JP2004129337A - Uninterruptible power system - Google Patents
Uninterruptible power system Download PDFInfo
- Publication number
- JP2004129337A JP2004129337A JP2002286759A JP2002286759A JP2004129337A JP 2004129337 A JP2004129337 A JP 2004129337A JP 2002286759 A JP2002286759 A JP 2002286759A JP 2002286759 A JP2002286759 A JP 2002286759A JP 2004129337 A JP2004129337 A JP 2004129337A
- Authority
- JP
- Japan
- Prior art keywords
- power
- power supply
- storage means
- fuel cell
- power storage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02B90/10—Applications of fuel cells in buildings
Landscapes
- Stand-By Power Supply Arrangements (AREA)
Abstract
【課題】燃料電池と他の蓄電手段を用いた無停電電源装置において、連続して停電が発生した場合や、負荷が急激に変動した場合においても安定して電力供給できるシステムを提供すること。
【解決手段】商用電源受電時において、商用電源からの交流電力を接続された負荷機器に供給するとともに、交流電力を整流手段を介してコンデンサ等の蓄電手段に蓄える機能を有した無停電電源装置において、商用電源停電時において、蓄電手段からの直流出力を交流電力に変換して負荷機器に供給するとともに、燃料電池を備え、蓄電手段から負荷機器への供給電力が所定値になったことを検知して燃料電池から負荷機器に電力を供給する。
【選択図】 図1An uninterruptible power supply using a fuel cell and another power storage means is provided with a system capable of stably supplying power even when a power failure occurs continuously or when a load fluctuates rapidly.
An uninterruptible power supply having a function of supplying AC power from a commercial power supply to a connected load device and storing the AC power in a power storage means such as a capacitor via a rectifying means when receiving a commercial power supply. In the event of a commercial power outage, the DC output from the power storage means is converted to AC power and supplied to the load equipment, and the fuel cell is provided, and the power supplied from the power storage means to the load equipment has reached a predetermined value. Upon detection, power is supplied to the load equipment from the fuel cell.
[Selection diagram] Fig. 1
Description
【0001】
【発明の属する技術分野】
本発明は無停電電源装置に関するものである。
【0002】
【従来の技術】
コンピュータ用バックアップ電源や非常灯設備用の電源として無停電電源装置が広く用いられている。無停電電源装置は主として二次電池に停電時の電力供給を依存している。したがって、停電時に負荷機器が必要とする供給電力に応じて二次電池を選択する必要がある。特に負荷機器の供給電力を必要とする場合、二次電池も大型で大容量のものを用いる必要があり、無停電電源装置全体が大形化・重量化し極めて高価なものとなってしまう。また、二次電池には自己放電を補うためのトリクル充電を行う必要があり、大容量の二次電池ではトリクル充電に必要な電力も大きく、装置のランニングコストも高いものとなってしまう。
【0003】
