[go: up one dir, main page]

JP2004122545A - Thermoformable core material and interior finish material for car using the core material - Google Patents

Thermoformable core material and interior finish material for car using the core material Download PDF

Info

Publication number
JP2004122545A
JP2004122545A JP2002289001A JP2002289001A JP2004122545A JP 2004122545 A JP2004122545 A JP 2004122545A JP 2002289001 A JP2002289001 A JP 2002289001A JP 2002289001 A JP2002289001 A JP 2002289001A JP 2004122545 A JP2004122545 A JP 2004122545A
Authority
JP
Japan
Prior art keywords
resin layer
core material
thermoplastic resin
synthetic resin
laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002289001A
Other languages
Japanese (ja)
Inventor
Kazuto Nishizawa
西澤 一人
Yukihiro Sugie
杉江 幸弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2002289001A priority Critical patent/JP2004122545A/en
Publication of JP2004122545A publication Critical patent/JP2004122545A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Vehicle Interior And Exterior Ornaments, Soundproofing, And Insulation (AREA)
  • Laminated Bodies (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermoformable core material excellent in lightweight properties, rigidity, heat resistance, thermoforming properties, air impermeability, and sound absorbency, and an interior finish material for cars using the core material. <P>SOLUTION: In the thermoformable core material A, on the surface of a porous material 1 in which heat resistant fibers are entangled and bound with each other by a thermoplastic resin, a surface side synthetic resin layer 2 of a thermoplastic resin having a melting temperature higher than that of the thermoplastic resin in the porous material 1 and a hot melt resin 3 layer are laminated/integrated with the layer 2 arranged inside, and on the back, a back side synthetic resin layer 4 of a thermoplastic resin having a melting temperature higher than that of the synthetic resin in the porous material is laminated/integrated. Numbers of through holes 5 ranging from the surface of the hot melt resin layer 3 to the back of the surface side synthetic resin layer 2 are formed in the core material, and the opening area of the through holes 5 is 0.2-3 mm<SP>2</SP>. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、優れた吸音性及び熱成形性を有する熱成形性芯材及びこの熱成形性芯材を用いた外観が美麗な自動車用内装材に関する。
【0002】
【従来の技術】
従来から、自動車用内装材は、軽量性、剛性、耐熱性、非通気性等の種々の性能が要求される。このような自動車用内装材の芯材としては、特許文献1に、無機繊維と熱可塑性樹脂繊維を主材料として形成されたマット状物の少なくとも一外方に、前記熱可塑性樹脂繊維より融点の高い耐熱剛性樹脂層と、熱活性樹脂層とがこの順に積層されてなる熱成形性芯材が提案されている。そして、この熱成形性芯材は、その一面に表面材が積層一体化された上で所望形状に成形されて自動車用内装材として用いられる。
【0003】
しかしながら、熱活性樹脂層が積層されていない熱成形性芯材の面に表面材を積層一体化する場合には、表面材と熱成形性芯材との間に接着剤層又はホットメルト樹脂層を介在させる必要があるが、熱成形性芯材を成形する過程において、表面材と熱成形性芯材との間に介在させた接着材層又はホットメルト樹脂層がマット状物内に含浸、吸収されてしまって表面材と熱成形性芯材との一体化が不十分となるといった問題があった。
【0004】
又、熱活性樹脂層が積層された熱成形性芯材の面に表面材を積層一体化すると、室内側となる表面材側において音が発生した場合、音がマット状物へ進入、吸収されるのを耐熱剛性樹脂層が阻害するために、吸音性が低下するといった問題があった。
【0005】
【特許文献1】
特許公報第2872896号公報(特許請求の範囲)
【0006】
【発明が解決しようとする課題】
本発明は、軽量性、剛性、耐熱性、熱成形性、非通気性及び吸音性に優れている熱成形性芯材及びこれを用いた自動車用内装材を提供する。
【0007】
【課題を解決するための手段】
本発明の熱成形性芯材Aは、図1に示したように、耐熱性繊維を絡合させ且つ該耐熱性繊維同士を熱可塑性樹脂によって結着させてなる多孔質材1の表面に、上記多孔質材中の熱可塑性樹脂の融点よりも高い融点を有する熱可塑性樹脂からなる表側合成樹脂層2と、ホットメルト樹脂層3とが表側合成樹脂層2を内側にして積層一体化されていると共に、裏面に上記多孔質材1中の熱可塑性樹脂の融点よりも高い融点を有する熱可塑性樹脂からなる裏側合成樹脂層4が積層一体化され、上記ホットメルト樹脂層3の表面から上記表側合成樹脂層2の裏面に達する多数の貫通孔5が形成されてなる熱成形性芯材であって、上記貫通孔5の開口面積が0.2mm2 以上で且つ3mm2 未満であることを特徴とする。
【0008】
本発明の熱成形性芯材Aに用いられる多孔質材1は、耐熱性繊維を絡合させ且つ該耐熱性繊維同士を熱可塑性樹脂によって結着させてなり、全体に亘って連続した空隙を有している。
【0009】
このような多孔質材1としては、例えば、イ)耐熱性繊維或いは耐熱性繊維と熱可塑性樹脂繊維との混合繊維を絡合させ且つ繊維同士を熱可塑性樹脂で結着させてなるもの、ロ)耐熱性繊維と熱可塑性樹脂繊維との混合繊維を絡合させ且つ上記熱可塑性樹脂繊維の一部又は全部を溶融させて繊維同士を結着させたもの等が挙げられる。
【0010】
なお、上記多孔質材1の空隙率は、小さいと、得られる熱成形性芯材Aの吸音性及び軽量性が低下し、又、大きいと、得られる熱成形性芯材Aの機械的強度が低下するので、50〜95%が好ましい。
【0011】
上記耐熱性繊維としては、熱成形性芯材Aの製造或いは成形工程において加えられる熱によって溶融しないものであれば、特に限定されず、例えば、ガラス繊維、炭素繊維、ロックウール、セラミック繊維等の無機繊維;ジュート繊維、ケナフ繊維等の天然繊維が挙げられ、単独で用いられても二種以上が併用されてもよい。
【0012】
そして、耐熱性繊維は、熱成形性芯材Aに要求される物性に応じて適宜選択すればよく、具体的には、熱成形性芯材Aの曲げ強度、厚さ回復性等の機械的強度が重視される場合には無機繊維を用いるのが好ましく、熱成形性芯材Aのサーマルリサイクル性が重視される場合には天然繊維を用いるのが好ましい。
【0013】
上記無機繊維の長さは、短すぎても長すぎても、得られる熱成形性芯材Aの熱成形性が低下することがあるので、5〜250mmが好ましく、50〜150mmの長さの無機繊維が多孔質材1を構成する全繊維中に70重量%以上含有されているのがより好ましい。
【0014】
又、上記無機繊維の直径は、細いと、得られる熱成形性芯材Aの曲げ強度、厚み回復性等の機械的強度が低下することがあり、又、太いと、得られる熱成形性芯材Aの軽量性が低下することがあるので、5〜25μmが好ましく、7〜15μmがより好ましい。
【0015】
更に、上記天然繊維の長さは、短すぎても長すぎても、得られる熱成形性芯材Aの曲げ強度、厚み回復性などの機械的強度が低下するので、3〜200mmが好ましく、5〜150mmがより好ましい。又、上記天然繊維の直径は、200μm以下のものが一般的であり、10〜150μmが好ましい。
【0016】
又、上記熱可塑性樹脂繊維としては、具体的には、例えば、ポリエチレン、ポリプロピレン、ポリスチレン等からなる繊維が挙げられ、熱成形性芯材Aの製造時に一部又は全体が溶融して耐熱性繊維同士を結着することができるものが好ましい。
【0017】
そして、上記熱可塑性樹脂繊維の長さ及び太さは、上記耐熱性繊維と均一に且つ容易に絡合される程度に調整されることが好ましく、具体的には、長さは5〜200mmが好ましく、20〜100mmがより好ましく、更に、太さは、直径5〜70μmが好ましく、直径15〜40μmがより好ましい。
【0018】
更に、上記耐熱性繊維を相互に結着する熱可塑性樹脂としては、耐熱性繊維同士を結着することができれば、特に限定されず、例えば、ポリエチレン、ポリプロピレン、ポリスチレン、エチレン−酢酸ビニル共重合体、飽和ポリエステル、これらの変性物等が挙げられる。
【0019】
又、上記多孔質材1中における耐熱性繊維と熱可塑性樹脂(溶融した熱可塑性樹脂繊維を含む)の重量割合(耐熱性繊維:熱可塑性樹脂)は、耐熱性繊維が少ないと、得られる熱成形性芯材Aの耐熱性が低下することがあり、又、耐熱性繊維が多いと、耐熱性繊維相互の結着力が低下し、得られる熱成形性芯材Aの剛性が低下することがあるので、5:1〜1:5が好ましい。
【0020】
更に、多孔質材1の見掛け密度は、小さいと、得られる熱成形性芯材Aの曲げ強度等の機械的強度が低下することがあり、又、大きいと、得られる熱成形性芯材Aの吸音性及び軽量性が低下することがあるので、0.01〜0.2g/cm3 が好ましい。
【0021】
そして、上記多孔質材の表面には、この多孔質材1中の熱可塑性樹脂の融点よりも高い融点を有する熱可塑性樹脂からなる表側合成樹脂層2と、ホットメルト樹脂層3とが表側合成樹脂層2を内側(多孔質材1側)にして積層一体化されている。なお、本発明において、熱可塑性樹脂の融点とは、JIS K0064に準拠して測定されたものをいう。
