to as SBD) having one end connected to the second connection portion 55a2 of the first CLTA for amplitude-modulating a millimeter wave signal. ) Is provided at the other end (tip) of the third dielectric line 56, and a fourth dielectric line 54c having one end connected to the third connection portion 55a3 of the first CLTA. ing.
[0052]
In addition, a fourth ferrite plate 55b is disposed between the parallel plate conductors 51 at a predetermined interval around the periphery of two ferrite plates 55b opposed to each other in parallel to the parallel plate conductor 51, and the fourth ferrite plate 55b is used as a millimeter wave signal input / output end. A fourth CLTB having a connection portion 55b1, a fifth connection portion 55b2, and a sixth connection portion 55b3, wherein the fourth connection portion 55b1 is connected to the millimeter wave signal output end of the fourth dielectric line 54c. A fifth dielectric having one end connected to the second CLTB to be connected and the fifth connection portion 55b2 of the second CLTB, and an SBD for amplitude-modulating the millimeter-wave signal connected to the other end (tip). A line 58 and a sixth dielectric line 54e having one end connected to the sixth connection portion 55b3 of the second CLTB are provided.
[0053]
Further, between the parallel plate conductors 51, a seventh ferrite plate 55c arranged in parallel with the parallel plate conductors 51 is disposed at a predetermined interval around the periphery of the two ferrite plates 55c, and serves as a millimeter wave signal input / output end. A third CLTC having a connection portion 55c1, an eighth connection portion 55c2, and a ninth connection portion 55c3, wherein the third connection portion 55c1 is connected to the other end of the sixth dielectric line 54e. And a seventh dielectric line 59 having one end connected to the eighth connection portion 55c2 of the third CLTC and the third CLTC for transmitting a millimeter wave signal and having a transmission / reception antenna 59a at the distal end, and receiving at the transmission / reception antenna 59a. An eighth dielectric line 60 that propagates the received wave output from the ninth connection portion 55c3 of the third CLTC and propagates to the mixer 62 side through the seventh dielectric line 59, and a second dielectric line 6 And a mixer 62 for generating an intermediate frequency signal by mixing a part of the millimeter wave signal and the reception wave to generate an intermediate frequency signal by electromagnetically coupling or joining the middle of the eighth dielectric line 60 and the middle of the eighth dielectric line 60 close to each other. Is provided.
[0054]
The first and second CLTAs and Bs each provided with an SBD are amplitude modulators. In the figure, M1 is a mixer section for generating an intermediate frequency signal, and 61a is a non-reflection terminal (terminator) provided at the end of the second dielectric line 61 on the side opposite to the mixer 62.
[0055]
The voltage-controlled millimeter-wave signal oscillating section 52 provided at one end of the first dielectric line 53 has a high frequency of the first dielectric line 53 so that the bias voltage application direction matches the electric field direction of the high frequency signal. By periodically controlling the bias voltage of a variable capacitance diode disposed near a generating element (such as a high-frequency diode) to generate a triangular wave, a sine wave, or the like, the signal is output as a frequency-modulated millimeter wave signal for transmission. A VCO having a function equivalent to the combination of a high-frequency diode and a variable-capacitance diode (VCO is an oscillator that changes the frequency with a voltage. For example, the bias voltage of a Gunn diode (high-frequency generation element) is not It is needless to say that the same object can be achieved by using (some of which change) as the millimeter wave signal oscillating unit.
[0056]
In FIG. 6, reference numerals 54a to 54g denote mode suppressors. Reference numerals 57a and 57b denote wiring boards provided with SBDs for amplitude-modulating a millimeter wave signal, and have a configuration as shown in FIG. For example, this is a switch in which a choke-type bias supply line 33 is formed on one main surface of the wiring board 30 in FIG. 5 and an SBD 31 mounted by flip chip mounting, bump mounting or solder mounting is provided in the middle thereof. By controlling the forward current of the SBD 31 to flow or not to flow, it is possible to perform off (absorption) -on (reflection) control (switching control), that is, amplitude modulation of the millimeter wave signal.
[0057]
The transmitting / receiving antenna 59a is provided by making the tip of the seventh dielectric line 59 tapered. Alternatively, the transmission / reception antenna 59a may have a configuration in which an opening is provided in the parallel plate conductor 51 and an antenna such as a horn antenna is connected to the outer surface of the parallel plate conductor 51 via the metal waveguide at the opening.
[0058]
The fourth and sixth dielectric lines 54c and 54e are connection dielectric lines, and substantially the whole is a mode suppressor.
[0059]
The first dielectric line 53 is a first CLTA input dielectric line, the third dielectric line 56 is a first CLTA modulation dielectric line, and the fourth dielectric line 54c is a first dielectric line 54c. Of the CLTA output dielectric line. The fourth dielectric line 54c is a second CLTB input dielectric line, the fifth dielectric line 58 is a second CLTB modulation dielectric line, and the sixth dielectric line 54e is a second CLTB. Output dielectric line.
[0060]
As another example of the embodiment of the millimeter wave radar module of the present invention, there is a type shown in FIG. 6 in which a transmitting antenna and a receiving antenna are independent.