このようなシステムの大形化・重量化を抑制するために、二次電池にかえて燃料電池を用いることが示されている。無停電電源装置では商用電源の停電を検知してすみやかに二次電池等からの蓄電手段からの出力を負荷に供給する必要があるが、燃料電池では起動に時間を要するために停電開始から無停電電源装置の電力供給開始まで時間がかかり、無停電電源装置には不適切であった。
【0004】
このような不具合を解決するために、例えば特許文献1には燃料電池と電気二重層コンデンサや二次電池といった他の蓄電手段を組み合わせ、停電開始から燃料電池の起動開始までの時間、この蓄電手段から負荷へ電力供給することが示されている。
【0005】
この特許文献1に示された無停電電源装置では停電開始とともに蓄電手段から負荷へ電力供給し、この間に燃料電池の起動操作を行う。停電時間が蓄電手段からの放電時間以内の場合には燃料電池の起動を行う必要がないので、蓄電手段の放電時間が所定時間に到達してもなお、商用電源が復帰してない場合には燃料電池の起動操作が行われる。
【0006】
このようなシステムでは燃料電池が起動した時点において蓄電手段には殆ど電力が蓄積されていない。商用電源が復帰した時点で再び蓄電手段が商用電力を用いて充電される。ところが商用電源が復帰直後に再度停電となった場合には蓄電手段には燃料電池の起動に要する時間、負荷に供給するに必要な電力を蓄積していないので、連続して負荷に電力供給できないという課題がある。
【0007】
また、燃料電池は一定の電力を定常的に供給するには極めて優れた電源であるが、負荷変動の追従性に劣るため、燃料電池によるバックアップ放電中に負荷が急激に増大した場合、燃料電池が停止してしまい、バックアップ放電が中断する場合があった。
【0008】
【特許文献1】
特開2000−341879号公報
【0009】
【発明が解決しようとする課題】
本発明は前記したような燃料電池と他の蓄電手段を用いた無停電電源装置において、連続して停電が発生した場合や、負荷が急激に変動した場合においても安定して電力供給できるシステムを提供するものである。
【0010】
【課題を解決するための手段】
前記した課題を解決するために、本発明の請求項1に係る発明は、商用電源受電時において、商用電源からの交流電力を接続された負荷機器に供給するとともに、交流電力を整流手段を介して蓄電手段に蓄える機能を有した無停電電源装置であって、商用電源停電時において、蓄電手段からの直流出力を交流電力に変換して負荷機器に供給するとともに、燃料電池を備え、蓄電手段から負荷機器への供給電力が所定値になったことを検知して燃料電池から負荷機器に電力を供給することを特徴とする無停電電源装置を示すものである。
【0011】
本発明の請求項2に係る発明は、請求項1の無停電電源装置において、蓄電手段からの負荷機器への供給電力をモニターして蓄電手段から負荷機器への電力供給可能時間を予測し、電力供給可能時間が少なくとも燃料電池の起動に要する起動時間以前に燃料電池を起動することを特徴とするものである。
【0012】
また、本発明の請求項3に係る発明は、請求項1もしくは2の無停電電源装置において、燃料電池の出力の一部を蓄電手段に蓄えることを特徴とするものである。
【0013】
また、本発明の請求項4に係る発明は、請求項1、2もしくは3の無停電電源装置において、負荷機器への供給出力が所定出力以上の場合にこの供給出力と所定出力の差分を蓄電手段から負荷機器へ供給することを特徴とするものである。
【0014】
さらに、本発明の請求項5に係る発明は、請求項1、2、3もしくは4の無停電電源装置において、蓄電手段の蓄電状態(SOC)を検知する手段を備え、このSOCが所定範囲内となるように制御することを特徴とするものである。
【0015】
そして、本発明の請求項6に係る発明は、請求項1、2、3、4もしくは5の無停電電源装置において、蓄電手段としてコンデンサを用いることを特徴とするものである。
【0016】
【発明の実施の形態】
本発明の実施の形態による無停電電源装置の構成を図1に示す。商用電源受電時は商用電源1からの交流電力は直送回路7を経て負荷機器2の供給される。一方、商用電源1からの交流電力を整流手段4で直流に変換し、充電制御手段8を介して蓄電手段10に入力することによって蓄電手段10を充電する。
【0017】
次に商用電源1が停止した状態での本発明の無停電電源装置の動作を説明する。商用電源1が停止したことを検知し、切替手段3を切替えることによって蓄電手段10からの直流出力を必要に応じてコンバータ16で電圧変換後、インバータ5により交流電力に変換し、負荷機器2にこの交流電力を供給する。
【0018】
蓄電手段10の放電負荷は負荷検出手段14によって検出する。例えば電流センサー17を用いて負荷を検出することができる。蓄電手段10の放電負荷に基いて蓄電手段10の放電持続時間を放電時間予測手段13より予測する。この予測は例えば放電時間予測手段13に放電負荷別の放電時間テーブルを記憶しておき、測定された放電負荷と放電時間テーブルを参照することによって達成することができる。また、放電時間テーブルに環境温度特性を持たせることが予測精度を向上させる上で好ましいことはいうまでもない。
