[go: up one dir, main page]

JP2004279226A - Current sensor - Google Patents

Current sensor Download PDF

Info

Publication number
JP2004279226A
JP2004279226A JP2003071443A JP2003071443A JP2004279226A JP 2004279226 A JP2004279226 A JP 2004279226A JP 2003071443 A JP2003071443 A JP 2003071443A JP 2003071443 A JP2003071443 A JP 2003071443A JP 2004279226 A JP2004279226 A JP 2004279226A
Authority
JP
Japan
Prior art keywords
current
magnetic core
measured
sensor
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003071443A
Other languages
Japanese (ja)
Inventor
Kazuo Fukunaga
和男 福永
Takashi Urano
高志 浦野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2003071443A priority Critical patent/JP2004279226A/en
Publication of JP2004279226A publication Critical patent/JP2004279226A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reliable current sensor which can accurately measure a current even when a magnetic core with a certain degree of residual magnetization is used. <P>SOLUTION: The current sensor is a magnetic balance type current sensor in which a hole element 3 is arranged in a gap provided on a toroidal magnetic core on which a coil L1 is wound around with a certain number of winding, and a current path in which a current to be measured flows is provided to go through the inside of the toroidal magnetic core. A magnetic flux generated at the toroidal magnetic core due to the current to be measured is detected by the hole element 3, and the output detected by the hole element 3 is amplified by a sensor circuit. The magnetic flux due to the current to be measured is neutralized by a negative feedback current flowing in the coil L1. The amount of the current to be measured is calculated from the amount of the negative feedback current of the coil L1. In addition, the current sensor comprises a reset circuit part 10 which makes to flow a bias current in a coil L1 in one direction while a power source voltage of the sensor circuit does not achieve a predetermined voltage when comparing the power source voltage and the predetermined voltage. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、直接検出できない電力配線、ケーブル等の電流チェック、検査に使用するための電流センサに関し、非接触型検知なので、検知対象物に何の加工もしないで測定でき、保守・点検用の機器に最適なものである。
【0002】
【従来の技術】
従来、電流センサとして磁気平衡式(フィードバック方式)のものが知られている。この磁気平衡式の電流センサは、従来、高透磁率、低残留磁化の磁性コアを用い、該コアに設けられたギャップにホール素子をはさみ、さらに負帰還用の巻線コイルを前記コアに設け、電流の被測定対象物である電線に、当該電流センサーのコアが環状配置にできるように開閉機構を有したものである。その測定原理は、前記電線に流れる被測定電流による発生磁界、換言すれば前記環状磁性コア中を通る磁束を、前記ホール素子で検知し、その検知信号を負帰還(負のフィードバック)することによって前記巻線コイルに負帰還電流を流し、前記被測定電流による発生磁束を打ち消すように作用させ、その負帰還電流値自体が、前記被測定電流を前記巻線コイルの巻き数で除算した値と等しくなることを利用して、被測定電流を計測するものであった。