[0061]
FIG. 6 shows a millimeter wave output from a high-frequency generator and frequency-modulated between parallel plate conductors 65 (the other is omitted) arranged at an interval equal to or less than half the wavelength of the millimeter wave signal for transmission. A first dielectric line 67 for propagating a signal, and a frequency-modulated millimeter-wave signal periodically attached to the first dielectric line 67 and output as a millimeter-wave signal for transmission. The millimeter-wave signal oscillating unit 66 that propagates in the line 67 is disposed close to one end of the first dielectric line 67 so as to be electromagnetically coupled to the first dielectric line 67, or one end is joined to the first dielectric line 67. A second dielectric line 69 for transmitting a part of the wave signal to the mixer 76 is provided.
[0062]
Further, a first ferrite plate 70a is disposed between the parallel plate conductors 65 at a predetermined interval around the periphery of two ferrite plates 70a opposed to each other in parallel with the parallel plate conductor 65, and the first ferrite plate 70a is used as a millimeter wave signal input / output end. A first CLTA having a connection portion 70a1, a second connection portion 70a2, and a third connection portion 70a3, wherein the first connection portion 70a1 is connected to the millimeter wave signal output end of the first dielectric line 67. A third dielectric having one end connected to the first CLTA to be connected and the second connection portion 70a2 of the first CLTA, and an SBD for amplitude-modulating the millimeter wave signal connected to the other end (tip). A line 71 and a fourth dielectric line 68c having one end connected to the third connection part 70a3 of the first CLTA are provided.
[0063]
Further, a fourth ferrite plate 70b disposed between the parallel plate conductors 65 in parallel with and opposed to the parallel plate conductor 65 at predetermined intervals on the periphery of the two ferrite plates 70b, and each of the fourth ferrite plates 70b serves as a millimeter-wave signal input / output end. A second CLTB having a connection portion 70b1, a fifth connection portion 70b2, and a sixth connection portion 70b3, wherein the fourth connection portion 70b1 is connected to a millimeter-wave signal output end of the fourth dielectric line 68c. A second CLTB to be connected and a fifth dielectric having one end connected to the fifth connection portion 70b2 of the second CLTB, and an SBD for amplitude-modulating the millimeter wave signal connected to the other end (tip). A line 72 and a sixth dielectric line 68e having one end connected to the sixth connection part 70b3 of the second CLTB are provided.
[0064]
Also, a seventh ferrite plate 70c is disposed between the parallel plate conductors 65 at predetermined intervals around the periphery of the two ferrite plates 70c opposed to and parallel to the parallel plate conductor 65, and the seventh ferrite plate 70c serves as a millimeter wave signal input / output end. A third CLTC having a connection portion 70c1, an eighth connection portion 70c2, and a ninth connection portion 70c3, and a third CLTC in which the other end of the sixth dielectric line 68e is connected to the seventh connection portion 70c1. And a seventh dielectric line 73 having one end connected to the eighth connection part 70c2 of the third CLTC and the third CLTC for transmitting a millimeter wave signal and having a transmission antenna 73a at a tip end, and receiving at the transmission antenna 73a. An eighth dielectric line 74 for propagating the mixed reception wave and attenuating the reception wave by the non-reflection terminal 74a provided at the front end, a reception antenna 75a at the front end, and a mixer 76 at the other end. The ninth dielectric line 75, which is provided separately, and the middle of the second dielectric line 69 and the middle of the ninth dielectric line 75 are brought into close proximity to each other and electromagnetically coupled or joined, and the millimeter wave signal And a mixer 76 that mixes a part of the received signal with a received wave to generate an intermediate frequency signal.
[0065]
The first and second CLTAs and Bs each provided with an SBD are amplitude modulators. In the drawing, M2 is a mixer section for generating an intermediate frequency signal, and 69a is a non-reflection terminator (terminator) provided at an end of the second dielectric line 69 opposite to the mixer 76.
[0066]
The voltage-controlled millimeter-wave signal oscillating section 66 provided at one end of the first dielectric line 67 has a high frequency of the first dielectric line 67 so that the bias voltage application direction matches the electric field direction of the high frequency signal. By periodically controlling the bias voltage of the variable capacitance diode disposed in the vicinity of the generating element to generate a triangular wave, a sine wave, or the like, the signal is output as a frequency-modulated millimeter wave signal for transmission. It is needless to say that the same object can be achieved by using a VCO having a function equivalent to the combination of the high-frequency diode and the variable capacitance diode as the millimeter wave signal oscillating unit.
[0067]
In FIG. 7, reference numerals 68a to 68g denote mode suppressors. Reference numerals 77a and 77b denote wiring boards provided with SBDs for amplitude-modulating the millimeter wave signal, and have a configuration as shown in FIG.
[0068]
Further, the transmitting antenna 73a and the receiving antenna 75a are provided by tapering the ends of the seventh dielectric line 73 and the ninth dielectric line 75, respectively. Alternatively, the transmitting antenna 73a and the receiving antenna 75a may have a configuration in which an opening is provided in the parallel plate conductor 65 and an antenna such as a horn antenna is connected to the outer surface of the parallel plate conductor 65 via the metal waveguide at the opening. .
[0069]
The fourth and sixth dielectric lines 68c and 68e are connection dielectric lines, and substantially the whole is a mode suppressor.