【0019】
また、この放電時間の予測をさらに精度よく実行するために、蓄電手段の充電状態(state of charge、以下、SOCという。)をSOC検知手段9によって検知するとともに、放電時間予測手段13に記憶された放電時間テーブルとしてSOC別のテーブルを用いることが好ましい。このSOC検知手段9におけるSOC検知はさまざまな方法によって達成できるが、例えばSOC検知手段9に包含された電流センサー(図示せず)によって蓄電手段10への充放電電流を検知し、これを時間積算することによって得ることができる。
【0020】
放電時間予測手段13によって予測された蓄電手段10の放電時間Tは燃料電池11の起動に要する時間t(以下、起動所要時間という。)と比較し、その結果によって燃料電池11を起動する。具体的には余裕時間Δt(Δt>0)を考慮し、T=t+Δtとなった時点で燃料電池制御手段12は燃料電池11を起動させる。なお、燃料電池制御手段12は蓄電手段10からの電力供給により動作するので、前記した放電時間予測手段13はこの起動に要する電力を加味して放電時間を予測する。
【0021】
この時点で燃料電池11からの直流出力がインバータ5を介して交流電力に変換され、負荷機器に供給される。ここで燃料電池11の直流出力の一部を充電制御手段8を介して蓄電手段10に入力し、蓄電手段10のSOCを上昇制御する。
【0022】
商用電源1が復帰した時点で燃料電池制御手段12により燃料電池11の運転を停止する。本発明ではこの時点で蓄電手段10のSOCが十分に高く維持されている。したがって、商用電源1が復帰し、燃料電池11が停止した直後に再び商用電源1が停電しても燃料電池11の再起動を行うことができる。従来の商用電源1によってのみ蓄電手段10を充電する構成では商用電源復帰直後に再停電が起こった場合、蓄電池手段10には燃料電池11の再起動を行うことができなかったが、本発明の構成では安定して燃料電池11の再起動を行うことによって安定した電力供給を可能とする。
【0023】
更に本発明の好ましい構成としては燃料電池11と蓄電手段10とを連係動作させるものである。燃料電池11の負荷電流は電流センサー18によりモニターされ、燃料電池11の出力が安定出力を得られる特定出力をこえたことを検知した場合、コンバータ制御手段15によりコンバータ16の出力電圧を上昇制御し、負荷機器2への供給電力を燃料電池11と蓄電手段10からの電力でまかなう。
【0024】
このような構成によれば急激に負荷機器11の負荷が増大しても蓄電手段10からの供給電力で不足電力を補償することができる。燃料電池では急激に負荷が増大して、特定出力を超えた場合に反応停止する場合があるが、本発明では、燃料電池11を安定して動作させ、電力を安定供給させることができる。また、蓄電手段10からの放電が行われている間、充電制御手段8により、燃料電池11から蓄電手段10への電力供給を停止させることにより、システムの効率を向上させることができる。
【0025】
反対に燃料電池11の出力に余剰がある場合には蓄電手段10に余剰電力を蓄電すれば、システムの効率をさらに向上させることができる。このような余剰電力の蓄電を効率的に行うために、蓄電手段10のSOCを余剰電力を受け入れ可能な領域に制御することが好ましい。
【0026】
また、蓄電手段10としてアルカリ蓄電池、鉛蓄電池およびリチウム2次電池といった従来から知られた二次電池を用いることができるが、さらに好ましくはこの蓄電手段10として、高容量のキャパシタを使用充電制御手段が簡便となる他、充放電効率も二次電池に比較して高効率であるので、システムの効率をさらに向上できる。さらに燃料電池11に供給する燃料を収納するタンク(図示せず)を外付けとし、容量を増加させれば長時間運転も可能となる利点もある。
【0027】
さらに本発明の実施形態として交流電力を出力する形態について説明したが、直流出力を得る形態においても本発明の構成を適用できることは言うまでもない。この場合には図1のインバータ5を除き、商用電力を整流手段4を介して直流出力とした後に直送回路7と切替手段3を介して負荷機器2に直流電力を供給する構成とすればよい。
【0028】
【発明の効果】
本発明によれば燃料電池と他の蓄電手段を用いた無停電電源装置において、連続して停電が発生した場合や、負荷が急激に変動した場合においても効率よく安定して電力供給できるシステムを提供できることから、工業上極めて有用である。
【図面の簡単な説明】
【図1】本発明による無停電電源装置の構成を示す図
【符号の説明】
1 商用電源
2 負荷機器
3 切替手段
4 整流手段
5 インバータ
7 直送回路
8 充電制御手段
9 SOC検知手段
10 蓄電手段
11 燃料電池
12 燃料電池制御手段
13 放電時間予測手段
14 負荷検出手段
15 コンバータ制御手段
16 コンバータ
17 電流センサー
18 電流センサー[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an uninterruptible power supply.
