[go: up one dir, main page]

JP2004199786A - Disk-shaped phase change optical recording medium - Google Patents

Disk-shaped phase change optical recording medium Download PDF

Info

Publication number
JP2004199786A
JP2004199786A JP2002367106A JP2002367106A JP2004199786A JP 2004199786 A JP2004199786 A JP 2004199786A JP 2002367106 A JP2002367106 A JP 2002367106A JP 2002367106 A JP2002367106 A JP 2002367106A JP 2004199786 A JP2004199786 A JP 2004199786A
Authority
JP
Japan
Prior art keywords
layer
recording
recording medium
optical recording
disk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002367106A
Other languages
Japanese (ja)
Other versions
JP4014499B2 (en
Inventor
Akira Kashiwakura
章 柏倉
Kazuyo Umezawa
和代 梅澤
Makoto Iimura
誠 飯村
Norihito Tamura
礼仁 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2002367106A priority Critical patent/JP4014499B2/en
Publication of JP2004199786A publication Critical patent/JP2004199786A/en
Application granted granted Critical
Publication of JP4014499B2 publication Critical patent/JP4014499B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Optical Recording Or Reproduction (AREA)
  • Manufacturing Optical Record Carriers (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a phase change type optical recording medium which is broad in margin to a speed of crystallization in its whole region, high in recording speed and highly durable in storage. <P>SOLUTION: On a substrate 1, a lower dielectric layer 2, a lower interface layer 3, a nuclei generating layer 4, a recording layer 5, an upper interface layer 6, an upper dielectric layer 7, an adjusting layer 8, and a heat releasing layer 9 are laminated in this order, and the outer surface of each layer is covered with a protecting layer 10. The film thickness of the nuclei generating layer 4 is gradually changed in the diameter direction. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、ディスク状相変化型光記録媒体に係り、特に、記録層の結晶化速度のマージンを内外周で均一化する手段に関する。
【0002】
【従来の技術】
マルチメディア時代の到来により、情報の多種多様化が進み、情報機器が取り扱う情報量が膨大なものになった結果、情報の蓄積を担う記録媒体にはより一層の大容量化と情報記録の高速化とが望まれている。記録媒体の中でも光記録媒体は高い信頼性を有することから特に注目されており、従来より大容量化を実現するための様々な技術、例えば、トラックピッチの狭小化によりトラック幅方向の記録密度を高める技術、マークエッジ記録方式を採用することによりトラック方向の記録密度を高める技術、ZCAVフォーマットを採用することにより媒体全域での記録密度の無駄をなくす技術、案内溝(グループ)と案内溝間(ランド)との両方に情報を記録する技術などが提案されている。
【0003】
中でもディスク状相変化型光記録媒体は、情報の書き換えが可能でしかも安価であることから民生用への普及が著しく、とりわけ家庭用ビデオ録画への普及が急速に伸びつつある。一般にビデオ録画媒体としてディスク状記録媒体を用いると、例えば「後追い再生」のように、ビデオ録画媒体としてテープ状記録媒体を用いた場合には不可能な新たな機能を持たせることが可能になるが、それに伴い、単なる情報記録用として用いられるディスク状記録媒体以上の高度な特性が要求される。例えば、「後追い再生」の場合、録画中でありながらその画像を後を追って再生していく必要があるので、記録と再生とを一定時間毎に切り替えなければならず、必然的に記録再生速度の高速化がこれまで以上に必要になる。
【0004】
ディスク状記録媒体の記録速度を上げる手段については幾つか挙げられるが、前記ZCAV方式もその代表的な例であり、ディスクの回転数を一定に保つことによって外周ほど線速を上げることが可能となる。しかしながら、線速が上がると、相変化型光記録媒体を用いる場合には、それに対応して記録層の結晶化速度も上げる必要が生じる。相変化型記録層の結晶化速度の高速化には、主として2つの方法が挙げられる。1つは記録層の結晶化速度そのものを上げてやる方法であり、記録層にSn等の元素を添加する技術が従来より提案されている。他の1つは結晶の基となる結晶核の数量を増やし、記録層の結晶化を促進させる方法であり、記録層の片側又は両側に例えばSn−Te系又はBi−Te系の合金層を付加する技術が従来より提案されている(例えば、特許文献1参照。)。
【0005】
ところで、前記したいずれの結晶化速度の高速化方法を採る場合にも、ディスクの内周部と外周部とで記録線速が異なるZCAV方式などのディスク状相変化型光記録媒体においては、ディスクの内周部と外周部の双方で記録層の結晶化速度が適切な値になるように調整する必要がある。即ち、結晶化速度が速すぎると、内周の低線速領域ほど、ただでさえ早くなっている結晶化速度よりも早い速度で記録層を急冷しなくてはアモルファスマークを形成できなくなるため、アモルファスマークの形成が難しくなる。逆に、結晶化速度が遅すぎると、外周の高線速領域ほど、結晶化に必要な時間が経過する前に記録層の温度が低下してしまうため、記録層が結晶化されにくくなり、情報を完全に消去することが難しくなる。この最高線速における記録層の結晶化速度と最低線速における記録層の結晶化速度とを同時に満足するように結晶化速度を調整することは、従来の低線速ドライブでも情報の記録及び再生ができなければならないという互換性を維持する上からも必要不可欠な条件である。
【0006】
したがって、記録領域の全面について記録線速に応じた最適な値に記録層の結晶化速度を調整するためには、ディスクの径方向について記録層の結晶化速度を記録線速に応じた値に順次変更することが最も好ましいが、従来においては、かかる結晶化速度の調整方法は困難とされており、最内周部において要求される記録層の結晶化速度及び最外周部において要求される記録層の結晶化速度を共に満足する一定の値に記録層の結晶化速度を設定するという方法が採られている。
【0007】
【特許文献1】
特開平11−167722号公報
【0008】
【発明が解決しようとする課題】
しかしながら、幅広い線速領域に対応できるように記録層の結晶化速度を調整すると、結晶化速度のマージンが小さい内周領域及び外周領域においては、媒体の保存寿命が短くなるという問題が生じる。例えば、高線速で情報の記録が行われた相変化型光記録媒体を高温高湿環境下で保存した後、再度高線速で情報の記録を行なおうとすると、情報の書き換えが正確にできないという問題が生じる。かかる不都合は、保存により記録層の結晶化速度が低下する結果、マージンが少なかった領域において結晶化速度の不足を生じ、高線速において情報を完全に消去できなくなるために発生する。
【0009】
本発明は、かかる従来技術の不備を解消するためになされたものであって、その目的は、記録領域の全面について記録層の結晶化速度のマージンを拡大し、記録速度が高くかつ保存寿命が長い相変化光記録媒体を提供することにある。
【0010】
【課題を解決するための手段】
本発明は、前記の課題を解決するため、記録層の片側又は両側に前記記録層の結晶化速度を高速化するための核生成層が付加されているディスク状相変化型光記録媒体において、前記核生成層の膜厚を前記記録層の直径方向に向けて漸次変化させるという構成にした。
【0011】
本願発明者の研究によると、Bi−Te系合金からなる核生成層は、その膜厚を厚くするほど記録層の結晶化速度が速くなる。したがって、核生成層の膜厚を記録層の直径方向に向けて漸次変化させることにより、記録層各部の結晶化速度を記録線速に応じた最適な値に調整することができるので、ZCAV方式のディスク状相変化型光記録媒体など、外周領域ほど記録線速が大きくなる相変化型光記録媒体についても、記録速度の改善を図ることができる。また、記録層各部について結晶化速度のマージンを大きくできるため、高温高湿環境下での保存による結晶化速度の低下が生じた場合にも結晶化速度に余裕を持たせることができ、情報の書き換えを正確に行うことができるので、相変化光記録媒体の保存寿命の改善を図ることができる。なお、膜厚が厚いほど記録層の結晶化速度が下がるような材料をもって核生成層を形成する場合には、内周ほど核生成層の膜厚を厚くしてやればよい。
【0012】
また、本発明は、前記構成のディスク状相変化型光記録媒体において、前記記録層に対する情報の記録及び再生が媒体回転数一定の状態で行われるという構成にした。
【0013】
このように、記録層に対する情報の記録及び再生が媒体回転数一定の状態で行われるディスク状相変化型光記録媒体について核生成層の膜厚を記録層の直径方向に向けて漸次変化させると、内周領域及び外周領域の双方で記録層の結晶化速度のマージンを大きくすることができるので、記録速度の高速化と保存寿命の長寿命化とを同時に図ることができる。
【0014】
また、本発明は、前記構成のディスク状相変化型光記録媒体において、前記核生成層の膜厚が前記記録層の外周領域ほど厚くなるという構成にした。
【0015】
前記したように、外周領域ほど記録線速が大きくなる相変化型光記録媒体においては、外周領域ほど記録層の結晶化速度を上げる必要があるので、膜厚を厚くするほど記録層の結晶化速度が速くなる核生成層を形成する場合においては、記録層の外周領域ほど核生成層の膜厚を厚くすることにより、記録層の外周領域の結晶化速度を上げることができ、記録速度の高速化と保存寿命の長寿命化とを図ることができる。
【0016】
また、本発明は、前記構成のディスク状相変化型光記録媒体において、前記核生成層がBi−Te系合金又はSn−Te系合金からなるという構成にした。
【0017】
Bi−Te系合金又はSn−Te系合金は、核生成層材料として優れた特性を有している。したがって、核生成層をBi−Te系合金又はSn−Te系合金から構成すると、記録層の結晶化速度を高めることができ、記録速度の高速化と保存寿命の長寿命化とを図ることができる。
【0018】
また、本発明は、前記構成のディスク状相変化型光記録媒体において、前記記録層及び核生成層がスパッタリング法によって成膜されるという構成にした。
【0019】
このように、記録層と核生成層とをスパッタリング法によって成膜すると、これら各層を連続的に形成できるため、成膜工程の簡略化ひいては製品であるディスク状相変化型光記録媒体の低コスト化を図ることができる。
【0020】
【発明の実施の形態】
図1に、本発明に係る相変化型光記録媒体の断面構造の一例を示す。
【0021】
この図から明らかなように、本例の相変化型光記録媒体は、基板1上に、下部誘電体層2、下部界面層3、核生成層4、記録層5、上部界面層6、上部誘電体層7、調整層8、放熱層9をこの順に積層し、前記各層の外面を保護層10にて覆った構造になっている。
【0022】
基板1としては、ポリカーボネート、ポリメチルメタクリレート、ポリオレフィンなどの樹脂材料を射出成形することによって所定サイズのディスク状に形成され、片面に情報の記録トラックが渦巻き状又は同心円状に形成されたものが用いられる。
【0023】
下部誘電体層2及び上部誘電体層7は、記録時の熱によって基板1や記録層5が損傷されるのを防止するためのものであって、亜鉛硫化物、シリコン酸化物、シリコン窒化物それにアルミニウム酸化物などの無機誘電体材料、それにこれら各無機誘電体材料の混合物や積層体をもって形成される。
【0024】
下部界面層3は、下部誘電体層2から記録層5への原子の拡散を防ぐバリア層として機能するものであり、上部界面層6は上部誘電体層7から記録層5への原子の拡散を防ぐバリア層として機能するものであって、Si,Ge,Ti,Zr,Ta,Nb,Hf,Al,Y,Cr,W,Zn,In,Snなどの金属の炭化物、酸化物及び窒化物等をもって形成される。
【0025】
記録層5は、例えばGeSbTe合金のように、適度な加熱と冷却とを行うことにより、結晶状態とアモルファス状態とが可逆変化する相変化材料をもって形成される。なお、記録層5としてGeSbTe合金を用いる場合には、記録速度の高速化及び消去速度の高速化を図るため、適量のSnが添加されたGeSnSbTe合金を用いることもできる。
【0026】
核生成層4は、記録層5の結晶化を促進するためのものであって、Bi−Te系合金又はSn−Te系合金等をもって形成することができる。この核生成層4は、図2に例示するように、記録線速が高くなるほど記録層5の結晶化速度が高くなるように、記録層5の直径方向に向けて漸次膜厚が変化するように形成される。なお、図2(a)の例においては、記録線速が大きい領域ほど核生成層4の膜厚が厚く形成されているが、膜厚が厚くなるほど記録層5の結晶化速度が低くなる核生成層4を用いる場合には、図2(b)に例示するように、記録線速が大きい領域ほど核生成層4の膜厚が薄く形成される。また、図2(a)の例においては、核生成層4の膜厚が記録線速に応じて一様に増加しているが、本発明の要旨はこれに限定されるものではなく、図2(c)に例示するように、記録線速に応じて核生成層4の膜厚を段階的に変化させることもできる。さらに、図1においては、核生成層4が記録層5の片面にのみ形成されているが、記録層5の両面に形成することも勿論可能である。
【0027】
膜厚を内外周で差をつける方法にはいくつか挙げられるが、スパッタリング方式による成膜方法の場合、ターゲットのサイズを適宜選択することによって膜厚差を調整したり、放電のパワーで膜厚差を調整したり、ターゲットと基板との間に膜厚を調整する膜厚調整板或いはマスクを設置する方法等が挙げられる。このマスクを利用する方法の場合、内周を薄くしたい場合には基板の内周部分を中心にマスクすれば良く、逆に外周を薄くしたい場合には基板の外周部分を中心にマスクすれば良い。また、自公転式のスパッタ装置を用いる場合、基板の自公転の回転数を変えることによっても膜厚の内外周差をコントロールすることができる。例えば、本発明者が別途行った実験によれば、ある自公転式のスパッタ装置を用いると、直径120mmの基板にZnS膜を放電パワー600Wで成膜する場合、中周で30nmとなるような放電時間で成膜すると、成膜に使用するキャリアの回転数が50rpmの場合には、内周で30.2nm、外周で29.7nmとなるところ、キャリアの回転数が80rpmの場合には、内周で30.6nm、外周で29.6nmとなった。
【0028】
調整層8は、記録層5のアモルファス部分と結晶部分の光吸収率の差を補正し、書換後の波形歪みを抑制するものであって、例えばGeCrなど、Geを主成分とし、これに他の元素を適量添加してなるGe合金をもって形成される。
【0029】