【0003】
上記従来の電流センサであると、検出確度を高めるためにどうしても磁性コアの磁気特性、特に残留磁化を小さくすることが必須で、高精度の電流センサを得るにはパーマロイのような高価な磁性材料を磁性コアに用いることが必要であった。従って、残留磁化がパーマロイより大きな珪素鋼板やフェライトを用いた場合、ゼロ磁界での残留磁化が大きく残り、電流センサにおいて被測定電流がない場合でも、測定値がゼロにならない問題が生じていた。
【0004】
なお、磁気平衡式電流センサの一例として下記特許文献1が挙げられる。また、磁性コアの初期化に関するものとして下記特許文献2があるが、特許文献2は磁気平衡式電流センサではない。
【0005】
【特許文献1】特開平7−55844号公報
【特許文献2】特開平7−43389号公報
【0006】
【発明が解決しようとする課題】
本発明は、上記の点に鑑み、ある程度の残留磁化が残るような磁性コアを使用した場合でも、電流を正確に測定可能で信頼性の高い電流センサを提供することを目的とする。
【0007】
本発明のその他の目的や新規な特徴は後述の実施の形態において明らかにする。
【0008】
【課題を解決するための手段】
上記目的を達成するために、本発明は、環状磁性コアに設けられたギャップに磁気センサ素子を配し、該環状磁性コアに所定巻数のコイルを巻回して設け、該環状磁性コアの内側を貫通するように被測定電流の通る電流路を配置し、前記被測定電流による前記環状磁性コアに発生する磁束を前記磁気センサ素子で検知し、該磁気センサ素子の検知出力をセンサ回路で増幅し、前記コイルに負帰還電流を流して前記被測定電流による磁束を打ち消し、前記コイルの負帰還電流値から前記被測定電流を計測する磁気平衡式の電流センサにおいて、
前記センサ回路の電源電圧を規定の電圧と比較し、規定の電圧に達しない期間は、前記コイルに常に一方向のバイアス電流を流す回路部を付加した構成としている。
【0009】
前記電流センサにおいて、前記バイアス電流を流す回路部は、前記環状磁性コアに常に一定の残留磁化を残すために必要な期間中、前記バイアス電流を流すように遅れ時定数を有するとよい。
【0010】
【発明の実施の形態】
以下、本発明に係る電流センサの実施の形態を図面に従って説明する。
【0011】
図1及び図2を用いて本発明に係る電流センサの実施の形態を説明する。図1は電流センサの回路図であり、図2は環状磁性コア、磁気センサ素子としてのホール素子、及び被測定電流の流れる電流路としての電線の配置を示す。
【0012】
まず、図2について説明すると、1は環状磁性コアであり、これに負帰還電流を流すための巻線コイルL1が所定巻き数だけ巻回され、環状磁性コア1の内側中央部を被測定電流が通る電流路としての電線2が貫通する配置となっている。また、環状磁性コア1に設けられたギャップGには磁気センサ素子としてのホール素子3が挟み込むように配置されている。この場合、前記被測定電流に比例した磁束密度の磁束が前記環状磁性コア1を通り、そのギャップG中に挿入されたホール素子3を通過する。
【0013】
図1は前記被測定電流に起因するホール素子3の検知出力をセンサ回路で増幅し、巻線コイルL1に負帰還電流を流して前記被測定電流による発生磁束を打ち消すためのセンサ回路、及びこのセンサ回路の電源電圧を規定の電圧と比較し、規定の電圧に達しない期間は前記巻線コイルL1に、常に一方向のバイアス電流を印加するための回路部10(図1中点線枠内で示し、以下リセット回路部と言う)を示す。
【0014】
一般に、磁性材料は小さな磁界ループの範囲内では、ほとんど残留磁化の変化を生じず、安定なB−Hカーブを描き、例え大きな磁気バイアスによる残留磁化が残っても、その後の小さな磁界ループの範囲内では、ヒステリシスを生じない。本実施の形態で示した図1の回路は、図2の環状磁性コア1が常に一方向の飽和残留磁化の状態になるようなバイアス電流を流すリセット回路部10を、電源立ち上げ時、もしくは電源の異常低下時に自動的に動作させて安定に残留磁化を発生させるものである。
【0015】
図1において、ホール素子3は等価的に4つの抵抗のブリッジ接続で表され、端子▲1▼,▲2▼,▲3▼,▲4▼を有し、端子▲1▼▲3▼間に一定電流を流しておくことにより、端子▲2▼▲4▼間にホール素子3に印加された磁束密度に比例した(換言すれば被測定電流に比例した)検知出力電圧が得られるようになっている。OP1,OP2は演算増幅器、IC1は定電圧を供給するための集積回路、Q1〜Q5はトランジスタ、D1〜D6はダイオード、ZD1は定電圧ダイオード、C1〜C11はコンデンサ、R1〜R26は抵抗である。また、正側端子T1には直流+12V、負側端子T2には直流−12V、コモン端子T0には0Vが直流電源より供給されるようになっている。
【0016】
まず、図1の回路構成において、直流電源の立ち上げ時や直流電源の電圧低下異常が発生した場合の動作について説明する。
【0017】