[0002]
[Prior art]
Uninterruptible power supplies are widely used as backup power supplies for computers and power supplies for emergency light facilities. The uninterruptible power supply mainly depends on a secondary battery for power supply at the time of a power failure. Therefore, it is necessary to select a secondary battery according to the supply power required by the load device at the time of a power failure. In particular, when the power supplied from the load device is required, it is necessary to use a large-sized and large-capacity secondary battery, and the whole uninterruptible power supply becomes large and heavy, and becomes extremely expensive. In addition, it is necessary to perform trickle charging on the secondary battery to compensate for self-discharge, and a large-capacity secondary battery requires a large amount of electric power for trickle charging and increases the running cost of the apparatus.
[0003]
It is disclosed that a fuel cell is used instead of a secondary battery in order to suppress the increase in size and weight of such a system. The uninterruptible power supply must detect the power failure of the commercial power supply and immediately supply the output from the storage means from the secondary battery to the load. It took time until the power supply of the power failure power supply started, which was inappropriate for an uninterruptible power supply.
[0004]
In order to solve such a problem, for example, Patent Document 1 discloses that a fuel cell is combined with another electric storage means such as an electric double layer capacitor or a secondary battery, and the time from the start of the power failure to the start of the start of the fuel cell is determined. From the power supply to the load.
[0005]
In the uninterruptible power supply device disclosed in Patent Literature 1, power is supplied from a power storage unit to a load at the start of a power failure, and during this time, a fuel cell start operation is performed. If the power outage time is within the discharge time from the power storage means, it is not necessary to start the fuel cell, so even if the commercial power supply has not been recovered even after the discharge time of the power storage means has reached the predetermined time. A start-up operation of the fuel cell is performed.
[0006]
In such a system, almost no power is stored in the power storage means when the fuel cell is started. When the commercial power returns, the power storage means is charged again using the commercial power. However, if the power fails again immediately after the commercial power returns, the power storage means does not accumulate the power required to supply the load for the time required to start the fuel cell, so that power cannot be continuously supplied to the load. There is a problem that.
[0007]
Further, the fuel cell is an excellent power source for constantly supplying a certain amount of electric power, but is inferior in follow-up of load fluctuation. Was stopped and the backup discharge was interrupted in some cases.
[0008]
[Patent Document 1]
JP 2000-341879 A
[Problems to be solved by the invention]
The present invention relates to an uninterruptible power supply using the above-described fuel cell and other power storage means, and a system capable of stably supplying power even when a power failure occurs continuously or when the load fluctuates rapidly. To provide.
[0010]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the invention according to claim 1 of the present invention supplies AC power from a commercial power supply to a connected load device at the time of receiving commercial power supply, and also converts the AC power through a rectifier. An uninterruptible power supply device having a function of storing DC power from a power storage means and supplying AC power to a load device at the time of a commercial power outage. An uninterruptible power supply is characterized in that it detects that the power supplied to the load device from the power supply reaches a predetermined value and supplies power from the fuel cell to the load device.
[0011]
The invention according to claim 2 of the present invention, in the uninterruptible power supply according to claim 1, monitors the power supplied from the power storage means to the load device, and predicts the possible power supply time from the power storage device to the load device, It is characterized in that the fuel cell is activated at least before the activation time required for activation of the fuel cell.
[0012]
According to a third aspect of the present invention, in the uninterruptible power supply according to the first or second aspect, a part of the output of the fuel cell is stored in the power storage means.