放熱層9は、記録層5の加熱温度と再生光の反射率を高めるためのものであって、高い熱伝導率を有しかつ使用するレーザ波長域に対して高い反射率を有する金属材料又は合金材料をもって形成される。この放熱層材料としては、比較的安価にして熱伝導率及び反射率が高く、かつ化学的安定性に優れることから、Al,Ag或いはAl又はAgを主成分とする合金を用いることが好ましい。
【0030】
保護層10は、紫外線硬化性樹脂をもって形成される。
【0031】
前記下部誘電体層2、下部界面層3、核生成層4、記録層5、上部界面層6、上部誘電体層7、調整層8及び放熱層9は、複数のスパック室をもち、膜厚分布が少なく再現性の高いスパッタ装置を用いて成膜される。また、保護層10は、スピンコート装置を用いて成膜される。
【0032】
本実施形態例に係るディスク状相変化型光記録媒体は、核生成層4の膜厚を記録層5の直径方向に向けて漸次変化させたので、記録層各部の結晶化速度を記録線速に応じた最適な値に調整することができ、ZCAV方式のディスク状相変化型光記録媒体など、外周領域ほど記録線速が大きくなる相変化型光記録媒体について記録速度の改善を図ることができる。また、記録層各部について結晶化速度のマージンを大きくできるため、高温高湿環境下での保存による結晶化速度の低下が生じた場合にも結晶化速度に余裕を持たせることができ、情報の書き換えを正確に行うことができるので、相変化光記録媒体の保存寿命を改善することができる。
【0033】
以下に、本発明に係る相変化型光記録媒体のより具体的な実施例を挙げ、本発明の効果を明らかにする。
【0034】
【実施例】
直径が120mm、厚さが0.6mmのポリカーボネート基板1のプリフォーマットパターン形成面に、下部誘電体層2として膜厚が140nmのZnS−SiO(ZnSとSiOの混合物。)、下部界面層3として膜厚が6nmのCr、核生成層4として最内周部の膜厚が2nmで最外周部の膜厚が6nmのBiTe、記録層5として膜厚が10nmのGeSbTe、上部界面層6として膜厚が2nmのCr、上部誘電体層7として膜厚が40nmのZnS−SiO、調整層8として膜厚が15nmのGeCr、放熱層9として膜厚が100nmのAlTiをこの順にスパッタリングした後、前記放熱層9の外面を覆うように紫外線硬化樹脂からなる保護層10を形成して、図1に示す断面構造を有するディスク状相変化型光記録媒体を作製した。しかる後に、前記記録層5に初期化レーザを照射し、前記記録層5の全面を初期結晶化した。
【0035】
なお、前記ポリカーボネート基板1の片面には、プリフォーマットパターンとして、トラックピッチが0.615μm、溝深さが65nmで、グルーブとランドとが交互に連続して繋がる渦巻き状のプリグルーブを形成した。また、情報の記録領域は、エンボス(ピット)で形成されたリードインエリアと、書き換え可能なリードインエリアと、35のゾーンに分割されたデータエリアと、書換が可能なリードアウトエリアとで構成した。グルーブ及びランドは、共にセクタに分割されており、それぞれのセクタにはヘッダー領域と、ミラー領域と、2018バイトの記録領域とを含めた。各ヘッダー領域は、ヘッダー1〜ヘッダー4まであり、グルーブとランドの間に存在し、ランドトラックから見てヘッダー1領域とヘッダー2領域は外周寄りに、ヘッダー3領域とヘッダー4領域は内周寄りに配置されている。
【0036】
前記相変化光記録媒体に記録を行うための情報記録装置として、半導体レーザ(波長655nm、開口数0.6)と、記録パルスを発生させるための波形発生装置と、レーザードライバと、波形等価回路と、2値化回路とを備えた情報記録装置を準備した。この情報記録装置は8−16変調を用い、最短マークが0.42μmとなるマークエッジ記録方式により情報を記録することができる。
【0037】
本実施例では、核生成層4の膜厚が結晶化速度に与える影響を可能な限り正確に示すため、核生成層4の膜厚が異なる2種類の相変化光記録媒体を別々に作製し評価した。これは、同一基板内でも内周と外周とでグルーブ形状あるいはランド形状が微妙に違ってしまうことの影響や機械特性の影響を極力排除するためであり、核生成層4の膜厚以外は極力同一条件になるように留意し、半径53.8mmで所望の膜厚になるように作製した。測定は、この半径53.8mmのトラック上で行い、該トラックにおける線速がそれぞれ8.2m/s及び20.5m/sになるようにディスクの回転数を調整した。この8.2m/s及び20.5m/sという線速は、3246rpmで回転駆動されるZCAV方式のディスク状相変化光記録媒体の最内周の記録線速及び最外周の記録線速に概略相当する。
【0038】
結晶化速度の測定方法としては、示差走査熱量計(DSC)などを用いることが一般的であるが、本実施例では、媒体の状態で記録層5の結晶化速度を知る必要があることから、精度はやや落ちるが、次の手順で測定することにした。なお、このときの再生パワーPrは1mWであり、測定箇所にはグルーブを選んだ。
【0039】
a.単一ビームオーバーライト用マルチパルスでの最適な記録レベルPwl及び最適な消去レベルPw2を求める。
b.求められたPwlとPw2で11T信号を数トラックにわたって記録する(周波数2.65MHz)。
c.記録トラックの中から1トラックを選び、スペクトルアナライザーでキャリアレベルC0を読みとる。
d.あるパワーPeでマルチパルスを用いずに記録情報をDC消去する。
e.消去トラックのキャリアレベルClを読みとり、C0との差を1回消去の消去比ΔCl=Co−C1とする。
f.トラック及びPeの値を変えて前記c,d,eの操作を繰り返す。
g.前記cで選択されたトラックに同一Peで2回目のDC消去を行う。
h.2回目のDC消去後のトラックのキャリアレベルC2を読みとり、C0との差を2回消去の消去比ΔC2=C0−C2とする
i.トラック及びPeの値を変えて前記g,hの操作を繰り返す。
j.各Peに対する両消去比の差をΔC=ΔC2−ΔClとする。
【0040】
結晶化速度が速いということは、1度の消去で消えやすいということであり、ΔClがΔC2に近い値になると言うことであって、つまりはΔCがゼロに近づくということである。従って、このΔCの測定さえすれば結晶化速度を測定したことと同等であり、ΔCが小さい程結晶化速度が速いことを示すことができる。
【0041】
測定に使用したサンプルは核生成層の膜厚が2nmと6nmの2枚であり、それぞれのディスクについて、半径53.8mmのトラック上で記録線速を8.2m/s及び20.5m/sとし、消去比ΔCl、消去比ΔC2、消去比差ΔCを測定した。その結果を図3乃至図6に示す。
【0042】
これらの図から明らかなように、Pe≦5mWの領域では明らかに核生成層4の膜厚が厚い(6nm)方がΔCが小さく、核生成層4の膜厚が薄い(2nm)方よりも結晶化速度が速いことを示している。なお、図6で核生成層4の膜厚が厚い方がPe=5.5mWでΔCが大きくなっているように見えるが、これは記録層5の温度が消去状態よりも記録状態の方に近づいてしまったためであり、このようにΔClとΔC2とが両方とも減少してしまっている領域については無視して考えてよい。具体的には、核生成層4の膜厚が2nmの場合には、8.2m/sでPe≧5mW、20.5m/sでPe≧5.5mW、核生成層4の膜厚が6nmの場合には、8.2m/sでPe≧4.5mW、20.5m/sでPe≧5.5mWは無視して考えてよい。
【0043】
以上のように、BiTe核生成層をGeSbTe記録層の基板側界面に付加させた相変化光記録媒体においては、核生成層の膜厚を厚することにより、1回消去の消去比ΔClと2回消去の消去比ΔC2との消去比差ΔCが小さくなり、結晶化速度を速くできることがわかった。よって、核生成層4の膜厚を同一基板上の直径方向に向けて漸次変化させ、媒体の回転数が一定のZCAV方式では線速が早くなる外周ほど膜厚をしてやれば、最高線速の最外周も最低線速の最内周も全てを含む媒体全域で許容できる的確な結晶化速度を得ることができる。さらには、記録層の結晶化速度が上がることに伴い、記録マークを保存後にオーバーライトする際にも保存前に記録されていたマークを十分に消去することができ、相変化光記録媒体の保存寿命も改善することができる。
【0044】
以上、本発明に係る相変化型光記録媒体の実施例について説明したが、本発明の要旨はこれに限定されるものではなく、核生成層4の膜厚分布以外については必要に応じて適宜変更することができる。
【0045】
例えば、前記実施例においては、核生成層4としてBiTeからなるものを形成したが、本発明の要旨はこれに限定きれるものではなく、結晶の基となる結晶核の数量を意欲的に増やしてやって記録層5の結晶化を促進させる効果がある任意の物質を核生成層形成材料として用いることができる。
【0046】
また、前記実施例においては、最短マーク長を0.42μm、トラックピッチを0.615μmとしたが、これよりもトラックピッチを狭くしたものや最短マーク長を短くしたものでも同様の効果がある。
【0047】
また、前記実施例においては、ランド・グループ方式のプリフォーマットパターンが形成された基板1を用いたが、ランド記録用又はグループ記録用の基板でも同様の効果がある。
【0048】
また、前記実施例においては、記録領域を半径方向に35ゾーンに分割した基板1を用いたが、ゾーンの数を更に増やしたり減らしたりしても、またゾーンに分割しなくても同様の効果がある。
【0049】
また、前記実施例においては、波長655nmの半導体レーザを用いたが、より長波長のレーザー、例えば780nm付近あるいは830nm付近のレーザーを用いても同様の結果が得られる。反対に、短波長のレーザー、例えば405nm付近あるいはそれ以下のものを用いても同様の結果が得られる。
【0050】
また、前記実施例においては、対物レンズとして開口数が0.6のものを用いたが、開口数が0.45〜0.7の対物レンズを用いても同様の結果を得ることができる。加えて、2つ以上のレンズを組み合わせることにより0.7以上の開口数をもつ対物レンズを用いても同様の結果を得ることができる。特に、開口数が0.85のレンズと波長が405nmのレーザーとを組み合わせて用いることにより、さらに高速かつ高密度の記録が可能となる。さらに、SIL(Solid Immersion Lens)などと組み合わせて実効開口数を1以上とし、SILによるエバネツセント光を用いたニアフィールド記録においても同様の効果を得ることができる。
【0051】
【発明の効果】
以上説明したように、本発明によると、核生成層の膜厚を記録層の直径方向に向けて漸次変化させたので、記録層各部の結晶化速度を記録線速に応じた最適な値に調整することができ、ZCAV方式のディスク状相変化型光記録媒体など、外周領域ほど記録線速が大きくなる相変化型光記録媒体について記録速度の改善を図ることができる。また、記録層各部について結晶化速度のマージンを大きくできるため、高温高湿環境下での保存による結晶化速度の低下が生じた場合にも結晶化速度に余裕を持たせることができ、情報の書き換えを正確に行うことができるので、相変化光記録媒体の保存寿命を改善することができる。
【図面の簡単な説明】
【図1】実施形態例に係る相変化記録媒体の膜構造を示す断面図である。
【図2】核生成層の膜厚分布を例示するグラフである。
【図3】核生成層の膜厚が2nmの媒体のDC消去パワーPeに対する1回消去の消去比ΔCl及び2回消去の消去比ΔC2の変化を示すグラフである。
【図4】核生成層の膜厚が2nmの媒体のDC消去パワーPeに対する消去比差△Cの変化を示すグラフである。
【図5】核生成層の膜厚が6nmの媒体のDC消去パワーPeに対する1回消去の消去比ΔC1及び2回消去の消去比ΔC2の変化を示すグラフである。
【図6】核生成層の膜厚が6nmの媒体のDC消去パワーPeに対する消去比差△Cの変化を示すグラフである。
【符号の説明】
1 基板
2 下部誘電体層
3 下部界面層
4 核生成層
5 記録層
6 上部界面層
7 上部誘電体層
8 調整層
9 放熱層
10 保護層
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a disk-shaped phase-change optical recording medium, and more particularly, to a means for making a crystallization speed margin of a recording layer uniform on the inner and outer circumferences.
[0002]
[Prior art]
With the advent of the multimedia era, information has been diversified and the amount of information handled by information equipment has become enormous. As a result, the recording media responsible for storing information has a much larger capacity and faster information recording. Is desired. Of the recording media, optical recording media have attracted special attention because of their high reliability, and various technologies for realizing a larger capacity than before, such as reducing the track pitch, have increased the recording density in the track width direction. Technology for increasing the recording density in the track direction by adopting the mark edge recording method, technology for eliminating the waste of the recording density over the entire medium by employing the ZCAV format, And the like, and a technique for recording information in both of them has been proposed.
[0003]
Among them, the disk-shaped phase-change type optical recording medium has been remarkably popularized for consumer use since information can be rewritten and is inexpensive, and particularly for home use video recording is rapidly expanding. In general, when a disc-shaped recording medium is used as a video recording medium, it is possible to provide a new function, such as “follow-up playback”, which is impossible when a tape-shaped recording medium is used as a video recording medium. However, along with this, a higher characteristic than that of a disk-shaped recording medium used merely for information recording is required. For example, in the case of "follow-up playback", it is necessary to play back the image while the video is being recorded, so it is necessary to switch between recording and playback at regular time intervals. Will need to be faster than ever.
[0004]