[0070]
Further, the first dielectric line 67 is an input dielectric line of the first CLTA, the third dielectric line 71 is a modulation dielectric line of the first CLTA, and the fourth dielectric line 68c is a first dielectric line. Of the CLTA output dielectric line. The fourth dielectric line 68c is a second CLTB input dielectric line, the fifth dielectric line 72 is a second CLTB modulation dielectric line, and the sixth dielectric line 68e is a second CLTB. Output dielectric line.
[0071]
FIGS. 7 and 8 show the millimeter-wave signal oscillating units 52 and 66 for the millimeter-wave radar module shown in FIGS. In these figures, reference numeral 82 denotes a metal member such as a substantially rectangular parallelepiped metal block for mounting (mounting) a gun diode 83; 83, a gun diode which is one type of high-frequency diode that oscillates a millimeter wave; A wiring board 85 is provided on one side surface of the metal member 82 and has a choke-type bias supply line 84a that functions as a low-pass filter that supplies a bias voltage to the Gunn diode 83 and that prevents high-frequency signal leakage. A band-shaped conductor such as a metal foil ribbon for connecting the line 84a and the upper conductor of the Gunn diode 83, 86 is a metal strip resonator provided with a metal strip line 86a for resonance on a dielectric substrate, and 87 is a metal strip resonator This is a dielectric line that guides the high-frequency signal resonated by 86 to the outside of the millimeter-wave signal oscillation unit.
[0072]
Further, a wiring board 88 loaded with a varactor diode 80 which is a type of a variable capacitance diode, which is a diode for frequency modulation, is provided in the middle of the dielectric line 87. The bias voltage application direction of the varactor diode 80 is perpendicular to the propagation direction of the high-frequency signal on the dielectric line 87 and parallel to the main surface of the parallel plate conductor (electric field direction). The bias voltage application direction of the varactor diode 80 is determined by the LSM propagating in the dielectric line 87. 01 The electric field direction of the high-frequency signal in the mode matches the electric field direction of the high-frequency signal, thereby electromagnetically coupling the high-frequency signal with the varactor diode 80, and controlling the bias voltage to change the capacitance of the varactor diode 80. Frequency can be controlled. Reference numeral 89 denotes a dielectric plate having a high relative dielectric constant for achieving impedance matching between the varactor diode 80 and the dielectric line 87.
[0073]
As shown in FIG. 8, a second choke type bias supply line 90 is formed on one main surface of the wiring board 88, and a varactor diode 80 is arranged in the middle of the second choke type bias supply line 90. A connection electrode 81 is formed at a connection portion between the second choke type bias supply line 90 and the varactor diode 80.
[0074]
Then, the high-frequency signal oscillated from the Gunn diode 83 is guided to the dielectric line 87 through the metal strip resonator 86. Next, a part of the high-frequency signal is reflected by the varactor diode 80 and returns to the Gunn diode 83 side. This reflected signal changes with the change in the capacitance of the varactor diode 80, and the oscillation frequency changes.
[0075]
The millimeter wave radar module shown in FIGS. 5 and 6 is based on the FMCW (Frequency Modulation Continuous Waves) method, and its operation principle is as follows. An input signal whose voltage amplitude changes with time in the form of a triangular wave or a sine wave is input to a MODIN terminal for inputting a modulation signal of the millimeter wave signal oscillating unit, the output signal is frequency-modulated, and the output frequency of the millimeter wave signal oscillating unit is output. The shift is shifted so as to become a triangular wave, a sine wave, or the like. When an output signal (transmission wave) is radiated from the transmission / reception antenna 59a and the transmission antenna 75a, and a target is present in front of the transmission / reception antenna 59a and the transmission antenna 75a, a time difference corresponding to a reciprocation of the propagation speed of the radio wave is obtained. The reflected wave (received wave) returns. At this time, the frequency difference between the transmission wave and the reception wave is output to the IFOUT terminal on the output side of the mixers 62 and 76.
[0076]
By analyzing a frequency component such as an output frequency of the IFOUT terminal, Fif = 4R · fm · Δf / c (Fif: IF (Intermediate Frequency: intermediate frequency) output frequency, R: distance, fm: modulation frequency, Δf: The distance can be obtained from the relational expression of frequency shift width, c: speed of light.
[0077]
In the millimeter-wave signal oscillating unit of the present invention, the choke-type bias supply line 84a and the band-shaped conductor 85 are made of Cu, Al, Au, Ag, W, Ti, Ni, Cr, Pd, Pt, or the like. Ag is preferable in that it has good electric conductivity, small loss, and large oscillation output.
[0078]
The strip conductor 85 is electromagnetically coupled to the metal member 82 at a predetermined distance from the surface of the metal member 82, and is bridged between the choke-type bias supply line 84 a and the Gunn diode element 83. That is, one end of the strip-shaped conductor 85 is connected to one end of the choke-type bias supply line 84a by soldering or the like, and the other end of the strip-shaped conductor 85 is connected to the upper conductor of the gun diode element 83 by soldering or the like. The middle part except for the connection part 85 is in a state of floating in the air.
[0079]
Since the metal member 82 also serves as an electrical ground (earth) for the gun diode element 83, the metal member 82 may be a conductor such as a metal, and the material is not particularly limited as long as the material is a metal (including an alloy). Instead, it is made of brass (brass: Cu-Zn alloy), Al, Cu, SUS (stainless steel), Ag, Au, Pt, or the like. The metal member 82 is made of a metal block made entirely of metal, an insulated substrate such as ceramics or plastic, which is entirely or partially metal-plated, or an insulated substrate entirely or partially coated with a conductive resin material or the like. It may be something.