【0022】
上記表側合成樹脂層2を構成する熱可塑性樹脂は、上述のように、その融点が多孔質材1の耐熱性繊維同士を結着している熱可塑性樹脂の融点よりも高いものに限定され、多孔質材1の耐熱性繊維同士を結着している熱可塑性樹脂の融点よりも30℃以上高いものが好ましく、50℃以上高いものがより好ましい。
【0023】
このような表側合成樹脂層2を構成する熱可塑性樹脂としては、例えば、6−ナイロン、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリカーボネート、ポリアミド、これらの変性物等が挙げられる。
【0024】
そして、上記表側合成樹脂層2の厚さは、薄いと、熱成形性芯材Aの熱成形時に多孔質材1中の耐熱性繊維が表側合成樹脂層2を突き破り易くなり、又、厚いと、熱成形性芯材Aの軽量性が低下するので、3〜25μmが好ましい。
【0025】
又、上記ホットメルト樹脂層3を構成するホットメルト樹脂としては、その融点が上記表側合成樹脂層2を構成する熱可塑性樹脂の融点よりも低いものが好ましく、上記表側合成樹脂層2を構成する熱可塑性樹脂の融点より20℃以上低いものがより好ましく、多孔質材1の耐熱性繊維同士を結着している熱可塑性樹脂の融点よりも低いものが特に好ましい。
【0026】
これにより、表側合成樹脂層2を溶融させることなくホットメルト樹脂層3を溶融させることができ、即ち、この溶融したホットメルト樹脂層3が多孔質材1中に含浸するのを非溶融状態の表側合成樹脂層2により確実に阻止して表側合成樹脂層2上にホットメルト樹脂層3を確実に存在させ、このホットメルト樹脂層3上に図2に示したように後述する表面材6を強固に積層一体化することができる。
【0027】
このようなホットメルト樹脂としては、例えば、直鎖状低密度ポリエチレン、ポリプロピレン、エチレン−酢酸ビニル共重合体、飽和ポリエステル、変性ポリエチレン、共重合ポリアミド等が挙げられる。
【0028】
更に、上記ホットメルト樹脂のメルトフローレート(以下、「MFR」という)は、小さいと、ホットメルト樹脂と表面材6との間のアンカー効果が低下して接着性が低下することがあり、又、大きいと、表面材6が不織布である場合、ホットメルト樹脂が表面材6に含浸されてしまって接着性が低下することがあるので、0.5〜20が好ましく、2〜15がより好ましい。なお、ホットメルト樹脂のMFRは、JIS K 7210に準拠し、温度190℃、荷重21.2Nの条件下で測定したものである。
【0029】
そして、上記ホットメルト樹脂層3の厚さは、薄いと、表面材6を積層させる際に表面材6との接着性が低下することがあり、又、厚いと、熱成形性芯材Aの軽量性が低下することがあるので、20〜100μmが好ましい。
【0030】
更に、上記ホットメルト樹脂層3及び上記表側合成樹脂層2には、その全面に亘って略均等な密度でもってホットメルト樹脂層3の表面から表側合成樹脂層2の裏面に達する多数の貫通孔5が形成されている。なお、貫通孔5の形状は、特に限定されず、例えば、真円形、楕円形、矩形状、六角形等が挙げられるが、真円形、楕円形が好ましく、真円形がより好ましい。
【0031】
上記貫通孔5の大きさは、小さいと、熱成形性芯材Aを熱成形する際にホットメルト樹脂が貫通孔5を埋めてしまって熱成形性芯材Aの吸音性が低下することがあり、又、大きいと、低周波領域での吸音性が低下したり、更に、ホットメルト樹脂層3における貫通孔5が形成されている部分とそうでない部分での表面材6との間の接着性が不均一となることがあり、特に、表面材が不織布から形成され且つ目付が190g/m2 以下である場合には、更に、ホットメルト樹脂の表面材6への含浸度合いが表面材6の面方向に不均一になってしまい表面材6に凹凸が生じ、表面材6の外観が損なわれたり、或いは、貫通孔5を通過した状態に熱成形性芯材Aを切断した際、貫通孔5部分の表面材6に浮きが発生して熱成形性芯材Aの外観が低下することがあるので、0.2mm2 以上で且つ3mm2 未満に限定され、0.75mm2 以上で且つ3mm2 未満が好ましい。なお、上記貫通孔5の開口面積とは、貫通孔5の表側開口端の面積をいう。
【0032】
又、任意の貫通孔5とこの貫通孔5に最も近い貫通孔5との距離(ピッチ)は、小さいと、熱成形性芯材Aの機械的強度が低下することがあり、又、大きいと、熱成形性芯材Aの吸音性が低下することがあるので、1〜15mmが好ましく、1〜10mmがより好ましい。
【0033】
なお、貫通孔5、5間の距離とは、貫通孔5が円形状である場合にはその中心間の距離から各々の貫通孔5の半径分を減じた距離をいい、貫通孔5が非円形状である場合には、この貫通孔5を完全に包囲し得る最も小さな真円の中心間の距離から各々の真円の半径を減じた距離をいう。
【0034】
更に、ホットメルト樹脂層3の表面積に対する貫通孔5の開口合計面積の割合は、小さいと、熱成形性芯材Aの吸音性が低下することがあり、又、大きいと、ホットメルト樹脂層3と表面材6との接着性が低下することがあるので、1〜80%が好ましく、3〜30%がより好ましい。
【0035】
又、上記多孔質材1の裏面には、この多孔質材1の耐熱性繊維同士を結着している熱可塑性樹脂の融点よりも高い融点を有する熱可塑性樹脂からなる裏側合成樹脂層4が積層一体化されており、この裏側合成樹脂層4には表側合成樹脂層2とは異なり貫通孔は形成されておらず、裏側合成樹脂層4によって熱成形性芯材Aに非通気性を付与している。
【0036】
この裏側合成樹脂層4を構成する熱可塑性樹脂は、上記表側合成樹脂層2を構成する熱可塑性樹脂と同様の熱可塑性樹脂が用いられ、表側合成樹脂層2を構成する熱可塑性樹脂と同一のものであっても異種類のものであってもよく、厚さも表側合成樹脂層2と同一であっても異なっていてもよい。
【0037】
上記裏側合成樹脂層4の厚みは、薄いと、熱成形性芯材Aの成形時に多孔質材1を構成する耐熱性繊維が裏側合成樹脂層4を突き破ってしまい、熱成形性芯材Aの非通気性が損なわれることがあり、又、厚いと、熱成形性芯材Aの軽量性が低下することがあるので、3〜25μmが好ましい。
【0038】
又、上記裏側合成樹脂層4上にも、上記表側合成樹脂層2と同様に上記ホットメルト樹脂層が積層一体化されていてもよい。
【0039】
更に、上記多孔質材1と上記表裏合成樹脂層2、4との間及び上記表側合成樹脂層2と上記ホットメルト樹脂層3との間に接着層を介在させることによって両者をより強固に積層一体化させてもよい。そして、この接着層を構成する接着性樹脂としては、特に限定されず、酸変性ポリエチレン、共重合ポリアミド、共重合ポリエステル等が挙げられる。
【0040】
次に、上記熱成形性芯材Aの製造方法について説明する。この熱可塑性芯材Aの製造方法としては、特に限定されず、例えば、イ)熱可塑性樹脂シート(1a)、この熱可塑性樹脂シート(1a)を構成する熱可塑性樹脂の融点よりも高い融点を有する熱可塑性樹脂シート(2a)及びホットメルト樹脂シートをこの順で積層一体化してなる表側積層シートを一枚作製し、この表側積層シートに両面間に亘って貫通する貫通孔を貫設する一方、上記熱可塑性樹脂シート(1a)と同様の熱可塑性樹脂からなる熱可塑性樹脂シート(1b)上にこの熱可塑性樹脂シート(1b)を構成する熱可塑性樹脂の融点よりも高い融点を有する熱可塑性樹脂シート(2b)を積層一体化させてなる裏側積層シートを一枚作製する。一方、耐熱性繊維或いは耐熱性繊維と熱可塑性樹脂繊維との混合繊維を絡合させてなる不織マットを別途用意し、この不織マットの表面に表側積層シートをそのホットメルト樹脂シートが外側となるように積層すると共に、他面に裏側積層シートをその熱可塑性樹脂シート(2b)が外側となるように積層して積層体を製造する。しかる後、この積層体を、上記熱可塑性樹脂シート(1a)(1b)及びホットメルト樹脂シート更に熱可塑性樹脂繊維がある場合には熱可塑性樹脂繊維が溶融し且つ熱可塑性樹脂シート(2a)(2b)が溶融しない温度に加熱した上で、上記積層体を厚み方向に圧縮し、溶融状態の熱可塑性樹脂シート(1a)(1b)のみを不織マット内に含浸させ、次に、積層体を厚み方向に拡開させ、耐熱性繊維同士を熱可塑性樹脂で結着させて熱成形性芯材Aを製造する製造方法。ロ)耐熱性繊維或いは耐熱性繊維と熱可塑性樹脂繊維との混合繊維を絡合させてなる不織マットを用意し、この不織マットの両面に熱可塑性樹脂シート(1a)(1b)を積層させる。一方、この熱可塑性樹脂シート(1a)を構成する熱可塑性樹脂の融点よりも高い融点を有する熱可塑性樹脂シート(2a)上にホットメルト樹脂シートを積層一体化してなる積層シートを1枚作製し、この積層シートに両面間に亘って貫通する貫通孔を貫設する。そして、上記不織マットの熱可塑性樹脂シート(1a)上に積層シートを、熱可塑性樹脂シート(1b)上にこの熱可塑性樹脂シート(1b)を構成する熱可塑性樹脂の融点よりも高い融点を有する熱可塑性樹脂シート(2b)を積層して積層体を製造する。しかる後、この積層体を、上記熱可塑性樹脂シート(1a)(1b)及びホットメルト樹脂シート更に熱可塑性樹脂繊維がある場合には熱可塑性樹脂繊維が溶融し且つ熱可塑性樹脂シート(2a)(2b)が溶融しない温度に加熱した上で、上記積層体を厚み方向に圧縮し、溶融状態の熱可塑性樹脂シート(1a)(1b)のみを不織マット内に含浸させ、次に、積層体を厚み方向に拡開させ、耐熱性繊維同士を熱可塑性樹脂で結着させて熱成形性芯材Aを製造する製造方法等が挙げられる。ここで、上記熱可塑性樹脂シート(2a)が熱成形性芯材Aの表側合成樹脂層を、上記熱可塑性樹脂シート(2b)が熱成形性芯材Aの裏側合成樹脂層を、上記熱可塑性樹脂シート(1a)(1b)を構成する熱可塑性樹脂及び溶融した熱可塑性樹脂繊維が多孔質材1中の熱可塑性樹脂を構成する。
【0041】
なお、上記積層シートに貫通孔を貫設する方法としては、特に限定されず、例えば、積層シートにパンチによって貫通孔を貫設する方法、積層シートに部分的に熱を加えることによって積層シートの所定部分を溶融開口させて貫通孔を貫設する方法等が挙げられ、任意の大きさの貫通孔を精度良く貫設することができることから、積層シートにパンチによって貫通孔を貫設する方法が好ましい。
【0042】
又、上記不織マットの両面に積層させる熱可塑性樹脂シート(1a)(1b)の厚みは、薄いと、不織マット内に熱可塑性樹脂シート(1a)(1b)が含浸しても耐熱性繊維相互の結着力が不足し、得られる熱成形性芯材Aの機械的強度が低下することがあり、又、厚いと、得られる熱成形性芯材Aの軽量性が低下することがあるので、30〜700μmが好ましく、50〜300μmがより好ましい。
【0043】
更に、上記製造方法において、不織マットの両面に積層させた熱可塑性樹脂シート(1a)(1b)は不織マット内に含浸して不織マットを構成する耐熱性繊維を相互に結着するが、熱可塑性樹脂シート(1a)(1b)の全てを不織マット内に含浸させる必要はなく、得られる熱成形性芯材Aの多孔質材1の表面に、貫通孔5が連結、連通している状態であればよく、熱可塑性樹脂シート(1a)(1b)の一部が得られる熱成形性芯材Aの多孔質材1表面に残存していてもよい。
【0044】
又、上述の熱可塑性樹脂シート(1a)、熱可塑性樹脂シート(2a)及びホットメルト樹脂シートからなる積層シート、熱可塑性樹脂シート(1b)及び熱可塑性樹脂(2b)からなる積層シートの製造方法としては、特には限定されず、従来公知の任意の方法が採用され、例えば、共押出法、押出ラミネート法、ドライラミネート法等が挙げられ、各層を構成する樹脂をダイ内に同時押出した後、Tダイ等から吐出させる共押出法が経済的で好ましい。
【0045】
更に、不織マットの両面に熱可塑性樹脂シート(1a)(1b)を積層する方法としては、特に限定されず、従来公知の任意の方法が採用され、例えば、不織マットの両面に熱可塑性樹脂シートを押出ラミネートする方法、熱可塑性樹脂シートを不織マットの両面に熱ラミネートする方法等が挙げられる。
【0046】
又、上記積層体の厚み方向への圧縮条件は、特に限定されず、圧縮圧力が0.2〜1MPaであり、圧縮時間が2〜10秒であるのが好ましい。
