[go: up one dir, main page]

JP2004132524A - Sealing device - Google Patents

Sealing device Download PDF

Info

Publication number
JP2004132524A
JP2004132524A JP2002300128A JP2002300128A JP2004132524A JP 2004132524 A JP2004132524 A JP 2004132524A JP 2002300128 A JP2002300128 A JP 2002300128A JP 2002300128 A JP2002300128 A JP 2002300128A JP 2004132524 A JP2004132524 A JP 2004132524A
Authority
JP
Japan
Prior art keywords
seal
sealing
rotating
gap
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002300128A
Other languages
Japanese (ja)
Other versions
JP4295487B2 (en
Inventor
Masaki Muneda
宗田 雅樹
Tetsuya Ishikawa
石川 哲也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arai Seisakusho Co Ltd
Original Assignee
Arai Seisakusho Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arai Seisakusho Co Ltd filed Critical Arai Seisakusho Co Ltd
Priority to JP2002300128A priority Critical patent/JP4295487B2/en
Publication of JP2004132524A publication Critical patent/JP2004132524A/en
Application granted granted Critical
Publication of JP4295487B2 publication Critical patent/JP4295487B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/164Sealings between relatively-moving surfaces the sealing action depending on movements; pressure difference, temperature or presence of leaking fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/32Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings
    • F16J15/3248Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings provided with casings or supports
    • F16J15/3252Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings provided with casings or supports with rigid casings or supports
    • F16J15/3256Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings provided with casings or supports with rigid casings or supports comprising two casing or support elements, one attached to each surface, e.g. cartridge or cassette seals

