[go: up one dir, main page]

JP2004253409A - Optical semiconductor element storage package and optical semiconductor device - Google Patents

Optical semiconductor element storage package and optical semiconductor device Download PDF

Info

Publication number
JP2004253409A
JP2004253409A JP2003038794A JP2003038794A JP2004253409A JP 2004253409 A JP2004253409 A JP 2004253409A JP 2003038794 A JP2003038794 A JP 2003038794A JP 2003038794 A JP2003038794 A JP 2003038794A JP 2004253409 A JP2004253409 A JP 2004253409A
Authority
JP
Japan
Prior art keywords
optical semiconductor
base
frame
hole
semiconductor element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003038794A
Other languages
Japanese (ja)
Inventor
Tsutomu Sugimoto
努 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003038794A priority Critical patent/JP2004253409A/en
Publication of JP2004253409A publication Critical patent/JP2004253409A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)
  • Light Receiving Elements (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

【課題】光半導体素子収納用パッケージのネジ止めにより、または、光半導体素子の作動時に発生する熱により、光半導体素子収納用パッケージに歪が生じるのを有効に抑制し、光結合効率の優れたものとすること。
【解決手段】中央部に貫通穴1dを有し、四隅にネジ取付部1bがそれぞれ形成された略直方体の金属製の基体1と、貫通穴1dに嵌着された、上面に光半導体素子10を載置固定する載置用基板1−Aと、基体1の上側主面の外周部でネジ取付部1bよりも内側に貫通穴1dを囲繞するように接合され、側部に貫通孔2aが形成された金属製の枠体2と、貫通孔2aに嵌着された筒状の光ファイバ固定部材3とを具備しており、ネジ取付部1bおよび載置用基板1−Aの厚みが基体1の枠体2が接合される部位よりも薄く、載置用基板1−Aの縦弾性係数が基体1の縦弾性係数よりも大きい。
【選択図】 図2
Disclosed is an optical semiconductor device housing package that is effectively prevented from being distorted by screwing of the optical semiconductor device housing package or by heat generated during operation of the optical semiconductor device, and has excellent optical coupling efficiency. Things to do.
A substantially rectangular parallelepiped metal base 1 having a through hole 1d at the center and screw mounting portions 1b formed at four corners respectively, and an optical semiconductor element 10 on the upper surface fitted in the through hole 1d And a mounting substrate 1-A on which the base plate 1 is mounted and fixed so as to surround the through hole 1d inside the screw mounting portion 1b on the outer peripheral portion of the upper main surface of the base 1, and the through hole 2a is formed on the side portion. It has a metal frame 2 formed and a cylindrical optical fiber fixing member 3 fitted in the through hole 2a, and the thickness of the screw mounting portion 1b and the mounting substrate 1-A is a substrate. The mounting substrate 1 -A is thinner than the portion where the first frame 2 is joined, and the longitudinal elastic coefficient of the mounting substrate 1 -A is larger than the longitudinal elastic coefficient of the base 1.
[Selection] Fig. 2