【0047】
そして、上記積層体を厚み方向に拡開させる方法としては、例えば、イ)ポリテトラフルオロエチレンで被覆された鋼板やガラスクロスシートからなる一対の挟着体間に積層体を挟み、この挟着体を通じて積層体の両面を真空吸引して、積層体の両面を一対の挟着体の対向内面の夫々に吸着させた状態で挟着体間の距離を拡げることによって積層体を厚み方向に拡開させる方法、ロ)耐熱性繊維の弾性回復力によって積層体の厚みを自然に拡開させる方法等が挙げられる。
【0048】
ここで、上記イ)の方法を採用する場合には、積層体が挟着体の内面に安定的に吸着した状態とするために、不織マットの裏側に積層させた熱可塑性樹脂シート(2b)上に積層体の加熱時には溶融して粘性を発現するが、冷却すると粘性を発現しない粘着樹脂層を積層させておけば、積層体を挟着体の内面に粘着樹脂層を介して安定的に吸着させておくことができる。
【0049】
上記の如くして得られた熱成形性芯材Aは、図2に示したように、そのホットメルト樹脂層3上に表面材6が積層一体化されると共に所望形状に成形されて自動車用内装材Bとして好適に用いることができる。
【0050】
上記表面材6としては、特に限定されず、例えば、無機繊維、天然繊維、合成繊維又はこれらを混合した混合繊維を絡合させてなる不織布が挙げられ、合成繊維を絡合させてなる不織布が好ましい。上記天然繊維としては、例えば、綿、羊毛、麻等が挙げられ、上記合成繊維としては、例えば、ポリエステル繊維、ポリプロピレン繊維、ポリアミド繊維、ポリウレタン繊維等が挙げられ、ポリエステル繊維、ポリプロピレン繊維、又は、ポリエステル繊維とポリプロピレン繊維との混合繊維が好ましい。
【0051】
そして、上記表面材6として不織布を使用することによって、熱成形性芯材Aのホットメルト樹脂層3の一部を表面材6内部に進入させてアンカー効果により表面材6とホットメルト樹脂層3とを強固に接着一体化することができ、よって、表面材6をホットメルト樹脂層3上に確実に積層させた状態で熱成形性芯材Aを複雑な形状に確実に成形することができる。
【0052】
更に、上記表面材6の目付は、大きいと、熱成形性芯材Aの軽量性が低下することがあるので、190g/m2 以下が好ましく、185g/m2 以下がより好ましい。
【0053】
【実施例】
(実施例1)
ガラス繊維(長さ:40〜75mm、直径:9μm)と、ポリプロピレン繊維(長さ:64mm、直径:35μm、融点:162℃)とを重量比が3:2となるように混合し、カードマシンに供給してマット状物を製造し、このマット状物にニードルパンチを1cm2 当たり20箇所に施して不織マット(目付:約550g/m2 、厚さ:約7.5mm)を得た。
【0054】
一方、少量の無水マレイン酸変性ポリエチレンを含有する高密度ポリエチレン(融点:135℃、MFR:7)と、6−ナイロン(融点:230℃)と、直鎖状低密度ポリエチレン(融点:125℃、MFR:10)とをこの順序で共押出して積層シートを2枚製造した。なお、積層シートにおいて、少量の無水マレイン酸変性ポリエチレンを含有する高密度ポリエチレン層の厚みは120μm、6−ナイロン層の厚みは10μm、直鎖状低密度ポリエチレン層の厚みは60μmであった。
【0055】
そして、上記積層シートのうちの一枚の積層シートの全面に、開口面積が1.8mm2 の真円形の貫通孔を多数、前後左右に隣接する貫通孔同士のピッチが5mmの間隔で前後左右方向に格子状に積層シートの両面間に亘って貫通した状態に形成した。
【0056】
次に、上記不織マットの表面に貫通孔を貫設した積層シートをその高密度ポリエチレン層を内側にして積層すると共に、裏面に貫通孔を貫設していない積層シートをその高密度ポリエチレン層を内側にして積層して積層体を形成した。なお、積層体は、その目付が約890g/m2 で且つ厚さが約8mmであった。
【0057】
そして、表面がポリテトラフルオロエチレンで被覆された一対のガラスクロスシート間に上記積層体を挟着した上で約200℃に保持された熱風式加熱炉に供給して5分間加熱した。
【0058】
しかる後、上記積層体をガラスクロスシート間に挟着させた状態のまま、一対の平板プレス間に挟み、上記積層体をその厚みが1mmとなるまで圧縮し、その状態で5秒間放置した後、ガラスクロスシート間に挟着させたまま積層体を平板プレスから取り外し、ガラスクロスシートを通じて積層体の両面を真空吸引して積層体の両面がガラスクロスシートの対向内面に密着した状態を維持しつつ、積層体をその厚みが5.5mmとなるまで厚み方向に0.5mm/秒の速度で拡開し、続いて、この厚みを維持したまま5分間空冷した後にガラスクロスシートを取り除いて熱成形性芯材を得た。
【0059】
得られた熱成形性芯材は、ガラス繊維が絡合し且つこのガラス繊維同士が少量の無水マレイン酸変性ポリエチレンを含有する高密度ポリエチレン及び全てのポリプロピレン繊維が溶融して得られたポリプロピレンによって結着された全体的に連続した空隙を有する多孔質材の表裏面の夫々に、6−ナイロンからなる表裏合成樹脂層と、直鎖状低密度ポリエチレンからなるホットメルト樹脂層とが表裏合成樹脂層を内側にして積層一体化されてなり、表側のホットメルト樹脂層の表面から表側合成樹脂層の裏面、即ち、多孔質材の表面に達する多数の貫通孔が全面的に且つ均一に形成されていた。なお、上記熱成形性芯材は、その厚みが5.0mm、目付が890g/m2 、貫通孔の開口面積が1.8mm2 、ホットメルト樹脂層の表面積に対する貫通孔の開口合計面積の割合は10%、多孔質材の空隙率は93%、多孔質材の見掛け密度は0.12g/cm3 、表側合成樹脂層の厚みは10μm、裏側合成樹脂層の厚みは10μm、ホットメルト樹脂層の厚みは、60μmであった。
【0060】
(実施例2)
少量の無水マレイン酸変性ポリエチレンを含有する高密度ポリエチレン(融点:135℃、MFR:7)と、6−ナイロン(融点:230℃)と、共重合ポリアミド(融点:80〜115℃)とをこの順序で共押出して積層シートを2枚製造したこと以外は実施例1と同様にして熱成形性芯材を得た。
【0061】
なお、上記積層シートにおいて、少量の無水マレイン酸変性ポリエチレンを含有する高密度ポリエチレン層の厚みは120μm、6−ナイロン層の厚みは20μm、共重合ポリアミド層の厚みは60μmであった。
【0062】
得られた熱成形性芯材は、ガラス繊維が絡合し且つこのガラス繊維同士が少量の無水マレイン酸変性ポリエチレンを含有する高密度ポリエチレン及び全てのポリプロピレン繊維が溶融して得られたポリプロピレンによって結着された全体的に空隙を有する多孔質材の表裏面の夫々に、6−ナイロンからなる表裏合成樹脂層と、共重合ポリアミドからなるホットメルト樹脂層とが表裏合成樹脂層を内側にして積層一体化されてなり、表側のホットメルト樹脂層の表面から表側合成樹脂層の裏面、即ち、多孔質材の表面に達する多数の貫通孔が全面的に且つ均一に形成されていた。なお、上記熱成形性芯材は、その厚みが5.0mm、目付が890g/m2 、貫通孔の開口面積が1.8mm2 、ホットメルト樹脂層の表面積に対する貫通孔の開口合計面積の割合は10%、多孔質材の空隙率は93%、多孔質材の見掛け密度は0.12g/cm3 、表側合成樹脂層の厚みは20μm、裏側合成樹脂層の厚みは20μm、ホットメルト樹脂層の厚みは60μmであった。
【0063】
(比較例1)
積層シートのうちの一枚の積層シートの全面に、開口面積が12mm2 の真円形の貫通孔を多数、前後左右方向に7mm間隔で格子状に積層シートの両面間に亘って貫通した状態に貫設したこと以外は実施例1と同様にして熱成形性芯材を製造した。
【0064】
得られた熱成形性芯材は、ガラス繊維が絡合し且つこのガラス繊維同士が少量の無水マレイン酸変性ポリエチレンを含有する高密度ポリエチレン及びポリプロピレン繊維が溶融して得られたポリプロピレンによって結着された全体的に空隙を有する多孔質材の表裏面の夫々に、6−ナイロンからなる表裏合成樹脂層と、直鎖状低密度ポリエチレンからなるホットメルト樹脂層とが表裏合成樹脂層を内側にして積層一体化されてなり、表側のホットメルト樹脂層の表面から表側合成樹脂層の裏面、即ち、多孔質材の表面に達する多数の貫通孔が全面的に且つ均一に形成されていた。なお、上記熱成形性芯材は、その厚みが5.0mm、目付が860g/m2 、貫通孔の開口面積が12mm2 、ホットメルト樹脂層の表面積に対する貫通孔の開口合計面積の割合は26%、多孔質材の空隙率は93%、多孔質材の見掛け密度は0.12g/cm3 、表側合成樹脂層の厚みは10μm、裏側合成樹脂層の厚みは10μm、ホットメルト樹脂層の厚みは60μmであった。
【0065】
(比較例2)
積層シートのうちの一枚の積層シートの全面に、該積層シートの表面に100℃に加熱された針を押圧することによって、開口面積が0.13mm2 の真円形の貫通孔を多数、前後左右方向に7mm間隔で格子状に積層シートの両面間に亘って貫通した状態に貫設したこと以外は実施例1と同様にして熱成形性芯材を製造した。
【0066】
得られた熱成形性芯材は、ガラス繊維が絡合し且つこのガラス繊維同士が少量の無水マレイン酸変性ポリエチレンを含有する高密度ポリエチレン及びポリプロピレン繊維が溶融して得られたポリプロピレンによって結着された全体的に空隙を有する多孔質材の表裏面の夫々に、6−ナイロンからなる表裏合成樹脂層と、直鎖状低密度ポリエチレンからなるホットメルト樹脂層とが表裏合成樹脂層を内側にして積層一体化されて形成されており、積層シートに形成した貫通孔は、直鎖状低密度ポリエチレンによって埋まっていた。なお、上記熱成形性芯材は、その厚みが5.0mm、目付が910g/m2 、多孔質材の空隙率は93%、多孔質材の見掛け密度は0.12g/cm3 、表側合成樹脂層の厚みは10μm、裏側合成樹脂層の厚みは10μm、ホットメルト樹脂層の厚みは60μmであった。
【0067】
(自動車用内装材の作製)
実施例1、2及び比較例1、2の熱成形性芯材における表側のホットメルト樹脂層上に、ポリエステル繊維を絡合させてなる目付185g/m2 の不織布からなる表面材を積層し、熱成形性芯材と表面材とをそれらの外周縁部をホッチキスによって一体化した後、熱成形性芯材をその裏面が180℃に、表面材の表面温度が約190℃となるように加熱した上でプレス成形して、熱成形性芯材の表側のホットメルト樹脂層上に表面材が積層一体化してなる自動車用内装材を作製した。
【0068】
又、比較例3として、比較例1の熱成形性芯材の表側のホットメルト樹脂層上に、ポリエステル繊維を絡合させてなる目付300g/m2 の不織布からなる表面材を積層し、熱成形性芯材と表面材とをそれらの外周縁部をホッチキスによって一体化した後、熱成形性芯材をその裏面が180℃に、表面材の表面温度が約190℃となるように加熱した上でプレス成形して、熱成形性芯材の表側のホットメルト樹脂層上に表面材が積層一体化してなる自動車用内装材を作製した。
【0069】
上記自動車用内装材の吸音性、非通気性、外観及び表面材剥がれを以下の方法で測定し、その結果を表1に示した。
【0070】
(自動車内装材の吸音性)
自動車用内装材からその厚みが4mmである部分を切り出し、表面材側からの吸音性をJIS A1405に準拠して2kHz及び4kHzでの吸音性を測定した。
【0071】
(非通気性)
自動車用内装材における任意部分の透気度(cm3 /cm2 ・秒)をデンソメータ(テスター産業社製)により、圧力0.0015MPaで測定した。
【0072】
(外観)
自動車用内装材の表面材表面に貫通孔の凹凸に起因した凹凸が生じているか否かを目視にて観察し、以下の基準により判断した。
○・・・表面材の表面に凹凸は生じていなかった。
×・・・表面材の表面に凹凸が生じていた。
【0073】
(表面材剥がれ)
自動車用内装材の外周縁部にウォータージェットを噴射した後に、表面材が表側のホットメルト樹脂層から剥離しているか否かを目視にて観察した。
○・・・表面材はホットメルト樹脂層から剥離していなかった。
×・・・表面材がホットメルト樹脂層から剥離していた。
【0074】
【表1】