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Sealing With Elastic Sealing Lips (AREA)
  • Sealing Using Fluids, Sealing Without Contact, And Removal Of Oil (AREA)
  • Sealing Of Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sealing device capable of preventing the leakage of a sealed fluid at a wide range from a low speed to a high speed without narrowing a seal clearance. <P>SOLUTION: The seal clearance 25 is formed between a rotator 3 and a static section 5, and a movable floating ring 6 is arranged in this seal clearance 25. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、密封流体の漏洩を防止する密封装置に係り、特に、回転体の回転により密封流体の漏洩を非接触で防止することのできる密封装置に関する。
【0002】
【従来の技術】
従来から、密封流体の漏洩を防止する密封装置として、回転体と静止部との間にシール隙間を設け、回転体の回転により密封流体の漏洩を非接触で防止することのできるラビリンスシールが知られている。このラビリンスシールは、特に低トルクを要求される部位での油漏れ防止に適しており、例えばターボチャージャなどに用いられている(例えば、特許文献1参照)。
【0003】
【特許文献1】
特開平5−1559号公報。
【0004】
【発明が解決しようとする課題】
ところで、前述した従来のラビリンスシールにおいて、回転体の回転時における油漏れを防止(実質的に無視できるほど少なく)するためには、シール隙間を狭くかつばらつきを小さく、すなわち精密に管理する必要がある。また、回転時の油漏れを防止するためには、回転速度が高速になればなるほど、シール隙間を狭くする必要がある。例えば、回転体の回転速度を8000rpmとした場合、回転体と静止部との間に設けられているシール隙間を0.1mm程度に形成する必要がある。
【0005】
しかしながら、従来のラビリンスシールにおいて、0.1mmのシール隙間を形成するには、ラビリンスシール自身の加工精度およびラビリンスシールの取付精度を極めて高くする必要がある。そして、ラビリンスシールの加工精度を高くするには、高精度の装置を必要とするとともに、このような装置により製せられるラビリンスシールを大量に製造するには、極めて多量の装置と場所が必要となり、生産効率が悪く、経済的負担が増加するという問題点があった。さらに、ラビリンスシールの取付精度を高くするには、やはり高精度の取付装置を必要とし、生産効率が悪く、経済的負担が増加するという問題点があった。
【0006】
そこで、シール隙間を狭くせずに、低速から高速までの広い範囲に亘って密封流体の漏洩を防止することのできる密封装置が求められている。
【0007】
本発明はこの点に鑑みてなされたものであり、シール隙間を狭くせずに、低速から高速までの広い範囲に亘って密封流体の漏洩を防止することのできる密封装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
前述した目的を達成するため特許請求の範囲の請求項1に係る本発明の密封装置の特徴は、回転体と静止部との間にシール隙間を設け、前記回転体の回転により密封流体の漏洩を非接触で防止することのできる密封装置において、前記シール隙間に移動可能な浮動リングを設けた点にある。そして、このような構成を採用したことにより、浮動リングの効果によってシール隙間を狭くせずに、低速から高速までの広い範囲に亘って密封流体の漏洩を確実かつ容易に防止することができる。
【0009】
また、請求項2に係る本発明の密封装置の特徴は、請求項1において、前記回転体に回転体の少なくとも回転停止時における前記シール隙間からの密封流体の漏洩を防止するシール部材を設けた点にある。そして、このような構成を採用したことにより、回転体の回転停止時および低速時における密封流体の漏洩を確実かつ容易に防止することができる。
【0010】
【発明の実施の形態】
以下、本発明を図面に示す実施形態により説明する。
【0011】
図1は本発明に係る密封装置としてのラビリンスシールの第1実施形態の要部を示す断面図である。
【0012】
図1に示すように、本実施形態の密封装置としてのラビリンスシール1は、回転体としての回転軸2に装着される回転部材3と、静止部としてのハウジング4に回転部材3と対向するように装着される固定部材5と、浮動リング6とを有している。そして、ラビリンスシール1の図1左側が密封流体としての潤滑油が存在する密封側OSとされ、ラビリンスシール1の図1右側が大気側ASとされている。
【0013】
前記回転部材3は、金属あるいは樹脂などにより形成された環状の回転部材用環体7に、ゴム様弾性体で形成された回転部材用弾性シール8が焼き付けられて一体に形成されている。
【0014】
前記回転部材用環体7は、内側円筒部9を備えている。この内側円筒部9は、回転軸2より若干大径に形成されるとともに、図1の左右方向に示す軸方向に沿った長さ寸法が回転軸2の長さ寸法より短い所定の寸法に形成されている。そして、内側円筒部9の密封側OSに位置する左端縁には、ハウジング4の内周面に向かって径方向外側にほぼ直角に折曲された側面ほぼ環状の内側直立壁部10が延出形成されている。この内側直立壁部10の外周縁は、回転軸2の外周面とハウジング4の内周面とのほぼ中間部分に位置するように形成されている。そして、内側直立壁部10の外周縁には、大気側ASに向かってほぼ直角に折曲された中間円筒部11が軸方向に沿って延出形成されている。この中間円筒部11の長さ寸法は、内側円筒部9の長さ寸法より短く形成されており、その右端縁には、ハウジング4の内周面に向かって径方向外側にほぼ直角に折曲された側面ほぼ環状の回転側シール隙間形成用壁部12が延出形成されている。さらに、回転側シール隙間形成用壁部12の外周縁には、密封側OSに向かってほぼ直角に折曲された外側円筒部13が軸方向に沿って延出形成されている。
【0015】
前記回転部材用弾性シール8は、回転軸装着部14と回転軸2の少なくとも回転停止時における後述するシール隙間25からの油漏れを防止するシール部材としてのリップシール15とを有している。
【0016】
一方の回転軸装着部14は、前記回転部材用環体7の内側円筒部9の内周面に配置されており、回転軸2に対して適宜な締代を備えている。
【0017】
他方のリップシール15は、回転部材用環体7の内側直立壁部10の大気側ASに位置する側面に基部が配置されており、大気側ASにリップ先端16が配置されている。このリップシール15は、内側直立壁部10の大気側ASの側面から大気側ASに向かって徐々に拡径するように形成されている。また、リップシール15は、回転軸2の回転停止時においては図1の破線にて示すように固定部材5の後述するシール当接面21に対してリップ先端16が適宜な締代をもって弾接し、回転軸2の回転時においては図1の実線にて示すように回転軸2の回転にともなう遠心力によってリップ先端16がシール当接面21から離間するように形成されている。
【0018】
すなわち、リップシール15のリップ先端16は、シール当接面21に対して接離可能に形成されている。
【0019】
なお、本実施形態のリップシール15は、軸方向に対して直交する方向に形成されているシール当接面21に対してリップ先端16が軸方向から当接する構成とされているが、シール当接面21を軸方向に沿って形成し、このシール当接面21に対してリップ先端16を径方向外側から当接させる構成としてもよい。
【0020】
前記固定部材5は、金属あるいは樹脂などにより形成された環状の固定部材用環体17に、ゴム様弾性体で形成された固定部材用弾性シール18が焼き付けられて一体に形成されている。
【0021】
前記固定部材用環体17は、外周面がハウジング4の内周面と対向する軸方向に平行な水平筒状部19と、この水平筒状部19の大気側ASに位置する右端縁から径方向中心に向かってほぼ直角に折曲された内向きフランジ状の固定側シール隙間形成用壁部20とを有する断面ほぼL字状に形成されている。そして、水平筒状部19の内周面は、取付状態において前記回転部材用環体7の外側円筒部13の外周面と適宜な間隔をおいて対向するように配置されている。さらに、固定側シール隙間形成用壁部20の密封側OSの側面は、回転側シール隙間形成用壁部12の大気側ASの側面と所定の間隔をおいて対向するように配置されている。すなわち、固定側シール隙間形成用壁部20と回転側シール隙間形成用壁部12とは、ほぼ平行に配置されている。また、固定側シール隙間形成用壁部20の密封側OSの側面の内周側近傍は、回転軸2の停止時においてリップシール15のリップ先端16が当接されるシール当接面21とされている。
【0022】
前記固定部材用弾性シール18は、固定部材用環体17の水平筒状部19の外周と、固定部材用環体17の固定側シール隙間形成用壁部20の大気側ASの側面とを被覆するように形成されており、水平筒状部19の外周を覆う部分は、ハウジング4の内周面に対して適宜な締代を備えたハウジング装着部22とされている。
【0023】
前記回転側シール隙間形成用壁部12と固定側シール隙間形成用壁部20との相互間には、樹脂や金属などにより形成された浮動リング6が配置されている。
この浮動リング6は、回転側シール隙間形成用壁部12と固定側シール隙間形成用壁部20との相互間において、径方向および軸方向に移動可能に配置されている。
【0024】
すなわち、回転側シール隙間形成用壁部12と固定側シール隙間形成用壁部20との相互間の間隔Gは、浮動リング6の軸方向に示す厚さTより大きく形成されている。そして、回転側シール隙間形成用壁部12と浮動リング6との対向面間の隙間23と、固定側シール隙間形成用壁部20と浮動リング6との対向面間の隙間24との両者によりシール隙間25が形成されている。
【0025】
すなわち、回転側シール隙間形成用壁部12と浮動リング6との対向面間の隙間23のサイズと、固定側シール隙間形成用壁部20と浮動リング6との対向面間の隙間24のサイズとを加算した値、言い換えると、回転側シール隙間形成用壁部12と固定側シール隙間形成用壁部20との相互間の間隔Gから浮動リング6の厚さTを減算した値が、シール隙間25のサイズとなっている。
【0026】
なお、浮動リング6の内外径のサイズとしては、回転軸2が停止している回転停止状態および回転軸2が回転している回転状態において、リップシール15と接触しないサイズとすることが好ましい。
【0027】
つぎに、前述した構成からなる本実施形態の作用について説明する。
【0028】
本実施形態のラビリンスシール1によれば、回転軸2の回転停止時および低速時においては、リップシール15のリップ先端16が自身の弾性復元力により、図1の破線で示すように、固定部材5のシール当接面21に弾接しているので、密封側OSから大気側ASへの油漏れを確実かつ容易に防止することができる。
【0029】
そして、回転軸2が回転を開始すると、回転が上がるにつれてリップシール15のリップ先端16は、回転軸2の回転にともなう遠心力によって径方向外側に向かって弾性変形する。この弾性変形により、リップシール15のリップ先端16が拡開し、図1の実線で示すように、リップシール15のリップ先端16がシール当接面21から離間する。その結果、回転軸2の回転時において、リップシール15のリップ先端16とシール当接面21を非接触状態に保持することができる。なお、回転軸2の回転にともなう遠心力によってシール当接面21から離間したリップシール15のリップ先端16は、回転軸2の回転が低速になるとあるいは停止すると、自身の弾性復元力によってシール当接面21に当接したもとの状態に容易に復帰する。
【0030】
したがって、本実施形態のラビリンスシール1によれば、回転軸2の回転が低速あるいは停止時における油漏れを確実かつ容易に防止することができる。
【0031】
また、本実施形態のラビリンスシール1によれば、回転軸2が回転を開始すると回転が上がるにつれて、密封側OSに存在する油は、回転軸2に装着されている回転部材3の回転にともなう遠心力によって、固定部材5の内周面側に張り付くように流動するとともに、その一部がシール隙間25を通って密封側OSから大気側ASに流出しようとする。しかし、シール隙間25を通って大気側ASに流出しようとする油は、シール隙間25に配設されている浮動リング6によって層流状態で回転して捕捉されて大気側ASへの流出が阻止され、油の大気側ASへの漏洩が防止される。
【0032】
この時、浮動リング6がシール隙間25において移動可能に配設されているので、浮動リング6は、油との接触によって回転軸2の回転速度より遅い速度で回転するとともに、回転側シール隙間形成用壁部12と浮動リング6との対向面間の隙間23に存在する油の圧力と、固定側シール隙間形成用壁部20と浮動リング6との対向面間の隙間24に存在する油の圧力とが均衡を保つように軸方向に移動する。すなわち、浮動リング6は、回転軸2と同軸上に保持されるとともに、浮動リング6の左右に形成される隙間23,24が保持されるように自動調心されることになる。
【0033】
そして、本実施形態のラビリンスシール1によれば、回転側シール隙間形成用壁部12と固定側シール隙間形成用壁部20との間に浮動リング6が配設されているから、シール隙間25のサイズを狭くせずに、低速から高速までの広い範囲に亘って油の大気側ASへの漏洩を確実かつ容易に防止することができる。