[0080]
Thus, the millimeter-wave radar module of FIG. 5 of the present invention can prevent the leakage of the millimeter-wave signal in the high-frequency band and the wide bandwidth and can block the noise that intrudes from the outside, and as a result, the output can be suppressed from decreasing. The detection distance can be increased. In addition, it can be manufactured with good productivity at low cost, can prevent the joint portion of the container from coming off due to thermal stress, and can have good heat dissipation. In addition, it is possible to prevent the occurrence of dew condensation inside the container, and it becomes highly reliable.
[0081]
Further, the millimeter wave radar module of FIG. 6 of the present invention has the same effects as described above, and does not mix the reception wave received by the transmission antenna as noise into the mixer, and has excellent transmission characteristics of high frequency signals. It will be. As a result, noise due to the received wave is reduced, and the detection distance is further increased.
[0082]
【Example】
An embodiment of the high-frequency component storage container of the present invention will be described below.
[0083]
The millimeter wave radar module of FIG. 5 was manufactured using the container of FIG. A lid 1 as an upper parallel plate conductor and a base 2 as a lower parallel plate conductor were formed by die-casting two Al plates having a thickness of 6 mm to produce the container shown in FIG. . By slightly polishing the upper surface of the protrusion formed on the upper surface of the side wall portion of the base 2, the bottom surface of the concave portion 2a of the base 2 and the lower surface of the lid 1 are parallel to each other so that the distance between them is 1.8 mm. It was adjusted. Then, a high frequency formed by a dielectric line 3 made of cordierite ceramics having a rectangular cross section of 1.8 mm (height) × 0.8 mm (width) inside the container and having a relative dielectric constant of 4.9. A circuit was formed.
[0084]
In this embodiment, the use frequency is 76.5 GHz ± 0.5 GHz (λ / 4 is about 1 mm), and the choke cavity 4 in which W1 to W3 are 1 mm, D is 1 mm, and H is 0.1 mm is formed. .
[0085]
As a result of measuring a high-frequency signal leaking from the inside of the container using a power meter outside the container, it was not possible to detect the leakage of the high-frequency signal. Therefore, it was found that the electromagnetic waves were shielded.
[0086]
It should be noted that the present invention is not limited to the above-described embodiments and examples, and various changes may be made without departing from the spirit of the present invention.
[0087]
【The invention's effect】
The high-frequency component storage container according to the present invention is configured to prevent leakage of a high-frequency signal in which a gap communicating with at least one of the inside and the outside of the base is formed at an upper end and / or a lower end at a joint between the base and the lid. Since the choke cavity is provided over the entire circumference, the choke cavity has an unsealed structure. As a result, the base is manufactured by mass production technology such as die casting, and a slight cut is made at the joint between the base and the lid. By performing the processing, the lower surface of the lid body and the bottom surface of the concave portion of the base can be made parallel to each other, so that it can be manufactured with high productivity at low cost. In addition, even if thermal stress is applied to the joint between the base and the lid, it can be effectively alleviated at the joint, and if a gap communicating with the outside of the base is formed in the choke cavity, it is possible to store high-frequency components. The surface area of the container is increased, and the heat dissipation is improved. Further, when a gap communicating with the inside and outside of the base is formed in the choke cavity, it is possible to prevent the occurrence of dew condensation due to a temperature difference between the inside and the outside.
[0088]
In the high-frequency component housing of the present invention, preferably, the choke cavity has a predetermined interval between a projection formed over the entire periphery of the upper surface of the base and a projection formed over the entire periphery of the lower surface of the lid. Even when thermal stress is applied to the joint between the base and the lid in a shearing manner, the thermal stress can be effectively relieved at the projection of the base and the projection of the lid. Can be. Further, for example, an elongated choke cavity having a complicated shape can be easily formed, so that the effect of reducing thermal stress at the junction, the effect of improving heat dissipation, the downsizing, and the like are promoted.
[0089]
In the high frequency component storage container of the present invention, preferably, the choke cavity is inclined such that the lower end is located closer to the inside of the base than the upper end, so that a step or a projection having an inclined surface is formed on the base or the lid. It can be easily manufactured by preventing the generation of chips and burrs by the method, and as a result, the production efficiency is improved. Even if the width of the choke cavity is reduced to λ / 4 or less, by making the depth larger than λ / 4, a sufficient electromagnetic wave shielding effect can be obtained and the size can be reduced.
[0090]
The non-radiative dielectric line of the present invention includes the high-frequency component storage container of the present invention, and a dielectric line for transmitting a high-frequency signal stored in the high-frequency component storage container. The gap between the lower surface of the lid and the lower surface is set to be equal to or less than half of the wavelength of the high-frequency signal, so that the electromagnetic wave shielding property is excellent, the effect of reducing thermal stress at the joint, the effect of improving heat radiation, and the small size. Thus, effects such as conversion can be obtained.