Figure 2004122545
【0075】
【発明の効果】
本発明の熱成形性芯材は、ホットメルト樹脂層の表面から表側合成樹脂層の裏面に達する多数の貫通孔が形成されており、この貫通孔の開口面積を0.2以上で且つ3mm2 未満に限定していることから、ホットメルト樹脂層の表面は平坦性に優れており、ホットメルト樹脂層上に積層一体化される表面材の目付が例えば、190g/m2 以下といった小さいものであっても表面材の表面に凹凸は生じず、熱成形性芯材のホットメルト樹脂層上に表面材を美麗な状態に積層一体化することができる。
【0076】
しかも、上記貫通孔は、ホットメルト樹脂層の表面から表側合成樹脂層の裏面に達した状態に貫設されており、ホットメルト樹脂層側からの音は、貫通孔が貫設されて振動し易くなったホットメルト樹脂層及び表側合成樹脂層が振動することにより吸収されると共に貫通孔を通じて円滑に多孔質材中に吸収され、よって、本発明の熱成形性芯材は優れた吸音性を有する。
【0077】
更に、表側合成樹脂層は、多孔質材中の熱可塑性樹脂の融点よりも高い融点を有する熱可塑性樹脂から構成されていることから、熱成形性芯材の成形時においても溶融することはなく、よって、表側合成樹脂層上のホットメルト樹脂層は成形時においても多孔質材内に吸収されることなく表側合成樹脂層上に確実に存在する。
【0078】
従って、ホットメルト樹脂層上に表面材を積層一体化させた場合にあっても、表面材とホットメルト樹脂層との一体化した状態を確実に維持しつつ、熱成形性芯材を所望形状に成形することができる。
【0079】
更に、熱成形性芯材の多孔質材の裏面には、この多孔質材中の熱可塑性樹脂の融点よりも高い融点を有する熱可塑性樹脂からなる裏側合成樹脂層が積層一体化されていることから、熱成形性芯材は非通気性に優れており、熱成形性芯材の表裏面方向に空気が流通するのを確実に遮断し、熱成形性芯材中にその厚み方向に空気が流通し、この空気中に含まれる塵等によってホットメルト樹脂層上に積層一体化した表面材が汚染されるのを防止し、或いは、熱成形性芯材の裏面側から表面側に伝達する音を減衰させることができて遮音性にも優れている。
【0080】
又、ホットメルト樹脂層の表面積に対する貫通孔の開口合計面積の割合が1〜80%である場合や、任意の貫通孔とこの貫通孔に最も近い貫通孔との距離が1〜15mmである場合には、熱成形性芯材は、優れた吸音性及び軽量性を有する。
【図面の簡単な説明】
【図1】本発明の熱成形性芯材の断面模式図である。
【図2】本発明の自動車用内装材の断面模式図である。
【符号の説明】
1 多孔質材
2 表側合成樹脂層
3 ホットメルト樹脂層
4 裏側合成樹脂層
5 貫通孔
6 表面材
A 熱成形性芯材
B 自動車用内装材[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a thermoformable core material having excellent sound absorbing properties and thermoformability, and an automotive interior material using the thermoformable core material and having a beautiful appearance.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, automotive interior materials have been required to have various performances such as lightness, rigidity, heat resistance, and air permeability. As such a core material of an interior material for automobiles, Patent Document 1 discloses that at least one outer side of a mat-like material formed mainly of inorganic fibers and thermoplastic resin fibers has a melting point higher than that of the thermoplastic resin fibers. A thermoformable core material in which a high heat-resistant rigid resin layer and a heat-active resin layer are laminated in this order has been proposed. This thermoformable core material is formed into a desired shape after a surface material is laminated and integrated on one surface thereof, and is used as an interior material for automobiles.
[0003]
However, when the surface material is laminated and integrated on the surface of the thermoformable core material on which the thermoactive resin layer is not laminated, an adhesive layer or a hot melt resin layer is provided between the surface material and the thermoformable core material. Although it is necessary to interpose, in the process of molding the thermoformable core material, the adhesive layer or the hot melt resin layer interposed between the surface material and the thermoformable core material is impregnated into the mat-like material, There has been a problem that the surface material and the thermoformable core material are insufficiently integrated due to being absorbed.
[0004]
In addition, when a surface material is laminated and integrated on the surface of the thermoformable core material on which the thermoactive resin layer is laminated, when sound is generated on the surface material side which is the indoor side, the sound enters and is absorbed by the mat-like material. However, there is a problem that the heat absorption and rigidity of the heat-resistant rigid resin layer impair the sound absorption.
[0005]
[Patent Document 1]
Japanese Patent Publication No. 2872896 (Claims)
[0006]
[Problems to be solved by the invention]
The present invention provides a thermoformable core material excellent in lightness, rigidity, heat resistance, thermoformability, non-breathability and sound absorption, and an interior material for automobiles using the same.
[0007]
[Means for Solving the Problems]
As shown in FIG. 1, the thermoformable core material A of the present invention has a structure in which heat-resistant fibers are entangled and the heat-resistant fibers are bound to each other by a thermoplastic resin. A front synthetic resin layer 2 made of a thermoplastic resin having a melting point higher than the melting point of the thermoplastic resin in the porous material, and a hot melt resin layer 3 are laminated and integrated with the front synthetic resin layer 2 inside. A back synthetic resin layer 4 made of a thermoplastic resin having a melting point higher than the melting point of the thermoplastic resin in the porous material 1 is laminated and integrated on the back surface. A thermoformable core material in which a large number of through holes 5 reaching the back surface of the synthetic resin layer 2 are formed, and the opening area of the through holes 5 is 0.2 mm 2 Above and 3mm 2 Less than.
[0008]
The porous material 1 used for the thermoformable core material A of the present invention is formed by entanglement of heat-resistant fibers and binding of the heat-resistant fibers with each other by a thermoplastic resin. Have.
[0009]
Examples of such a porous material 1 include: a) heat-resistant fiber or a mixture of heat-resistant fiber and thermoplastic resin fiber entangled with each other and bonded to each other with a thermoplastic resin; A) Fibers in which mixed fibers of heat-resistant fibers and thermoplastic resin fibers are entangled and some or all of the thermoplastic resin fibers are melted to bind the fibers together.
[0010]
If the porosity of the porous material 1 is small, the sound absorption and lightness of the obtained thermoformable core material A decrease, and if the porosity is large, the mechanical strength of the obtained thermoformable core material A is reduced. Is reduced, so 50 to 95% is preferable.
[0011]
The heat-resistant fiber is not particularly limited as long as it is not melted by the heat applied in the production or the molding process of the thermoformable core material A. Examples of the heat-resistant fiber include glass fiber, carbon fiber, rock wool, and ceramic fiber. Inorganic fibers; natural fibers such as jute fibers and kenaf fibers may be mentioned, and these may be used alone or in combination of two or more.
[0012]
The heat-resistant fiber may be appropriately selected in accordance with the physical properties required for the thermoformable core material A. Specifically, the heat-resistant fiber may have a mechanical strength such as a bending strength and a thickness recovery property of the thermoformable core material A. When the strength is important, it is preferable to use inorganic fibers, and when the thermal recyclability of the thermoformable core material A is important, it is preferable to use natural fibers.
[0013]
If the length of the inorganic fiber is too short or too long, the thermoformability of the obtained thermoformable core material A may be deteriorated, so that the length is preferably 5 to 250 mm, and the length of 50 to 150 mm is preferable. It is more preferable that the inorganic fibers are contained in the entire fibers constituting the porous material 1 in an amount of 70% by weight or more.
[0014]
In addition, if the diameter of the inorganic fiber is small, the mechanical strength such as bending strength and thickness recovery of the obtained thermoformable core material A may decrease. 5 to 25 μm is preferable, and 7 to 15 μm is more preferable, because the lightness of the material A may decrease.
[0015]
Further, the length of the natural fiber is too short or too long, the bending strength of the resulting thermoformable core material A, since mechanical strength such as thickness recovery is reduced, preferably 3 to 200 mm, 5 to 150 mm is more preferable. The diameter of the natural fiber is generally 200 μm or less, preferably 10 to 150 μm.
[0016]
Specific examples of the thermoplastic resin fibers include fibers made of polyethylene, polypropylene, polystyrene, and the like. Those capable of binding each other are preferable.
[0017]
The length and thickness of the thermoplastic resin fibers are preferably adjusted to such an extent that they are uniformly and easily entangled with the heat-resistant fibers. Specifically, the length is preferably from 5 to 200 mm. Preferably, the diameter is 20 to 100 mm, more preferably the diameter is 5 to 70 μm, and the diameter is more preferably 15 to 40 μm.
[0018]
Furthermore, the thermoplastic resin for binding the heat-resistant fibers to each other is not particularly limited as long as the heat-resistant fibers can be bound to each other. For example, polyethylene, polypropylene, polystyrene, and ethylene-vinyl acetate copolymer , Saturated polyesters, and modified products thereof.
[0019]
In addition, the weight ratio (heat-resistant fiber: thermoplastic resin) of the heat-resistant fiber and the thermoplastic resin (including the melted thermoplastic resin fiber) in the porous material 1 is such that when the heat-resistant fiber is small, the heat obtained is small. The heat resistance of the moldable core material A may be reduced, and when the heat-resistant fiber is large, the binding force between the heat-resistant fibers is reduced, and the rigidity of the obtained thermoformable core material A may be reduced. Therefore, 5: 1 to 1: 5 is preferable.
[0020]
Furthermore, if the apparent density of the porous material 1 is small, the mechanical strength such as the bending strength of the obtained thermoformable core material A may decrease. 0.01-0.2 g / cm 3 Is preferred.
[0021]
On the surface of the porous material, a front-side synthetic resin layer 2 made of a thermoplastic resin having a melting point higher than the melting point of the thermoplastic resin in the porous material 1 and a hot-melt resin layer 3 are formed. They are laminated and integrated with the resin layer 2 inside (porous material 1 side). In the present invention, the melting point of the thermoplastic resin refers to a value measured in accordance with JIS K0064.
[0022]
As described above, the thermoplastic resin constituting the front side synthetic resin layer 2 is limited to those having a melting point higher than the melting point of the thermoplastic resin binding the heat resistant fibers of the porous material 1 to each other, It is preferably 30 ° C. or higher, more preferably 50 ° C. or higher, than the melting point of the thermoplastic resin binding the heat resistant fibers of the porous material 1 to each other.
[0023]
Examples of the thermoplastic resin constituting such a front synthetic resin layer 2 include 6-nylon, polybutylene terephthalate, polyethylene terephthalate, polycarbonate, polyamide, and modified products thereof.
[0024]
When the thickness of the front-side synthetic resin layer 2 is small, the heat-resistant fibers in the porous material 1 easily break through the front-side synthetic resin layer 2 when the thermoforming core material A is thermoformed. Since the lightness of the thermoformable core material A is reduced, the thickness is preferably 3 to 25 μm.
[0025]
The hot melt resin constituting the hot melt resin layer 3 preferably has a melting point lower than that of the thermoplastic resin constituting the front synthetic resin layer 2, and constitutes the front synthetic resin layer 2. Those having a melting point of at least 20 ° C. lower than the melting point of the thermoplastic resin are more preferable, and those having a melting point lower than the melting point of the thermoplastic resin binding the heat-resistant fibers of the porous material 1 are particularly preferable.
[0026]
Thereby, the hot melt resin layer 3 can be melted without melting the front side synthetic resin layer 2, that is, the impregnation of the porous material 1 with the melted hot melt resin layer 3 is performed in a non-molten state. The hot-melt resin layer 3 is reliably present on the front-side synthetic resin layer 2 by being reliably blocked by the front-side synthetic resin layer 2, and a surface material 6 described later is formed on the hot-melt resin layer 3 as shown in FIG. It can be firmly laminated and integrated.
[0027]
Examples of such a hot melt resin include linear low-density polyethylene, polypropylene, ethylene-vinyl acetate copolymer, saturated polyester, modified polyethylene, and copolymerized polyamide.
[0028]
Further, when the melt flow rate (hereinafter, referred to as “MFR”) of the hot melt resin is small, the anchor effect between the hot melt resin and the surface material 6 may be reduced, and the adhesiveness may be reduced. When it is large, when the surface material 6 is a non-woven fabric, the hot melt resin is impregnated into the surface material 6 and the adhesiveness may be reduced, so that 0.5 to 20 is preferable, and 2 to 15 is more preferable. . The MFR of the hot melt resin was measured under the conditions of a temperature of 190 ° C. and a load of 21.2 N according to JIS K7210.
[0029]
When the thickness of the hot melt resin layer 3 is small, the adhesiveness to the surface material 6 may be reduced when the surface material 6 is laminated, and when the thickness is large, the thickness of the thermoformable core material A may be reduced. 20 to 100 μm is preferable because the lightness may decrease.
[0030]
Further, the hot melt resin layer 3 and the front synthetic resin layer 2 have a large number of through-holes extending from the front surface of the hot melt resin layer 3 to the rear surface of the front synthetic resin layer 2 with substantially uniform density over the entire surface. 5 are formed. The shape of the through-hole 5 is not particularly limited, and may be, for example, a perfect circle, an ellipse, a rectangle, a hexagon, or the like, but is preferably a perfect circle, an ellipse, and more preferably a perfect circle.
[0031]
When the size of the through-hole 5 is small, the hot-melt resin fills the through-hole 5 when the thermoformable core material A is thermoformed, and the sound absorbing property of the thermoformable core material A is reduced. If it is large, the sound absorption in the low frequency region is reduced, and furthermore, the adhesion between the surface material 6 in the portion where the through-hole 5 is formed in the hot melt resin layer 3 and the portion other than that. In particular, the surface material is formed of non-woven fabric and the basis weight is 190 g / m 2 In the case of the following, the degree of impregnation of the hot melt resin into the surface material 6 becomes non-uniform in the surface direction of the surface material 6, and the surface material 6 becomes uneven, and the appearance of the surface material 6 is impaired. When the thermoformable core material A is cut while passing through the through-hole 5, the surface material 6 at the portion of the through-hole 5 may float and the appearance of the thermoformable core material A may be deteriorated. 0.2mm 2 Above and 3mm 2 Limited to less than 0.75mm 2 Above and 3mm 2 Less than is preferred. Note that the opening area of the through hole 5 refers to the area of the front opening end of the through hole 5.