【0034】
このことは、性能評価試験により確認することができた。この性能評価試験には、図2(a)に示すように、外径80mmの回転軸の外周面に回転部材3の代用として断面ほぼL字状の環体により軸方向に対して垂直な金属製の回転側垂直壁31を設けるとともに、内径100mmのハウジング4の内周面に固定部材5の代用として断面ほぼL字状の環体により軸方向に対して垂直な大気側ASより観察できる透明な樹脂製の固定側垂直壁32を設け、回転側垂直壁31と固定側垂直壁32との相互間に浮動リング6を配設し、かつ0.5mm(回転側垂直壁31と固定側垂直壁32との相互間の間隔Gから浮動リング6の厚さTを減算した値)のシール隙間25を設けたものを本発明品とし、図2(b)に示すように、回転側垂直壁31と固定側垂直壁32との相互間に浮動リング6を配設せずにシール隙間25を設けたものを従来品として用いた。また、従来品のシール隙間25のサイズとしては、0.1mm(従来品1)、0.2mm(従来品2)、0.3mm(従来品3)および0.4mm(従来品4)の4種類を用いた。
【0035】
そして、本発明品および従来品について、密封流体としての潤滑油、すなわちキャッスルSL 5W−20(トヨタ製商品名)を用いて、潤滑油の油温を150℃とし、回転軸2の回転数を750、2000、3000、4500、6000、7000、9000rpmの7段階で回転させた場合の油漏れ量をそれぞれ評価した。なお、潤滑油は、回転軸2を回転させた状態で密封側OSに供給した。また、油漏れ量は、密封側OSに潤滑油を供給した後、30分経過したときに大気側ASに漏洩した潤滑油の量を計測したものである。
【0036】
この性能評価試験の評価結果を図3に示す。
【0037】
図3に示すように、本発明品は、シール隙間25を0.5mmとした場合であっても全回転領域(750〜9000rpm)において油漏れがなく良好な密封性能を有することが判明した。
【0038】
これに対して、従来品は、本発明品よりシール隙間25が狭いにもかかわらず、本発明品より性能が劣るものであった。すなわち、従来品1から4は、すべて油漏れが生じ、油漏れを防止することができないものであった。さらに説明すると、図3に示すように、従来品1および2は、シール隙間25が0.1mmおよび0.2mmと極めて少ないにもかかわらず、回転軸2の回転数が4500rpmを超えると油漏れが生じるものであった。また、従来品3および4は、シール隙間25が0.3mmおよび0.4mmと本発明品より狭いにもかかわらず、回転軸2の回転数が2000rpmを超えると油漏れが生じるとともに、油漏れ量が多いものであった。なお、従来品の9000rpmにおける油漏れ量は、従来品1が0.3cc/min、従来品2が0.5cc/min、従来品3が5.4cc/min、従来品4が8.4cc/minであった。
【0039】
前記性能評価試験において、油漏れがない状態では、シール隙間25に油の大気との境界部分である油面が環状に保持されているとともに、この油面が層流の状態で回転することが判明した。また、油漏れの状態は、油面が波打つように乱れて、油面の一部が剥離して大気側ASに飛散することにより生じることが判明した。
【0040】
本発明品のラビリンスシールにおいてシール隙間が従来品より広いにもかかわらず良好な密封性能を有するのは、シール隙間に配置された浮動リングが回転軸の回転にともなって回転軸の回転速度より遅い速度で回転することにより、シール隙間における油面が乱れることなく層流状態で環状に保持されるためである。
【0041】
なお、本実施形態のラビリンスシール1を製造して実際の製品による性能評価試験を行ったところ、全回転領域(0〜9000rpm)において油漏れがなく良好な密封性能を有することが確認できた。
【0042】
したがって、本実施形態のラビリンスシール1によれば、従来に比べてシール隙間25を広く設定できるので、シール隙間25のサイズを狭くせずに、低速から高速までの広い範囲に亘って密封流体の漏洩を確実かつ容易に防止することができる。その結果、ラビリンスシール1の製作時の許容差およびラビリンスシール1の取付精度を緩和することができ、しかも回転軸2の軸方向のガタを吸収することもできるので、生産性の向上および低コスト化を容易に図ることができる。
【0043】
図4は本発明に係るラビリンスシールの第2実施形態を示すものである。本実施形態のラビリンスシール41は、回転部材3、固定部材5および浮動リング6が分離しないように一体化したものである。
【0044】
すなわち、本実施形態のラビリンスシール41は、取り扱い時などに、固定部材5の内部に配置される回転部材3および浮動リング6が軸方向に移動して固定部材5から分離するのを防止するため、固定部材5を構成する固定部材用環体17の水平筒状部19の左端縁に、径方向中心に向かってほぼ直角に折曲された内向きフランジ状の分離防止壁42を設けることにより構成されている。この分離防止壁42は、固定部材5の内部に浮動リング6および回転部材3を収納した後で、予め分離防止壁42を形成するのに必要な分だけ軸方向に長くかつ薄く形成された水平筒状部19の左端部を径方向中心に向かって折曲げ加工することにより形成されている。その他の構成は前述した第1実施形態のラビリンスシール1と同様とされており、その詳しい説明は省略する。
【0045】
このような構成により、本実施形態のラビリンスシール41は、前述した第1実施形態のラビリンスシール1と同様の効果を奏することができるとともに、回転部材3、固定部材5および浮動リング6が分離しないので、取り扱い性、およびラビリンスシール41を回転軸2およびハウジング4に取り付ける際の作業性をともに向上することができる。
【0046】
図5は本発明に係るラビリンスシールの第3実施形態を示すものである。本実施形態のラビリンスシール51は、静止部としてのハウジング4の一部に固定側シール隙間形成用壁部20を設けたものである。
【0047】
すなわち、本実施形態のラビリンスシール51は、ハウジング4自身の一部に固定側シール隙間形成用壁部20が設けられており、この固定側シール隙間形成用壁部20の内周縁には、密封側OSに向かって軸方向にほぼ直角に折曲された筒状部52が延出形成されている。そして、回転軸2の回転停止時および低速時において、回転部材3に設けられたリップシール15のリップ先端16が、径方向外側から筒状部52の外周面に当接するように形成されており(同図破線参照)、このリップ先端16が当接する筒状部52の外周面がシール当接面21とされている。なお、筒状部52を設けずに、リップシール15のリップ先端16を、固定側シール隙間形成用壁部20の密封側OSに位置する側面に当接させる構成としてもよい。
【0048】
その他の構成は前述した第1実施形態のラビリンスシール1と同様とされており、その詳しい説明は省略する。
【0049】
このような構成により、本実施形態のラビリンスシール51は、前述した第1実施形態のラビリンスシール1と同様の効果を奏することができる。
【0050】
なお、本発明の密封装置は、低トルクを要求されるエンジンあるいはポンプ軸などにおいて液体あるいは液体と固体との混合体からなる密封流体の漏洩防止に用いることができる。
【0051】
また、本発明は、前記各実施形態に限定されるものではなく、必要に応じて種々変更することができる。
【0052】
【発明の効果】
以上説明したように請求項1に係る本発明の密封装置によれば、シール隙間を狭くせずに、低速から高速までの広い範囲に亘って密封流体の漏洩を確実かつ容易に防止することができるなどの極めて優れた効果を奏する。
【0053】
また、請求項2に係る本発明の密封装置によれば、回転体の回転停止時および低速時における密封流体の漏洩を確実かつ容易に防止することができるなどの極めて優れた効果を奏する。
【図面の簡単な説明】
【図1】本発明に係る密封装置としてのラビリンスシールの第1実施形態の要部を示す断面図
【図2】性能評価試験に用いたラビリンスシールの構成を示す断面図であり、(a)は本発明品、(b)は従来品を示す
【図3】回転軸の回転数と油漏れ量の関係を示す線図
【図4】本発明の密封装置としてのラビリンスシールの第2実施形態の要部を示す図1と同様の図
【図5】本発明の密封装置としてのラビリンスシールの第3実施形態の要部を示す図1と同様の図
【符号の説明】
1、41、51 ラビリンスシール
2 回転軸
3 回転部材
4 ハウジング
5 固定部材
6 浮動リング
12 回転側シール隙間形成用壁部
15 リップシール
16 リップ先端
20 固定側シール隙間形成用壁部
21 シール当接面
23、24 隙間
25 シール隙間
42 分離防止壁
52 筒状部
G (回転側シール隙間形成用壁部と固定側シール隙間形成用壁部との)間隔
T (浮動リングの)厚さ
AS 大気側
OS 密封側
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a sealing device that prevents leakage of a sealing fluid, and more particularly to a sealing device that can prevent leakage of a sealing fluid in a non-contact manner by rotation of a rotating body.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, as a sealing device for preventing leakage of a sealed fluid, a labyrinth seal capable of providing a seal gap between a rotating body and a stationary part and preventing leakage of the sealed fluid in a non-contact manner by rotation of the rotating body has been known. Have been. This labyrinth seal is particularly suitable for preventing oil leakage at a portion where low torque is required, and is used for, for example, a turbocharger (for example, see Patent Document 1).
[0003]
[Patent Document 1]
JP-A-5-1559.
[0004]
[Problems to be solved by the invention]
By the way, in the above-mentioned conventional labyrinth seal, in order to prevent oil leakage during rotation of the rotating body (substantially negligibly small), it is necessary to narrow the seal gap and reduce the variation, that is, to precisely manage the gap. is there. Also, in order to prevent oil leakage during rotation, it is necessary to narrow the seal gap as the rotation speed increases. For example, when the rotation speed of the rotating body is 8000 rpm, it is necessary to form a seal gap provided between the rotating body and the stationary portion to about 0.1 mm.
[0005]
However, in order to form a seal gap of 0.1 mm in the conventional labyrinth seal, the processing accuracy of the labyrinth seal itself and the mounting accuracy of the labyrinth seal need to be extremely high. In order to increase the processing accuracy of the labyrinth seal, a high-precision device is required, and to manufacture a large number of labyrinth seals produced by such a device, an extremely large number of devices and places are required. However, there is a problem that the production efficiency is poor and the economic burden increases. Further, in order to increase the mounting accuracy of the labyrinth seal, a high-precision mounting device is still required, and there is a problem that the production efficiency is low and the economic burden increases.