Description

【0001】
【発明の属する技術分野】
本発明は、光半導体素子を収容するための光半導体素子収納用パッケージおよび光半導体装置に関し、特に外部電気回路基板への実装構造を改良したものに関する。
【0002】
【従来の技術】
従来の光半導体素子を収納するための光半導体素子収納用パッケージ(以下、単にパッケージともいう)を図4,図5に示す。図4はパッケージの平面図、図5は図4のB−B’線における断面図である。これらの図において、21は略直方体の基体、22は枠体、23は光ファイバ固定部材(以下、固定部材ともいう)、25は蓋体を示し、これら基体21、枠体22および蓋体25とで、内部空間に光半導体素子30を収容する容器が基本的に構成される。
【0003】
基体21は、鉄(Fe)−ニッケル(Ni)−コバルト(Co)合金や銅(Cu)−タングステン(W)焼結材等の金属から成り、その上側主面の中央部には、半導体レーザ(LD),フォトダイオード(PD)等の光半導体素子30を載置固定するための載置部21aが設けられる。また、基体21の四隅を同一面でもって外側に延出して設けられた延出部に貫通孔21cが形成されて成るネジ取付部21bが設けられている。この基体21は、貫通孔21cにネジを通して外部電気回路基板にネジ止めして固定される。
【0004】
基体21の上側主面の外周部には、載置部21aを囲繞するようにして接合され、側部に貫通孔22aが形成された枠体22が立設されている。この枠体22は、基体21と同様にFe−Ni−Co合金やCu−W焼結材等の金属から成り、基体21と一体成形される、または基体21に銀(Ag)ロウ等のロウ材を介してロウ付けされる、またはシーム溶接法等の溶接法により接合されることによって、基体21の上側主面の外周部に立設される。
【0005】
また、枠体22の側部には、固定部材23が貫通孔22aに嵌着されて取り付けられている。固定部材23は、光ファイバ26を枠体22の側部に固定するための筒状の部材であり、Fe−Ni−Co合金やステンレス鋼(SUS)等の金属から成り、固定部材23には縦方向に形成された貫通孔23aが設けられており、固定部材23の外周面が枠体22の貫通孔22aの内面にロウ材を介して嵌着接合される。
【0006】
このような構成のパッケージの載置部21aに光半導体素子30をペルチェ素子や回路基板等の基台31に搭載された状態で載置固定した後、枠体22の側部または基体21に設けられた、パッケージの内外の導電路として機能する入出力端子(図示せず)の枠体22内側の電極と光半導体素子30の電極とをボンディングワイヤで電気的に接続する。そして、ホルダー27に固定された光ファイバ26を固定部材23に挿入し、ホルダー27を固定部材23に溶接固定することにより光ファイバ26の光入出力端面と光半導体素子30の光入出力端面とを光結合させる。しかる後、枠体22の上面にFe−Ni−Co合金等から成る蓋体25をシーム溶接法等の溶接法により接合して光半導体素子30を気密に封止することによって、製品としての光半導体装置が完成する。
【0007】
この光半導体装置は、ネジ取付部21bの貫通孔21cにネジを通して基体21を外部電気回路基板(図示せず)にネジ止め固定し、入出力端子(図示せず)の枠体22の外側の電極と外部電気回路とを電気的に接続した後、外部電気回路から電気信号によって光半導体素子30で光を励起させ、この光を光ファイバ26を介して外部に伝送することによって、または、外部から光ファイバ26を通って伝送してきた光信号を、光半導体素子30に受光させて光信号を電気信号に変換することによって作動し、高速光通信等に使用される。
【0008】
しかしながら、このような光半導体装置は、貫通孔21cにネジを挿入して外部電気回路基板にネジ止め固定する際、ネジの締め付けによりネジ取付部21bに応力が発生し、この応力が基体21や枠体22に伝わってパッケージに歪みが生じ、その結果、光ファイバ26と光半導体素子30との光軸がずれて光結合効率が劣化するという問題点を有していた。
【0009】
このような問題点を解決するため、ネジ取付部21bを基体21と別体とし、基体21よりも縦弾性係数の低い材質、例えば、Cu,Cu合金,アルミニウム(Al),Al合金等で形成し、基体21にAgロウ付けした構成が提案されている(例えば、下記の特許文献1参照)。これにより、パッケージをネジ止め固定する際、ネジ取付部21bをネジで締め付けても、ネジ取付部21bが主に変形して基体21の変形が抑えられ、光半導体素子30と光ファイバ26との光結合効率の低下を抑制することができる。
【0010】
【特許文献1】
特開平6−82659号公報
【0011】
【発明が解決しようとする課題】
しかしながら、上記特許文献1に示されるパッケージは、光半導体素子30の動作により大量の熱が発生すると、その熱によって基体21が熱膨張し、枠体22との接合部において応力が発生してパッケージに歪みが生じ、その結果、光ファイバ26と光半導体素子30との光軸がずれて光結合効率が劣化するという問題点を有していた。
【0012】
また、パッケージをネジ止め固定する際、ネジ取付部21bをネジで締め付けても、ネジ取付部21bが主に変形して基体21の変形が抑えられるものの、ネジ取付部21bと基体21との接合部には応力が集中し易く、その応力によりネジ取付部21bと基体21との接合部において剥離が生じ、パッケージが破損するという問題点をも有していた。
【0013】
従って、本発明は上記問題点に鑑み完成されたものであり、その目的は、光半導体素子収納用パッケージのネジ止めにより、または、光半導体素子の作動時に発生する熱により、光半導体素子収納用パッケージに歪が生じるのを有効に抑制し、LD,PD等の光半導体素子の光入出力端面と光ファイバの光入出力端面との間における光信号の授受を正常に維持させ、光結合効率の優れた光半導体素子収納用パッケージおよび光半導体装置を提供することにある。
【0014】
【課題を解決するための手段】
本発明の光半導体素子収納用パッケージは、中央部に貫通穴を有し、四隅にネジ取付部がそれぞれ形成された略直方体の金属製の基体と、前記貫通穴に嵌着された、上面に光半導体素子を載置固定する載置用基板と、前記基体の上側主面の外周部で前記ネジ取付部よりも内側に前記貫通穴を囲繞するように接合され、側部に貫通孔が形成された金属製の枠体と、前記貫通孔に嵌着されるかまたは前記貫通孔の前記枠体外側の開口の周囲に一端が接合された筒状の光ファイバ固定部材とを具備しており、前記ネジ取付部および前記載置用基板の厚みが前記基体の前記枠体が接合される部位よりも薄く、前記載置用基板の縦弾性係数が前記基体の縦弾性係数よりも大きいことを特徴とする。
【0015】
本発明の光半導体素子収納用パッケージは、中央部に貫通穴を有し、四隅にネジ取付部がそれぞれ形成された略直方体の金属製の基体と、貫通穴に嵌着された、上面に光半導体素子を載置固定する載置用基板と、基体の上側主面の外周部でネジ取付部よりも内側に貫通穴を囲繞するように接合され、側部に貫通孔が形成された金属製の枠体と、貫通孔に嵌着されるかまたは貫通孔の枠体外側の開口の周囲に一端が接合された筒状の光ファイバ固定部材とを具備しており、ネジ取付部および載置用基板の厚みが基体の枠体が接合される部位よりも薄く、載置用基板の縦弾性係数が基体の縦弾性係数よりも大きいことから、ネジ取付部にネジを挿入し光半導体素子収納用パッケージを外部電気回路基板にネジ止めする際に、ネジの締め付けによりネジ取付部に応力が発生したとしても、縦弾性係数が載置用基板よりも小さい基体のネジ取付部が変形することにより載置用基板に歪を生じることなく応力を緩和することができ、載置用基板に搭載された光半導体素子の位置精度を良好に維持することができる。
【0016】
また、光半導体素子の動作により大量の熱が発生し、その熱によって載置用基板が熱膨張したとしても、縦弾性係数が載置用基板よりも小さな基体が載置用基板の熱膨張による応力を吸収することができ、枠体と基体との接合部に応力が伝達されるのを抑制して光半導体素子収納用パッケージが歪むのを有効に抑制することができる。
【0017】
さらに、載置用基板が基体の枠体が接合している部位よりも薄いことにより、基体と載置用基板との接合面積が小さくなり、載置用基板が熱膨張しても基体に加わる歪が小さくなって基体の変形が少なくなる。即ち、載置用基板から応力が枠体へ伝達されるのを有効に抑制することができる。また、光半導体素子の熱を載置用基板の下方の外部電気回路基板や放熱板に効率よく伝熱させることができ、放熱性が向上する。
【0018】
また、ネジ取付部と基体の枠体が接合している部位との厚み差により段差が形成され、この段差においてネジ取付部が変形し易くなることから、基体の枠体が接合している部位に歪みが生じ難く、枠体へ応力が伝達するのを有効に抑制することができる。また、ネジ取付部と基体の枠体が接合している部位とが一体で形成されているため、強度の弱い接合部が存在せず、光半導体素子収納用パッケージが破損することもない。
【0019】
これらの結果、光半導体素子収納用パッケージを外部電気回路基板にネジ止め固定する際や、収容する光半導体素子の作動により熱が発生した際に、応力を緩和して光半導体素子収納用パッケージの歪や破損を有効に抑制し、光半導体素子の光入出力端面と光ファイバの光入出力端面との間における光信号の授受を正常に維持させ、光結合効率の優れたものとすることができる。
【0020】
本発明の光半導体装置は、上記本発明の光半導体素子収納用パッケージと、前記光ファイバ固定部材に挿入され固定された光ファイバと、該光ファイバに光学的に結合するように前記載置用基板に載置固定された光半導体素子と、前記枠体の上面に接合された蓋体とを具備したことを特徴とする。
【0021】
本発明の光半導体装置は、上記の構成により、上記本発明の光半導体素子収納用パッケージを用いた信頼性の高いものとなる。
【0022】
【発明の実施の形態】
本発明の光半導体素子収納用パッケージについて以下に詳細に説明する。図1は本発明のパッケージについて実施の形態の一例を示す平面図、図2は図1のA−A’線における断面図である。これらの図において、1は基体、2は枠体、3は固定部材、5は蓋体を示し、これら基体1、枠体2および蓋体5とで、内部に光半導体素子10を収容する容器が基本的に構成される。
【0023】
本発明のパッケージは、中央部に貫通穴1dを有し、四隅にネジ取付部1bがそれぞれ形成された略直方体の金属製の基体1と、貫通穴1dに嵌着された、上面に光半導体素子10を載置固定する載置用基板1−Aと、基体1の上側主面の外周部でネジ取付部1bよりも内側に貫通穴1dを囲繞するように接合され、側部に貫通孔2aが形成された金属製の枠体2と、貫通孔2aに嵌着されるかまたは貫通孔2aの枠体2外側の開口の周囲に一端が接合された筒状の固定部材3とを具備しており、ネジ取付部1bおよび載置用基板1−Aの厚みが基体1の枠体2が接合される部位よりも薄く、載置用基板1−Aの縦弾性係数が基体1の縦弾性係数よりも大きくなっている。
【0024】
基体1はCu,Al,Ag等の金属やこれらの合金から成り、そのインゴットに圧延加工や打ち抜き加工等の従来周知の金属加工法を施すことによって、所定形状に製作される。基体1の四隅には外側に延出したネジ取付部1bが形成されており、ネジ取付部1bにはネジ挿入用の貫通孔1cが形成されている。
【0025】
基体1の枠体2が接合される部位の厚みh2は、ネジ取付部1bの厚みh1に対してh2>h1となっている。これにより、ネジ取付部1bと基体1の枠体2が接合している部位との厚み差により段差が形成され、この段差においてネジ取付部1bが変形し易くなることから、基体1の枠体2が接合している部位に歪みが生じ難く、枠体2へ応力が伝達するのを有効に抑制することができる。また、ネジ取付部1bと基体1の枠体2が接合している部位とが一体で形成されているため、強度の弱い接合部が存在せず、パッケージが破損することもない。
【0026】