There are several means for increasing the recording speed of the disk-shaped recording medium. The ZCAV method is also a typical example, and it is possible to increase the linear velocity toward the outer periphery by keeping the rotation speed of the disk constant. Become. However, when the linear velocity increases, when a phase-change optical recording medium is used, it is necessary to increase the crystallization speed of the recording layer correspondingly. There are mainly two methods for increasing the crystallization speed of the phase change recording layer. One is a method of increasing the crystallization speed of the recording layer itself, and a technique of adding an element such as Sn to the recording layer has been conventionally proposed. The other one is a method of increasing the number of crystal nuclei serving as a crystal base and promoting crystallization of the recording layer. For example, an Sn-Te-based or Bi-Te-based alloy layer is provided on one or both sides of the recording layer. Conventionally, a technique to be added has been proposed (for example, see Patent Document 1).
[0005]
By the way, when any of the above-mentioned methods of increasing the crystallization speed is adopted, in the disk-shaped phase change type optical recording medium such as the ZCAV system in which the recording linear velocity is different between the inner peripheral portion and the outer peripheral portion of the disk, It is necessary to adjust the crystallization speed of the recording layer to an appropriate value at both the inner peripheral portion and the outer peripheral portion. That is, if the crystallization speed is too fast, the lower the linear velocity region in the inner circumference, the amorphous mark can not be formed unless the recording layer is quenched at a faster speed than the crystallization speed that is just faster, It becomes difficult to form an amorphous mark. Conversely, if the crystallization speed is too slow, the higher the linear velocity region on the outer periphery, the lower the temperature of the recording layer before the time required for crystallization elapses, so the recording layer is less likely to be crystallized, It is difficult to completely erase information. Adjusting the crystallization speed so as to simultaneously satisfy the crystallization speed of the recording layer at the highest linear velocity and the crystallization speed of the recording layer at the lowest linear velocity requires recording and reproducing information even in a conventional low linear velocity drive. This is an indispensable condition for maintaining compatibility that must be able to be performed.
[0006]
Therefore, in order to adjust the crystallization speed of the recording layer to an optimum value corresponding to the recording linear velocity over the entire recording area, the crystallization speed of the recording layer in the radial direction of the disk is adjusted to a value corresponding to the recording linear velocity. It is most preferable to sequentially change the crystallization speed, but conventionally, it is difficult to adjust the crystallization speed, and the crystallization speed of the recording layer required at the innermost periphery and the recording speed required at the outermost periphery are difficult. A method has been adopted in which the crystallization speed of the recording layer is set to a constant value that satisfies both the crystallization speeds of the layers.
[0007]
[Patent Document 1]
JP-A-11-167722 [0008]
[Problems to be solved by the invention]
However, if the crystallization speed of the recording layer is adjusted to be compatible with a wide linear velocity region, a problem arises in that the storage life of the medium is shortened in the inner and outer peripheral regions where the crystallization speed margin is small. For example, if a phase-change optical recording medium on which information is recorded at a high linear velocity is stored in a high-temperature, high-humidity environment, and then information is recorded again at a high linear velocity, the information is correctly rewritten. A problem arises that it is not possible. Such inconvenience occurs because the crystallization speed of the recording layer is reduced by storage, and as a result, the crystallization speed is insufficient in a region where the margin is small, and information cannot be completely erased at a high linear velocity.
[0009]
The present invention has been made in order to solve the deficiencies of the related art, and an object thereof is to increase a margin of a crystallization speed of a recording layer over the entire recording area, to achieve a high recording speed and a long storage life. An object of the present invention is to provide a long phase change optical recording medium.
[0010]
[Means for Solving the Problems]
The present invention, in order to solve the above problems, a disk-shaped phase-change optical recording medium in which a nucleation layer for increasing the crystallization speed of the recording layer is added to one or both sides of the recording layer, The thickness of the nucleation layer is gradually changed in the diameter direction of the recording layer.
[0011]
According to the study of the present inventor, the crystallization rate of the recording layer of the nucleation layer made of a Bi—Te alloy increases as the thickness of the nucleation layer increases. Therefore, by gradually changing the thickness of the nucleation layer in the diameter direction of the recording layer, the crystallization speed of each part of the recording layer can be adjusted to an optimum value corresponding to the recording linear velocity. The recording speed can also be improved for a phase-change optical recording medium in which the recording linear velocity increases in the outer peripheral region, such as the disk-shaped phase-change optical recording medium described above. In addition, since the margin of the crystallization rate can be increased for each part of the recording layer, even if the crystallization rate decreases due to storage in a high-temperature and high-humidity environment, the crystallization rate can have a margin, and information can be provided. Since the rewriting can be performed accurately, the storage life of the phase change optical recording medium can be improved. In the case where the nucleation layer is formed of a material in which the crystallization speed of the recording layer decreases as the film thickness increases, the thickness of the nucleation layer may be increased toward the inner periphery.
[0012]
Further, according to the present invention, in the disk-shaped phase-change optical recording medium having the above-described configuration, recording and reproduction of information with respect to the recording layer are performed at a constant medium rotation speed.
[0013]
As described above, the thickness of the nucleation layer is gradually changed in the diameter direction of the recording layer in the disk-shaped phase change type optical recording medium in which the recording and the reproduction of the information on the recording layer are performed at a constant medium rotation speed. In addition, since the margin of the crystallization speed of the recording layer can be increased in both the inner peripheral region and the outer peripheral region, it is possible to simultaneously increase the recording speed and extend the storage life.
[0014]
Further, according to the present invention, in the disk-shaped phase-change optical recording medium having the above-mentioned configuration, the nucleation layer has a larger thickness in an outer peripheral region of the recording layer.