[0006]
Therefore, there is a demand for a sealing device capable of preventing leakage of a sealing fluid over a wide range from a low speed to a high speed without reducing the sealing gap.
[0007]
The present invention has been made in view of this point, and an object of the present invention is to provide a sealing device that can prevent leakage of a sealing fluid over a wide range from low speed to high speed without narrowing a sealing gap. And
[0008]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the sealing device of the present invention according to the first aspect of the present invention is characterized in that a sealing gap is provided between a rotating body and a stationary portion, and leakage of a sealing fluid due to rotation of the rotating body. In a sealing device capable of preventing the contact in a non-contact manner, wherein a floating ring movable in the seal gap is provided. By adopting such a configuration, it is possible to reliably and easily prevent the leakage of the sealing fluid over a wide range from low speed to high speed without narrowing the seal gap by the effect of the floating ring.
[0009]
The sealing device of the present invention according to claim 2 is characterized in that, in claim 1, the rotating member is provided with a sealing member for preventing leakage of sealing fluid from the sealing gap at least when rotation of the rotating member is stopped. On the point. By employing such a configuration, it is possible to reliably and easily prevent leakage of the sealed fluid when the rotation of the rotating body is stopped and at a low speed.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described with reference to embodiments shown in the drawings.
[0011]
FIG. 1 is a sectional view showing a main part of a first embodiment of a labyrinth seal as a sealing device according to the present invention.
[0012]
As shown in FIG. 1, a labyrinth seal 1 as a sealing device according to the present embodiment is configured such that a rotating member 3 mounted on a rotating shaft 2 as a rotating body and a housing 4 as a stationary portion face the rotating member 3. And a floating ring 6. The left side of the labyrinth seal 1 in FIG. 1 is a sealing side OS where lubricating oil as a sealing fluid is present, and the right side of the labyrinth seal 1 in FIG. 1 is an atmosphere side AS.
[0013]
The rotary member 3 is integrally formed by baking a rotary member elastic seal 8 made of a rubber-like elastic body on an annular rotary member ring body 7 formed of metal or resin or the like.
[0014]
The rotating member ring 7 includes an inner cylindrical portion 9. The inner cylindrical portion 9 is formed to have a slightly larger diameter than the rotating shaft 2 and to have a predetermined length along the axial direction shown in the left-right direction of FIG. Have been. At the left end edge of the inner cylindrical portion 9 located on the sealing side OS, a substantially annular inner upright wall portion 10 which is bent radially outward at a substantially right angle toward the inner peripheral surface of the housing 4 extends. Is formed. The outer peripheral edge of the inner upright wall portion 10 is formed so as to be located at a substantially intermediate portion between the outer peripheral surface of the rotating shaft 2 and the inner peripheral surface of the housing 4. On the outer peripheral edge of the inner upright wall portion 10, an intermediate cylindrical portion 11 bent substantially at right angles toward the atmosphere side AS is formed extending in the axial direction. The length of the intermediate cylindrical portion 11 is shorter than the length of the inner cylindrical portion 9, and the right end of the intermediate cylindrical portion 11 is bent outward at a substantially right angle toward the inner peripheral surface of the housing 4. A substantially annular rotating side seal gap forming wall portion 12 formed on the side surface extends. Further, an outer cylindrical portion 13 which is bent substantially at right angles toward the sealing side OS is formed on the outer peripheral edge of the rotating side seal gap forming wall portion 12 so as to extend in the axial direction.
[0015]
The rotating member elastic seal 8 includes a rotating shaft mounting portion 14 and a lip seal 15 as a sealing member for preventing oil leakage from a seal gap 25 described later at least when the rotation of the rotating shaft 2 is stopped.
[0016]
The one rotating shaft mounting portion 14 is arranged on the inner peripheral surface of the inner cylindrical portion 9 of the rotating member ring 7 and has an appropriate interference with the rotating shaft 2.
[0017]
The other lip seal 15 has a base located on the side of the inner upright wall 10 of the rotating member ring 7 located on the atmosphere side AS, and a lip tip 16 located on the atmosphere side AS. The lip seal 15 is formed so as to gradually increase in diameter from the side surface of the inner upright wall portion 10 on the atmosphere side AS toward the atmosphere side AS. When the rotation of the rotary shaft 2 is stopped, the lip end 16 of the lip seal 15 elastically contacts the seal contact surface 21 of the fixing member 5 described later with an appropriate tightening margin as shown by a broken line in FIG. When the rotating shaft 2 rotates, the lip tip 16 is formed to be separated from the seal contact surface 21 by the centrifugal force accompanying the rotation of the rotating shaft 2 as shown by the solid line in FIG.
[0018]
That is, the lip tip 16 of the lip seal 15 is formed so as to be able to contact and separate from the seal contact surface 21.
[0019]
The lip seal 15 of the present embodiment is configured such that the lip tip 16 abuts from the axial direction on a seal abutting surface 21 formed in a direction orthogonal to the axial direction. The contact surface 21 may be formed along the axial direction, and the lip tip 16 may contact the seal contact surface 21 from the radial outside.