h2は好ましくは1.5×h1≦h2≦3×h1であるのがよい。h2<1.5×h1である場合、h1とh2との厚み差が小さすぎるため、特に平坦性に劣る外部電気回路基板にパッケージをネジ止め固定した際にネジ取付部1bの変形が非常に大きくなると、基体1の枠体2が接合されている部位までもが変形し易くなり、枠体2が歪み易くなる。また、h2>3×h1であると、基体1の枠体2が接合している部位が厚くなりすぎ、光半導体素子10の位置を高くして光ファイバ6と同じにする必要があり、パッケージが大型化する。
【0027】
ネジ取付部1bの平面視形状は、図1に示すように、ネジ取付部1bが存在する基体1の対向する2つの変部をそれぞれ枠体2よりも外側に延出させたものでもよく、図3に示すように、基体1の四隅をそれぞれ枠体2よりも外側に張り出すように延出させ、各延出部に1個ずつ貫通孔1cを形成したものでもよい。
【0028】
また、枠体2の外面は、基体1とネジ取付部1bとの段差部D(図2)よりも内側にあって、枠体2の外面と段差部Dの間の距離dは0mm≦d≦3mmであるのがよい。これにより、ネジ取付部1bにネジを挿入して基体1を外部電気回路基板にネジ止め固定しても、枠体2よりも外側でネジ取付部1bが変形することにより枠体2に歪みが加わるのを有効に防止できる。d>3mmの場合、基体1が必要以上に大型化し、近時の小型化傾向に適さないものとなる。一方、枠体2の外面が段差部Dよりも外側にある場合、ネジ取付部1bの変形によりネジ取付部1bが枠体2に接触して枠体2が歪み易くなる。また、枠体2と基体1との接合面積が小さくなり、枠体2と基体1との接合強度も小さくなり易い。
【0029】
本発明の載置用基板1−Aは、その厚みが基体1の枠体2が接合される部位よりも薄く、載置用基板1−Aの縦弾性係数が基体1の縦弾性係数よりも大きくなっている。これにより、ネジ取付部1bにネジを挿入しパッケージを外部電気回路基板にネジ止めする際に、ネジの締め付けによりネジ取付部1bに応力が発生したとしても、縦弾性係数が載置用基板1−Aよりも小さい基体1のネジ取付部1bが変形することにより載置用基板1−Aに歪を生じることなく応力を緩和することができ、載置用基板1−Aに搭載された光半導体素子10の位置精度を良好に維持することができる。
【0030】
また、光半導体素子10の作動により大量の熱が発生し、その熱によって載置用基板1−Aが熱膨張したとしても、縦弾性係数が載置用基板1−Aよりも小さな基体1が載置用基板1−Aの熱膨張による応力を吸収することができ、枠体2と基体1との接合部に応力が伝達されるのを抑制してパッケージが歪むのを有効に抑制することができる。
【0031】
さらに、載置用基板1−Aが基体1の枠体2が接合している部位よりも薄いことにより、基体1と載置用基板1−Aとの接合面積が小さくなり、載置用基板1−Aが熱膨張しても基体1に加わる歪が小さくなって基体1の変形が少なくなる。即ち、載置用基板1−Aから応力が枠体2へ伝達されるのを有効に抑制することができる。また、光半導体素子10の熱を載置用基板1−Aの下方の外部電気回路基板や放熱板に効率よく伝熱させることができ、放熱性が向上する。
【0032】
このような載置用基板1−Aは、基体1よりも縦弾性係数の大きな材料、例えばFe−Ni−Co合金やCu−Wの焼結材等から成り、射出成形や切削加工等の金属加工法を施すことによって、所定形状に製作される。載置用基板1−AはAgロウ等でロウ付けすることによって基体1の貫通穴1dに嵌着される。
【0033】
そして、載置用基板1−Aの上面の載置部1aには、LD,PD等の光半導体素子10が載置固定される。載置用基板1−Aは、光半導体素子10が作動時に発する熱を外部に放熱させる放熱板としての役割も果たす。なお、光半導体素子10は、作動時に発生する熱を効率よく載置用基板1−Aを介して外部へ放熱させるために、ペルチェ素子や回路基板等の基台11に搭載された状態で載置部1aに載置固定されてもよい。
【0034】
載置用基板1−Aの厚みh3は、基体1の枠体2が接合される部位の厚みh2に対してh3<h2となっている。これにより、基体1と載置用基板1−Aとの接合面積が小さくなり、載置用基板1−Aが熱膨張しても基体1に加わる歪が小さくなって基体1の変形が少なくなる。即ち、載置用基板1−Aから応力が枠体2へ伝達されるのを有効に抑制することができる。また、光半導体素子10の熱を載置用基板1−Aの下方の外部電気回路基板や放熱板に効率よく伝熱させることができ、放熱性が向上する。さらに、載置用基板1−Aを薄くすることができることから、載置用基板1−A、基体1および枠体2から形成される容器の容積を十分に確保することができ、パッケージの小型化が可能となる。
【0035】
h3は好ましくは0.3×h2≦h3≦0.9×h2であるのがよい。h3<0.3×h2である場合、載置用基板1−Aが薄くなって強度が小さくなり、載置用基板1−Aが歪み易くなる。また、h3>0.9×h2であると、載置用基板1−Aと基体1との接合面積が大きくなり、光半導体素子10の作動で発生した熱によって載置用基板1−Aが熱膨張した際、基体1が大きく変形し易くなり、その応力が枠体2に伝達され易くなる。
【0036】
また、h3はh1<h3≦0.9×h2であるのがよい。これにより、載置用基板1−Aを変形し難くすることができ、基体1が大きく変形した場合でも、載置部1aに搭載された光半導体素子10と光ファイバ6との位置精度を良好に維持し、これらの光結合効率の低下を有効に抑制することができる。
【0037】
さらに、載置用基板1−Aは載置部1aよりも外周部が厚くなっているのがよい。これにより、載置用基板1−Aの強度を大きくして変形し難くすることができるとともに、載置部1aは薄くなっているので光半導体素子10で発生した熱を効率良く外部電気回路基板や放熱板に伝熱させることができる。
【0038】
なお、基体1、載置用基板1−Aの表面には、酸化腐食の防止や光半導体素子10の載置固定を良好にするために、厚さ0.5〜9μmのNi層や厚さ0.5〜5μmの金(Au)層からなる金属層をめっき法等により被着させておくとよい。
【0039】
枠体2は、基体1の上側主面の外周部でネジ取付部1bよりも内側に貫通穴1dを囲繞するように接合され、側部に貫通孔2aが形成されており、平面視形状が略四角形の枠状体である。
【0040】
枠体2は、基体1および載置用基板1−Aとともにその内側に光半導体素子10を収容する空所を形成するとともに、その側部の貫通孔2aに嵌着されるかまたは貫通孔2aの枠体2外側の開口の周囲に一端が接合された筒状の固定部材3を介して光ファイバ6を支持固定する。
【0041】
このような枠体2は、載置用基板1−Aと同様にFe−Ni−Co合金やCu−Wの焼結材等から成り、基体1にAgロウ等のロウ材を介してロウ付けされる、またはシーム溶接法等の溶接法により接合されることにより、基体1の上側主面の外周部に立設される。
【0042】
固定部材3は、光ファイバ6を枠体2の側部に固定するための円筒状等の筒状の部材であり、Fe−Ni−Co合金やステンレス鋼等の金属から成る。固定部材3は、軸方向に光ファイバ6を挿入するための貫通孔3aが設けられており、枠体2の側部の貫通孔2aの内面に外周面がロウ材を介して嵌着されるかまたは貫通孔2aの枠体2外側の開口の周囲に一端がロウ材を介して接合されることにより、枠体2の側部に固定される。
【0043】
ネジ取付部1bは、光ファイバ6が固定される貫通孔2aが形成された枠体2の側部側およびこの側部に対向する枠体2の側部側に設けられているのがよい。これにより、パッケージを外部電気回路基板にネジ止め固定した際に発生する応力が、光ファイバ6が固定されている枠体2の側部に加わるのを抑制することができる。即ち、互いに逆の方向に延出した2つのネジ取付部1bの間に位置する部分において基体1の曲げ応力が最も大きくなり易いのに対し、枠体3の同じ側部側にある2つのネジ取付部1bの間に位置する部分においては基体1の曲げ応力は小さく、この曲げ応力の小さい部分に対応する枠体2の側部で光ファイバ6を固定することにより、光ファイバ6の位置がずれるのを有効に抑制することができる。
【0044】
また、貫通孔1cの平面視形状は、図1に示すような円形である必要はなく、四角形や半円形等であってもよい。
【0045】
本発明の光半導体装置は、上記構成のパッケージと、固定部材3に挿入され固定された光ファイバ6と、光ファイバ6に光学的に結合するように載置用基板1−Aに載置された光半導体素子10と、枠体2の上面に接合された蓋体5とを具備している。
【0046】
このような光半導体装置は以下のようにして作製される。先ず、上記構成のパッケージに光半導体素子10をペルチェ素子や回路基板等の基台11を介して載置部1aに載置固定した後、光半導体素子10の電極と、枠体2の側部または基体1に設けられた、パッケージの内外の導電路として機能する入出力端子(図示せず)の枠体2内側の電極とを、ボンディングワイヤで電気的に接続し、枠体2の上面にFe−Ni−Co合金等の金属,セラミックス,樹脂等から成る蓋体5をロウ付け法やシームウエルド法等の溶接法で接合することにより、光半導体素子10を気密に封止する。そして、光ファイバ6が挿通固定された枠状や筒状の金属製のホルダー7を、光半導体素子10の光入出力端面と光ファイバ6の光入出力端面とが対向し光結合するようにして固定部材3の枠体2外側の一端に溶接することにより、光半導体装置が作製される。
【0047】
本発明の光半導体装置は、ネジ取付部1bで外部電気回路基板にネジ止め固定され、入出力端子の枠体2外側の電極にリード端子やリボン線の一端をロウ付けし、リード端子やリボン線の他端を外部電気回路に接続することにより、光半導体装置内部に収納した光半導体素子10が外部電気回路に電気的に接続され、光半導体素子10が高周波信号で作動することとなる。
【0048】
このような光半導体装置は、外部電気回路から供給される駆動信号によって光半導体素子10を光励起させ、励起したレーザ光等の光信号を光ファイバ6に入力させるとともに光ファイバ6内を伝送させることによって、または、外部から光ファイバ6を通って伝送してきた光信号を光半導体素子10に受光させて光信号を電気信号に変換することによって、大容量の情報を高速に伝送できる光電変換装置として機能し、光通信分野等に多く用いられる。
【0049】
なお、本発明は上記実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の変更を施すことは可能である。例えば、固定部材3は貫通孔2aの枠体2外側開口の周囲に一端がロウ付けまたは溶接されてもよく、これにより貫通孔2aの内面に固定部材3の外周面を嵌着させる必要がなくなるため、貫通孔2aの内径寸法および固定部材3の外形寸法の精度を比較的粗くすることができ、貫通孔2aや固定部材3の加工が容易になり作業効率が向上する。
【0050】
【実施例】
本発明の光半導体素子収納用パッケージの実施例を以下に説明する。
【0051】
図1の本発明のパッケージのサンプルを以下のようにして作製した。Fe−Ni−Co合金(縦弾性係数:128GPa)からなる縦21mm×横13mmで厚さが1.8mmの直方体からなり、その中央部に縦9.5mm×横7.5mmの貫通穴1dをもつ基体1を用意し、その四隅に種々の厚みのネジ取り付け部1b(表1参照)を形成した。
【0052】
そして、Fe−Ni−Co合金からなり縦21mm×横13mm×高さ7mmで厚さ1mmの枠体2を用意した。
【0053】
さらに、Cu−Wの焼結体(縦弾性係数:265GPa)からなる縦9.5mm×横7.5mm×高さ1.5mmの載置用基板1−Aを貫通穴1dに嵌め込み、基体1、枠体2および載置用基板1−AをAg−Cuロウ(融点780℃)で接合し、これらを常温(25℃)まで均一に冷却することによりパッケージを作製した(サンプルP1〜P7)。
【0054】
これらのサンプルP1〜P7を上面が平坦な外部回路基板にネジ止めした際の、載置用基板中心部の厚み方向の歪によって発生した変位量を有限要素法による解析によって求めた。これらの評価結果を表1に示す。
【0055】
【表1】