リセット回路部10内の演算増幅器OP2の非反転入力には定電圧ダイオードZD1の定電圧が印加されており、反転入力には正側端子T1と負側端子T2間の供給電圧を抵抗R25,R26で分圧した電圧値が印加される。従って、定電圧ダイオードZD1で規定された一定電圧値よりも反転入力の印加電圧値が低下すると、演算増幅器OP2は直流電源の低下異常を検知し、その出力はハイレベルとなる。これにより、トランジスタQ5がオン(ON)となり、ホール素子3の検知出力電圧を増幅するための演算増幅器OP1の反転入力を低下させる。これにより、ホール素子3の検知出力電圧の大小、極性にかかわらず、演算増幅器OP1の出力はハイレベルとなり、トランジスタQ1をオンして負帰還用の巻線コイルL1のP2からPl方向に電流を流す。また、トランジスタQ4はオフ(OFF)となるためトランジスタQ3はオンとなり、トランジスタQ2は動作しない。
【0018】
これにより、リセット回路部10は、直流電源の立ち上げ時や直流電源の電圧低下異常が発生したときに、巻線コイルL1のP2からPl方向に充分大きなバイアス電流を流して、図1の環状磁性コア1に、常に一方向の飽和残留磁化が残るように設定する。
【0019】
なお、リセット回路10には、図2の環状磁性コア1に常に一定の残留磁化を残すために必要な期間中、前記バイアス電流を流し続けるように遅れ時定数を有する。すなわち、コンデンサC11と抵抗R25,抵抗R26との並列接続とで遅れ時定数を作っていて、仮に直流電源の電圧低下異常が瞬間的であっても、環状磁性コア1に、常に一方向の飽和残留磁化が残るようにバイアス電流を流すことができる。
【0020】
一方、直流電源(+12V及び−12V)が正常範囲に達すると、演算増幅器OP2の出力がローレベルとなりトランジスタQ4をオンにし、トランジスタQ3をオフにする。すなわち、トランジスタQ2はトランジスタQ3の影響を受けず、ホール素子3の検知出力電圧を増幅するセンサ回路の演算増幅器OP1の動作モードに委ねられることになる。また、トランジスタQ5はオフであり、ホール素子3の端子▲2▼▲4▼間の検知出力が演算増幅器OP1に入力される。
【0021】
電源正常時において、環状磁性コア1にリセット回路部10による飽和残留磁化を残した状態として、被測定電流がゼロのときにホール素子3の端子▲2▼▲4▼間の検知出力電圧がゼロになるように回路ブリッジ(ホール素子3の端子▲1▼▲4▼間、端子▲3▼▲4▼間に接続された抵抗R18,19)の調整を行う。このように、被測定電流がゼロの場合の出力オフセットは前記回路ブリッジの抵抗調整で容易にゼロに設定することができる。
【0022】
前記ホール素子3には、一定電圧を生成する集積回路IC1より、端子▲1▼▲3▼間に一定電流が抵抗R11、ホール素子3の端子▲1▼▲3▼、抵抗R12の経路で供給されている。今、図2の電線2に被測定電流が流れると、環状磁性コア1に被測定電流に比例した磁束密度の磁束が発生し、ホール素子3の端子▲2▼▲4▼間に前記磁束密度に比例(つまり被測定電流に比例)した検知出力電圧が発生して演算増幅器OP1に加えられる。すなわち、端子▲2▼の電位は抵抗R5を介し演算増幅器OP1の非反転入力に、端子▲4▼の電位は抵抗R4を介し演算増幅器OP1の反転入力に印加されている。演算増幅器OP1の反転入力よりも非反転入力の電圧が高いとき、演算増幅器OP1の出力はハイレベルとなり、トランジスタQ1をオンして負帰還用の巻線コイルL1のP2からPl方向に負帰還電流を流し、前記被測定電流による磁界(コア1に生じた磁束)を打ち消す。
【0023】
上記と被測定電流の向きが逆であれば、演算増幅器OP1の反転入力よりも非反転入力の電圧が低くなり、演算増幅器OP1の出力はローレベルとなり、トランジスタQ2をオンして負帰還用の巻線コイルL1のP1からP2方向に負帰還電流を流し、前記被測定電流による磁界(コア1に生じた磁束)を打ち消す。
【0024】
この演算増幅器OP1を用いた回路の帰還利得(フィードバックゲイン)が非常に高いと、被測定電流による起磁力アンペアターンと前記負帰還用の巻線コイルL1の負帰還電流が作る起磁力アンペアターンが一致した状態で回路は平衡状態となり、コイルL1の巻き数をNとすると、負帰還電流値は被測定電流値の1/Nとなる。
【0025】
この関係が厳密に成立するためには環状磁性コア1の残留磁化がゼロになることが条件であるが、大きな電流が一方的に流れると残留磁化が発生し、誤差の大きな原因となる。通常は前記環状磁性コア1の内部磁界がゼロとなるように動作しているため、残留磁化はほとんど発生しないが、センサ回路の直流電源である正負の電圧の一方が遮断されたり、立ち上がりに時間的な差があると異常な負帰還電流が前記環状磁性コア1に印加されるため、残留磁化が発生する問題が生じる。
【0026】
この問題を解決するために直流電源が異常時には、リセット回路部10により自動的に一方的なバイアス電流をかけ、必ず一定方向の所定残留磁化(好ましくは飽和残留磁化)を残すことにより前記環状磁性コア1の磁気ループの安定化を図るものである。すなわち常に一定方向の所定残留磁化を残したまま動作しているため被測定電流がゼロ電流時のオフセット出力の変動を無くすことができ、ひいては高精度の電流検知ができる。
【0027】
以下の表1は被測定電流を0A、200A、0A、−200A、0Aと変化させた場合において、被測定電流ゼロのときの従来回路及び本実施の形態の電流センサ測定値を示すものである。上段の初期特性は電源遮断試験前で環状磁性コアに残留磁化が殆ど無い状態であり、下段は±12V電源の片側電圧を交互に10msの間遮断する電源遮断試験を行った後の測定値を示す。本実施の形態では残留磁化による差分は初期調整により回路の方で打ち消している。
【0028】
【表1】