[0013]
According to a fourth aspect of the present invention, in the uninterruptible power supply according to the first, second or third aspect, when a supply output to a load device is equal to or more than a predetermined output, the difference between the supply output and the predetermined output is stored. It is characterized by supplying from a means to a load device.
[0014]
Further, the invention according to claim 5 of the present invention is the uninterruptible power supply according to claim 1, 2, 3 or 4, further comprising means for detecting a state of charge (SOC) of the power storage means, wherein the SOC is within a predetermined range. It is characterized in that control is performed so that
[0015]
According to a sixth aspect of the present invention, in the uninterruptible power supply according to the first, second, third, fourth, or fifth aspect, a capacitor is used as power storage means.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 shows a configuration of an uninterruptible power supply according to an embodiment of the present invention. When the commercial power is received, the AC power from the commercial power 1 is supplied to the load device 2 via the direct transmission circuit 7. On the other hand, the AC power from the commercial power supply 1 is converted into DC by the rectifier 4 and is input to the power storage 10 via the charge controller 8 to charge the power storage 10.
[0017]
Next, the operation of the uninterruptible power supply of the present invention when the commercial power supply 1 is stopped will be described. Detecting that the commercial power supply 1 has stopped, the switching means 3 is switched to convert the DC output from the power storage means 10 as necessary into voltage by the converter 16, and then to AC power by the inverter 5, and to the load equipment 2. This AC power is supplied.
[0018]
The discharge load of the power storage means 10 is detected by the load detection means 14. For example, the load can be detected using the
[0019]
In addition, in order to more accurately execute the prediction of the discharge time, the state of charge (hereinafter, referred to as SOC) of the power storage means is detected by the SOC detection means 9 and stored in the discharge time prediction means 13. It is preferable to use a table for each SOC as the discharge time table. The SOC detection by the SOC detection means 9 can be achieved by various methods. For example, a charge / discharge current to the power storage means 10 is detected by a current sensor (not shown) included in the SOC detection means 9, and this is integrated with time. Can be obtained.
[0020]
The discharge time T of the power storage means 10 predicted by the discharge time prediction means 13 is compared with a time t required for starting the fuel cell 11 (hereinafter referred to as a required start time), and the fuel cell 11 is started based on the result. Specifically, the fuel cell control means 12 starts the fuel cell 11 when T = t + Δt in consideration of the margin time Δt (Δt> 0). Since the fuel cell control unit 12 operates by supplying power from the power storage unit 10, the above-described discharge time prediction unit 13 predicts the discharge time in consideration of the power required for the activation.
[0021]
At this point, the DC output from the fuel cell 11 is converted into AC power via the inverter 5 and supplied to load equipment. Here, a part of the DC output of the fuel cell 11 is input to the power storage means 10 via the charge control means 8, and the SOC of the power storage means 10 is controlled to increase.
[0022]
When the commercial power supply 1 returns, the operation of the fuel cell 11 is stopped by the fuel cell control means 12. In the present invention, at this point, the SOC of power storage means 10 is maintained sufficiently high. Therefore, the fuel cell 11 can be restarted even after the commercial power supply 1 is restored and the power supply of the commercial power supply 1 is stopped again immediately after the fuel cell 11 is stopped. In the conventional configuration in which the power storage means 10 is charged only by the commercial power supply 1, if a power failure occurs immediately after the return of the commercial power supply, the fuel cell 11 cannot be restarted in the storage battery means 10; In the configuration, stable restart of the fuel cell 11 enables stable power supply.
[0023]
Further, as a preferable configuration of the present invention, the fuel cell 11 and the power storage means 10 are operated in cooperation. The load current of the fuel cell 11 is monitored by a current sensor 18, and when it is detected that the output of the fuel cell 11 exceeds a specific output capable of obtaining a stable output, the output voltage of the converter 16 is controlled to increase by the converter control means 15. The power supplied to the load device 2 is covered by the power from the fuel cell 11 and the power storage means 10.