[0020]
The fixing member 5 is integrally formed by baking a fixing member elastic seal 18 made of a rubber-like elastic body on an annular fixing member ring 17 made of metal or resin.
[0021]
The fixing member ring 17 has a horizontal cylindrical portion 19 whose outer peripheral surface is parallel to the axial direction facing the inner peripheral surface of the housing 4, and a diameter from a right end edge of the horizontal cylindrical portion 19 located on the atmosphere side AS. It is formed in a substantially L-shaped cross section having an inward flange-shaped fixed sealing gap forming wall portion 20 bent substantially at right angles toward the center of the direction. The inner peripheral surface of the horizontal tubular portion 19 is arranged so as to face the outer peripheral surface of the outer cylindrical portion 13 of the rotating member ring 7 at an appropriate distance in the attached state. Further, the side surface of the sealing side OS of the fixed side seal gap forming wall portion 20 is disposed to face the side surface of the rotating side seal gap forming wall portion 12 on the atmosphere side AS at a predetermined interval. That is, the fixed side seal gap forming wall portion 20 and the rotating side seal gap forming wall portion 12 are arranged substantially in parallel. Further, the vicinity of the inner peripheral side of the side surface of the sealing side OS of the fixed side seal gap forming wall portion 20 is a seal contact surface 21 with which the lip tip 16 of the lip seal 15 contacts when the rotating shaft 2 is stopped. ing.
[0022]
The fixed member elastic seal 18 covers the outer periphery of the horizontal cylindrical portion 19 of the fixed member ring 17 and the side surface of the air side AS of the fixed side seal gap forming wall portion 20 of the fixed member ring 17. The portion that covers the outer periphery of the horizontal tubular portion 19 is a housing mounting portion 22 having an appropriate interference with the inner peripheral surface of the housing 4.
[0023]
A floating ring 6 made of resin, metal, or the like is disposed between the rotation-side seal gap forming wall 12 and the fixed-side seal gap forming wall 20.
The floating ring 6 is arranged so as to be movable in the radial direction and the axial direction between the rotating side seal gap forming wall portion 12 and the fixed side seal gap forming wall portion 20.
[0024]
That is, the gap G between the rotating side seal gap forming wall portion 12 and the fixed side seal gap forming wall portion 20 is formed to be larger than the thickness T of the floating ring 6 in the axial direction. The gap 23 between the opposing surfaces of the rotating side seal gap forming wall 12 and the floating ring 6 and the gap 24 between the opposing surfaces of the fixed side seal gap forming wall 20 and the floating ring 6 are both used. A seal gap 25 is formed.
[0025]
That is, the size of the gap 23 between the opposing surface of the rotating side seal gap forming wall 12 and the floating ring 6 and the size of the gap 24 between the opposing surface of the fixed side seal gap forming wall 20 and the floating ring 6. In other words, the value obtained by subtracting the thickness T of the floating ring 6 from the interval G between the rotating-side seal gap forming wall 12 and the fixed-side seal gap forming wall 20 is the seal. It is the size of the gap 25.
[0026]
Note that the inner and outer diameters of the floating ring 6 are preferably of a size that does not come into contact with the lip seal 15 when the rotation shaft 2 is stopped and when the rotation shaft 2 is rotating.
[0027]
Next, the operation of the present embodiment having the above-described configuration will be described.
[0028]
According to the labyrinth seal 1 of the present embodiment, when the rotation of the rotating shaft 2 is stopped and at a low speed, the lip tip 16 of the lip seal 15 has its own elastic restoring force, as shown by the broken line in FIG. 5 is resiliently in contact with the seal contact surface 21 of FIG. 5, it is possible to reliably and easily prevent oil leakage from the sealing side OS to the atmosphere side AS.
[0029]
When the rotation shaft 2 starts rotating, the lip tip 16 of the lip seal 15 elastically deforms radially outward due to centrifugal force accompanying the rotation of the rotation shaft 2 as the rotation increases. Due to this elastic deformation, the lip tip 16 of the lip seal 15 expands, and the lip tip 16 of the lip seal 15 separates from the seal contact surface 21 as shown by the solid line in FIG. As a result, when the rotating shaft 2 rotates, the lip tip 16 of the lip seal 15 and the seal contact surface 21 can be kept in a non-contact state. The lip tip 16 of the lip seal 15 separated from the seal contact surface 21 by the centrifugal force accompanying the rotation of the rotating shaft 2, when the rotation of the rotating shaft 2 becomes slow or stops, its own elastic restoring force causes the sealing contact. It easily returns to the original state in contact with the contact surface 21.
[0030]
Therefore, according to the labyrinth seal 1 of the present embodiment, it is possible to reliably and easily prevent oil leakage when the rotation of the rotating shaft 2 is at a low speed or stopped.
[0031]
Further, according to the labyrinth seal 1 of the present embodiment, when the rotation shaft 2 starts rotating, as the rotation increases, the oil present on the sealing side OS is accompanied by the rotation of the rotation member 3 mounted on the rotation shaft 2. Due to the centrifugal force, the fluid flows so as to stick to the inner peripheral surface side of the fixing member 5, and a part of the fluid flows from the sealing side OS to the atmosphere side AS through the sealing gap 25. However, the oil that is going to flow out to the atmosphere side AS through the seal gap 25 is captured by being rotated in a laminar flow state by the floating ring 6 disposed in the seal gap 25 and is prevented from flowing out to the atmosphere side AS. Thus, leakage of oil to the atmosphere side AS is prevented.