[0015]
As described above, in a phase-change optical recording medium in which the recording linear velocity increases in the outer peripheral region, the crystallization speed of the recording layer needs to be increased in the outer peripheral region. In the case of forming a nucleation layer having a higher speed, the crystallization rate in the outer peripheral region of the recording layer can be increased by increasing the thickness of the nucleation layer in the outer peripheral region of the recording layer, and the recording speed can be reduced. Higher speed and longer storage life can be achieved.
[0016]
Further, according to the present invention, in the disk-shaped phase-change optical recording medium having the above-mentioned structure, the nucleation layer is made of a Bi-Te alloy or a Sn-Te alloy.
[0017]
Bi-Te alloys or Sn-Te alloys have excellent properties as nucleation layer materials. Therefore, when the nucleation layer is made of a Bi-Te alloy or a Sn-Te alloy, the crystallization speed of the recording layer can be increased, and the recording speed can be increased and the storage life can be extended. it can.
[0018]
Further, according to the present invention, in the disk-shaped phase-change optical recording medium having the above configuration, the recording layer and the nucleation layer are formed by a sputtering method.
[0019]
As described above, when the recording layer and the nucleation layer are formed by the sputtering method, these layers can be formed continuously, so that the film formation process is simplified, and the low cost of the disk-shaped phase-change optical recording medium as a product is achieved. Can be achieved.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 shows an example of a cross-sectional structure of a phase-change optical recording medium according to the present invention.
[0021]
As is clear from this figure, the phase change type optical recording medium of this example has a lower dielectric layer 2, a lower interface layer 3, a nucleation layer 4, a recording layer 5, an upper interface layer 6, The dielectric layer 7, the adjustment layer 8, and the heat radiation layer 9 are laminated in this order, and the outer surface of each layer is covered with a protective layer 10.
[0022]
The substrate 1 is formed into a disk of a predetermined size by injection molding a resin material such as polycarbonate, polymethyl methacrylate, or polyolefin, and has a recording track of information formed in a spiral or concentric shape on one surface. Can be
[0023]
The lower dielectric layer 2 and the upper dielectric layer 7 are for preventing the substrate 1 and the recording layer 5 from being damaged by heat during recording, and include zinc sulfide, silicon oxide, and silicon nitride. It is formed of an inorganic dielectric material such as aluminum oxide and a mixture or a laminate of these inorganic dielectric materials.
[0024]
The lower interface layer 3 functions as a barrier layer for preventing diffusion of atoms from the lower dielectric layer 2 to the recording layer 5, and the upper interface layer 6 functions as a diffusion of atoms from the upper dielectric layer 7 to the recording layer 5. Which functions as a barrier layer for preventing metal oxides, oxides and nitrides of metals such as Si, Ge, Ti, Zr, Ta, Nb, Hf, Al, Y, Cr, W, Zn, In, and Sn. And so on.
[0025]
The recording layer 5 is formed of a phase-change material, such as a GeSbTe alloy, which is reversibly changed between a crystalline state and an amorphous state by performing appropriate heating and cooling. When a GeSbTe alloy is used for the recording layer 5, a GeSnSbTe alloy to which an appropriate amount of Sn is added can be used in order to increase the recording speed and the erasing speed.
[0026]
The nucleation layer 4 is for promoting crystallization of the recording layer 5, and can be formed of a Bi-Te alloy, a Sn-Te alloy, or the like. As illustrated in FIG. 2, the nucleation layer 4 has a thickness that gradually changes in the diameter direction of the recording layer 5 so that the crystallization speed of the recording layer 5 increases as the recording linear velocity increases. Formed. In the example of FIG. 2A, the nucleation layer 4 is formed to be thicker in a region where the recording linear velocity is higher, but the nucleus in which the crystallization speed of the recording layer 5 is lower as the film thickness is larger. When the generation layer 4 is used, as illustrated in FIG. 2B, the nucleation layer 4 is formed to have a smaller thickness as the recording linear velocity increases. Further, in the example of FIG. 2A, the film thickness of the nucleation layer 4 uniformly increases according to the recording linear velocity. However, the gist of the present invention is not limited to this. As illustrated in FIG. 2C, the thickness of the nucleation layer 4 can be changed stepwise according to the recording linear velocity. Further, in FIG. 1, the nucleation layer 4 is formed only on one side of the recording layer 5, but it is of course possible to form it on both sides of the recording layer 5.
[0027]
There are several methods for making the film thickness different between the inner and outer circumferences. In the case of a film forming method using a sputtering method, the film thickness is adjusted by appropriately selecting the size of the target, or the film thickness is controlled by the power of discharge. A method of adjusting the difference or providing a film thickness adjusting plate or a mask between the target and the substrate for adjusting the film thickness can be used. In the method using this mask, when the inner circumference is to be thinned, the mask may be centered on the inner circumference of the substrate, and when the outer circumference is thinned, the mask may be centered on the outer circumference of the substrate. . In addition, when a self-revolution type sputtering apparatus is used, the difference between the inner and outer circumferences of the film thickness can be controlled by changing the number of revolutions of the substrate in the self-revolution. For example, according to an experiment separately performed by the inventor of the present invention, when a self-revolving sputtering apparatus is used, when a ZnS film is formed on a substrate having a diameter of 120 mm at a discharge power of 600 W, the ZnS film has a thickness of 30 nm in the middle circumference. When the film is formed in the discharge time, when the rotation speed of the carrier used for the film formation is 50 rpm, the inner circumference is 30.2 nm and the outer circumference is 29.7 nm. When the rotation speed of the carrier is 80 rpm, The inner diameter was 30.6 nm, and the outer diameter was 29.6 nm.
[0028]
The adjustment layer 8 corrects the difference in light absorptance between the amorphous portion and the crystal portion of the recording layer 5 and suppresses waveform distortion after rewriting. For example, the adjustment layer 8 is mainly composed of Ge such as GeCr. Is formed with a Ge alloy to which an appropriate amount of the above-mentioned element is added.
[0029]