Figure 2004253409
【0056】
表1に示した結果より、本発明のサンプルにおける載置用基板の中心部に発生する変位は、ネジ取付け部の厚みを基体1の枠体が接合される部位よりも薄くすることにより、40μm以下の値に低減させることができ、本発明のパッケージが光ファイバ6と光半導体素子10との光軸ずれを抑制するのに有効であることが判った。
【0057】
特に、ネジ取付部1bの厚さを基体1の厚さの2/3以下とすることにより、変位を20μm以下とすることができ、光ファイバ6と光半導体素子10との光軸ずれ防止に非常に有効であることが判った。
【0058】
なお、本発明は以上の実施の形態の例および実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の変更を施すことは何等支障ない。
【0059】
【発明の効果】
本発明の光半導体素子収納用パッケージは、中央部に貫通穴を有し、四隅にネジ取付部がそれぞれ形成された略直方体の金属製の基体と、貫通穴に嵌着された、上面に光半導体素子を載置固定する載置用基板と、基体の上側主面の外周部でネジ取付部よりも内側に貫通穴を囲繞するように接合され、側部に貫通孔が形成された金属製の枠体と、貫通孔に嵌着されるかまたは貫通孔の枠体外側の開口の周囲に一端が接合された筒状の光ファイバ固定部材とを具備しており、ネジ取付部および載置用基板の厚みが基体の枠体が接合される部位よりも薄く、載置用基板の縦弾性係数が基体の縦弾性係数よりも大きいことから、ネジ取付部にネジを挿入し光半導体素子収納用パッケージを外部電気回路基板にネジ止めする際に、ネジの締め付けによりネジ取付部に応力が発生したとしても、縦弾性係数が載置用基板よりも小さい基体のネジ取付部が変形することにより載置用基板に歪を生じることなく応力を緩和することができ、載置用基板に搭載された光半導体素子の位置精度を良好に維持することができる。
【0060】
また、光半導体素子の動作により大量の熱が発生し、その熱によって載置用基板が熱膨張したとしても、縦弾性係数が載置用基板よりも小さな基体が載置用基板の熱膨張による応力を吸収することができ、枠体と基体との接合部に応力が伝達されるのを抑制して光半導体素子収納用パッケージが歪むのを有効に抑制することができる。
【0061】
さらに、載置用基板が基体の枠体が接合している部位よりも薄いことにより、基体と載置用基板との接合面積が小さくなり、載置用基板が熱膨張しても基体に加わる歪が小さくなって基体の変形が少なくなる。即ち、載置用基板から応力が枠体へ伝達されるのを有効に抑制することができる。また、光半導体素子の熱を載置用基板の下方の外部電気回路基板や放熱板に効率よく伝熱させることができ、放熱性が向上する。
【0062】
また、ネジ取付部と基体の枠体が接合している部位との厚み差により段差が形成され、この段差においてネジ取付部が変形し易くなることから、基体の枠体が接合している部位に歪みが生じ難く、枠体へ応力が伝達するのを有効に抑制することができる。また、ネジ取付部と基体の枠体が接合している部位とが一体で形成されているため、強度の弱い接合部が存在せず、光半導体素子収納用パッケージが破損することもない。
【0063】
これらの結果、光半導体素子収納用パッケージを外部電気回路基板にネジ止め固定する際や、収容する光半導体素子の作動により熱が発生した際に、応力を緩和して光半導体素子収納用パッケージの歪や破損を有効に抑制し、光半導体素子の光入出力端面と光ファイバの光入出力端面との間における光信号の授受を正常に維持させ、光結合効率の優れたものとすることができる。
【0064】
本発明の光半導体装置は、上記本発明の光半導体素子収納用パッケージと、光ファイバ固定部材に挿入され固定された光ファイバと、この光ファイバに光学的に結合するように載置用基板に載置された光半導体素子と、枠体の上面に接合された蓋体とを具備したことにより、上記本発明の光半導体素子収納用パッケージを用いた信頼性の高いものとなる。
【図面の簡単な説明】
【図1】本発明の光半導体素子収納用パッケージについて実施の形態の例を示す平面図である。
【図2】図1の光半導体素子収納用パッケージのA−A’線における断面図である。
【図3】本発明の光半導体素子収納用パッケージについて実施の形態の他の例を示す平面図である。
【図4】従来の光半導体素子収納用パッケージの平面図である。
【図5】図4の光半導体素子収納用パッケージのB−B’線における断面図である。
【符号の説明】
1:基体
1a:載置部
1b:ネジ取付部
1c:貫通孔
1d:貫通穴
1−A:載置用基板
2:枠体
2a:貫通孔
3:光ファイバ固定部材
5:蓋体
6:光ファイバ
10:光半導体素子[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an optical semiconductor element housing package for housing an optical semiconductor element and an optical semiconductor device, and more particularly to an optical semiconductor device having an improved mounting structure on an external electric circuit board.
[0002]
[Prior art]
FIGS. 4 and 5 show a conventional package for housing an optical semiconductor element (hereinafter simply referred to as a package) for housing an optical semiconductor element. FIG. 4 is a plan view of the package, and FIG. 5 is a sectional view taken along line BB ′ of FIG. In these figures, 21 is a substantially rectangular parallelepiped base, 22 is a frame, 23 is an optical fiber fixing member (hereinafter also referred to as a fixing member), 25 is a lid, and these base 21, frame 22 and lid 25 are shown. Thus, a container accommodating the optical semiconductor element 30 in the internal space is basically configured.
[0003]
The base 21 is made of a metal such as an iron (Fe) -nickel (Ni) -cobalt (Co) alloy or a copper (Cu) -tungsten (W) sintered material. A mounting portion 21a for mounting and fixing the optical semiconductor element 30 such as a (LD) and a photodiode (PD) is provided. Further, a screw mounting portion 21b is provided in which a through hole 21c is formed in an extending portion provided by extending the four corners of the base 21 outward on the same surface. The base 21 is fixed to the external electric circuit board by screwing through the through hole 21c.
[0004]
A frame 22 having a through hole 22a formed on the side thereof is provided upright on the outer peripheral portion of the upper main surface of the base 21 so as to surround the mounting portion 21a. The frame body 22 is made of a metal such as a Fe—Ni—Co alloy or a Cu—W sintered material similarly to the base body 21 and is formed integrally with the base body 21 or is formed on the base body 21 by a brazing material such as silver (Ag) brazing. By being brazed via a material or joined by a welding method such as a seam welding method, the base 21 is erected on the outer peripheral portion of the upper main surface.
[0005]
A fixing member 23 is attached to the side of the frame 22 by being fitted into the through-hole 22a. The fixing member 23 is a cylindrical member for fixing the optical fiber 26 to the side of the frame 22, and is made of a metal such as an Fe—Ni—Co alloy or stainless steel (SUS). A through hole 23a formed in a vertical direction is provided, and an outer peripheral surface of the fixing member 23 is fitted and joined to an inner surface of the through hole 22a of the frame 22 via a brazing material.
[0006]
After the optical semiconductor device 30 is mounted and fixed on the mounting portion 21a of the package having such a configuration while being mounted on the base 31 such as a Peltier device or a circuit board, the optical semiconductor device 30 is provided on the side portion of the frame 22 or the base 21. The electrodes inside the frame 22 of the input / output terminals (not shown) functioning as conductive paths inside and outside the package and the electrodes of the optical semiconductor element 30 are electrically connected by bonding wires. Then, the optical fiber 26 fixed to the holder 27 is inserted into the fixing member 23, and the holder 27 is fixed to the fixing member 23 by welding, so that the optical input / output end face of the optical fiber 26 and the optical input / output end face of the optical semiconductor element 30 are connected. Are optically coupled. Thereafter, a lid 25 made of an Fe—Ni—Co alloy or the like is joined to the upper surface of the frame 22 by a welding method such as a seam welding method to hermetically seal the optical semiconductor element 30, so that light as a product is obtained. The semiconductor device is completed.
[0007]
In this optical semiconductor device, the base 21 is screwed and fixed to an external electric circuit board (not shown) through a screw through the through hole 21c of the screw mounting portion 21b, and the outside of the frame 22 of the input / output terminal (not shown). After the electrodes are electrically connected to the external electric circuit, light is excited in the optical semiconductor element 30 by an electric signal from the external electric circuit, and the light is transmitted to the outside through the optical fiber 26, or The optical signal transmitted from the optical fiber 26 through the optical fiber 26 is received by the optical semiconductor element 30 to convert the optical signal into an electric signal, which is used for high-speed optical communication and the like.
[0008]
However, in such an optical semiconductor device, when a screw is inserted into the through hole 21c and fixed to the external electric circuit board with a screw, stress is generated in the screw mounting portion 21b due to the tightening of the screw, and the stress is generated by the base 21 or There is a problem in that the package is distorted by being transmitted to the frame 22, and as a result, the optical axis of the optical fiber 26 and the optical semiconductor element 30 are shifted, and the optical coupling efficiency is deteriorated.
[0009]
In order to solve such a problem, the screw mounting portion 21b is formed separately from the base 21, and is formed of a material having a lower longitudinal elastic modulus than the base 21, for example, Cu, Cu alloy, aluminum (Al), Al alloy, or the like. A configuration in which Ag is brazed to the base 21 has been proposed (for example, see Patent Document 1 below). Accordingly, when the package is screwed and fixed, even if the screw mounting portion 21b is tightened with a screw, the screw mounting portion 21b is mainly deformed and deformation of the base 21 is suppressed, so that the optical semiconductor element 30 and the optical fiber 26 A decrease in optical coupling efficiency can be suppressed.
[0010]
[Patent Document 1]
JP-A-6-82659
[0011]
[Problems to be solved by the invention]
However, in the package disclosed in Patent Document 1, when a large amount of heat is generated by the operation of the optical semiconductor element 30, the heat causes the base 21 to thermally expand and generate stress at a joint portion with the frame 22, thereby causing Of the optical fiber 26 and the optical semiconductor element 30 as a result, and the optical coupling efficiency is degraded.
[0012]
In addition, when the package is screwed and fixed, even if the screw mounting portion 21b is tightened with a screw, the screw mounting portion 21b is mainly deformed and deformation of the base 21 is suppressed. There is also a problem that the stress is easily concentrated on the portion, and the stress causes peeling at the joint portion between the screw mounting portion 21b and the base 21 to break the package.
[0013]
Accordingly, the present invention has been completed in view of the above problems, and has as its object to fix an optical semiconductor element housing by screwing the optical semiconductor element housing package or by heat generated during operation of the optical semiconductor element. It effectively suppresses the occurrence of distortion in the package, maintains the normal transmission and reception of optical signals between the optical input / output end faces of optical semiconductor elements such as LDs and PDs and the optical input / output end faces of optical fibers, and achieves optical coupling efficiency. It is an object of the present invention to provide an optical semiconductor element housing package and an optical semiconductor device excellent in the above.
[0014]
[Means for Solving the Problems]
The optical semiconductor element housing package of the present invention has a substantially rectangular parallelepiped metal base having a through hole in the center portion, and a screw attachment portion formed at each of the four corners, and an upper surface fitted in the through hole. A mounting substrate on which the optical semiconductor element is mounted and fixed, and an outer peripheral portion of the upper main surface of the base body, which is joined to the inside of the screw attachment portion so as to surround the through hole, and a through hole is formed in a side portion. Metal frame, and a cylindrical optical fiber fixing member fitted to the through-hole or joined at one end to the periphery of the opening of the through-hole outside the frame. The thickness of the screw mounting portion and the mounting substrate is thinner than a portion of the base body to which the frame is joined, and the longitudinal elastic coefficient of the mounting substrate is larger than the longitudinal elastic coefficient of the base body. Features.
[0015]
The optical semiconductor element housing package of the present invention has a substantially rectangular parallelepiped metal base having a through hole at the center and screw mounting portions formed at four corners, respectively, and an optical module on the upper surface fitted into the through hole. A mounting substrate on which a semiconductor element is mounted and fixed, and a metal formed on the outer peripheral portion of the upper main surface of the base so as to surround the through hole inside the screw mounting portion and form a through hole on the side portion. And a cylindrical optical fiber fixing member that is fitted into the through hole or that has one end joined to the periphery of the opening of the through hole outside the frame. The thickness of the mounting substrate is thinner than the portion where the frame of the base is joined, and the longitudinal elastic coefficient of the mounting substrate is larger than that of the base. Screw the external package to the external electric circuit board. Even if stress is generated in the mounting portion, the stress can be relieved without deforming the mounting substrate by deforming the screw mounting portion of the base having a smaller longitudinal elastic modulus than the mounting substrate, The positional accuracy of the optical semiconductor element mounted on the mounting substrate can be maintained satisfactorily.
[0016]
In addition, even if a large amount of heat is generated by the operation of the optical semiconductor element, and the mounting substrate thermally expands due to the heat, the base having a smaller longitudinal elastic modulus than the mounting substrate is caused by the thermal expansion of the mounting substrate. The stress can be absorbed, and the transmission of the stress to the joint between the frame and the base can be suppressed, so that the optical semiconductor element housing package can be effectively prevented from being distorted.
[0017]
Furthermore, since the mounting substrate is thinner than the portion where the frame of the base is bonded, the bonding area between the base and the mounting substrate is reduced, so that the mounting substrate is added to the base even when thermally expanded. The distortion is reduced and the deformation of the base is reduced. That is, transmission of stress from the mounting substrate to the frame body can be effectively suppressed. Further, the heat of the optical semiconductor element can be efficiently transmitted to the external electric circuit board and the heat radiating plate below the mounting substrate, so that the heat radiating property is improved.
[0018]
Also, a step is formed due to a thickness difference between the screw attachment portion and the portion where the frame of the base is joined, and the screw attachment portion is easily deformed at this step, so that the portion where the frame of the base is joined is formed. In this case, distortion is less likely to occur, and transmission of stress to the frame can be effectively suppressed. Further, since the screw attachment portion and the portion where the frame of the base is joined are formed integrally, there is no weak joint portion, and the package for housing the optical semiconductor element is not damaged.
[0019]
As a result, when the optical semiconductor element housing package is screwed and fixed to the external electric circuit board or when heat is generated by the operation of the housed optical semiconductor element, stress is relieved to reduce the stress of the optical semiconductor element housing package. It is necessary to effectively suppress distortion and breakage, maintain normal transmission and reception of optical signals between the optical input / output end face of the optical semiconductor element and the optical input / output end face of the optical fiber, and achieve excellent optical coupling efficiency. it can.
[0020]
The optical semiconductor device of the present invention includes the optical semiconductor element storage package of the present invention, an optical fiber inserted and fixed in the optical fiber fixing member, and an optical fiber that is optically coupled to the optical fiber. An optical semiconductor device mounted and fixed on a substrate and a lid joined to an upper surface of the frame are provided.
[0021]
With the above configuration, the optical semiconductor device of the present invention has high reliability using the optical semiconductor element housing package of the present invention.
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
The package for housing an optical semiconductor element of the present invention will be described in detail below. FIG. 1 is a plan view showing an example of an embodiment of the package of the present invention, and FIG. 2 is a cross-sectional view taken along line AA ′ of FIG. In these figures, reference numeral 1 denotes a base, 2 denotes a frame, 3 denotes a fixing member, and 5 denotes a lid. The base 1, the frame 2 and the lid 5 are containers for housing the optical semiconductor element 10 therein. Is basically configured.
[0023]
The package of the present invention has a substantially rectangular parallelepiped metal base 1 having a through hole 1d at the center and screw mounting portions 1b at four corners, respectively, and an optical semiconductor on the upper surface fitted into the through hole 1d. The mounting substrate 1-A on which the element 10 is mounted and fixed is joined to the outer peripheral portion of the upper main surface of the base 1 so as to surround the through hole 1d inside the screw mounting portion 1b, and the through hole is formed on the side. A metal frame 2 having a metal frame 2a formed therein, and a cylindrical fixing member 3 fitted to the through hole 2a or joined at one end to a periphery of an opening of the frame 2 outside the through hole 2a. The thickness of the screw mounting portion 1b and the thickness of the mounting substrate 1-A are thinner than the portion where the frame 2 of the base 1 is joined, and the longitudinal elastic coefficient of the mounting substrate 1-A is It is larger than the elastic modulus.
[0024]
The base 1 is made of a metal such as Cu, Al, or Ag or an alloy thereof, and is manufactured into a predetermined shape by subjecting the ingot to a conventionally known metal working method such as rolling or punching. At four corners of the base 1, a screw mounting portion 1b extending outward is formed, and the screw mounting portion 1b is formed with a through hole 1c for screw insertion.
[0025]
The thickness h2 of the portion of the base 1 to which the frame 2 is joined is h2> h1 with respect to the thickness h1 of the screw mounting portion 1b. As a result, a step is formed due to the thickness difference between the screw mounting portion 1b and the portion where the frame 2 of the base 1 is joined, and the screw mounting portion 1b is easily deformed at this step, so that the frame of the base 1 is formed. Distortion hardly occurs at the portion where the joints 2 are joined, and the transmission of stress to the frame 2 can be effectively suppressed. Further, since the screw attachment portion 1b and the portion where the frame 2 of the base 1 is joined are integrally formed, there is no weak joint portion and the package is not damaged.
[0026]
h2 is preferably 1.5 × h1 ≦ h2 ≦ 3 × h1. When h2 <1.5 × h1, the thickness difference between h1 and h2 is too small, so that the screw mounting portion 1b is extremely deformed when the package is screwed and fixed to an external electric circuit board having particularly poor flatness. When the size is increased, even the portion of the base 1 to which the frame 2 is joined is easily deformed, and the frame 2 is easily deformed. If h2> 3 × h1, the portion of the base 1 to which the frame 2 is joined becomes too thick, and the position of the optical semiconductor element 10 must be increased to be the same as the optical fiber 6, and the package Becomes larger.
[0027]
As shown in FIG. 1, the shape of the screw mounting portion 1b in plan view may be such that two opposing deformed portions of the base 1 where the screw mounting portion 1b exists are each extended outside the frame body 2. As shown in FIG. 3, the four corners of the base 1 may be extended so as to protrude outside the frame body 2, and one through hole 1 c may be formed in each extension.
[0028]
The outer surface of the frame 2 is located inside the step D (FIG. 2) between the base 1 and the screw mounting portion 1b, and the distance d between the outer surface of the frame 2 and the step D is 0 mm ≦ d. It is preferred that ≦ 3 mm. Thereby, even if a screw is inserted into the screw mounting portion 1b and the base 1 is fixed to the external electric circuit board by screwing, the screw mounting portion 1b is deformed outside the frame 2 so that the frame 2 is distorted. It can be effectively prevented from joining. When d> 3 mm, the size of the base 1 becomes unnecessarily large, which is not suitable for recent miniaturization tendency. On the other hand, when the outer surface of the frame 2 is outside the stepped portion D, the screw attachment 1b comes into contact with the frame 2 due to deformation of the screw attachment 1b, and the frame 2 is easily distorted. Further, the bonding area between the frame 2 and the base 1 is reduced, and the bonding strength between the frame 2 and the base 1 is likely to be reduced.
[0029]
The mounting substrate 1-A of the present invention has a thickness smaller than a portion of the base 1 to which the frame 2 is joined, and the longitudinal elastic coefficient of the mounting substrate 1-A is smaller than that of the base 1. It is getting bigger. Accordingly, when a screw is inserted into the screw mounting portion 1b and the package is screwed to the external electric circuit board, even if stress is generated in the screw mounting portion 1b due to the tightening of the screw, the longitudinal elastic modulus is reduced. By deforming the screw mounting portion 1b of the base 1 smaller than -A, the stress can be relieved without causing distortion in the mounting substrate 1-A, and the light mounted on the mounting substrate 1-A can be reduced. The position accuracy of the semiconductor element 10 can be maintained satisfactorily.
[0030]
Further, even if a large amount of heat is generated by the operation of the optical semiconductor element 10 and the mounting substrate 1-A thermally expands due to the heat, the base 1 having a smaller longitudinal elastic coefficient than the mounting substrate 1-A is generated. Stress that is caused by thermal expansion of the mounting substrate 1-A can be absorbed, and transmission of stress to the joint between the frame 2 and the base 1 is suppressed, thereby effectively suppressing distortion of the package. Can be.
[0031]
Further, since the mounting substrate 1-A is thinner than the portion where the frame 2 of the base 1 is bonded, the bonding area between the base 1 and the mounting substrate 1-A is reduced, and the mounting substrate 1-A is reduced. Even if 1-A thermally expands, the strain applied to the base 1 is reduced and the deformation of the base 1 is reduced. That is, transmission of stress from the mounting substrate 1-A to the frame 2 can be effectively suppressed. Further, the heat of the optical semiconductor element 10 can be efficiently transferred to the external electric circuit board and the heat radiating plate below the mounting substrate 1-A, and the heat radiation property is improved.
[0032]
Such a mounting substrate 1-A is made of a material having a larger modulus of longitudinal elasticity than the base 1, such as a sintered material of Fe-Ni-Co alloy or Cu-W, and is made of metal such as injection molding or cutting. It is manufactured in a predetermined shape by applying a processing method. The mounting substrate 1-A is fitted into the through hole 1d of the base 1 by brazing with an Ag braze or the like.
[0033]
An optical semiconductor element 10 such as an LD or PD is mounted and fixed on the mounting portion 1a on the upper surface of the mounting substrate 1-A. The mounting substrate 1-A also serves as a heat radiating plate for radiating heat generated when the optical semiconductor element 10 operates to the outside. The optical semiconductor element 10 is mounted on a base 11 such as a Peltier element or a circuit board in order to efficiently radiate heat generated during operation to the outside via the mounting substrate 1-A. It may be mounted and fixed on the mounting portion 1a.
[0034]
The thickness h3 of the mounting substrate 1-A is such that h3 <h2 with respect to the thickness h2 of the portion of the base 1 to which the frame 2 is joined. Accordingly, the bonding area between the base 1 and the mounting substrate 1-A is reduced, and even when the mounting substrate 1-A thermally expands, the strain applied to the base 1 is reduced, and the deformation of the base 1 is reduced. . That is, transmission of stress from the mounting substrate 1-A to the frame 2 can be effectively suppressed. Further, the heat of the optical semiconductor element 10 can be efficiently transferred to the external electric circuit board and the heat radiating plate below the mounting substrate 1-A, and the heat radiation property is improved. Further, since the mounting substrate 1-A can be made thinner, the volume of the container formed by the mounting substrate 1-A, the base 1, and the frame 2 can be sufficiently secured, and the package can be reduced in size. Is possible.
[0035]
h3 is preferably 0.3 × h2 ≦ h3 ≦ 0.9 × h2. When h3 <0.3 × h2, the mounting substrate 1-A is thinned, the strength is reduced, and the mounting substrate 1-A is easily distorted. If h3> 0.9 × h2, the bonding area between the mounting substrate 1-A and the base 1 increases, and the mounting substrate 1-A is moved by heat generated by the operation of the optical semiconductor element 10. When thermally expanded, the base 1 is easily deformed greatly, and the stress is easily transmitted to the frame 2.
[0036]
H3 is preferably h1 <h3 ≦ 0.9 × h2. Thereby, the mounting substrate 1-A can be made hard to deform, and even when the base 1 is largely deformed, the positional accuracy between the optical semiconductor element 10 and the optical fiber 6 mounted on the mounting portion 1a is improved. , And the decrease in the optical coupling efficiency can be effectively suppressed.
[0037]
Furthermore, it is preferable that the mounting substrate 1-A be thicker at the outer periphery than the mounting portion 1a. This makes it possible to increase the strength of the mounting substrate 1-A so that it is difficult to deform, and since the mounting portion 1a is thin, heat generated in the optical semiconductor element 10 can be efficiently transferred to the external electric circuit board. Or a heat sink.
[0038]
In addition, on the surfaces of the base 1 and the mounting substrate 1-A, a Ni layer having a thickness of 0.5 to 9 μm or It is preferable that a metal layer made of a gold (Au) layer having a thickness of 0.5 to 5 μm is applied by a plating method or the like.
[0039]
The frame 2 is joined to the outer peripheral portion of the upper main surface of the base 1 so as to surround the through hole 1d inside the screw mounting portion 1b, and the through hole 2a is formed in the side portion. It is a substantially rectangular frame.
[0040]
The frame 2, together with the base 1 and the mounting substrate 1-A, forms a space for accommodating the optical semiconductor element 10 inside the frame 2, and is fitted into the through hole 2a on the side thereof or the through hole 2a. The optical fiber 6 is supported and fixed via a cylindrical fixing member 3 having one end joined to the periphery of the opening outside the frame 2.
[0041]
Such a frame 2 is made of an Fe—Ni—Co alloy, a Cu—W sintered material or the like similarly to the mounting substrate 1 -A, and is brazed to the base 1 via a brazing material such as Ag brazing. The base 1 is erected on the outer peripheral portion of the upper main surface of the base 1 by being welded or joined by a welding method such as a seam welding method.
[0042]
The fixing member 3 is a cylindrical member such as a cylindrical member for fixing the optical fiber 6 to a side portion of the frame 2, and is made of a metal such as an Fe-Ni-Co alloy or stainless steel. The fixing member 3 is provided with a through hole 3a for inserting the optical fiber 6 in the axial direction, and the outer peripheral surface is fitted to the inner surface of the through hole 2a on the side of the frame 2 via a brazing material. Alternatively, one end of the through hole 2a is joined to the periphery of the opening on the outside of the frame body 2 via a brazing material, thereby being fixed to the side of the frame body 2.
[0043]
The screw mounting portion 1b is preferably provided on the side of the frame 2 where the through hole 2a to which the optical fiber 6 is fixed is formed, and on the side of the frame 2 opposed to this side. Thus, it is possible to suppress the stress generated when the package is screwed and fixed to the external electric circuit board from being applied to the side of the frame 2 to which the optical fiber 6 is fixed. That is, the bending stress of the base 1 is most likely to be largest in a portion located between the two screw mounting portions 1b extending in opposite directions, whereas the two screws on the same side of the frame 3 are The bending stress of the base 1 is small in the portion located between the mounting portions 1b, and the position of the optical fiber 6 is fixed by fixing the optical fiber 6 on the side of the frame 2 corresponding to the portion having a small bending stress. Deviation can be effectively suppressed.
[0044]
Further, the shape of the through-hole 1c in a plan view does not need to be circular as shown in FIG. 1, but may be square or semicircular.
[0045]
The optical semiconductor device of the present invention is mounted on the mounting substrate 1 -A so as to be optically coupled to the package having the above configuration, the optical fiber 6 inserted and fixed in the fixing member 3, and the optical fiber 6. And a lid 5 bonded to the upper surface of the frame 2.
[0046]
Such an optical semiconductor device is manufactured as follows. First, after the optical semiconductor element 10 is mounted and fixed on the mounting part 1a via the base 11 such as a Peltier element or a circuit board in the package having the above configuration, the electrodes of the optical semiconductor element 10 and the side parts of the frame 2 are fixed. Alternatively, an electrode inside the frame 2 of an input / output terminal (not shown) functioning as a conductive path inside and outside the package provided on the base 1 is electrically connected to the upper surface of the frame 2 by a bonding wire. The optical semiconductor element 10 is hermetically sealed by joining the lid 5 made of a metal such as an Fe-Ni-Co alloy, ceramics, resin or the like by a welding method such as a brazing method or a seam welding method. Then, a frame-shaped or cylindrical metal holder 7 into which the optical fiber 6 is inserted and fixed is set so that the optical input / output end face of the optical semiconductor element 10 and the optical input / output end face of the optical fiber 6 face and optically couple. The optical semiconductor device is manufactured by welding the fixing member 3 to one end of the fixing member 3 outside the frame 2.
[0047]
The optical semiconductor device of the present invention is screwed and fixed to an external electric circuit board by a screw mounting portion 1b, and one end of a lead terminal or a ribbon wire is brazed to an electrode outside the frame 2 of the input / output terminal to form a lead terminal or a ribbon. By connecting the other end of the wire to an external electric circuit, the optical semiconductor element 10 housed inside the optical semiconductor device is electrically connected to the external electric circuit, and the optical semiconductor element 10 operates with a high-frequency signal.
[0048]
In such an optical semiconductor device, the optical semiconductor element 10 is optically excited by a drive signal supplied from an external electric circuit, and an optical signal such as an excited laser beam is input to the optical fiber 6 and transmitted through the optical fiber 6. Or by converting an optical signal into an electrical signal by causing the optical semiconductor element 10 to receive an optical signal transmitted from the outside through the optical fiber 6 and thereby transmitting a large amount of information at a high speed. It functions and is often used in the optical communication field and the like.
[0049]
Note that the present invention is not limited to the above-described embodiment, and various changes can be made without departing from the spirit of the present invention. For example, one end of the fixing member 3 may be brazed or welded around the outer opening of the frame 2 of the through hole 2a, so that it is not necessary to fit the outer peripheral surface of the fixing member 3 to the inner surface of the through hole 2a. Therefore, the accuracy of the inner diameter of the through hole 2a and the outer dimension of the fixing member 3 can be made relatively coarse, and the processing of the through hole 2a and the fixing member 3 becomes easy, thereby improving the working efficiency.
[0050]
【Example】
An embodiment of the package for housing an optical semiconductor element of the present invention will be described below.
[0051]
A sample of the package of the present invention shown in FIG. 1 was produced as follows. It is a rectangular parallelepiped formed of an Fe-Ni-Co alloy (longitudinal modulus of elasticity: 128 GPa) with a length of 21 mm x a width of 13 mm and a thickness of 1.8 mm. A substrate 1 was prepared, and screw attachment portions 1b (see Table 1) having various thicknesses were formed at the four corners.
[0052]
Then, a frame 2 made of an Fe-Ni-Co alloy and having a length of 21 mm x a width of 13 mm x a height of 7 mm and a thickness of 1 mm was prepared.
[0053]
Further, a mounting substrate 1-A having a length of 9.5 mm, a width of 7.5 mm, and a height of 1.5 mm made of a sintered body of Cu-W (longitudinal modulus of elasticity: 265 GPa) is fitted into the through-hole 1d, and , The frame 2 and the mounting substrate 1-A were joined with an Ag-Cu brazing material (melting point: 780 ° C.), and these were uniformly cooled to room temperature (25 ° C.) to produce a package (samples P1 to P7). .
[0054]
When these samples P1 to P7 were screwed to an external circuit board having a flat upper surface, displacements generated by strain in the thickness direction at the center of the mounting substrate were obtained by analysis by the finite element method. Table 1 shows the evaluation results.
[0055]
[Table 1]
Figure 2004253409
[0056]
From the results shown in Table 1, the displacement generated at the center of the mounting substrate in the sample of the present invention was reduced to 40 μm by making the thickness of the screw attachment portion thinner than the portion of the base 1 to which the frame was joined. The values can be reduced to the following values, and it has been found that the package of the present invention is effective in suppressing the optical axis shift between the optical fiber 6 and the optical semiconductor element 10.
[0057]
In particular, by setting the thickness of the screw mounting portion 1b to 2 or less of the thickness of the base 1, the displacement can be reduced to 20 μm or less, and the displacement of the optical axis between the optical fiber 6 and the optical semiconductor element 10 can be prevented. It turned out to be very effective.
[0058]
It should be noted that the present invention is not limited to the above-described examples and examples, and various changes may be made without departing from the scope of the present invention.
[0059]
【The invention's effect】
The optical semiconductor element housing package of the present invention has a substantially rectangular parallelepiped metal base having a through hole at the center and screw mounting portions formed at four corners, respectively, and an optical module on the upper surface fitted into the through hole. A mounting substrate on which a semiconductor element is mounted and fixed, and a metal formed on the outer peripheral portion of the upper main surface of the base so as to surround the through hole inside the screw mounting portion and form a through hole on the side portion. And a cylindrical optical fiber fixing member that is fitted into the through hole or that has one end joined to the periphery of the opening of the through hole outside the frame. The thickness of the mounting substrate is thinner than the portion where the frame of the base is joined, and the longitudinal elastic coefficient of the mounting substrate is larger than that of the base. Screw the external package to the external electric circuit board. Even if stress is generated in the mounting portion, the stress can be relieved without deforming the mounting substrate by deforming the screw mounting portion of the base having a smaller longitudinal elastic modulus than the mounting substrate, The positional accuracy of the optical semiconductor element mounted on the mounting substrate can be maintained satisfactorily.
[0060]
In addition, even if a large amount of heat is generated by the operation of the optical semiconductor element, and the mounting substrate thermally expands due to the heat, the base having a smaller longitudinal elastic modulus than the mounting substrate is caused by the thermal expansion of the mounting substrate. The stress can be absorbed, and the transmission of the stress to the joint between the frame and the base can be suppressed, so that the optical semiconductor element housing package can be effectively prevented from being distorted.
[0061]
Furthermore, since the mounting substrate is thinner than the portion where the frame of the base is bonded, the bonding area between the base and the mounting substrate is reduced, so that the mounting substrate is added to the base even when thermally expanded. The distortion is reduced and the deformation of the base is reduced. That is, transmission of stress from the mounting substrate to the frame body can be effectively suppressed. Further, the heat of the optical semiconductor element can be efficiently transmitted to the external electric circuit board and the heat radiating plate below the mounting substrate, so that the heat radiating property is improved.
[0062]
Also, a step is formed due to a thickness difference between the screw attachment portion and the portion where the frame of the base is joined, and the screw attachment portion is easily deformed at this step, so that the portion where the frame of the base is joined is formed. In this case, distortion is less likely to occur, and transmission of stress to the frame can be effectively suppressed. Further, since the screw attachment portion and the portion where the frame of the base is joined are formed integrally, there is no weak joint portion, and the package for housing the optical semiconductor element is not damaged.
[0063]
As a result, when the optical semiconductor element housing package is screwed and fixed to the external electric circuit board or when heat is generated by the operation of the housed optical semiconductor element, stress is relieved to reduce the stress of the optical semiconductor element housing package. It is necessary to effectively suppress distortion and breakage, maintain normal transmission and reception of optical signals between the optical input / output end face of the optical semiconductor element and the optical input / output end face of the optical fiber, and achieve excellent optical coupling efficiency. it can.
[0064]
The optical semiconductor device of the present invention includes an optical semiconductor element housing package of the present invention, an optical fiber inserted and fixed in an optical fiber fixing member, and a mounting substrate so as to be optically coupled to the optical fiber. By providing the mounted optical semiconductor element and the lid joined to the upper surface of the frame, the reliability using the optical semiconductor element housing package of the present invention is improved.
[Brief description of the drawings]
FIG. 1 is a plan view showing an example of an embodiment of an optical semiconductor element housing package of the present invention.
FIG. 2 is a cross-sectional view taken along line AA ′ of the optical semiconductor element housing package of FIG.
FIG. 3 is a plan view showing another example of the embodiment of the package for housing an optical semiconductor element of the present invention.
FIG. 4 is a plan view of a conventional package for housing an optical semiconductor element.
5 is a cross-sectional view of the package for storing an optical semiconductor element of FIG. 4 taken along line BB ′.
[Explanation of symbols]
1: Substrate
1a: Receiver
1b: Screw mounting part
1c: Through hole
1d: Through hole
1-A: mounting substrate
2: Frame
2a: Through hole
3: Optical fiber fixing member
5: Lid
6: Optical fiber
10: Optical semiconductor device

Claims (2)

中央部に貫通穴を有し、四隅にネジ取付部がそれぞれ形成された略直方体の金属製の基体と、前記貫通穴に嵌着された、上面に光半導体素子を載置固定する載置用基板と、前記基体の上側主面の外周部で前記ネジ取付部よりも内側に前記貫通穴を囲繞するように接合され、側部に貫通孔が形成された金属製の枠体と、前記貫通孔に嵌着されるかまたは前記貫通孔の前記枠体外側の開口の周囲に一端が接合された筒状の光ファイバ固定部材とを具備しており、前記ネジ取付部および前記載置用基板の厚みが前記基体の前記枠体が接合される部位よりも薄く、前記載置用基板の縦弾性係数が前記基体の縦弾性係数よりも大きいことを特徴とする光半導体素子収納用パッケージ。A substantially rectangular parallelepiped metal base having a through hole at the center and screw attachment portions formed at four corners, and a mounting member for mounting and fixing the optical semiconductor element on the upper surface fitted into the through hole. A metal frame having a through hole formed in a side portion of the substrate, the outer peripheral portion of the upper main surface of the base body being surrounded by the screw mounting portion so as to surround the through hole; A cylindrical optical fiber fixing member fitted to the hole or having one end joined to the periphery of the opening of the through hole outside the frame, wherein the screw mounting portion and the mounting substrate are described. Wherein the thickness of the substrate is smaller than the portion of the base to which the frame is joined, and the longitudinal elastic coefficient of the mounting substrate is larger than the longitudinal elastic coefficient of the substrate. 請求項1記載の光半導体素子収納用パッケージと、前記光ファイバ固定部材に挿入され固定された光ファイバと、該光ファイバに光学的に結合するように前記載置用基板に載置固定された光半導体素子と、前記枠体の上面に接合された蓋体とを具備したことを特徴とする光半導体装置。2. The package for storing an optical semiconductor device according to claim 1, an optical fiber inserted and fixed in the optical fiber fixing member, and mounted and fixed on the mounting substrate so as to be optically coupled to the optical fiber. An optical semiconductor device comprising: an optical semiconductor element; and a lid joined to an upper surface of the frame.
JP2003038794A 2002-12-24 2003-02-17 Optical semiconductor element storage package and optical semiconductor device Pending JP2004253409A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003038794A JP2004253409A (en) 2002-12-24 2003-02-17 Optical semiconductor element storage package and optical semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002372077 2002-12-24
JP2003038794A JP2004253409A (en) 2002-12-24 2003-02-17 Optical semiconductor element storage package and optical semiconductor device

Publications (1)

Publication Number Publication Date
JP2004253409A true JP2004253409A (en) 2004-09-09

Family

ID=33031748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003038794A Pending JP2004253409A (en) 2002-12-24 2003-02-17 Optical semiconductor element storage package and optical semiconductor device

Country Status (1)

Country Link
JP (1) JP2004253409A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007328065A (en) * 2006-06-06 2007-12-20 Casio Comput Co Ltd Light modulation element unit and projector
JP2010080562A (en) * 2008-09-25 2010-04-08 Sumitomo Metal Electronics Devices Inc Package for housing electronic component
JP2010287766A (en) * 2009-06-12 2010-12-24 Kyocera Corp Optical semiconductor element storage package and optical semiconductor device
US9351422B2 (en) 2012-01-24 2016-05-24 Kyocera Corporation Package for housing electronic component and electronic device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007328065A (en) * 2006-06-06 2007-12-20 Casio Comput Co Ltd Light modulation element unit and projector
JP2010080562A (en) * 2008-09-25 2010-04-08 Sumitomo Metal Electronics Devices Inc Package for housing electronic component
JP2010287766A (en) * 2009-06-12 2010-12-24 Kyocera Corp Optical semiconductor element storage package and optical semiconductor device
US9351422B2 (en) 2012-01-24 2016-05-24 Kyocera Corporation Package for housing electronic component and electronic device

Similar Documents

Publication Publication Date Title
US6345917B2 (en) Hermetically sealed optical-semiconductor container and optical-semiconductor module
JP3433732B2 (en) Optical semiconductor hermetically sealed container, optical semiconductor module and optical fiber amplifier
JP4822820B2 (en) Semiconductor element storage package and semiconductor device
JP2004253409A (en) Optical semiconductor element storage package and optical semiconductor device
JP3129249B2 (en) Optical semiconductor hermetically sealed container and optical semiconductor module
JP5717414B2 (en) Semiconductor storage package and semiconductor device including the same
JP5153682B2 (en) Semiconductor element storage package and optical semiconductor device
JP3047864B2 (en) Optical semiconductor hermetically sealed container and optical semiconductor module
JP2013093494A (en) Package for housing electronic component and electronic device
JP3898520B2 (en) Optical semiconductor element storage package and optical semiconductor device
JP2002232058A (en) Optical semiconductor element storage package
JP2004294782A (en) Optical semiconductor element storage package and optical semiconductor device
JP3921082B2 (en) Optical semiconductor element storage package and optical semiconductor device
JP2004246218A (en) Optical semiconductor element storage package and optical semiconductor device
JP2007012718A (en) Electronic component storage package and electronic device
JP2002141596A (en) Package for storing optical semiconductor elements
JP2002198454A (en) Package for storing semiconductor elements
JP3961388B2 (en) Optical semiconductor element storage package and optical semiconductor device
JP2003243762A (en) Optical semiconductor element storage package and optical semiconductor device
JP2004221327A (en) Semiconductor element storage package and semiconductor device
JP2004259609A (en) Package for storing semiconductor elements
JP2002368322A (en) Optical semiconductor element storage package and optical semiconductor device
JP4514647B2 (en) Electronic component storage package and electronic device
JP2004146404A (en) Package and electronic device for storing electronic component, package for storing optical semiconductor element, and optical semiconductor device
JP4199486B2 (en) Optical semiconductor element storage package and optical semiconductor device