Figure 2004279226
【0029】
上記表1から、従来回路では被測定電流ゼロ時の測定値が電源遮断試験前と後で0.08Aから1Aに大幅に悪化しているのに対し、本実施の形態では電源遮断試験前後で測定値が変動せず、高精度の電流測定が可能となっている。
【0030】
以上本発明の実施の形態について説明してきたが、本発明はこれに限定されることなく請求項の記載の範囲内において各種の変形、変更が可能なことは当業者には自明であろう。
【0031】
【発明の効果】
以上説明したように、本発明に係る電流センサによれば、安価な磁性材料の磁性コアを用いることができ、安価な電流センサを提供できる。また、磁性コアに多少の残留磁化があった場合でも、本発明の回路によって電流センサとしての機能を損なうことのない特性が得られる。
【図面の簡単な説明】
【図1】本発明に係る電流センサの実施の形態を示す回路図である。
【図2】本発明の実施の形態における環状磁性コア、巻線コイル及びホール素子の配置を示す斜視図である。
【符号の説明】
1 環状磁性コア
2 電線
3 ホール素子
10 リセット回路部
C1〜C11 コンデンサ
D1〜D6 ダイオード
IC1 集積回路
OP1,OP2 演算増幅器
Q1〜Q5 トランジスタ
R1〜R26 抵抗
ZD1 定電圧ダイオード
T0 コモン端子
T1 正側端子
T2 負側端子[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a current sensor for use in current checking and inspection of power wiring, cables, etc. that cannot be directly detected.Since it is a non-contact type detection, it can be measured without any processing on a detection target, and is used for maintenance and inspection. Ideal for equipment.
[0002]
[Prior art]
Conventionally, a magnetic balance type (feedback type) sensor is known as a current sensor. Conventionally, this magnetic balance type current sensor uses a magnetic core having a high magnetic permeability and a low remanent magnetization, a Hall element is interposed in a gap provided in the core, and a winding coil for negative feedback is provided in the core. In addition, an opening / closing mechanism is provided so that the core of the current sensor can be arranged in an annular shape on an electric wire to be measured. The measurement principle is that a magnetic field generated by a measured current flowing in the electric wire, in other words, a magnetic flux passing through the annular magnetic core is detected by the Hall element, and the detection signal is negatively fed back (negative feedback). A negative feedback current is caused to flow through the winding coil to act to cancel the magnetic flux generated by the measured current, and the negative feedback current value itself is a value obtained by dividing the measured current by the number of turns of the winding coil. Utilizing the fact that they are equal, the current to be measured is measured.
[0003]
With the above-mentioned conventional current sensor, it is essential to reduce the magnetic characteristics of the magnetic core, especially the residual magnetization, in order to increase the detection accuracy, and to obtain a high-precision current sensor, an expensive magnetic material such as permalloy is required. For the magnetic core. Therefore, when a silicon steel sheet or ferrite having a residual magnetization larger than that of permalloy is used, a large residual magnetization in a zero magnetic field remains, and there is a problem that the measured value does not become zero even when there is no current to be measured in the current sensor.
[0004]
In addition, as an example of the magnetic balance type current sensor, the following Patent Document 1 is cited. Patent Document 2 below relates to initialization of a magnetic core, but Patent Document 2 is not a magnetically balanced current sensor.
[0005]
[Patent Document 1] Japanese Patent Application Laid-Open No. 7-55844 [Patent Document 2] Japanese Patent Application Laid-Open No. 7-43389 [0006]
[Problems to be solved by the invention]
In view of the above, it is an object of the present invention to provide a highly reliable current sensor that can accurately measure current even when a magnetic core having a certain amount of residual magnetization remains.
[0007]
Other objects and novel features of the present invention will be clarified in embodiments described later.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a magnetic sensor element disposed in a gap provided in an annular magnetic core, a coil having a predetermined number of turns wound around the annular magnetic core, and an inner side of the annular magnetic core. A current path through which the current to be measured passes is arranged so as to penetrate, a magnetic flux generated in the annular magnetic core by the current to be measured is detected by the magnetic sensor element, and a detection output of the magnetic sensor element is amplified by a sensor circuit. In a magnetic balance type current sensor for flowing a negative feedback current through the coil to cancel a magnetic flux due to the measured current and measuring the measured current from a negative feedback current value of the coil,
A power supply voltage of the sensor circuit is compared with a specified voltage, and a circuit portion for always flowing a unidirectional bias current to the coil during a period in which the specified voltage is not reached is added.
[0009]
In the current sensor, the circuit section for flowing the bias current may have a delay time constant so that the bias current flows during a period necessary to always keep a constant residual magnetization in the annular magnetic core.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of a current sensor according to the present invention will be described with reference to the drawings.
[0011]
An embodiment of a current sensor according to the present invention will be described with reference to FIGS. FIG. 1 is a circuit diagram of a current sensor, and FIG. 2 shows an arrangement of an annular magnetic core, a Hall element as a magnetic sensor element, and an electric wire as a current path through which a current to be measured flows.
[0012]
First, referring to FIG. 2, reference numeral 1 denotes an annular magnetic core, around which a winding coil L1 for passing a negative feedback current is wound by a predetermined number of turns. Are arranged to penetrate the electric wire 2 as a current path through which the wire passes. Further, a hall element 3 as a magnetic sensor element is arranged so as to be sandwiched in a gap G provided in the annular magnetic core 1. In this case, a magnetic flux having a magnetic flux density proportional to the measured current passes through the annular magnetic core 1 and passes through the Hall element 3 inserted in the gap G.