[0024]
According to such a configuration, the shortage of power can be compensated by the power supplied from the power storage unit 10 even if the load of the load device 11 suddenly increases. In the fuel cell, when the load suddenly increases and the reaction exceeds a specific output, the reaction may be stopped. However, in the present invention, the fuel cell 11 can be operated stably to supply power stably. In addition, while the discharge from the power storage unit 10 is being performed, the charge control unit 8 stops the power supply from the fuel cell 11 to the power storage unit 10, thereby improving the efficiency of the system.
[0025]
Conversely, when there is a surplus in the output of the fuel cell 11, if the surplus power is stored in the power storage means 10, the efficiency of the system can be further improved. In order to efficiently store such surplus power, it is preferable to control the SOC of the power storage means 10 to an area where surplus power can be accepted.
[0026]
In addition, a conventionally known secondary battery such as an alkaline storage battery, a lead storage battery, and a lithium secondary battery can be used as the power storage means 10, but more preferably, a high-capacity capacitor is used as the power storage means 10. And the charging / discharging efficiency is higher than that of the secondary battery, so that the efficiency of the system can be further improved. Further, if a tank (not shown) for storing the fuel to be supplied to the fuel cell 11 is externally provided and the capacity is increased, there is an advantage that a long-time operation is possible.
[0027]
Furthermore, although the embodiment in which the AC power is output has been described as an embodiment of the present invention, it goes without saying that the configuration of the present invention can be applied to the embodiment in which a DC output is obtained. In this case, except for the inverter 5 shown in FIG. 1, the commercial power may be converted to a DC output through the rectifier 4 and then the DC power may be supplied to the load device 2 through the direct feed circuit 7 and the switching unit 3. .
[0028]
【The invention's effect】
According to the present invention, in an uninterruptible power supply device using a fuel cell and other power storage means, a system capable of efficiently and stably supplying power even when a continuous power failure occurs or when the load fluctuates rapidly. Because it can be provided, it is extremely useful industrially.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of an uninterruptible power supply according to the present invention.
DESCRIPTION OF SYMBOLS 1 Commercial power supply 2 Load equipment 3 Switching means 4 Rectification means 5 Inverter 7 Direct feed circuit 8 Charge control means 9 SOC detection means 10 Power storage means 11 Fuel cell 12 Fuel cell control means 13 Discharge time prediction means 14 Load detection means 15 Converter control means 16
Claims (6)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2002286759A JP2004129337A (en) | 2002-09-30 | 2002-09-30 | Uninterruptible power system |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2002286759A JP2004129337A (en) | 2002-09-30 | 2002-09-30 | Uninterruptible power system |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JP2004129337A true JP2004129337A (en) | 2004-04-22 |
Family
ID=32279742
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2002286759A Pending JP2004129337A (en) | 2002-09-30 | 2002-09-30 | Uninterruptible power system |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2004129337A (en) |
Cited By (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2012253933A (en) * | 2011-06-03 | 2012-12-20 | Fdk Twicell Co Ltd | Dc power feeding apparatus |
| EP2759689A1 (en) | 2013-01-28 | 2014-07-30 | Alstom Technology Ltd | Emergency power supply system comprising a hydrogen fueled fuel cell |
| JP2014165955A (en) * | 2013-02-21 | 2014-09-08 | Tokyo Gas Co Ltd | Power supply system, power supply program, and power supply method |
| JP2014171375A (en) * | 2013-03-05 | 2014-09-18 | Tokyo Gas Co Ltd | Power supply system, power supply program and power supply method |
| JP2014171376A (en) * | 2013-03-05 | 2014-09-18 | Tokyo Gas Co Ltd | Power supply system, power supply program and power supply method |
| JP2015061396A (en) * | 2013-09-18 | 2015-03-30 | 株式会社東芝 | Uninterruptible power supply system and control method |