The heat radiation layer 9 is for increasing the heating temperature of the recording layer 5 and the reflectance of the reproduction light, and has a high thermal conductivity and a metal material having a high reflectance with respect to a laser wavelength range to be used. It is formed with an alloy material. As the heat radiation layer material, Al, Ag, or an alloy containing Al or Ag as a main component is preferably used because it is relatively inexpensive, has high thermal conductivity and reflectance, and has excellent chemical stability.
[0030]
The protective layer 10 is formed of an ultraviolet curable resin.
[0031]
The lower dielectric layer 2, the lower interface layer 3, the nucleation layer 4, the recording layer 5, the upper interface layer 6, the upper dielectric layer 7, the adjustment layer 8, and the heat radiation layer 9 have a plurality of spack chambers, The film is formed using a sputtering apparatus having a small distribution and high reproducibility. The protective layer 10 is formed using a spin coater.
[0032]
In the disk-shaped phase-change type optical recording medium according to the present embodiment, since the thickness of the nucleation layer 4 is gradually changed in the diameter direction of the recording layer 5, the crystallization speed of each part of the recording layer is reduced by the recording linear velocity. The recording speed can be improved for a phase-change optical recording medium in which the recording linear velocity becomes higher in the outer peripheral area, such as a ZCAV-type disc-type phase-change optical recording medium. it can. In addition, since the margin of the crystallization rate can be increased for each part of the recording layer, even if the crystallization rate decreases due to storage in a high-temperature and high-humidity environment, the crystallization rate can have a margin, and information can be provided. Since the rewriting can be performed accurately, the storage life of the phase change optical recording medium can be improved.
[0033]
Hereinafter, the effects of the present invention will be clarified by giving more specific examples of the phase-change optical recording medium according to the present invention.
[0034]
【Example】
On the surface of the polycarbonate substrate 1 having a diameter of 120 mm and a thickness of 0.6 mm on which a preformat pattern is formed, ZnS—SiO 2 (a mixture of ZnS and SiO 2 ) having a thickness of 140 nm as a lower dielectric layer 2, a lower interface layer Numeral 3 is Cr 2 O 3 having a thickness of 6 nm, nucleation layer 4 is Bi 2 Te 3 having an innermost peripheral portion of 2 nm and outermost peripheral portion is 6 nm, and recording layer 5 is 10 nm thick. GeSbTe, Cr 2 O 3 with a thickness of 2 nm as the upper interface layer 6, ZnS—SiO 2 with a thickness of 40 nm as the upper dielectric layer 7, GeCr with a thickness of 15 nm as the adjustment layer 8, and film thickness as the heat dissipation layer 9 After sputtering AlTi of 100 nm in this order, a protective layer 10 made of an ultraviolet curable resin is formed so as to cover the outer surface of the heat radiation layer 9, and has a sectional structure shown in FIG. To prepare a disc-shaped phase-change optical recording medium. After that, the recording layer 5 was irradiated with an initialization laser, and the entire surface of the recording layer 5 was subjected to initial crystallization.
[0035]
On one surface of the polycarbonate substrate 1, a spiral pre-groove having a track pitch of 0.615 μm and a groove depth of 65 nm and having grooves and lands connected alternately and continuously was formed as a preformat pattern. The information recording area includes a lead-in area formed by emboss (pit), a rewritable lead-in area, a data area divided into 35 zones, and a rewritable lead-out area. did. The groove and the land are both divided into sectors, and each sector includes a header area, a mirror area, and a recording area of 2018 bytes. Each header area includes a header 1 to a header 4 and exists between the groove and the land. As viewed from the land track, the header 1 area and the header 2 area are closer to the outer circumference, and the header 3 area and the header 4 area are closer to the inner circumference. Are located in
[0036]
A semiconductor laser (wavelength: 655 nm, numerical aperture: 0.6), a waveform generator for generating a recording pulse, a laser driver, and a waveform equivalent circuit are used as an information recording device for recording on the phase change optical recording medium. And an information recording device including a binarization circuit. This information recording apparatus can record information by a mark edge recording method in which the shortest mark is 0.42 μm using 8-16 modulation.
[0037]
In this embodiment, in order to show as accurately as possible the effect of the film thickness of the nucleation layer 4 on the crystallization rate, two types of phase-change optical recording media having different film thicknesses of the nucleation layer 4 were separately manufactured. evaluated. This is to eliminate as much as possible the effects of slight differences in the groove shape or land shape between the inner circumference and the outer circumference and the effects of mechanical properties even within the same substrate. Care was taken to keep the same conditions, and a film was formed to have a desired film thickness at a radius of 53.8 mm. The measurement was performed on a track having a radius of 53.8 mm, and the rotation speed of the disk was adjusted so that the linear velocities in the track became 8.2 m / s and 20.5 m / s, respectively. The linear velocities of 8.2 m / s and 20.5 m / s are roughly equivalent to the innermost recording linear velocity and the outermost recording linear velocity of the ZCAV type disk-shaped phase change optical recording medium driven to rotate at 3246 rpm. Equivalent to.
[0038]
As a method of measuring the crystallization rate, a differential scanning calorimeter (DSC) or the like is generally used. However, in this embodiment, it is necessary to know the crystallization rate of the recording layer 5 in the state of the medium. However, the accuracy is slightly reduced, but the measurement is performed according to the following procedure. At this time, the reproduction power Pr was 1 mW, and a groove was selected as a measurement point.
[0039]
a. The optimum recording level Pwl and the optimum erasing level Pw2 in the single pulse overwrite multipulse are obtained.
b. The 11T signal is recorded over several tracks with the obtained Pwl and Pw2 (frequency 2.65 MHz).
c. One track is selected from the recording tracks, and the carrier level C0 is read by a spectrum analyzer.
d. DC erase of recorded information at a certain power Pe without using multi-pulses.
e. The carrier level Cl of the erased track is read, and the difference from C0 is set as the erase ratio ΔCl = Co−C1 for one-time erase.
f. The operations of c, d, and e are repeated by changing the values of the track and Pe.
g. The second DC erasure is performed on the track selected in c with the same Pe.
h. The carrier level C2 of the track after the second DC erasing is read, and the difference from C0 is set as an erasing ratio ΔC2 = C0−C2 of the second erasing i. The operations of g and h are repeated by changing the value of the track and Pe.
j. The difference between the two erasure ratios for each Pe is ΔC = ΔC2−ΔCl.
[0040]
The fact that the crystallization rate is high means that the erasure is easy in one erasure, and that ΔCl becomes a value close to ΔC2, that is, ΔC approaches zero. Therefore, the measurement of ΔC is equivalent to the measurement of the crystallization rate, and it can be shown that the smaller the ΔC, the higher the crystallization rate.