[0032]
Further, if the distance (pitch) between an arbitrary through hole 5 and the through hole 5 closest to the through hole 5 is small, the mechanical strength of the thermoformable core material A may be reduced, and if it is large, it may be small. Since the sound absorbing property of the thermoformable core material A may be reduced, it is preferably 1 to 15 mm, more preferably 1 to 10 mm.
[0033]
In addition, the distance between the through holes 5, 5 means a distance obtained by subtracting the radius of each through hole 5 from the distance between the centers when the through hole 5 has a circular shape. In the case of a circular shape, it means a distance obtained by subtracting the radius of each perfect circle from the distance between the centers of the smallest perfect circles that can completely surround this through hole 5.
[0034]
Furthermore, if the ratio of the total area of the openings of the through holes 5 to the surface area of the hot melt resin layer 3 is small, the sound absorbability of the thermoformable core material A may be reduced. 1 to 80% is preferable, and 3 to 30% is more preferable because the adhesiveness between the surface material 6 and the surface material 6 may decrease.
[0035]
On the back surface of the porous material 1, a back synthetic resin layer 4 made of a thermoplastic resin having a melting point higher than the melting point of the thermoplastic resin binding the heat resistant fibers of the porous material 1 is provided. Unlike the front synthetic resin layer 2, the through hole is not formed in the back synthetic resin layer 4, and the back synthetic resin layer 4 imparts non-breathability to the thermoformable core material A. are doing.
[0036]
As the thermoplastic resin forming the back side synthetic resin layer 4, the same thermoplastic resin as the thermoplastic resin forming the front side synthetic resin layer 2 is used, and is the same as the thermoplastic resin forming the front side synthetic resin layer 2. Or different types, and the thickness may be the same as or different from that of the front synthetic resin layer 2.
[0037]
If the thickness of the back-side synthetic resin layer 4 is small, the heat-resistant fibers constituting the porous material 1 will break through the back-side synthetic resin layer 4 when the thermoformable core material A is formed. Non-breathability may be impaired, and if it is thick, the lightness of the thermoformable core material A may be reduced.
[0038]
Also, the hot melt resin layer may be laminated and integrated on the back side synthetic resin layer 4 similarly to the front side synthetic resin layer 2.
[0039]
Furthermore, by interposing an adhesive layer between the porous material 1 and the front and back synthetic resin layers 2 and 4 and between the front and back synthetic resin layer 2 and the hot melt resin layer 3, the two layers are more firmly laminated. They may be integrated. The adhesive resin constituting the adhesive layer is not particularly limited, and examples thereof include an acid-modified polyethylene, a copolyamide, and a copolyester.
[0040]
Next, a method for producing the thermoformable core material A will be described. The method for producing the thermoplastic core material A is not particularly limited. For example, a) a thermoplastic resin sheet (1a) having a melting point higher than the melting point of the thermoplastic resin constituting the thermoplastic resin sheet (1a); A single front side laminated sheet is prepared by laminating and integrating the thermoplastic resin sheet (2a) and the hot melt resin sheet in this order, and a through hole penetrating between both sides of the front side laminated sheet is formed. A thermoplastic resin having a higher melting point than the thermoplastic resin constituting the thermoplastic resin sheet (1b) on the thermoplastic resin sheet (1b) composed of the same thermoplastic resin as the thermoplastic resin sheet (1a). One sheet of the back side laminated sheet is formed by laminating and integrating the resin sheet (2b). On the other hand, a non-woven mat in which heat-resistant fibers or a mixed fiber of heat-resistant fibers and thermoplastic resin fibers are entangled is separately prepared, and the front-side laminated sheet is placed on the surface of this non-woven mat with the hot-melt resin sheet facing outside. , And a back-side laminated sheet is laminated on the other surface such that the thermoplastic resin sheet (2b) is on the outside, thereby producing a laminate. Thereafter, the laminate is melted with the thermoplastic resin sheets (1a) and (1b), the hot melt resin sheet, and the thermoplastic resin fiber (if any), and the thermoplastic resin sheet (2a) ( After heating to a temperature at which 2b) does not melt, the laminate is compressed in the thickness direction to impregnate only the molten thermoplastic resin sheets (1a) and (1b) into the nonwoven mat. A method of manufacturing a thermoformable core material A by expanding heat-resistant fibers in a thickness direction and binding heat-resistant fibers to each other with a thermoplastic resin. B) A nonwoven mat prepared by entanglement of heat-resistant fiber or a mixed fiber of heat-resistant fiber and thermoplastic resin fiber is prepared, and thermoplastic resin sheets (1a) and (1b) are laminated on both surfaces of the nonwoven mat. Let it. On the other hand, one laminated sheet is produced by laminating and integrating a hot melt resin sheet on a thermoplastic resin sheet (2a) having a melting point higher than the melting point of the thermoplastic resin constituting the thermoplastic resin sheet (1a). A through hole is formed in the laminated sheet so as to penetrate between both surfaces. Then, a laminated sheet is formed on the thermoplastic resin sheet (1a) of the nonwoven mat, and a melting point higher than the melting point of the thermoplastic resin constituting the thermoplastic resin sheet (1b) is formed on the thermoplastic resin sheet (1b). The laminated body is manufactured by laminating the thermoplastic resin sheets (2b). Thereafter, the laminate is melted with the thermoplastic resin sheets (1a) and (1b), the hot melt resin sheet, and the thermoplastic resin fiber (if any), and the thermoplastic resin sheet (2a) ( After heating to a temperature at which 2b) does not melt, the laminate is compressed in the thickness direction to impregnate only the molten thermoplastic resin sheets (1a) and (1b) into the nonwoven mat. In the thickness direction, and bonding the heat-resistant fibers with a thermoplastic resin to produce a thermoformable core material A. Here, the thermoplastic resin sheet (2a) corresponds to the front synthetic resin layer of the thermoformable core material A, and the thermoplastic resin sheet (2b) corresponds to the back synthetic resin layer of the thermoformable core material A. The thermoplastic resin and the melted thermoplastic resin fibers constituting the resin sheets (1a) and (1b) constitute the thermoplastic resin in the porous material 1.
[0041]
The method for penetrating through holes in the laminated sheet is not particularly limited. For example, a method of penetrating through holes in a laminated sheet by a punch, or a method of partially applying heat to a laminated sheet to form a laminated sheet. There is a method in which a through hole is penetrated by melting and opening a predetermined portion, and a through hole of an arbitrary size can be precisely penetrated. preferable.
[0042]
When the thickness of the thermoplastic resin sheets (1a) and (1b) laminated on both sides of the nonwoven mat is small, the heat resistance is maintained even if the nonwoven mat is impregnated with the thermoplastic resin sheets (1a) and (1b). The binding strength between the fibers is insufficient, and the mechanical strength of the obtained thermoformable core material A may decrease. Also, when the thickness is thick, the lightness of the obtained thermoformable core material A may decrease. Therefore, it is preferably from 30 to 700 μm, and more preferably from 50 to 300 μm.
[0043]
Further, in the above manufacturing method, the thermoplastic resin sheets (1a) and (1b) laminated on both sides of the nonwoven mat are impregnated in the nonwoven mat to bind the heat-resistant fibers constituting the nonwoven mat to each other. However, it is not necessary to impregnate all of the thermoplastic resin sheets (1a) and (1b) in the nonwoven mat, and the through holes 5 are connected to and communicate with the surface of the porous material 1 of the obtained thermoformable core material A. If it is in a state where the thermoplastic resin sheet (1a) (1b) is partially formed, it may remain on the surface of the porous material 1 of the thermoformable core material A from which a part of the thermoplastic resin sheet (1a) (1b) is obtained.
[0044]
Also, a method for producing a laminated sheet comprising the above-mentioned thermoplastic resin sheet (1a), thermoplastic resin sheet (2a) and hot melt resin sheet, and a laminated sheet comprising thermoplastic resin sheet (1b) and thermoplastic resin (2b). The method is not particularly limited, and any conventionally known method may be employed, for example, a co-extrusion method, an extrusion lamination method, a dry lamination method, and the like. After the resin constituting each layer is co-extruded into a die, And a co-extrusion method of discharging from a T die or the like is economical and preferable.
[0045]
Further, the method of laminating the thermoplastic resin sheets (1a) and (1b) on both sides of the nonwoven mat is not particularly limited, and any conventionally known method is adopted. Examples include a method of extrusion laminating a resin sheet, and a method of thermally laminating a thermoplastic resin sheet on both sides of a nonwoven mat.
[0046]
The conditions for compressing the laminate in the thickness direction are not particularly limited, and the compression pressure is preferably 0.2 to 1 MPa, and the compression time is preferably 2 to 10 seconds.
[0047]
As a method of expanding the laminate in the thickness direction, for example, a) sandwiching the laminate between a pair of sandwiches made of a steel plate or a glass cloth sheet coated with polytetrafluoroethylene, Vacuum suction is applied to both sides of the laminate through the body, and the laminate is expanded in the thickness direction by increasing the distance between the sandwiches while adhering both sides of the laminate to the opposing inner surfaces of the pair of sandwiches. And b) a method of naturally expanding the thickness of the laminate by the elastic recovery force of the heat-resistant fiber.
[0048]
Here, in the case of adopting the above method a), the thermoplastic resin sheet (2b) laminated on the back side of the nonwoven mat is used so that the laminate is stably adsorbed on the inner surface of the sandwich. ) When the laminated body is heated, it melts and develops viscosity, but when cooled, the adhesive resin layer that does not develop viscosity is laminated, so that the laminate is stably placed on the inner surface of the sandwiching body via the adhesive resin layer. Can be adsorbed.
[0049]
As shown in FIG. 2, the thermoforming core material A obtained as described above has a surface material 6 laminated and integrated on the hot melt resin layer 3 and molded into a desired shape. It can be suitably used as the interior material B.
[0050]
The surface material 6 is not particularly limited, and includes, for example, a nonwoven fabric formed by entanglement of inorganic fibers, natural fibers, synthetic fibers or a mixed fiber obtained by mixing these, and a nonwoven fabric formed by entanglement of synthetic fibers is exemplified. preferable. Examples of the natural fibers include cotton, wool, hemp, and the like, and examples of the synthetic fibers include polyester fibers, polypropylene fibers, polyamide fibers, and polyurethane fibers.A polyester fiber, a polypropylene fiber, or A mixed fiber of polyester fiber and polypropylene fiber is preferred.
[0051]
Then, by using a nonwoven fabric as the surface material 6, a part of the hot melt resin layer 3 of the thermoformable core material A enters the inside of the surface material 6, and the surface material 6 and the hot melt resin layer 3 are anchored. Can be firmly bonded and integrated, so that the thermoformable core material A can be reliably formed into a complicated shape in a state where the surface material 6 is securely laminated on the hot melt resin layer 3. .
[0052]
Furthermore, if the basis weight of the surface material 6 is large, the light-weight property of the thermoformable core material A may decrease, so that 190 g / m 2 The following is preferable, and 185 g / m 2 The following is more preferred.
[0053]
【Example】
(Example 1)
Glass fiber (length: 40 to 75 mm, diameter: 9 μm) and polypropylene fiber (length: 64 mm, diameter: 35 μm, melting point: 162 ° C.) are mixed so that the weight ratio becomes 3: 2, and a card machine is used. To produce a mat-like material, and needle-punch 1 cm on the mat-like material. 2 Non-woven mat (weight per unit: approx. 550 g / m) 2 , Thickness: about 7.5 mm).
[0054]
On the other hand, high-density polyethylene (melting point: 135 ° C, MFR: 7) containing a small amount of maleic anhydride-modified polyethylene, 6-nylon (melting point: 230 ° C), and linear low-density polyethylene (melting point: 125 ° C, MFR: 10) in this order to produce two laminated sheets. In the laminated sheet, the thickness of the high-density polyethylene layer containing a small amount of maleic anhydride-modified polyethylene was 120 μm, the thickness of the 6-nylon layer was 10 μm, and the thickness of the linear low-density polyethylene layer was 60 μm.
[0055]
The opening area is 1.8 mm on the entire surface of one of the laminated sheets. 2 A large number of perfect circular through-holes were formed in a state of being penetrated between both sides of the laminated sheet in a grid-like manner in the front-rear and left-right directions at a pitch of 5 mm between adjacent front-rear and left-right through holes.
[0056]