| JP2015228745A (en) * | 2014-06-02 | 2015-12-17 | エムケー精工株式会社 | Uninterruptible power system |
| JP2017117673A (en) * | 2015-12-24 | 2017-06-29 | 京セラ株式会社 | Power controller, power control method and fuel cell system |
| WO2019159377A1 (en) * | 2018-02-19 | 2019-08-22 | 株式会社 東芝 | Control apparatus for power supply system, control method for power supply system, and power supply system |
-
2002
- 2002-09-30 JP JP2002286759A patent/JP2004129337A/en active Pending
Cited By (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2012253933A (en) * | 2011-06-03 | 2012-12-20 | Fdk Twicell Co Ltd | Dc power feeding apparatus |
| US9509175B2 (en) | 2013-01-28 | 2016-11-29 | General Electric Technology Gmbh | Gas turbine power generation system comprising an emergency power supply system |
| EP2759689A1 (en) | 2013-01-28 | 2014-07-30 | Alstom Technology Ltd | Emergency power supply system comprising a hydrogen fueled fuel cell |
| JP2014165955A (en) * | 2013-02-21 | 2014-09-08 | Tokyo Gas Co Ltd | Power supply system, power supply program, and power supply method |
| JP2014171375A (en) * | 2013-03-05 | 2014-09-18 | Tokyo Gas Co Ltd | Power supply system, power supply program and power supply method |
| JP2014171376A (en) * | 2013-03-05 | 2014-09-18 | Tokyo Gas Co Ltd | Power supply system, power supply program and power supply method |
| JP2015061396A (en) * | 2013-09-18 | 2015-03-30 | 株式会社東芝 | Uninterruptible power supply system and control method |
| JP2015228745A (en) * | 2014-06-02 | 2015-12-17 | エムケー精工株式会社 | Uninterruptible power system |
| JP2017117673A (en) * | 2015-12-24 | 2017-06-29 | 京セラ株式会社 | Power controller, power control method and fuel cell system |
| WO2019159377A1 (en) * | 2018-02-19 | 2019-08-22 | 株式会社 東芝 | Control apparatus for power supply system, control method for power supply system, and power supply system |
| JPWO2019159377A1 (en) * | 2018-02-19 | 2021-02-04 | 株式会社東芝 | Power supply system control device, power supply system control method, and power supply system |
| US11296375B2 (en) | 2018-02-19 | 2022-04-05 | Kabushiki Kaisha Toshiba | Apparatus for power supply system, control method for power supply system, and power supply system |
| JP7072044B2 (en) | 2018-02-19 | 2022-05-19 | 株式会社東芝 | Power supply system control device, power supply system control method, and power supply system |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US5952813A (en) | Battery charging system and electric vehicle with battery charging system | |
| JP5152746B2 (en) | Fuel cell power supply | |
| JP6094976B2 (en) | Switching power supply device and semiconductor device | |
| US20120025615A1 (en) | Power supply apparatus | |
| KR101673717B1 (en) | Power generation system using fuel cell electric vehicle and control method thereof | |
| US8957545B2 (en) | Prioritization circuit and electric power supply system | |
| US9269989B2 (en) | Electric power supply system | |
| JP2013230063A (en) | Power supply | |
| US20130249493A1 (en) | Vehicle and method of controlling the same | |
| JP2009278822A (en) | Electronic equipment | |
| JP2002034162A (en) | Distributed power supply system and control method thereof | |
| JP2004129337A (en) | Uninterruptible power system | |
| JP2011024299A (en) | Power supply circuit | |
| JP2010041826A (en) | Ac-dc converter and electronic apparatus using the same | |
| US11121554B2 (en) | Electrical power control apparatus, electrical power control method and electrical power control system | |
| JP2022055172A (en) | Charge/discharge control system | |
| JP5073436B2 (en) | Uninterruptible backup power supply | |
| WO2013046685A1 (en) | Power supply system and power control method | |
| JP6481938B2 (en) | Power storage system | |
| JP2008281685A (en) | Power supply apparatus, control method therefor, and image forming apparatus | |
| KR101401751B1 (en) | Apparatus and method for efficiency optimization of energy using fuel battery in system | |
| JP2004120855A (en) | Power supply | |
| JP4487210B2 (en) | Uninterruptible power system | |
| JP4560657B2 (en) | Uninterruptible power system | |
| JP2013070547A (en) | Power conversion device |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050921 |
|
| RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20051013 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070601 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070612 |
|
| A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20071023 |