[0041]
The samples used for the measurement had two nucleation layer thicknesses of 2 nm and 6 nm. For each disk, the recording linear velocity was 8.2 m / s and 20.5 m / s on a track having a radius of 53.8 mm. The erase ratio ΔCl, erase ratio ΔC2, and erase ratio difference ΔC were measured. The results are shown in FIGS.
[0042]
As is clear from these figures, in the region of Pe ≦ 5 mW, ΔC is smaller when the nucleation layer 4 is thicker (6 nm), and is smaller than when the nucleation layer 4 is thinner (2 nm). This indicates that the crystallization rate is high. In FIG. 6, it seems that ΔC is larger at Pe = 5.5 mW when the film thickness of the nucleation layer 4 is thicker. This is because the temperature of the recording layer 5 is higher in the recording state than in the erased state. This is because it has approached, and such a region in which both ΔCl and ΔC2 have decreased may be ignored. Specifically, when the thickness of the nucleation layer 4 is 2 nm, Pe ≧ 5 mW at 8.2 m / s, Pe ≧ 5.5 mW at 8.2 m / s, and the thickness of the nucleation layer 4 is 6 nm. In the case of, Pe ≧ 4.5 mW at 8.2 m / s and Pe ≧ 5.5 mW at 20.5 m / s may be ignored.
[0043]
As described above, in the phase-change optical recording medium in which the Bi 2 Te 3 nucleation layer is added to the interface of the GeSbTe recording layer on the substrate side, by increasing the thickness of the nucleation layer, the erasing ratio of one-time erasure can be improved. It was found that the erasing ratio difference ΔC between ΔCl and the erasing ratio ΔC2 of the two-time erasing was small, and the crystallization speed could be increased. Therefore, if the film thickness of the nucleation layer 4 is gradually changed in the diameter direction on the same substrate and the outer periphery where the linear velocity becomes faster in the ZCAV system in which the rotation speed of the medium is constant, the maximum linear velocity becomes higher. It is possible to obtain an accurate crystallization rate that is acceptable in the entire medium including both the outermost circumference and the innermost circumference with the lowest linear velocity. Furthermore, with the increase in the crystallization speed of the recording layer, even when the recording mark is overwritten after storage, the mark recorded before storage can be sufficiently erased, and the storage of the phase change optical recording medium can be performed. Lifespan can also be improved.
[0044]
Although the embodiments of the phase-change optical recording medium according to the present invention have been described above, the gist of the present invention is not limited to this, and other than the film thickness distribution of the nucleation layer 4 may be appropriately adjusted as necessary. Can be changed.
[0045]
For example, in the above-described embodiment, the nucleation layer 4 is formed of Bi 2 Te 3 , but the gist of the present invention is not limited to this, and the number of crystal nuclei serving as the base of the crystal is determined. Any substance that has the effect of accelerating the crystallization of the recording layer 5 can be used as the nucleation layer forming material.
[0046]
In the above embodiment, the shortest mark length is 0.42 μm and the track pitch is 0.615 μm. However, the same effect can be obtained even if the track pitch is narrower or the shortest mark length is shorter.
[0047]
Further, in the above embodiment, the substrate 1 on which the land group type preformat pattern is formed is used. However, the same effect can be obtained with a substrate for land recording or group recording.
[0048]
Further, in the above-described embodiment, the substrate 1 in which the recording area is divided into 35 zones in the radial direction is used. However, the same effect can be obtained even if the number of zones is further increased or decreased, or the zones are not divided. There is.
[0049]
In the above embodiment, a semiconductor laser having a wavelength of 655 nm is used. However, a similar result can be obtained by using a laser having a longer wavelength, for example, a laser having a wavelength of around 780 nm or 830 nm. Conversely, a similar result can be obtained by using a short-wavelength laser, for example, one near or below 405 nm.
[0050]
In the above embodiment, the objective lens having a numerical aperture of 0.6 is used. However, the same result can be obtained by using an objective lens having a numerical aperture of 0.45 to 0.7. In addition, the same result can be obtained by combining two or more lenses and using an objective lens having a numerical aperture of 0.7 or more. In particular, by using a lens having a numerical aperture of 0.85 and a laser having a wavelength of 405 nm in combination, higher-speed and higher-density recording becomes possible. Further, the same effect can be obtained in near-field recording using evanescent light by SIL by setting the effective numerical aperture to 1 or more in combination with SIL (Solid Immersion Lens) or the like.
[0051]
【The invention's effect】
As described above, according to the present invention, since the thickness of the nucleation layer is gradually changed in the diameter direction of the recording layer, the crystallization speed of each part of the recording layer is set to an optimal value according to the recording linear velocity. The recording speed can be improved for a phase-change optical recording medium in which the recording linear velocity increases in the outer peripheral region, such as a ZCAV-type disc-shaped phase-change optical recording medium. In addition, since the margin of the crystallization rate can be increased for each part of the recording layer, even if the crystallization rate decreases due to storage in a high-temperature and high-humidity environment, the crystallization rate can have a margin, and information can be provided. Since the rewriting can be performed accurately, the storage life of the phase change optical recording medium can be improved.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view illustrating a film structure of a phase change recording medium according to an embodiment.
FIG. 2 is a graph illustrating a film thickness distribution of a nucleation layer.
FIG. 3 is a graph showing a change in an erase ratio ΔCl for a single erase operation and a change in an erase ratio ΔC2 for a double erase operation with respect to a DC erase power Pe of a medium having a nucleation layer thickness of 2 nm.
FIG. 4 is a graph showing a change in an erasing ratio difference ΔC with respect to a DC erasing power Pe of a medium having a nucleation layer thickness of 2 nm.
FIG. 5 is a graph showing a change in the erase ratio ΔC1 of single erase and the erase ratio ΔC2 of double erase with respect to the DC erase power Pe of a medium having a nucleation layer thickness of 6 nm.
FIG. 6 is a graph showing a change in an erase ratio difference ΔC with respect to a DC erase power Pe of a medium having a nucleation layer thickness of 6 nm.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Substrate 2 Lower dielectric layer 3 Lower interface layer 4 Nucleation layer 5 Recording layer 6 Upper interface layer 7 Upper dielectric layer 8 Adjustment layer 9 Heat dissipation layer 10 Protective layer