[0091]
The millimeter wave transceiver having the transmitting / receiving antenna of the present invention can prevent the leakage of the millimeter wave signal in a high frequency band and a wide bandwidth and can cut off the noise intruding from the outside. When the wave radar module is used, the detection distance can be increased. Further, it can be manufactured with good productivity at low cost, and it can be prevented that the joint of the high-frequency component housing container is detached due to thermal stress, and the heat radiation property is further improved. Further, the high-frequency component storage container has high reliability in which dew condensation due to a temperature difference between inside and outside can be prevented.
[0092]
In addition, the millimeter wave transceiver in which the transmitting antenna and the receiving antenna of the present invention are independent has the above-mentioned effect, and the received wave received by the transmitting antenna is not mixed into the mixer as noise, and the transmission characteristic of the high-frequency signal is reduced. It will be excellent. As a result, the noise due to the received wave is reduced, and the detection distance is further increased when a millimeter wave radar module is used.
[Brief description of the drawings]
FIG. 1A is a cross-sectional view showing an example of an embodiment of a high-frequency component storage container of the present invention, and FIG. 1B is a cross-sectional view of a main part of the high-frequency component storage container of FIG.
FIGS. 2A to 2H are cross-sectional views of main parts showing various examples of an embodiment of the high-frequency component storage container of the present invention.
FIG. 3 is a partially transparent perspective view of a conventional non-radiative dielectric line.
4A is a cross-sectional view of a conventional high-frequency component storage container, and FIG. 4B is a main-portion cross-sectional view of the high-frequency component storage container of FIG.
FIG. 5 is a plan view showing an example of an embodiment of the millimeter wave transceiver according to the present invention.
FIG. 6 is a plan view showing another example of the embodiment of the millimeter wave transceiver according to the present invention.
FIG. 7 is a perspective view of a voltage-controlled millimeter-wave signal oscillating unit of the present invention.
8 is a perspective view of a wiring board provided with a varactor diode for a millimeter-wave signal oscillating unit in FIG. 7;
[Explanation of symbols]
1: Lid
2: Substrate
2a: recess
3: Dielectric line
4: Chalk cavity

Claims (6)

上面に高周波信号で作動する高周波部品を収容するための凹部が形成された金属製の基体と、該基体の上面の前記凹部の周囲に接合される、前記凹部の底面に下面が平行な平板状の金属製の蓋体とを具備しており、前記基体と前記蓋体との接合部に、上端および/または下端に前記基体の内側および外側の少なくとも一方に連通する隙間が形成された前記高周波信号の漏洩を防ぐためのチョーク空洞が全周にわたって設けられていることを特徴とする高周波部品収納用容器。A metal base having an upper surface formed with a concave portion for accommodating a high-frequency component operated by a high-frequency signal; And a gap formed at an upper end and / or a lower end of the joining portion between the base and the lid and communicating with at least one of the inside and the outside of the base. A container for storing high-frequency components, wherein a choke cavity for preventing signal leakage is provided over the entire circumference. 前記チョーク空洞は、前記基体の上面の外周部に全周にわたって形成した突部と前記蓋体の下面の外周部に全周にわたって形成した突部とが所定の間隔をもって噛み合うようにして形成されていることを特徴とする請求項1記載の高周波部品収納用容器。The choke cavity is formed such that a protrusion formed over the entire outer periphery of the upper surface of the base and a protrusion formed over the entire periphery of the lower surface of the lid mesh with a predetermined interval. The high-frequency component storage container according to claim 1, wherein: 前記チョーク空洞は、上端よりも下端が前記基体の内側寄りに位置するように傾斜していることを特徴とする請求項1または請求項2記載の高周波部品収納用容器。The high frequency component storage container according to claim 1 or 2, wherein the choke cavity is inclined such that a lower end is located closer to an inner side of the base than an upper end. 請求項1乃至請求項3のいずれかに記載の高周波部品収納用容器と、該高周波部品収納用容器の内部に収納された前記高周波信号を伝搬させるための誘電体線路とを具備しており、前記凹部の底面と前記蓋体の下面との間の間隔が前記高周波信号の波長の2分の1以下とされていることを特徴とする非放射性誘電体線路。A high frequency component storage container according to any one of claims 1 to 3, and a dielectric line for propagating the high frequency signal stored inside the high frequency component storage container, A nonradiative dielectric line, wherein a distance between a bottom surface of the concave portion and a lower surface of the lid is set to be equal to or less than a half of a wavelength of the high frequency signal. 請求項1乃至請求項3のいずれかに記載の高周波部品収納用容器であって、前記凹部の底面と前記蓋体の下面との間の間隔がミリ波信号の波長の2分の1以下とされている前記高周波部品収納用容器の内部に、
高周波発生素子から出力され周波数変調されたミリ波信号を伝搬させる第1の誘電体線路と、
該第1の誘電体線路に付設され、前記高周波発生素子から出力された高周波信号を周期的に周波数変調して送信用のミリ波信号として出力し前記第1の誘電体線路中を伝搬させるミリ波信号発振部と、
前記第1の誘電体線路に一端側が電磁結合するように近接配置されるかまたは前記第1の誘電体線路に一端が接合されて、前記ミリ波信号の一部をミキサー側へ伝搬させる第2の誘電体線路と、