Next, a laminated sheet having through-holes formed on the surface of the nonwoven mat is laminated with its high-density polyethylene layer inside, and a laminated sheet having no through-hole formed on the back surface is laminated with the high-density polyethylene layer. Were laminated to form a laminate. The weight of the laminate was about 890 g / m2. 2 And the thickness was about 8 mm.
[0057]
Then, the laminate was sandwiched between a pair of glass cloth sheets whose surfaces were covered with polytetrafluoroethylene, and then supplied to a hot-air heating furnace maintained at about 200 ° C. and heated for 5 minutes.
[0058]
Thereafter, while the laminate is sandwiched between glass cloth sheets, the laminate is sandwiched between a pair of flat plate presses, the laminate is compressed until its thickness becomes 1 mm, and left in this state for 5 seconds. The laminate is removed from the flat plate press while being sandwiched between the glass cloth sheets, and both sides of the laminate are vacuum-sucked through the glass cloth sheet to maintain a state in which both sides of the laminate are in close contact with the opposing inner surface of the glass cloth sheet. While expanding the laminate at a rate of 0.5 mm / sec in the thickness direction until the thickness becomes 5.5 mm, the laminate is air-cooled for 5 minutes while maintaining this thickness, and then the glass cloth sheet is removed. A moldable core material was obtained.
[0059]
The obtained thermoformable core material is entangled with glass fibers entangled with each other by high-density polyethylene containing a small amount of maleic anhydride-modified polyethylene and polypropylene obtained by melting all polypropylene fibers. A front and back synthetic resin layer made of 6-nylon and a hot-melt resin layer made of linear low-density polyethylene are respectively formed on the front and back surfaces of the porous material having the generally continuous voids attached thereto. The inside is laminated and integrated, and a large number of through holes extending from the surface of the hot-melt resin layer on the front side to the back surface of the synthetic resin layer on the front side, that is, the surface of the porous material are formed entirely and uniformly. Was. The thermoformable core material had a thickness of 5.0 mm and a basis weight of 890 g / m2. 2 , The opening area of the through hole is 1.8 mm 2 The ratio of the total opening area of the through holes to the surface area of the hot melt resin layer is 10%, the porosity of the porous material is 93%, and the apparent density of the porous material is 0.12 g / cm. 3 The thickness of the front synthetic resin layer was 10 μm, the thickness of the back synthetic resin layer was 10 μm, and the thickness of the hot melt resin layer was 60 μm.
[0060]
(Example 2)
High-density polyethylene (melting point: 135 ° C, MFR: 7) containing a small amount of maleic anhydride-modified polyethylene, 6-nylon (melting point: 230 ° C), and copolymerized polyamide (melting point: 80 to 115 ° C) were used. A thermoformable core material was obtained in the same manner as in Example 1 except that two laminated sheets were produced by coextrusion in this order.
[0061]
In the laminated sheet, the thickness of the high-density polyethylene layer containing a small amount of maleic anhydride-modified polyethylene was 120 µm, the thickness of the 6-nylon layer was 20 µm, and the thickness of the copolymerized polyamide layer was 60 µm.
[0062]
The obtained thermoformable core material is entangled with glass fibers entangled with each other by high-density polyethylene containing a small amount of maleic anhydride-modified polyethylene and polypropylene obtained by melting all polypropylene fibers. A front and back synthetic resin layer made of 6-nylon and a hot-melt resin layer made of copolymerized polyamide are laminated on the front and back surfaces of the porous material having an overall void, with the front and back synthetic resin layers inside. A large number of through holes extending from the surface of the hot-melt resin layer on the front side to the back surface of the synthetic resin layer on the front side, that is, the surface of the porous material were formed entirely and uniformly. The thermoformable core material had a thickness of 5.0 mm and a basis weight of 890 g / m2. 2 , The opening area of the through hole is 1.8 mm 2 The ratio of the total opening area of the through holes to the surface area of the hot melt resin layer is 10%, the porosity of the porous material is 93%, and the apparent density of the porous material is 0.12 g / cm. 3 The thickness of the front synthetic resin layer was 20 μm, the thickness of the back synthetic resin layer was 20 μm, and the thickness of the hot melt resin layer was 60 μm.
[0063]
(Comparative Example 1)
The opening area is 12 mm on the entire surface of one of the laminated sheets. 2 A thermoformable core material was prepared in the same manner as in Example 1 except that a large number of true circular through-holes were pierced in a grid-like manner between both surfaces of the laminated sheet at intervals of 7 mm in the front-rear and left-right directions. Manufactured.
[0064]
The obtained thermoformable core material is entangled with glass fibers and the glass fibers are bound together by high-density polyethylene containing a small amount of maleic anhydride-modified polyethylene and polypropylene obtained by melting polypropylene fibers. The front and back synthetic resin layers made of 6-nylon and the hot melt resin layer made of linear low-density polyethylene, respectively, with the front and back synthetic resin layers inside, A large number of through holes extending from the surface of the hot-melt resin layer on the front side to the back surface of the synthetic resin layer on the front side, that is, the surface of the porous material were formed entirely and uniformly. The thermoformable core material had a thickness of 5.0 mm and a basis weight of 860 g / m2. 2 , The opening area of the through hole is 12 mm 2 The ratio of the total opening area of the through holes to the surface area of the hot melt resin layer is 26%, the porosity of the porous material is 93%, and the apparent density of the porous material is 0.12 g / cm. 3 The thickness of the front synthetic resin layer was 10 μm, the thickness of the back synthetic resin layer was 10 μm, and the thickness of the hot melt resin layer was 60 μm.
[0065]
(Comparative Example 2)
By pressing a needle heated to 100 ° C. on the entire surface of one of the laminated sheets, the opening area is 0.13 mm. 2 A thermoformable core material was prepared in the same manner as in Example 1 except that a large number of perfect circular through holes of Manufactured.
[0066]
The obtained thermoformable core material is entangled with glass fibers and the glass fibers are bound together by high-density polyethylene containing a small amount of maleic anhydride-modified polyethylene and polypropylene obtained by melting polypropylene fibers. The front and back synthetic resin layers made of 6-nylon and the hot melt resin layer made of linear low-density polyethylene, respectively, with the front and back synthetic resin layers inside, The through holes formed in the laminated sheet were buried with linear low-density polyethylene. The thermoformable core material had a thickness of 5.0 mm and a basis weight of 910 g / m. 2 The porosity of the porous material is 93%, and the apparent density of the porous material is 0.12 g / cm. 3 The thickness of the front synthetic resin layer was 10 μm, the thickness of the back synthetic resin layer was 10 μm, and the thickness of the hot melt resin layer was 60 μm.
[0067]
(Production of automotive interior materials)
In the thermoformable core materials of Examples 1 and 2 and Comparative Examples 1 and 2, a polyester fiber was entangled on the hot melt resin layer on the front side, and the weight was 185 g / m. 2 After laminating the surface material made of the nonwoven fabric of the above, the thermoformable core material and the surface material are integrated by a stapler at their outer peripheral edges, and then the thermoformable core material has a back surface at 180 ° C. and a front surface of the surface material. Heating was performed so that the temperature became about 190 ° C., followed by press molding to produce an interior material for automobiles in which a surface material was laminated and integrated on the hot melt resin layer on the front side of the thermoformable core material.
[0068]
Further, as Comparative Example 3, a polyester fiber was entangled on the hot-melt resin layer on the front side of the thermoformable core material of Comparative Example 1, and the basis weight was 300 g / m. 2 After laminating the surface material made of the nonwoven fabric of the above, the thermoformable core material and the surface material are integrated by a stapler at their outer peripheral edges, and then the thermoformable core material has a back surface at 180 ° C. and a front surface of the surface material. Heating was performed so that the temperature became about 190 ° C., followed by press molding to produce an interior material for automobiles in which a surface material was laminated and integrated on the hot melt resin layer on the front side of the thermoformable core material.
[0069]
The sound absorbing property, air permeability, appearance and peeling of the surface material of the interior material for automobiles were measured by the following methods, and the results are shown in Table 1.
[0070]
(Sound absorption of automotive interior materials)
A portion having a thickness of 4 mm was cut out from the interior material for automobiles, and the sound absorption from the surface material side was measured at 2 kHz and 4 kHz in accordance with JIS A1405.
[0071]
(Non-breathable)
Air permeability of arbitrary parts in automotive interior materials (cm 3 / Cm 2 Sec) was measured with a densometer (manufactured by Tester Sangyo Co., Ltd.) at a pressure of 0.0015 MPa.
[0072]
(appearance)
It was visually observed whether or not irregularities due to the irregularities of the through holes were formed on the surface of the surface material of the interior material for automobiles, and the judgment was made based on the following criteria.
・ ・ ・: No irregularities occurred on the surface of the surface material.
X: Unevenness was generated on the surface of the surface material.
[0073]
(Surface material peeling)
After a water jet was sprayed on the outer peripheral portion of the interior material for an automobile, it was visually observed whether or not the surface material had peeled off from the hot melt resin layer on the front side.
・ ・ ・: The surface material was not peeled off from the hot melt resin layer.
×: The surface material was peeled off from the hot melt resin layer.
[0074]
[Table 1]
Figure 2004122545
[0075]
【The invention's effect】
In the thermoformable core material of the present invention, a large number of through holes are formed from the surface of the hot melt resin layer to the back surface of the front synthetic resin layer, and the opening area of the through hole is 0.2 or more and 3 mm. 2 The surface of the hot-melt resin layer is excellent in flatness, and the basis weight of the surface material laminated and integrated on the hot-melt resin layer is, for example, 190 g / m 2. 2 Even if it is as small as the following, there is no unevenness on the surface of the surface material, and the surface material can be laminated and integrated in a beautiful state on the hot melt resin layer of the thermoformable core material.
[0076]
Moreover, the through-hole is provided so as to reach from the front surface of the hot melt resin layer to the back surface of the front synthetic resin layer, and the sound from the hot melt resin layer side vibrates because the through hole is provided. The hot melt resin layer and the front side synthetic resin layer, which have become easier to absorb, are absorbed by vibrating and are smoothly absorbed into the porous material through the through-holes. Therefore, the thermoformable core material of the present invention has excellent sound absorbing properties. Have.
[0077]
Furthermore, since the front side synthetic resin layer is made of a thermoplastic resin having a melting point higher than the melting point of the thermoplastic resin in the porous material, it does not melt even during molding of the thermoformable core material. Therefore, the hot melt resin layer on the front synthetic resin layer surely exists on the front synthetic resin layer without being absorbed in the porous material even during molding.
[0078]
Therefore, even when the surface material is laminated and integrated on the hot melt resin layer, the thermoformable core material is formed into a desired shape while reliably maintaining the integrated state of the surface material and the hot melt resin layer. Can be molded into
[0079]
Furthermore, a back synthetic resin layer made of a thermoplastic resin having a melting point higher than the melting point of the thermoplastic resin in the porous material is laminated and integrated on the back surface of the porous material of the thermoformable core material. Therefore, the thermoformable core material is excellent in non-breathability, and reliably blocks air from flowing in the front and back directions of the thermoformable core material, so that air flows in the thermoformable core material in its thickness direction. This prevents the surface material laminated and integrated on the hot melt resin layer from being contaminated by the dust and the like contained in the air, or the sound transmitted from the back side to the front side of the thermoformable core material. Can be attenuated and sound insulation is excellent.
[0080]
When the ratio of the total area of the through holes to the surface area of the hot melt resin layer is 1 to 80%, or when the distance between an arbitrary through hole and the through hole closest to the through hole is 1 to 15 mm. The thermoformable core material has excellent sound absorbing properties and light weight.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view of a thermoformable core material of the present invention.
FIG. 2 is a schematic cross-sectional view of an interior material for a vehicle according to the present invention.
[Explanation of symbols]
1 porous material
2 Front side synthetic resin layer
3 Hot melt resin layer
4 Back side synthetic resin layer
5 Through-hole
6 Surface materials
A Thermoforming core material
B Automotive interior materials