Claims (5)

記録層の片側又は両側に前記記録層の結晶化速度を高速化するための核生成層が付加されているディスク状相変化型光記録媒体において、前記核生成層の膜厚を前記記録層の直径方向に向けて漸次変化させることを特徴とするディスク状相変化型光記録媒体。In a disc-shaped phase-change optical recording medium in which a nucleation layer for increasing the crystallization speed of the recording layer is added to one or both sides of the recording layer, the film thickness of the nucleation layer is adjusted to the thickness of the recording layer. A disk-shaped phase-change optical recording medium characterized by being gradually changed in a diameter direction. 前記記録層に対する情報の記録及び再生が媒体回転数一定の状態で行われることを特徴とする請求項1に記載のディスク状相変化型光記録媒体。2. The disk-shaped phase-change type optical recording medium according to claim 1, wherein recording and reproduction of information on and from the recording layer are performed at a constant medium rotation speed. 前記核生成層の膜厚が前記記録層の外周領域ほど厚くなることを特徴とする請求額1又は2に記載のディスク状相変化型光記録媒体。3. The disk-shaped phase-change optical recording medium according to claim 1, wherein the thickness of the nucleation layer increases as the outer peripheral area of the recording layer increases. 前記核生成層が、Bi−Te系合金又はSn−Te系合金からなることを特徴とする請求項1〜3のいずれか1項に記載のディスク状相変化型光記録媒体。The disk-shaped phase-change optical recording medium according to any one of claims 1 to 3, wherein the nucleation layer is made of a Bi-Te alloy or a Sn-Te alloy. 前記記録層及び前記核生成層がスパッタリング法によって成膜されることを特徴とする請求項1〜4のいずれか1項に記載のディスク状相変化型光記録媒体。The disk-shaped phase-change optical recording medium according to any one of claims 1 to 4, wherein the recording layer and the nucleation layer are formed by a sputtering method.
JP2002367106A 2002-12-18 2002-12-18 Disc phase change optical recording medium Expired - Lifetime JP4014499B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002367106A JP4014499B2 (en) 2002-12-18 2002-12-18 Disc phase change optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002367106A JP4014499B2 (en) 2002-12-18 2002-12-18 Disc phase change optical recording medium