前記凹部の底面および前記蓋体の下面に平行に対向配置された2枚のフェライト板の周縁部に所定間隔で配置されかつそれぞれ前記ミリ波信号の入出力端とされた第1の接続部,第2の接続部および第3の接続部を有する第1のサーキュレータであって、前記第1の誘電体線路の前記ミリ波信号の出力端に前記第1の接続部が接続される第1のサーキュレータと、
該第1のサーキュレータの前記第2の接続部に一端が接続され、前記ミリ波信号を振幅変調するショットキーバリアダイオードが他端に接続された第3の誘電体線路と、
前記第1のサーキュレータの前記第3の接続部に一端が接続された第4の誘電体線路と、
前記凹部の底面および前記蓋体の下面に平行に対向配置された2枚のフェライト板の周縁部に所定間隔で配置されかつそれぞれ前記ミリ波信号の入出力端とされた第4の接続部,第5の接続部および第6の接続部を有する第2のサーキュレータであって、前記第4の接続部に前記第4の誘電体線路の他端が接続された第2のサーキュレータと、
前記第2のサーキュレータの前記第5の接続部に一端が接続され、前記ミリ波信号を振幅変調するショットキーバリアダイオードが他端に接続された第5の誘電体線路と、
前記第2のサーキュレータの前記第6の接続部に一端が接続された第6の誘電体線路と、
前記凹部の底面および前記蓋体の下面に平行に対向配置された2枚のフェライト板の周縁部に所定間隔で配置されかつそれぞれ前記ミリ波信号の入出力端とされた第7の接続部,第8の接続部および第9の接続部を有する第3のサーキュレータであって、前記第7の接続部に前記第6の誘電体線路の他端が接続された第3のサーキュレータと、
該第3のサーキュレータの前記第8の接続部に一端が接続され、ミリ波信号を伝搬させるとともに先端部に送受信アンテナを有する第7の誘電体線路と、
前記送受信アンテナで受信され前記第7の誘電体線路を伝搬して前記第3のサーキュレータの前記第9の接続部より出力した受信波をミキサー側へ伝搬させる第8の誘電体線路と、
前記第2の誘電体線路の中途と前記第8の誘電体線路の中途とを近接させて電磁結合させるかまたは接合させて成り、ミリ波信号の一部と受信波とを混合させて中間周波信号を発生させるミキサーと
が設けられていることを特徴とするミリ波送受信器。
4. The high-frequency component storage container according to claim 1, wherein a distance between a bottom surface of the concave portion and a lower surface of the lid is equal to or less than half a wavelength of a millimeter wave signal. 5. Inside the high-frequency component storage container being
A first dielectric line that outputs a frequency-modulated millimeter-wave signal output from the high-frequency generation element;
A millimeter that is attached to the first dielectric line, periodically modulates a high-frequency signal output from the high-frequency generation element, outputs the modulated high-frequency signal as a millimeter wave signal for transmission, and propagates the signal through the first dielectric line. A wave signal oscillator,
One end is disposed close to the first dielectric line so that one end side is electromagnetically coupled to the first dielectric line, or one end is joined to the first dielectric line to propagate a part of the millimeter wave signal to the mixer side. And a dielectric line of
A first connecting portion disposed at a predetermined interval on a peripheral portion of two ferrite plates opposed to each other in parallel to the bottom surface of the concave portion and the lower surface of the lid, and each of the first connecting portions is an input / output end of the millimeter wave signal; A first circulator having a second connection portion and a third connection portion, wherein the first connection portion is connected to an output end of the millimeter wave signal of the first dielectric line. A circulator,
A third dielectric line having one end connected to the second connection portion of the first circulator, and a Schottky barrier diode for amplitude-modulating the millimeter wave signal connected to the other end;
A fourth dielectric line having one end connected to the third connection portion of the first circulator;
A fourth connecting portion which is disposed at a predetermined interval on a peripheral portion of two ferrite plates disposed so as to face in parallel with the bottom surface of the concave portion and the lower surface of the lid, and each of which is an input / output end of the millimeter wave signal; A second circulator having a fifth connection portion and a sixth connection portion, wherein a second circulator having the other end of the fourth dielectric line connected to the fourth connection portion;
A fifth dielectric line having one end connected to the fifth connection portion of the second circulator, and a Schottky barrier diode for amplitude-modulating the millimeter wave signal connected to the other end;
A sixth dielectric line having one end connected to the sixth connection portion of the second circulator;
A seventh connecting portion which is disposed at a predetermined interval on a peripheral portion of two ferrite plates disposed in parallel to the bottom surface of the concave portion and the lower surface of the lid, and serves as an input / output end of the millimeter wave signal; A third circulator having an eighth connection portion and a ninth connection portion, wherein a third circulator having the other end of the sixth dielectric line connected to the seventh connection portion;
A seventh dielectric line having one end connected to the eighth connection portion of the third circulator, for transmitting a millimeter wave signal, and having a transmitting and receiving antenna at a tip end;
An eighth dielectric line that is received by the transmission / reception antenna, propagates through the seventh dielectric line, and propagates a reception wave output from the ninth connection part of the third circulator to the mixer side;
The middle part of the second dielectric line and the middle part of the eighth dielectric line are electromagnetically coupled or joined in close proximity to each other, and a part of the millimeter wave signal and the reception wave are mixed to form an intermediate frequency. A millimeter-wave transmitter / receiver comprising a mixer for generating a signal.