[0032]
At this time, since the floating ring 6 is movably disposed in the seal gap 25, the floating ring 6 rotates at a speed lower than the rotation speed of the rotary shaft 2 due to the contact with the oil, and forms the rotation-side seal gap. Of the oil existing in the gap 23 between the opposing surfaces of the wall 12 and the floating ring 6 and the pressure of the oil existing in the gap 24 between the opposing surfaces of the fixed seal gap forming wall 20 and the floating ring 6. Move axially to balance pressure. That is, the floating ring 6 is self-centered so as to be held coaxially with the rotating shaft 2 and to hold the gaps 23 and 24 formed on the left and right sides of the floating ring 6.
[0033]
According to the labyrinth seal 1 of the present embodiment, since the floating ring 6 is disposed between the rotating side seal gap forming wall 12 and the fixed side seal gap forming wall 20, the seal gap 25 is formed. The oil can be reliably and easily prevented from leaking to the atmosphere side AS over a wide range from low speed to high speed without reducing the size of the oil.
[0034]
This could be confirmed by a performance evaluation test. In this performance evaluation test, as shown in FIG. 2 (a), a metal having a substantially L-shaped cross section was used as a substitute for the rotating member 3 on the outer peripheral surface of a rotating shaft having an outer diameter of 80 mm. Made of a rotating side vertical wall 31 made of stainless steel, and an annular body having a substantially L-shaped cross section as a substitute for the fixing member 5 on the inner peripheral surface of the housing 4 having an inner diameter of 100 mm and transparent from the atmosphere side AS perpendicular to the axial direction. A fixed resin vertical wall 32 is provided, the floating ring 6 is disposed between the rotating vertical wall 31 and the fixed vertical wall 32, and 0.5 mm (rotating vertical wall 31 and fixed vertical wall 32) is provided. The present invention is provided with a seal gap 25 of a value obtained by subtracting the thickness T of the floating ring 6 from the gap G between the wall 32 and the vertical wall of the rotating side as shown in FIG. Without disposing the floating ring 6 between the base 31 and the fixed vertical wall 32. Those provided Lumpur gap 25 is used as the conventional product. Further, the size of the seal gap 25 of the conventional product is 0.1 mm (conventional product 1), 0.2 mm (conventional product 2), 0.3 mm (conventional product 3), and 0.4 mm (conventional product 4). The type was used.
[0035]
Then, for the product of the present invention and the conventional product, using a lubricating oil as a sealing fluid, that is, Castle SL 5W-20 (trade name, manufactured by Toyota), the oil temperature of the lubricating oil was set to 150 ° C. The amount of oil leakage when rotating at seven stages of 750, 2000, 3000, 4500, 6000, 7000, and 9000 rpm was evaluated. The lubricating oil was supplied to the sealing side OS while the rotating shaft 2 was rotated. The amount of oil leakage is obtained by measuring the amount of lubricating oil leaked to the atmosphere side AS 30 minutes after the supply of the lubricating oil to the sealing side OS.
[0036]
FIG. 3 shows the results of the performance evaluation test.
[0037]
As shown in FIG. 3, the product of the present invention was found to have good sealing performance without oil leakage in the entire rotation range (750 to 9000 rpm) even when the seal gap 25 was 0.5 mm.
[0038]
On the other hand, the performance of the conventional product was inferior to that of the product of the present invention even though the seal gap 25 was smaller than that of the product of the present invention. That is, the conventional products 1 to 4 all suffered from oil leakage and could not prevent oil leakage. More specifically, as shown in FIG. 3, the conventional products 1 and 2 have oil leakage when the rotation speed of the rotating shaft 2 exceeds 4500 rpm, even though the seal gap 25 is extremely small at 0.1 mm and 0.2 mm. Occurred. Further, in the conventional products 3 and 4, although the seal gap 25 is 0.3 mm and 0.4 mm smaller than that of the present invention, oil leakage occurs when the rotation speed of the rotating shaft 2 exceeds 2000 rpm, and oil leakage occurs. The amount was large. The oil leakage at 9000 rpm of the conventional product was 0.3 cc / min for the conventional product 1, 0.5 cc / min for the conventional product 2, 5.4 cc / min for the conventional product 3, and 8.4 cc / min for the conventional product 4. min.
[0039]
In the performance evaluation test, in a state where there is no oil leakage, the oil surface, which is a boundary portion between the oil and the atmosphere, is annularly held in the seal gap 25, and the oil surface may rotate in a laminar flow state. found. In addition, it was found that the state of the oil leak was caused by the oil surface being distorted in a wavy manner, a part of the oil surface being separated and scattered to the atmosphere side AS.
[0040]
The labyrinth seal of the present invention has good sealing performance despite the fact that the seal gap is wider than the conventional product because the floating ring arranged in the seal gap is slower than the rotation speed of the rotating shaft with the rotation of the rotating shaft. This is because, by rotating at a speed, the oil level in the seal gap is annularly maintained in a laminar flow state without being disturbed.
[0041]
In addition, when the labyrinth seal 1 of this embodiment was manufactured and a performance evaluation test was performed using an actual product, it was confirmed that there was no oil leakage and good sealing performance was obtained in the entire rotation range (0 to 9000 rpm).
[0042]