[0013]
FIG. 1 shows a sensor circuit for amplifying a detection output of the Hall element 3 caused by the measured current by a sensor circuit, and applying a negative feedback current to the winding coil L1 to cancel a magnetic flux generated by the measured current. The power supply voltage of the sensor circuit is compared with a prescribed voltage, and during a period in which the prescribed voltage is not reached, a circuit unit 10 for applying a one-way bias current to the winding coil L1 (indicated by a dotted frame in FIG. 1). And hereinafter referred to as a reset circuit unit).
[0014]
In general, a magnetic material hardly causes a change in remanent magnetization within a small magnetic field loop and draws a stable BH curve. Within, no hysteresis occurs. The circuit of FIG. 1 shown in the present embodiment includes a reset circuit section 10 for supplying a bias current that causes the annular magnetic core 1 of FIG. 2 to always be in a one-way saturated remanent magnetization state at power-on or It operates automatically when the power supply abnormally drops to stably generate residual magnetization.
[0015]
In FIG. 1, the Hall element 3 is equivalently represented by a bridge connection of four resistors, has terminals (1), (2), (3), and (4), and is located between the terminals (1) and (3). By supplying a constant current, a detection output voltage proportional to the magnetic flux density applied to the Hall element 3 between the terminals (2) and (4) (in other words, proportional to the measured current) can be obtained. ing. OP1 and OP2 are operational amplifiers, IC1 is an integrated circuit for supplying a constant voltage, Q1 to Q5 are transistors, D1 to D6 are diodes, ZD1 is a constant voltage diode, C1 to C11 are capacitors, and R1 to R26 are resistors. . Further, DC +12 V is supplied to the positive terminal T1, DC -12V is supplied to the negative terminal T2, and 0 V is supplied to the common terminal T0 from a DC power supply.
[0016]
First, the operation of the circuit configuration of FIG. 1 when the DC power supply is started or when a voltage drop abnormality of the DC power supply occurs will be described.
[0017]
The constant voltage of the constant voltage diode ZD1 is applied to the non-inverting input of the operational amplifier OP2 in the reset circuit unit 10, and the supply voltage between the positive terminal T1 and the negative terminal T2 is supplied to the inverting input by the resistors R25 and R26. Is applied. Therefore, when the applied voltage value at the inverting input falls below the constant voltage value defined by the constant voltage diode ZD1, the operational amplifier OP2 detects a drop abnormality of the DC power supply, and the output goes high. As a result, the transistor Q5 is turned on, and the inverting input of the operational amplifier OP1 for amplifying the detection output voltage of the Hall element 3 is reduced. As a result, the output of the operational amplifier OP1 becomes a high level regardless of the magnitude and polarity of the detected output voltage of the Hall element 3, turning on the transistor Q1 to supply a current from P2 to Pl of the negative feedback winding coil L1. Shed. Further, since the transistor Q4 is turned off (OFF), the transistor Q3 is turned on, and the transistor Q2 does not operate.
[0018]
Thereby, the reset circuit unit 10 allows a sufficiently large bias current to flow in the P1 direction from P2 of the winding coil L1 when the DC power supply starts up or when a voltage drop abnormality of the DC power supply occurs, and the reset circuit unit 10 shown in FIG. The magnetic core 1 is set so that one-way saturated remanent magnetization always remains.
[0019]
Note that the reset circuit 10 has a delay time constant so that the bias current continues to flow during a period required to always keep a constant residual magnetization in the annular magnetic core 1 of FIG. That is, a delay time constant is created by the parallel connection of the capacitor C11 and the resistors R25 and R26, and even if the DC power supply voltage drop abnormality is instantaneous, the annular magnetic core 1 always has one-way saturation. A bias current can flow so that residual magnetization remains.
[0020]
On the other hand, when the DC power supply (+ 12V and -12V) reaches the normal range, the output of the operational amplifier OP2 goes low, turning on the transistor Q4 and turning off the transistor Q3. That is, the transistor Q2 is not affected by the transistor Q3, and is left to the operation mode of the operational amplifier OP1 of the sensor circuit that amplifies the detection output voltage of the Hall element 3. Further, the transistor Q5 is off, and the detection output between the terminals (2) and (4) of the Hall element 3 is input to the operational amplifier OP1.
[0021]
When the power supply is normal, the saturation residual magnetization by the reset circuit unit 10 is left in the annular magnetic core 1, and when the measured current is zero, the detection output voltage between the terminals (2) and (4) of the Hall element 3 becomes zero. The circuit bridge (the resistors R18 and R19 connected between the terminals (1) and (4) and between the terminals (3) and (4) of the Hall element 3) is adjusted so that Thus, the output offset when the measured current is zero can be easily set to zero by adjusting the resistance of the circuit bridge.
[0022]