請求項1乃至請求項3のいずれかに記載の高周波部品収納用容器であって、前記凹部の底面と前記蓋体の下面との間の間隔がミリ波信号の波長の2分の1以下とされている前記高周波部品収納用容器の内部に、
高周波発生素子から出力され周波数変調されたミリ波信号を伝搬させる第1の誘電体線路と、
該第1の誘電体線路に付設され、前記高周波発生素子から出力された高周波信号を周期的に周波数変調して送信用のミリ波信号として出力し前記第1の誘電体線路中を伝搬させるミリ波信号発振部と、
前記第1の誘電体線路に一端側が電磁結合するように近接配置されるかまたは前記第1の誘電体線路に一端が接合されて、前記ミリ波信号の一部をミキサー側へ伝搬させる第2の誘電体線路と、
前記凹部の底面および前記蓋体の下面に平行に対向配置された2枚のフェライト板の周縁部に所定間隔で配置されかつそれぞれ前記ミリ波信号の入出力端とされた第1の接続部,第2の接続部および第3の接続部を有する第1のサーキュレータであって、前記第1の誘電体線路の前記ミリ波信号の出力端に前記第1の接続部が接続される第1のサーキュレータと、
該第1のサーキュレータの前記第2の接続部に一端が接続され、前記ミリ波信号を振幅変調するショットキーバリアダイオードが他端に接続された第3の誘電体線路と、
前記第1のサーキュレータの前記第3の接続部に一端が接続された第4の誘電体線路と、
前記凹部の底面および前記蓋体の下面に平行に対向配置された2枚のフェライト板の周縁部に所定間隔で配置されかつそれぞれ前記ミリ波信号の入出力端とされた第4の接続部,第5の接続部および第6の接続部を有する第2のサーキュレータであって、前記第4の接続部に前記第4の誘電体線路の他端が接続された第2のサーキュレータと、
前記第2のサーキュレータの前記第5の接続部に一端が接続され、前記ミリ波信号を振幅変調するショットキーバリアダイオードが他端に接続された第5の誘電体線路と、
前記第2のサーキュレータの前記第6の接続部に一端が接続された第6の誘電体線路と、
前記凹部の底面および前記蓋体の下面に平行に対向配置された2枚のフェライト板の周縁部に所定間隔で配置されかつそれぞれ前記ミリ波信号の入出力端とされた第7の接続部,第8の接続部および第9の接続部を有する第3のサーキュレータであって、前記第7の接続部に前記第6の誘電体線路の他端が接続された第3のサーキュレータと、
該第3のサーキュレータの前記第8の接続部に一端が接続され、ミリ波信号を伝搬させるとともに先端部に送信アンテナを有する第7の誘電体線路と、
前記第3のサーキュレータの前記第9の接続部に接続され、前記送信アンテナで受信混入した受信波を伝搬させるとともに先端部に設けられた無反射終端部で前記受信波を減衰させる第8の誘電体線路と、
先端部に受信アンテナ、他端部にミキサーが各々設けられた第9の誘電体線路と、
前記第2の誘電体線路の中途と前記第9の誘電体線路の中途とを近接させて電磁結合させるかまたは接合させて成り、ミリ波信号の一部と受信波とを混合させて中間周波信号を発生させるミキサーと
を設けたことを特徴とするミリ波送受信器。
4. The high-frequency component storage container according to claim 1, wherein a distance between a bottom surface of the concave portion and a lower surface of the lid is equal to or less than half a wavelength of a millimeter wave signal. 5. Inside the high-frequency component storage container being
A first dielectric line that outputs a frequency-modulated millimeter-wave signal output from the high-frequency generation element;
A millimeter that is attached to the first dielectric line, periodically modulates a high-frequency signal output from the high-frequency generation element, outputs the modulated high-frequency signal as a millimeter wave signal for transmission, and propagates the signal through the first dielectric line. A wave signal oscillator,
One end is disposed close to the first dielectric line so that one end side is electromagnetically coupled to the first dielectric line, or one end is joined to the first dielectric line to propagate a part of the millimeter wave signal to the mixer side. And a dielectric line of
A first connecting portion disposed at a predetermined interval on a peripheral portion of two ferrite plates opposed to each other in parallel to the bottom surface of the concave portion and the lower surface of the lid, and each of the first connecting portions is an input / output end of the millimeter wave signal; A first circulator having a second connection portion and a third connection portion, wherein the first connection portion is connected to an output end of the millimeter wave signal of the first dielectric line. A circulator,
A third dielectric line having one end connected to the second connection portion of the first circulator, and a Schottky barrier diode for amplitude-modulating the millimeter wave signal connected to the other end;
A fourth dielectric line having one end connected to the third connection portion of the first circulator;
A fourth connecting portion which is disposed at a predetermined interval on a peripheral portion of two ferrite plates disposed so as to face in parallel with the bottom surface of the concave portion and the lower surface of the lid, and each of which is an input / output end of the millimeter wave signal; A second circulator having a fifth connection portion and a sixth connection portion, wherein a second circulator having the other end of the fourth dielectric line connected to the fourth connection portion;
A fifth dielectric line having one end connected to the fifth connection portion of the second circulator, and a Schottky barrier diode for amplitude-modulating the millimeter wave signal connected to the other end;
A sixth dielectric line having one end connected to the sixth connection portion of the second circulator;
A seventh connecting portion which is disposed at a predetermined interval on a peripheral portion of two ferrite plates disposed in parallel to the bottom surface of the concave portion and the lower surface of the lid, and serves as an input / output end of the millimeter wave signal; A third circulator having an eighth connection portion and a ninth connection portion, wherein a third circulator having the other end of the sixth dielectric line connected to the seventh connection portion;
A seventh dielectric line having one end connected to the eighth connection portion of the third circulator, for transmitting a millimeter wave signal, and having a transmission antenna at a tip end;
An eighth dielectric connected to the ninth connection part of the third circulator for transmitting the reception wave mixed in by the transmission antenna and attenuating the reception wave at a non-reflection terminal provided at the tip end. Body tracks,
A ninth dielectric line having a receiving antenna at the tip and a mixer at the other end,
The middle portion of the second dielectric line and the middle portion of the ninth dielectric line are electromagnetically coupled or joined in close proximity to each other, and a part of the millimeter wave signal and the reception wave are mixed to form an intermediate frequency. A millimeter wave transmitter / receiver comprising a mixer for generating a signal.