Publications (2)

Publication Number Publication Date
JP2004199786A true JP2004199786A (en) 2004-07-15
JP4014499B2 JP4014499B2 (en) 2007-11-28

Family

ID=32764104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002367106A Expired - Lifetime JP4014499B2 (en) 2002-12-18 2002-12-18 Disc phase change optical recording medium

Country Status (1)

Country Link
JP (1) JP4014499B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006132076A1 (en) * 2005-06-07 2006-12-14 Matsushita Electric Industrial Co., Ltd. Information recording medium and method for producing the same
WO2012120817A1 (en) * 2011-03-08 2012-09-13 パナソニック株式会社 Information recording medium and method for producing same
US8580368B2 (en) 2011-03-08 2013-11-12 Panasonic Corporation Information recording medium and method for manufacturing the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006132076A1 (en) * 2005-06-07 2006-12-14 Matsushita Electric Industrial Co., Ltd. Information recording medium and method for producing the same
US7829169B2 (en) 2005-06-07 2010-11-09 Panasonic Corporation Information recording medium and method for producing the same
US8133567B2 (en) 2005-06-07 2012-03-13 Panasonic Corporation Information recording medium and method for producing the same
JP5042019B2 (en) * 2005-06-07 2012-10-03 パナソニック株式会社 Information recording medium and manufacturing method thereof
WO2012120817A1 (en) * 2011-03-08 2012-09-13 パナソニック株式会社 Information recording medium and method for producing same
US8580368B2 (en) 2011-03-08 2013-11-12 Panasonic Corporation Information recording medium and method for manufacturing the same
US8685518B2 (en) 2011-03-08 2014-04-01 Panasonic Corporation Information recording medium and method for producing same
JP5870318B2 (en) * 2011-03-08 2016-02-24 パナソニックIpマネジメント株式会社 Information recording medium and manufacturing method thereof

Also Published As

Publication number Publication date
JP4014499B2 (en) 2007-11-28

Similar Documents

Publication Publication Date Title
CN1312685C (en) Optical information recording medium and optical recording method
US7611762B2 (en) Optical recording medium
WO2001018802A1 (en) Rewritable compact disk and method for manufacturing the same
CN101120406B (en) Recording medium, method for manufacturing the same, master for recording medium, and method for manufacturing the same
JP4354733B2 (en) Optical recording medium
US7408860B2 (en) Method of recording information in optical recording medium, information recording apparatus and optical recording medium
JP2005228383A (en) Information recording method for optical recording medium, and information recorder
JP4014499B2 (en) Disc phase change optical recording medium
CN100530382C (en) Optical recording medium
JP2001507645A (en) Ge-Sb-Te alloy rewritable optical information medium
JPH11115313A (en) Optical recording medium and recording / reproducing method thereof
CN100428348C (en) Optical recording medium and recording system thereof
JP2001266402A (en) Single-sided, two-layer optical disc
US20050213461A1 (en) Optical recording method, optical recording apparatus and optical storage medium
JP2001056958A (en) Optical information recording medium and optical recording method
CN100407298C (en) Optical information recording medium and optical information recording and reproducing system
JP4393806B2 (en) Optical recording medium
JP2005038568A (en) Phase change optical recording medium
JP2007026632A (en) Optical recording medium and optical recording method
JP4131039B2 (en) Phase change optical recording medium
CN100474408C (en) Process for producing optical information recording medium and initialization device
JPH10198959A (en) Method for initializing phase change optical disk, and phase change optical disk
JP3881215B2 (en) Optical information recording method
KR100917195B1 (en) Recording Method of Phase Change Optical Disk
JP2006212880A (en) Phase change optical recording medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070911

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 5