Therefore, according to the labyrinth seal 1 of the present embodiment, the seal gap 25 can be set wider than before, so that the size of the seal gap 25 is not narrowed, and the sealing fluid is spread over a wide range from low speed to high speed. Leakage can be reliably and easily prevented. As a result, the tolerance in manufacturing the labyrinth seal 1 and the mounting accuracy of the labyrinth seal 1 can be reduced, and the play in the axial direction of the rotating shaft 2 can be absorbed, so that productivity is improved and cost is reduced. Can be easily achieved.
[0043]
FIG. 4 shows a second embodiment of the labyrinth seal according to the present invention. The labyrinth seal 41 of this embodiment is one in which the rotating member 3, the fixed member 5, and the floating ring 6 are integrated so as not to be separated.
[0044]
That is, the labyrinth seal 41 of the present embodiment prevents the rotating member 3 and the floating ring 6 arranged inside the fixed member 5 from moving in the axial direction and separating from the fixed member 5 during handling or the like. By providing an inward flange-like separation preventing wall 42 that is bent at substantially a right angle toward the radial center at the left end edge of the horizontal tubular portion 19 of the fixing member ring 17 constituting the fixing member 5. It is configured. After the floating ring 6 and the rotating member 3 are housed inside the fixed member 5, the separation preventing wall 42 is formed in a horizontal direction that is long and thin in the axial direction by an amount necessary to form the separation preventing wall 42 in advance. It is formed by bending the left end of the cylindrical portion 19 toward the center in the radial direction. Other configurations are the same as those of the labyrinth seal 1 of the first embodiment described above, and detailed description thereof will be omitted.
[0045]
With such a configuration, the labyrinth seal 41 of the present embodiment can provide the same effect as the labyrinth seal 1 of the above-described first embodiment, and the rotating member 3, the fixed member 5, and the floating ring 6 are not separated. Therefore, both the handleability and the workability when attaching the labyrinth seal 41 to the rotating shaft 2 and the housing 4 can be improved.
[0046]
FIG. 5 shows a labyrinth seal according to a third embodiment of the present invention. The labyrinth seal 51 of the present embodiment has a fixed side seal gap forming wall portion 20 provided in a part of the housing 4 as a stationary portion.
[0047]
That is, in the labyrinth seal 51 of the present embodiment, the fixed side seal gap forming wall portion 20 is provided in a part of the housing 4 itself, and the inner peripheral edge of the fixed side seal gap forming wall portion 20 is sealed. A tubular portion 52 that is bent substantially at right angles in the axial direction toward the side OS extends. The lip tip 16 of the lip seal 15 provided on the rotating member 3 is formed such that the lip tip 16 of the lip seal 15 provided on the rotating member 3 comes into contact with the outer peripheral surface of the cylindrical portion 52 from the outside in the radial direction when the rotation of the rotating shaft 2 is stopped and at low speed. The outer peripheral surface of the cylindrical portion 52 with which the lip tip 16 abuts is the seal abutment surface 21 (see the broken line in the figure). The lip tip 16 of the lip seal 15 may be brought into contact with the side surface of the fixed-side seal gap forming wall portion 20 located on the sealing side OS without providing the tubular portion 52.
[0048]
Other configurations are the same as those of the labyrinth seal 1 of the first embodiment described above, and detailed description thereof will be omitted.
[0049]
With such a configuration, the labyrinth seal 51 of the present embodiment can achieve the same effect as the labyrinth seal 1 of the above-described first embodiment.
[0050]
The sealing device of the present invention can be used for preventing leakage of a sealed fluid composed of a liquid or a mixture of a liquid and a solid in an engine or a pump shaft requiring low torque.
[0051]
Further, the present invention is not limited to the above embodiments, and can be variously modified as needed.
[0052]
【The invention's effect】
As described above, according to the sealing device of the first aspect of the present invention, it is possible to reliably and easily prevent the leakage of the sealing fluid over a wide range from low speed to high speed without narrowing the sealing gap. It produces extremely excellent effects such as being able to.
[0053]
Further, according to the sealing device of the present invention according to claim 2, there is an extremely excellent effect that leakage of the sealed fluid can be reliably and easily prevented when the rotation of the rotating body is stopped and at a low speed.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a main part of a labyrinth seal as a sealing device according to a first embodiment of the present invention; FIG. 2 is a cross-sectional view showing a configuration of a labyrinth seal used in a performance evaluation test; Fig. 3 shows a product of the present invention, and Fig. 3 (b) shows a conventional product. Fig. 3 is a diagram showing the relationship between the number of rotations of a rotating shaft and the amount of oil leakage. Fig. 4 is a second embodiment of a labyrinth seal as a sealing device of the present invention. FIG. 5 is a view similar to FIG. 1 showing a main part of FIG. 5. FIG. 5 is a view similar to FIG. 1 showing a main part of a third embodiment of a labyrinth seal as a sealing device of the present invention.
1, 41, 51 Labyrinth seal 2 Rotary shaft 3 Rotary member 4 Housing 5 Fixed member 6 Floating ring 12 Rotary side seal gap forming wall 15 Lip seal 16 Lip tip 20 Fixed side seal gap forming wall 21 Seal contact surface 23, 24 Gap 25 Seal gap 42 Separation preventing wall 52 Cylindrical portion G Interval T (between the rotating seal gap forming wall and the fixed seal gap forming wall) Thickness (of floating ring) AS Atmospheric OS Sealed side