JP2002361334A 2002-12-12 2002-12-12 High frequency component storage container, non-radiative dielectric line, and millimeter wave transceiver Pending JP2004193427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002361334A JP2004193427A (en) 2002-12-12 2002-12-12 High frequency component storage container, non-radiative dielectric line, and millimeter wave transceiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002361334A JP2004193427A (en) 2002-12-12 2002-12-12 High frequency component storage container, non-radiative dielectric line, and millimeter wave transceiver

Publications (1)

Publication Number Publication Date
JP2004193427A true JP2004193427A (en) 2004-07-08

Family

ID=32760130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002361334A Pending JP2004193427A (en) 2002-12-12 2002-12-12 High frequency component storage container, non-radiative dielectric line, and millimeter wave transceiver

Country Status (1)

Country Link
JP (1) JP2004193427A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007294903A (en) * 2006-03-31 2007-11-08 Nitta Ind Corp Shield joint structure and spatial former, and testing method using spatial former
KR101264106B1 (en) 2011-04-11 2013-05-14 아주대학교산학협력단 Waveguide and method of manufacturing the waveguide
CN110153279A (en) * 2019-06-26 2019-08-23 广东虹勤通讯技术有限公司 Main body shell and shell for notebook computer system end and processing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007294903A (en) * 2006-03-31 2007-11-08 Nitta Ind Corp Shield joint structure and spatial former, and testing method using spatial former
KR101264106B1 (en) 2011-04-11 2013-05-14 아주대학교산학협력단 Waveguide and method of manufacturing the waveguide
CN110153279A (en) * 2019-06-26 2019-08-23 广东虹勤通讯技术有限公司 Main body shell and shell for notebook computer system end and processing method

Similar Documents

Publication Publication Date Title
US7068118B2 (en) Pulse modulator for nonradiative dielectric waveguide, and millimeter wave transmitter/receiver using the same
JP2004193427A (en) High frequency component storage container, non-radiative dielectric line, and millimeter wave transceiver
US6630870B1 (en) High-frequency diode oscillator and millimeter-wave transmitting/receiving apparatus
JP2001237618A (en) Connection structure between non-radiative dielectric line and metal waveguide, millimeter wave transceiver, and millimeter wave transceiver
JP3089305B2 (en) Frequency modulator
JP3086883B2 (en) Frequency modulator
JP3086884B2 (en) Frequency modulator
JP3709186B2 (en) Amplitude modulator for nonradiative dielectric lines and millimeter wave transceiver using the same
JP2000138536A (en) Oscillator, dielectric line device, and transmitter
JP3652275B2 (en) Pulse modulator for non-radiative dielectric lines and millimeter wave transceiver using the same
JP2002016406A (en) Connection structure between non-radiative dielectric line and metal waveguide, millimeter wave transceiver, and millimeter wave transceiver
JP3777099B2 (en) High frequency diode oscillator and millimeter wave transceiver using the same
JP2002076721A (en) Connection structure between non-radiative dielectric line and metal waveguide, millimeter wave transceiver, and millimeter wave transceiver
JP2002076776A (en) High frequency diode oscillator and millimeter wave transceiver using the same
JP4268507B2 (en) Amplitude modulator for non-radiative dielectric lines and millimeter wave transceiver using the same
JP3722804B2 (en) Circulator for non-radiative dielectric lines and millimeter wave transceiver using the same
JP3709163B2 (en) Connection structure between nonradiative dielectric line and metal waveguide, and millimeter wave transceiver
JP3638533B2 (en) Connection structure between nonradiative dielectric line and metal waveguide, and millimeter wave transceiver
EP1093218B1 (en) Oscillator and radio equipment
JP3699664B2 (en) Connection structure between nonradiative dielectric line and metal waveguide, and millimeter wave transceiver
JP2002290110A (en) Circulator for non-radiative dielectric line and millimeter wave transceiver using the same
JP2002290113A (en) Non-radiative dielectric line and millimeter wave transceiver using the same
JP2004080639A (en) Gunn diode oscillator, voltage controlled oscillator and radio equipment
JP2004207854A (en) Pulse modulator for non-radiative dielectric line and millimeter wave transceiver using the same
JP2001203510A (en) Circulator for non-radiative dielectric line and millimeter wave transceiver using the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060523