A constant current is supplied between the terminals (1) and (3) from the integrated circuit IC1 that generates a constant voltage to the Hall element 3 through the path of the resistor R11, the terminals (1) and (3) of the Hall element 3, and the resistor R12. Have been. When a current to be measured flows through the electric wire 2 in FIG. 2, a magnetic flux having a magnetic flux density proportional to the current to be measured is generated in the annular magnetic core 1, and the magnetic flux density is applied between the terminals (2) and (4) of the Hall element 3. (That is, proportional to the measured current) is generated and applied to the operational amplifier OP1. That is, the potential of the terminal (2) is applied to the non-inverting input of the operational amplifier OP1 via the resistor R5, and the potential of the terminal (4) is applied to the inverting input of the operational amplifier OP1 via the resistor R4. When the voltage of the non-inverting input is higher than the inverting input of the operational amplifier OP1, the output of the operational amplifier OP1 goes high, turning on the transistor Q1 and causing a negative feedback current in the direction from P2 to Pl of the negative feedback winding coil L1. To cancel the magnetic field (magnetic flux generated in the core 1) by the current to be measured.
[0023]
If the direction of the current to be measured is opposite to the above, the voltage of the non-inverting input becomes lower than the inverting input of the operational amplifier OP1, the output of the operational amplifier OP1 becomes low level, and the transistor Q2 is turned on to turn on the negative feedback. A negative feedback current flows from P1 to P2 of the winding coil L1 to cancel the magnetic field (magnetic flux generated in the core 1) due to the measured current.
[0024]
If the feedback gain (feedback gain) of the circuit using the operational amplifier OP1 is very high, the magnetomotive force amp turn generated by the current to be measured and the magnetomotive force amp turn generated by the negative feedback current of the negative feedback winding coil L1 are generated. In the matched state, the circuit is in an equilibrium state. If the number of turns of the coil L1 is N, the negative feedback current value is 1 / N of the measured current value.
[0025]
In order for this relationship to be strictly established, the condition is that the residual magnetization of the annular magnetic core 1 becomes zero. However, when a large current flows unilaterally, residual magnetization is generated, which causes a large error. Normally, since the internal magnetic field of the annular magnetic core 1 is operated so as to be zero, almost no residual magnetization is generated. However, one of the positive and negative voltages, which is the DC power supply of the sensor circuit, is cut off or the rise time is reduced. If there is a difference between them, an abnormal negative feedback current is applied to the annular magnetic core 1, which causes a problem that residual magnetization occurs.
[0026]
In order to solve this problem, when the DC power supply is abnormal, a one-way bias current is automatically applied by the reset circuit unit 10 to always leave a predetermined residual magnetization (preferably a saturated residual magnetization) in a certain direction, thereby reducing the annular magnetic field. The purpose is to stabilize the magnetic loop of the core 1. That is, since the operation is performed while always maintaining the predetermined residual magnetization in a certain direction, the fluctuation of the offset output when the current to be measured is zero current can be eliminated, and the current can be detected with high accuracy.
[0027]
Table 1 below shows current sensor measurement values of the conventional circuit and the present embodiment when the measured current is zero when the measured current is changed to 0 A, 200 A, 0 A, -200 A, and 0 A. . The initial characteristics of the upper part are the state in which there is almost no residual magnetization in the annular magnetic core before the power-off test. The lower part shows the measured values after the power-off test in which the ± 12 V power supply alternately cuts off one side voltage for 10 ms. Show. In the present embodiment, the difference due to the residual magnetization is canceled by the circuit by the initial adjustment.
[0028]
[Table 1]
Figure 2004279226
[0029]
From Table 1 above, in the conventional circuit, the measured value at the time when the measured current is zero significantly deteriorates from 0.08 A to 1 A before and after the power cutoff test, whereas in the present embodiment, the measured value before and after the power cutoff test is reduced. The measured value does not fluctuate and high-precision current measurement is possible.
[0030]
Although the embodiments of the present invention have been described above, it will be obvious to those skilled in the art that the present invention is not limited to the embodiments and various modifications and changes can be made within the scope of the claims.
[0031]
【The invention's effect】
As described above, according to the current sensor of the present invention, an inexpensive magnetic core made of a magnetic material can be used, and an inexpensive current sensor can be provided. Even if there is some residual magnetization in the magnetic core, the circuit of the present invention can provide characteristics without impairing the function as a current sensor.
[Brief description of the drawings]
FIG. 1 is a circuit diagram showing an embodiment of a current sensor according to the present invention.
FIG. 2 is a perspective view showing an arrangement of an annular magnetic core, a winding coil, and a Hall element according to the embodiment of the present invention.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 annular magnetic core 2 electric wire 3 Hall element 10 reset circuit section C1 to C11 capacitors D1 to D6 diode IC1 integrated circuits OP1 and OP2 operational amplifiers Q1 to Q5 transistors R1 to R26 resistance ZD1 constant voltage diode T0 common terminal T1 positive terminal T2 negative Side terminal