Claims (6)

耐熱性繊維を絡合させ且つ該耐熱性繊維同士を熱可塑性樹脂によって結着させてなる多孔質材の表面に、上記多孔質材中の熱可塑性樹脂の融点よりも高い融点を有する熱可塑性樹脂からなる表側合成樹脂層と、ホットメルト樹脂層とが表側合成樹脂層を内側にして積層一体化されていると共に、裏面に上記多孔質材中の熱可塑性樹脂の融点よりも高い融点を有する熱可塑性樹脂からなる裏側合成樹脂層が積層一体化され、上記ホットメルト樹脂層の表面から上記表側合成樹脂層の裏面に達する多数の貫通孔が形成されてなる熱成形性芯材であって、上記貫通孔の開口面積が0.2mm2 以上で且つ3mm2 未満であることを特徴とする熱成形性芯材。A thermoplastic resin having a melting point higher than the melting point of the thermoplastic resin in the porous material on the surface of the porous material formed by entanglement of the heat-resistant fibers and binding the heat-resistant fibers to each other by the thermoplastic resin. The front-side synthetic resin layer and the hot-melt resin layer are laminated and integrated with the front-side synthetic resin layer inside, and the back surface has a melting point higher than the melting point of the thermoplastic resin in the porous material. A thermoforming core material in which a back side synthetic resin layer made of a plastic resin is laminated and integrated, and a large number of through holes are formed from the surface of the hot melt resin layer to the back side of the front side synthetic resin layer, thermoformable core material, wherein the opening area of the through-hole is and less than 3 mm 2 in 0.2 mm 2 or more. ホットメルト樹脂層の表面積に対する貫通孔の開口合計面積の割合が1〜80%であることを特徴とする請求項1に記載の熱成形性芯材。The thermoformable core material according to claim 1, wherein the ratio of the total area of the openings of the through holes to the surface area of the hot melt resin layer is 1 to 80%. 任意の貫通孔とこの貫通孔に最も近い貫通孔との距離が1〜15mmであることを特徴とする請求項1又は請求項2に記載の熱成形性芯材。The thermoformable core material according to claim 1 or 2, wherein a distance between an arbitrary through hole and a through hole closest to the through hole is 1 to 15 mm. 耐熱性繊維を絡合させ且つ該耐熱性繊維同士を熱可塑性樹脂によって結着させてなる多孔質材の表面に、上記多孔質材中の熱可塑性樹脂の融点よりも高い融点を有する熱可塑性樹脂からなる表側合成樹脂層と、ホットメルト樹脂層とが表側合成樹脂層を内側にして積層一体化されていると共に、裏面に上記多孔質材中の熱可塑性樹脂の融点よりも高い融点を有する熱可塑性樹脂からなる裏側合成樹脂層が積層一体化され、上記ホットメルト樹脂層の表面から上記表側合成樹脂層の裏面に達する多数の貫通孔が形成されてなると共に、上記貫通孔の開口面積が0.2mm2 以上で且つ3mm2 未満である熱成形性芯材のホットメルト樹脂層上に表面材が積層一体化され且つ所望形状に成形されてなることを特徴とする自動車用内装材。A thermoplastic resin having a melting point higher than the melting point of the thermoplastic resin in the porous material on the surface of the porous material formed by entanglement of the heat-resistant fibers and binding the heat-resistant fibers to each other by the thermoplastic resin. The front-side synthetic resin layer and the hot-melt resin layer are laminated and integrated with the front-side synthetic resin layer inside, and the back surface has a melting point higher than the melting point of the thermoplastic resin in the porous material. A back-side synthetic resin layer made of a plastic resin is laminated and integrated, and a large number of through-holes extending from the surface of the hot-melt resin layer to the back of the front-side synthetic resin layer are formed. An interior material for automobiles, characterized in that a surface material is laminated and integrated on a hot-melt resin layer of a thermoformable core material having a size of 2 mm 2 or more and less than 3 mm 2 and molded into a desired shape. 表面材が、目付190g/m2 以下の不織布であることを特徴とする請求項4に記載の自動車用内装材。Surface material, automobile interior material according to claim 4, characterized in that the basis weight of 190 g / m 2 or less of the nonwoven fabric. 表面材が、ポリエステル繊維、ポリプロピレン繊維又はこれらの混合繊維を絡合させてなる不織布からなることを特徴とする請求項4又は請求項5に記載の自動車用内装材。The interior material for an automobile according to claim 4 or 5, wherein the surface material is made of a nonwoven fabric in which polyester fibers, polypropylene fibers, or a mixed fiber thereof are entangled.
JP2002289001A 2002-10-01 2002-10-01 Thermoformable core material and interior finish material for car using the core material Withdrawn JP2004122545A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002289001A JP2004122545A (en) 2002-10-01 2002-10-01 Thermoformable core material and interior finish material for car using the core material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002289001A JP2004122545A (en) 2002-10-01 2002-10-01 Thermoformable core material and interior finish material for car using the core material