Claims (2)

回転体と静止部との間にシール隙間を設け、前記回転体の回転により密封流体の漏洩を非接触で防止することのできる密封装置において、
前記シール隙間に移動可能な浮動リングを設けたことを特徴とする密封装置。
In a sealing device capable of providing a sealing gap between a rotating body and a stationary part and preventing leakage of a sealed fluid in a non-contact manner by rotation of the rotating body,
A sealing device comprising a floating ring movable in the seal gap.
前記回転体に回転体の少なくとも回転停止時における前記シール隙間からの密封流体の漏洩を防止するシール部材を設けたことを特徴とする請求項1に記載の密封装置。The sealing device according to claim 1, wherein a seal member is provided on the rotating body to prevent leakage of a sealed fluid from the sealing gap at least when the rotation of the rotating body is stopped.
JP2002300128A 2002-10-15 2002-10-15 Sealing device Expired - Fee Related JP4295487B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002300128A JP4295487B2 (en) 2002-10-15 2002-10-15 Sealing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002300128A JP4295487B2 (en) 2002-10-15 2002-10-15 Sealing device

Publications (2)

Publication Number Publication Date
JP2004132524A true JP2004132524A (en) 2004-04-30
JP4295487B2 JP4295487B2 (en) 2009-07-15

Family

ID=32289066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002300128A Expired - Fee Related JP4295487B2 (en) 2002-10-15 2002-10-15 Sealing device

Country Status (1)

Country Link
JP (1) JP4295487B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006073159A1 (en) * 2005-01-07 2006-07-13 Honda Motor Co., Ltd. Bearing device for drive wheel
JP2006188175A (en) * 2005-01-07 2006-07-20 Honda Motor Co Ltd Drive wheel bearing device
JP2006342827A (en) * 2005-06-07 2006-12-21 Nok Corp Sealing device
WO2007097320A1 (en) * 2006-02-21 2007-08-30 Toyota Jidosha Kabushiki Kaisha Oil seal
JP2008002605A (en) * 2006-06-23 2008-01-10 Toyota Motor Corp Oil seal
JP2009216139A (en) * 2008-03-07 2009-09-24 Jtekt Corp Sealing device for bearing
JP2009264416A (en) * 2008-04-22 2009-11-12 Nok Corp Sealing device
WO2010046173A1 (en) * 2008-10-22 2010-04-29 Schaeffler Technologies Gmbh & Co. Kg Roller bearing with sealing elements
JP2011247317A (en) * 2010-05-25 2011-12-08 Nok Corp Sealing device
JP2016044810A (en) * 2014-08-26 2016-04-04 アクティエボラゲット・エスコーエッフ Low frictional dynamic seal
CN111571635A (en) * 2019-02-18 2020-08-25 沈阳新松机器人自动化股份有限公司 Forearm structure of horizontal joint robot

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7833105B2 (en) 2005-01-07 2010-11-16 Honda Motor Co., Ltd. Bearing device for drive wheel
JP2006188175A (en) * 2005-01-07 2006-07-20 Honda Motor Co Ltd Drive wheel bearing device
WO2006073159A1 (en) * 2005-01-07 2006-07-13 Honda Motor Co., Ltd. Bearing device for drive wheel
JP2006342827A (en) * 2005-06-07 2006-12-21 Nok Corp Sealing device
WO2007097320A1 (en) * 2006-02-21 2007-08-30 Toyota Jidosha Kabushiki Kaisha Oil seal
DE112007000330T5 (en) 2006-02-21 2009-04-16 Arai Seisakusho Co., Ltd. oil seal
JP4975014B2 (en) * 2006-02-21 2012-07-11 トヨタ自動車株式会社 Oil seal
US8191900B2 (en) 2006-02-21 2012-06-05 Toyota Jidosha Kabushiki Kaisha Oil seal
JP2008002605A (en) * 2006-06-23 2008-01-10 Toyota Motor Corp Oil seal
JP2009216139A (en) * 2008-03-07 2009-09-24 Jtekt Corp Sealing device for bearing
JP2009264416A (en) * 2008-04-22 2009-11-12 Nok Corp Sealing device
WO2010046173A1 (en) * 2008-10-22 2010-04-29 Schaeffler Technologies Gmbh & Co. Kg Roller bearing with sealing elements
JP2011247317A (en) * 2010-05-25 2011-12-08 Nok Corp Sealing device
JP2016044810A (en) * 2014-08-26 2016-04-04 アクティエボラゲット・エスコーエッフ Low frictional dynamic seal
CN111571635A (en) * 2019-02-18 2020-08-25 沈阳新松机器人自动化股份有限公司 Forearm structure of horizontal joint robot
CN111571635B (en) * 2019-02-18 2022-08-02 沈阳新松机器人自动化股份有限公司 Forearm structure of horizontal joint robot

Also Published As

Publication number Publication date
JP4295487B2 (en) 2009-07-15

Similar Documents

Publication Publication Date Title
JP6374961B2 (en) Sealing device
JP6054135B2 (en) Oil seal
JP6423451B2 (en) Sealing device
JP2004132524A (en) Sealing device
US11913552B2 (en) Sealing device and gear reducer
TWI725228B (en) Seal mechanism
JP2017190804A (en) Seal
JP2001165328A (en) Oil seal
JP7130863B2 (en) sealing device
JP2014070728A (en) Oil seal
JP2005257051A (en) Sealing device
WO2020218286A1 (en) Sliding component
JPH06201049A (en) Oil seal sealing high-speed shaft
KR20160148880A (en) Oil sealing apparatus
JP2017106528A (en) Sealing device
JP2019027511A (en) Sealing device
JP2001090843A (en) Shaft sealing device
EP4224028A1 (en) Sealing device
JP7133640B2 (en) Sealing device and sealing structure
US20240200660A1 (en) Sealing device
JPH0138375Y2 (en)
JP2008303907A (en) Sealing device
JP2017067283A (en) Sealing device
JP2004092895A (en) Oil seal
JP2001254840A (en) Sealing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071025

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080623

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080813

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080926

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090410

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4295487

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140417

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees