[go: up one dir, main page]

JP2004262693A - Piezoelectric ceramics - Google Patents

Piezoelectric ceramics Download PDF

Info

Publication number
JP2004262693A
JP2004262693A JP2003052924A JP2003052924A JP2004262693A JP 2004262693 A JP2004262693 A JP 2004262693A JP 2003052924 A JP2003052924 A JP 2003052924A JP 2003052924 A JP2003052924 A JP 2003052924A JP 2004262693 A JP2004262693 A JP 2004262693A
Authority
JP
Japan
Prior art keywords
resonance frequency
value
temperature coefficient
lead
absolute value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003052924A
Other languages
Japanese (ja)
Inventor
Kazuo Shoji
和男 荘司
Yutaka Sugaya
豊 菅谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toko Inc
Original Assignee
Toko Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toko Inc filed Critical Toko Inc
Priority to JP2003052924A priority Critical patent/JP2004262693A/en
Publication of JP2004262693A publication Critical patent/JP2004262693A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

【課題】鉛を大量に含有しているために、鉛の環境に与える影響が問題となっている。また、比誘電率が大きく、機械的品質係数が小さいため、高周波帯域で使用される電子部品に用いることができなかった。
【解決手段】一般式(1−x)SrBiNb−xLnBiTiNbO(ただし、Lnは希土類金属)で表され、xが0.05<x<0.2の組成範囲にあるセラミックスを主成分とする。
【効果】共振周波数の温度係数の絶対値を小さくすることができると共に、比誘電率を小さくかつ、機械的品質係数Qmを大きくすることができた。また、鉛による環境上の問題を解決することができた。
[PROBLEMS] The effect of lead on the environment is a problem because it contains a large amount of lead. In addition, since it has a large relative dielectric constant and a small mechanical quality factor, it cannot be used for electronic components used in a high frequency band.
SOLUTION: The general formula (1-x) is represented by SrBi 2 Nb 2 O 9 -xLnBi 2 TiNbO 9 (where Ln is a rare earth metal), and x is in a composition range of 0.05 <x <0.2. Main component is ceramics.
[Effect] The absolute value of the temperature coefficient of the resonance frequency can be reduced, the relative dielectric constant can be reduced, and the mechanical quality factor Qm can be increased. In addition, environmental problems caused by lead could be solved.

Description

【0001】
【発明の属する技術分野】
本発明は、セラミックレゾネータ、セラミックフィルタ、温度センサ等に用いられる圧電セラミックスに関するものである。
【0002】
【従来の技術】
従来の圧電セラミックスに、PZTと呼ばれるPbZrO−PbTiO固溶体のMPB(morphotropic phase boundary)近傍組成系のものがある。この様な組成系の圧電セラミックスは、安価で電気特性が良いために、様々な電子部品に用いられている。
しかしながら、この種の圧電セラミックスは、鉛を大量に含有しているため、製造過程の焼成溶融等の熱処理の際に大気中に鉛が放出されたり、電子部品の形で市場に出回った後、これら電子部品が廃棄される際にも土壌中に鉛が放出されたりして鉛の環境に与える影響が問題となり、工業的利用が禁止又は制限されるようになってきている。
また、近年、電気信号のアナログからデジタルへの変換が急速に行われており、電子部品の使用範囲が高周波領域に広がりつつある。しかしながら、前述の様な圧電セラミックスは、比誘電率が1000以上と大きく、機械的品質係数Qmが2500以下と小さいため、高周波帯域で使用される電子部品に用いることができなかった。
この様な状況の中、鉛を含有せず、比誘電率が小さく、機械的品質係数Qmが大きい材料として、ビスマス層状構造強誘電体が注目されている。(例えば、特許文献1、2を参照。)
【0003】
【特許文献1】
特開2002−145669号
【特許文献2】
特開2001−294486号
【0004】
【発明が解決しようとする課題】
しかしながら、ビスマス層状構造強誘電体は、共振周波数の温度係数の絶対値が30ppm/℃よりも大きく、電子部品に実用化されていなかった。
【0005】
本発明は、共振周波数の温度係数の絶対値を小さくすることができると共に、比誘電率を小さくかつ、機械的品質係数Qmを大きくすることができ、鉛による環境上の問題が発生しない圧電セラミックスを提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明の圧電セラミックスは、ビスマス層状構造強誘電体の一種であるSr−Bi−Nb系セラミックスとLn−Bi−Ti−Nb系セラミックスを固溶することにより前述の課題を解決するものである。
本発明の圧電セラミックスは、一般式(1−x)SrBiNb−xLnBiTiNbO(ただし、Lnは希土類金属)で表され、xが0.05<x<0.2の組成範囲にあるセラミックスを主成分とする。
【0007】
【発明の実施の形態】
Sr−Bi−Nb系セラミックス(特に、SrBiNb)にLn−Bi−Ti−Nb系セラミックス(特に、LnBiTiNbO)を固溶させる。Lnには、希土類元素の一種のランタノイドノイドであるLa、Nd、Sm、Gdのいずれかの元素が用いられる。従って、本発明の圧電セラミックスは、Ln−Bi−Ti−Nb系セラミックスの固溶量によって、共振周波数の温度係数の絶対値を調整することができる。
【0008】
【実施例】
以下、本発明の実施例について説明する。
まず、本発明による圧電セラミックスの製造方法について説明する。SrCO、La、Nd、Sm、Gd、Bi、Nb、TiOの原料粉末を所定の組成となるように秤量し、ボールミル等を用いて7時間湿式混合した。これらの混合粉末を800〜1000℃で仮焼し、この仮焼物をボールミル等を用いて7時間湿式粉砕した。この粉砕物を乾燥した後、これにPVA等のバインダーを加えて造粒し、これを成形し、焼成することにより本発明による材料を得た。
【0009】
本発明による圧電セラミックスの特性の測定は、乾燥した粉砕物にPVA等のバインダーを1〜3wt%加えて造粒し、これを直径15mm、厚さ1〜2.5mmの円板になる様に100MPaの圧力でプレス成形し、最高保持温度が1100〜1250℃、この最高保持温度の保持時間が2時間となる様に焼成して円板状の磁器とし、この円板状の磁器を厚さが0.2〜2mmになる様に研磨した後、両面に銀電極を形成し、次いで、絶縁オイル中において、温度が100〜250℃、電界が5〜12kV/mm、時間が1〜30分の条件で分極処理をして評価サンプルを得て行った。この特性の測定は、共振・反共振法を利用して厚み縦基本振動の電気機械結合係数Ktと機械的品質係数Qmを算出した。また、恒温槽とインピーダンスアナライザーを用いて共振周波数の温度変化の測定を行い、以下の式を用いて、共振周波数の温度係数(fr−TC)を算出した。
fr−TC=(fr50 −fr−10 )/(fr25 ×60)×10
(ただし、fr50 は50℃における共振周波数を、fr−10 は−10℃における共振周波数を、fr25 は25℃における共振周波数を示している。)
なお、キュリー温度Tcは、比誘電率の温度変化を測定して算出した。
【0010】
図1は、(1−x)SrBiNb−xLnBiTiNbO
(ただし、LnはLa、Nd、Sm、Gdのいずれか1種類の元素)において、xの値を変えたときの厚み縦基本振動の電気機械結合係数Kt、機械的品質係数Qm、共振周波数の温度係数fr−TC、キュリー温度Tc、焼成温度を表にまとめたものである。なお、試料Noの*印は本発明の範囲外のものであることを示している。
LnとしてSmを用いた場合は、xの値が0の共振周波数の温度係数が−36ppm/℃であったものが、xの値を0.05にすると温度係数が−31ppm/℃と共振周波数の温度係数の絶対値が小さくなり、xの値が0.1の時に−26ppm/℃と共振周波数の温度係数の絶対値が最小になった。xの値が0.1を超えるとxの値が増加するに従って共振周波数の温度係数の絶対値が増加した。また、LnとしてLaを用いた場合は、xの値が0の共振周波数の温度係数が−36ppm/℃であったものが、xの値を0.1にすると温度係数が−28ppm/℃と共振周波数の温度係数の絶対値が小さくなり、xの値を0.2にすると共振周波数の温度係数の絶対値はxの値が0.1の時よりも大きくなった。さらに、LnとしてNdを用いた場合は、xの値が0の共振周波数の温度係数が−36ppm/℃であったものが、xの値を0.1にすると温度係数が−22ppm/℃と共振周波数の温度係数の絶対値が小さくなり、xの値を0.2にすると共振周波数の温度係数の絶対値はxの値が0.1の時よりも大きくなった。
【0011】
この様に、xの値が0.05以下であると共振周波数の温度係数の絶対値が大きく、xの値が0.2以上になると共振周波数の温度係数の絶対値が30ppm/℃以上となるか又は、機械的品質係数Qmが3500以下となってしまう。また、xの値が0.05<x<0.2の範囲内で比誘電率が200以下となった。さらに、xの値を増加させるとキュリー温度Tcが低くなる傾向にあるが、0.05<x<0.2の範囲内では常に400℃以上と、電子部品を電子機器のプリント基板等に半田付けする際のリフローの温度よりも十分高い状態にあり、半田付けによって消極することがない。
【0012】
この様に本発明の圧電セラミックスは、xの値が0.05<x<0.2の範囲で、良好な機械的品質係数Qmを得ることができると共に、共振周波数の温度係数の絶対値を小さくできた。特に、LnとしてNdを用い、xの値を0.1にしたものは、xの値が0のものと比較して共振周波数の温度係数fr−TCの絶対値が大きく向上している。
【0013】
【発明の効果】
本発明の圧電セラミックスは、一般式(1−x)SrBiNb−xLnBiTiNbO (ただし、Lnは希土類金属)で表され、xが0.05<x<0.2の組成範囲にあるセラミックスを主成分とするので、共振周波数の温度係数の絶対値を30ppm/℃未満と従来のものよりも小さくすることができると共に、比誘電率を小さくかつ、機械的品質係数Qmを大きくすることができる。また、本発明の圧電セラミックスは、鉛を含有しないので、製造過程や電子部品が廃棄される際に鉛が放出されることがなく、環境上の問題が生じることもない。
【図面の簡単な説明】
【図1】本発明の圧電セラミックスの特性を説明するための特性の表である。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a piezoelectric ceramic used for a ceramic resonator, a ceramic filter, a temperature sensor, and the like.
[0002]
[Prior art]
As a conventional piezoelectric ceramic, there is a PbZrO 3 -PbTiO 3 solid solution called PZT having a composition near the MPB (morphotropic phase boundary). Piezoelectric ceramics having such a composition are used for various electronic components because they are inexpensive and have good electric characteristics.
However, since this kind of piezoelectric ceramics contains a large amount of lead, lead is released into the atmosphere during heat treatment such as sintering and melting in the manufacturing process, or after being marketed in the form of electronic components, Even when these electronic components are discarded, lead is released into the soil and the effect of lead on the environment becomes a problem, and industrial use has been prohibited or restricted.
In recent years, the conversion of electric signals from analog to digital has been rapidly performed, and the use range of electronic components has been expanding to a high frequency range. However, the above-described piezoelectric ceramics cannot be used for electronic components used in a high frequency band because the relative dielectric constant is as large as 1000 or more and the mechanical quality factor Qm is as small as 2500 or less.
In such a situation, a bismuth layered ferroelectric has attracted attention as a material that does not contain lead, has a small relative dielectric constant, and has a large mechanical quality factor Qm. (See, for example, Patent Documents 1 and 2.)
[0003]
[Patent Document 1]
JP-A-2002-145669 [Patent Document 2]
JP 2001-294486 A
[Problems to be solved by the invention]
However, the bismuth layer structure ferroelectric has an absolute value of the temperature coefficient of the resonance frequency of more than 30 ppm / ° C., and has not been put to practical use in electronic parts.
[0005]
The present invention can reduce the absolute value of the temperature coefficient of the resonance frequency, reduce the relative dielectric constant, and increase the mechanical quality factor Qm, and eliminate the problem of environmental problems caused by lead. The purpose is to provide.
[0006]
[Means for Solving the Problems]
The piezoelectric ceramic of the present invention solves the above-mentioned problem by forming a solid solution of Sr-Bi-Nb-based ceramics and Ln-Bi-Ti-Nb-based ceramics, which are a kind of bismuth layer structure ferroelectric.
The piezoelectric ceramic of the present invention is represented by the general formula (1-x) SrBi 2 Nb 2 O 9 -xLnBi 2 TiNbO 9 (where Ln is a rare earth metal), and x has a composition of 0.05 <x <0.2. The main component is ceramics in the range.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
SrBi-Nb-based ceramics (in particular, SrBi 2 Nb 2 O 9) LnBi-Ti-Nb based ceramics (in particular, LnBi 2 TiNbO 9) is solid solution. As Ln, any one of La, Nd, Sm, and Gd, which is a kind of rare earth element, is used. Therefore, in the piezoelectric ceramic of the present invention, the absolute value of the temperature coefficient of the resonance frequency can be adjusted by the amount of solid solution of the Ln-Bi-Ti-Nb-based ceramic.
[0008]
【Example】
Hereinafter, examples of the present invention will be described.
First, a method for manufacturing a piezoelectric ceramic according to the present invention will be described. Raw material powders of SrCO 3 , La 2 O 3 , Nd 2 O 3 , Sm 2 O 3 , Gd 2 O 3 , Bi 2 O 3 , Nb 2 O 5 , and TiO 2 are weighed so as to have a predetermined composition, and a ball mill. And wet-mixed for 7 hours. These mixed powders were calcined at 800 to 1000 ° C., and the calcined product was wet-ground using a ball mill or the like for 7 hours. After the pulverized product was dried, a binder such as PVA was added to the pulverized product, granulated, molded, and fired to obtain a material according to the present invention.
[0009]
The characteristics of the piezoelectric ceramics according to the present invention are measured by adding a binder such as PVA to the dried pulverized material in an amount of 1 to 3% by weight and granulating the dried pulverized material into a disk having a diameter of 15 mm and a thickness of 1 to 2.5 mm. Press molding at a pressure of 100 MPa, and baking so that the maximum holding temperature is 1100 to 1250 ° C. and the holding time at the maximum holding temperature is 2 hours to obtain a disc-shaped porcelain. Is 0.2 to 2 mm, and silver electrodes are formed on both sides. Then, in an insulating oil, the temperature is 100 to 250 ° C., the electric field is 5 to 12 kV / mm, and the time is 1 to 30 minutes. An evaluation sample was obtained by performing a polarization treatment under the following conditions. For the measurement of this characteristic, the electromechanical coupling coefficient Kt and the mechanical quality coefficient Qm of the thickness longitudinal fundamental vibration were calculated using the resonance / antiresonance method. The temperature change of the resonance frequency was measured using a thermostat and an impedance analyzer, and the temperature coefficient of the resonance frequency (fr-TC) was calculated using the following equation.
fr-TC = (fr 50 ° C. −fr− 10 ° C. ) / (fr 25 ° C. × 60) × 10 6
(However, fr 50 ° C. indicates a resonance frequency at 50 ° C., fr −10 ° C. indicates a resonance frequency at −10 ° C., and fr 25 ° C. indicates a resonance frequency at 25 ° C.)
The Curie temperature Tc was calculated by measuring a change in relative permittivity with temperature.
[0010]
FIG. 1 shows (1-x) SrBi 2 Nb 2 O 9 -xLnBi 2 TiNbO 9
(Where Ln is any one of La, Nd, Sm, and Gd), the electromechanical coupling coefficient Kt, mechanical quality coefficient Qm, and resonance frequency of the thickness longitudinal fundamental vibration when the value of x is changed. The temperature coefficient fr-TC, the Curie temperature Tc, and the firing temperature are summarized in a table. In addition, * mark of a sample No has shown that it is out of the range of the present invention.
When Sm was used as Ln, the temperature coefficient of the resonance frequency at which the value of x was 0 was −36 ppm / ° C., but when the value of x was 0.05, the temperature coefficient became −31 ppm / ° C. The absolute value of the temperature coefficient of the resonance frequency became −26 ppm / ° C. when the value of x was 0.1, and the absolute value of the temperature coefficient of the resonance frequency became the minimum when the value of x was 0.1. When the value of x exceeded 0.1, the absolute value of the temperature coefficient of the resonance frequency increased as the value of x increased. When La is used as Ln, the temperature coefficient of the resonance frequency at which the value of x is 0 is −36 ppm / ° C., but when the value of x is 0.1, the temperature coefficient becomes −28 ppm / ° C. The absolute value of the temperature coefficient of the resonance frequency became smaller, and when the value of x was set to 0.2, the absolute value of the temperature coefficient of the resonance frequency became larger than when the value of x was 0.1. Further, when Nd is used as Ln, the temperature coefficient of the resonance frequency where the value of x is 0 is −36 ppm / ° C., but when the value of x is 0.1, the temperature coefficient becomes −22 ppm / ° C. The absolute value of the temperature coefficient of the resonance frequency became smaller, and when the value of x was set to 0.2, the absolute value of the temperature coefficient of the resonance frequency became larger than when the value of x was 0.1.
[0011]
As described above, when the value of x is 0.05 or less, the absolute value of the temperature coefficient of the resonance frequency is large, and when the value of x is 0.2 or more, the absolute value of the temperature coefficient of the resonance frequency is 30 ppm / ° C. or more. Or the mechanical quality factor Qm is 3500 or less. Further, the relative dielectric constant was 200 or less when the value of x was in the range of 0.05 <x <0.2. When the value of x is increased, the Curie temperature Tc tends to decrease. However, the temperature is always 400 ° C. or more in the range of 0.05 <x <0.2. It is in a state sufficiently higher than the reflow temperature at the time of attachment, and is not depolarized by soldering.
[0012]
As described above, the piezoelectric ceramic of the present invention can obtain a good mechanical quality factor Qm when the value of x is in the range of 0.05 <x <0.2, and can reduce the absolute value of the temperature coefficient of the resonance frequency. Could be smaller. In particular, in the case where Nd is used as Ln and the value of x is set to 0.1, the absolute value of the temperature coefficient fr-TC of the resonance frequency is greatly improved as compared with the case where the value of x is 0.
[0013]
【The invention's effect】
The piezoelectric ceramic of the present invention is represented by the general formula (1-x) SrBi 2 Nb 2 O 9 -xLnBi 2 TiNbO 9 (where Ln is a rare earth metal), and x has a composition of 0.05 <x <0.2. Since the main component is ceramics in the range, the absolute value of the temperature coefficient of the resonance frequency can be made smaller than 30 ppm / ° C. as compared with the conventional one, and the relative dielectric constant is reduced and the mechanical quality factor Qm is reduced. Can be larger. In addition, since the piezoelectric ceramic of the present invention does not contain lead, lead is not released during the manufacturing process or when electronic components are discarded, and there is no environmental problem.
[Brief description of the drawings]
FIG. 1 is a table of characteristics for explaining characteristics of a piezoelectric ceramic of the present invention.

Claims (3)

一般式
(1−x)SrBiNb−xLnBiTiNbO
(ただし、Lnは希土類金属)で表され、xが0.05<x<0.2の組成範囲にあるセラミックスを主成分とすることを特徴とする圧電セラミックス。
General formula (1-x) SrBi 2 Nb 2 O 9 -xLnBi 2 TiNbO 9
(Where Ln is a rare earth metal), and x is in the composition range of 0.05 <x <0.2 as a main component.
Lnがランタノイドである請求項1に記載の圧電セラミックス。The piezoelectric ceramic according to claim 1, wherein Ln is a lanthanoid. LnがLa、Nd、Sm、Gdのいずれかである請求項1に記載の圧電セラミックス。The piezoelectric ceramic according to claim 1, wherein Ln is any of La, Nd, Sm, and Gd.
JP2003052924A 2003-02-28 2003-02-28 Piezoelectric ceramics Pending JP2004262693A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003052924A JP2004262693A (en) 2003-02-28 2003-02-28 Piezoelectric ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003052924A JP2004262693A (en) 2003-02-28 2003-02-28 Piezoelectric ceramics

Publications (1)

Publication Number Publication Date
JP2004262693A true JP2004262693A (en) 2004-09-24

Family

ID=33117675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003052924A Pending JP2004262693A (en) 2003-02-28 2003-02-28 Piezoelectric ceramics

Country Status (1)

Country Link
JP (1) JP2004262693A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007067125A (en) * 2005-08-31 2007-03-15 Toko Inc Single plate type piezoelectric bimorph element
JP2007217233A (en) * 2006-02-17 2007-08-30 Toko Inc Piezoelectric ceramics
CN112125669A (en) * 2020-09-24 2020-12-25 中国人民解放军国防科技大学 Rare earth-free high Curie temperature piezoelectric ceramic element and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007067125A (en) * 2005-08-31 2007-03-15 Toko Inc Single plate type piezoelectric bimorph element
JP2007217233A (en) * 2006-02-17 2007-08-30 Toko Inc Piezoelectric ceramics
CN112125669A (en) * 2020-09-24 2020-12-25 中国人民解放军国防科技大学 Rare earth-free high Curie temperature piezoelectric ceramic element and preparation method thereof
CN112125669B (en) * 2020-09-24 2022-03-11 中国人民解放军国防科技大学 Rare earth-free high Curie temperature piezoelectric ceramic element and preparation method thereof

Similar Documents

Publication Publication Date Title
JP4881315B2 (en) Piezoelectric ceramic composition and piezoelectric ceramic
KR100379202B1 (en) Piezoelectric Ceramic Composition and Ceramic Piezoelectric Device Employing the Composition
JP2008156172A (en) Lead-free piezoelectric ceramic composition
JP3686382B2 (en) Piezoelectric ceramic composition and piezoelectric device using the same
JP4427723B2 (en) Piezoelectric composition
CN100408508C (en) piezoelectric element
JP4169203B2 (en) Piezoelectric ceramic composition
JP2009078964A (en) Method for producing piezoelectric ceramic
US20080258100A1 (en) Piezoelectric ceramic composition and resonator
JP2004262693A (en) Piezoelectric ceramics
JP2004238263A (en) Piezoelectric ceramics
JP2008056549A (en) Lead-free piezoelectric ceramic composition
JP2007217233A (en) Piezoelectric ceramics
JP3482954B2 (en) Piezoelectric ceramic composition
JP2737451B2 (en) Piezoelectric material
JP2007258597A (en) Piezoelectric polarization method
JP2006062955A (en) Piezoelectric ceramic
JP3106507B2 (en) Piezoelectric porcelain composition
JP2910338B2 (en) Piezoelectric porcelain composition
JP2003327471A (en) Piezoelectric ceramics
JPH0517220A (en) Piezoelectric porcelain composition
JPH08231270A (en) Piezoelectric composition
JPH0338892A (en) Piezoelectric porcelain composition
JPH0891927A (en) Piezoelectric composition
JPH09295864A (en) Piezoelectric ceramic composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090421

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090818