Publications (1)

Publication Number Publication Date
JP2004122545A true JP2004122545A (en) 2004-04-22

Family

ID=32281336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002289001A Withdrawn JP2004122545A (en) 2002-10-01 2002-10-01 Thermoformable core material and interior finish material for car using the core material

Country Status (1)

Country Link
JP (1) JP2004122545A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006117868A1 (en) * 2005-04-28 2006-11-09 Kabushiki Kaisha Meisei Shokai Fiber composite material and process for producing the same
JP2007219359A (en) * 2006-02-20 2007-08-30 Tottori Univ Fluid sound reduction device
JP2007233250A (en) * 2006-03-03 2007-09-13 Daikyo Nishikawa Kk Sound absorber
JP2008543603A (en) * 2005-06-13 2008-12-04 クヴァドラント・プラスティック・コンポジッツ・アクチェンゲゼルシャフト Composite sheet with excellent bending rigidity
JP2009114617A (en) * 2004-02-20 2009-05-28 Kiyoto Dezuki Method for continuously producing nonwoven fabric of which rear face is reinforced and nonwoven fabric product produced thereby
KR20150056774A (en) * 2012-09-17 2015-05-27 에이치피 펠저 홀딩 게엠베하 Multilayered perforated sound absorber
CN110181898A (en) * 2018-02-23 2019-08-30 福特环球技术公司 Bamboo fiber composite board and its manufacturing method
CN110920155A (en) * 2018-09-19 2020-03-27 林天连布有限公司 Vehicle bottom cover

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009114617A (en) * 2004-02-20 2009-05-28 Kiyoto Dezuki Method for continuously producing nonwoven fabric of which rear face is reinforced and nonwoven fabric product produced thereby
WO2006117868A1 (en) * 2005-04-28 2006-11-09 Kabushiki Kaisha Meisei Shokai Fiber composite material and process for producing the same
JP2008543603A (en) * 2005-06-13 2008-12-04 クヴァドラント・プラスティック・コンポジッツ・アクチェンゲゼルシャフト Composite sheet with excellent bending rigidity
KR101410646B1 (en) * 2005-06-13 2014-06-24 쿼드란트 플라스틱 컴포지츠 아게 Composite sheet
JP2007219359A (en) * 2006-02-20 2007-08-30 Tottori Univ Fluid sound reduction device
JP2007233250A (en) * 2006-03-03 2007-09-13 Daikyo Nishikawa Kk Sound absorber
KR20150056774A (en) * 2012-09-17 2015-05-27 에이치피 펠저 홀딩 게엠베하 Multilayered perforated sound absorber
JP2015534113A (en) * 2012-09-17 2015-11-26 ハーペー ペルツァー ホルディング ゲーエムベーハー Multi-layer perforated sound absorber
US9702141B2 (en) 2012-09-17 2017-07-11 Hp Pelzer Holding Gmbh Multilayered perforated sound absorber
RU2639594C2 (en) * 2012-09-17 2017-12-21 Хп Пельцер Холдинг Гмбх Multilayer perforated sound absorber
KR102070712B1 (en) 2012-09-17 2020-01-29 아들러 펠저 홀딩 게엠베하 Multilayered perforated sound absorber
CN110181898A (en) * 2018-02-23 2019-08-30 福特环球技术公司 Bamboo fiber composite board and its manufacturing method
CN110920155A (en) * 2018-09-19 2020-03-27 林天连布有限公司 Vehicle bottom cover

Similar Documents

Publication Publication Date Title
CN1954126B (en) Decorative interior sound absorbing panel
EP2297412B1 (en) Sound absorption material and method of manufacturing sound absorption material
US9702141B2 (en) Multilayered perforated sound absorber
JP4154638B2 (en) Manufacturing method for interior materials
US5670235A (en) Shaped laminate, particularly internal lining part for motor vehicles, as well as process and apparatus for the production thereof
WO2005097547A1 (en) Molded spreading interior trim material for automobile
EP1574326A1 (en) Laminated surface skin material and laminate for interior material
JP2002144976A (en) Molded ceiling for car and its manufacturing method
JP2004122545A (en) Thermoformable core material and interior finish material for car using the core material
JP2882740B2 (en) Molded composite and method for producing the same
JPH08276446A (en) Manufacture of molding composite material
JP3654821B2 (en) Thermoformable core material and manufacturing method thereof
JP2003316366A (en) Acoustic material and method for manufacturing the same
JP3773044B2 (en) Porous material
JP3853077B2 (en) Dispersion method stampable sheet expansion molded body and dispersion method stampable sheet
JP2005186334A (en) Porous stampable sheet, its manufacturing method, expanded molded product of porous stampable sheet and its manufacturing method
JP2872896B2 (en) Thermoformable core material, production method thereof and interior material
JPH01308623A (en) Manufacture of fiber molded form
JP3095503B2 (en) Thermoformable core material and method for producing the same
JP3004183B2 (en) Manufacturing method of molded composite
KR20190037023A (en) Vehicle interior material of corrugated bubble structure and manufacturing method thereof
JP2008155775A (en) Sound absorbing material for vehicle and method of manufacturing sound absorbing material for vehicle
JPH02459B2 (en)
JP2005178030A (en) Multilayered skin material and laminate for trim material
JPH0782645A (en) Hot melt nonwoven fabric, core material for formation of ceiling and ceiling material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050725

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070117