Claims (2)

環状磁性コアに設けられたギャップに磁気センサ素子を配し、該環状磁性コアに所定巻数のコイルを巻回して設け、該環状磁性コアの内側を貫通するように被測定電流の通る電流路を配置し、前記被測定電流による前記環状磁性コアに発生する磁束を前記磁気センサ素子で検知し、該磁気センサ素子の検知出力をセンサ回路で増幅し、前記コイルに負帰還電流を流して前記被測定電流による磁束を打ち消し、前記コイルの負帰還電流値から前記被測定電流を計測する磁気平衡式の電流センサにおいて、
前記センサ回路の電源電圧を規定の電圧と比較し、規定の電圧に達しない期間は、前記コイルに常に一方向のバイアス電流を流す回路部を付加したことを特徴とする電流センサ。
A magnetic sensor element is arranged in a gap provided in the annular magnetic core, a coil having a predetermined number of turns is wound around the annular magnetic core, and a current path through which a current to be measured passes so as to penetrate the inside of the annular magnetic core. The magnetic sensor element detects a magnetic flux generated in the annular magnetic core by the measured current, amplifies a detection output of the magnetic sensor element by a sensor circuit, and supplies a negative feedback current to the coil to cause the coil to generate a negative feedback current. In a magnetic balance type current sensor for canceling the magnetic flux due to the measurement current and measuring the current to be measured from the negative feedback current value of the coil,
A current sensor, wherein a power supply voltage of the sensor circuit is compared with a prescribed voltage, and a circuit unit that always supplies a unidirectional bias current to the coil during a period in which the prescribed voltage is not reached is added.
前記バイアス電流を流す回路部は、前記環状磁性コアに常に一定の残留磁化を残すために必要な期間中、前記バイアス電流を流すように遅れ時定数を有する請求項1記載の電流センサ。2. The current sensor according to claim 1, wherein the circuit section for flowing the bias current has a delay time constant so that the bias current flows during a period necessary for always maintaining a constant residual magnetization in the annular magnetic core.
JP2003071443A 2003-03-17 2003-03-17 Current sensor Withdrawn JP2004279226A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003071443A JP2004279226A (en) 2003-03-17 2003-03-17 Current sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003071443A JP2004279226A (en) 2003-03-17 2003-03-17 Current sensor

Publications (1)

Publication Number Publication Date
JP2004279226A true JP2004279226A (en) 2004-10-07

Family

ID=33287882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003071443A Withdrawn JP2004279226A (en) 2003-03-17 2003-03-17 Current sensor

Country Status (1)

Country Link
JP (1) JP2004279226A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103069282A (en) * 2010-08-23 2013-04-24 阿尔卑斯绿色器件株式会社 Magnetic-balance current sensor
JP2021028607A (en) * 2019-08-09 2021-02-25 株式会社デンソー Magnetic detection device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103069282A (en) * 2010-08-23 2013-04-24 阿尔卑斯绿色器件株式会社 Magnetic-balance current sensor
CN103069282B (en) * 2010-08-23 2015-06-03 阿尔卑斯绿色器件株式会社 Magnetic-balance current sensor
US9069032B2 (en) 2010-08-23 2015-06-30 Alps Green Devices Co., Ltd. Magnetic balance type current sensor
JP2021028607A (en) * 2019-08-09 2021-02-25 株式会社デンソー Magnetic detection device
JP7259633B2 (en) 2019-08-09 2023-04-18 株式会社デンソー Magnetic detector

Similar Documents

Publication Publication Date Title
US6750644B1 (en) Magnetic field sensor and method for calibrating the same
US11199593B2 (en) Magnetic sensor
JPS60104263A (en) Detection device to measure parameters
US20090212765A1 (en) Magnetic field sensor with automatic sensitivity adjustment
WO2000022447A1 (en) Magnetic sensor, current sensor, and magnetic sensor element
JP2005037369A (en) Current sensor
WO2019064657A1 (en) Current sensor
JP4883289B2 (en) Current sensor disconnection detector
JP2002365350A (en) Magnetic detector
US5554927A (en) Electrical quantity measurement device
JP2004279226A (en) Current sensor
WO2013105451A1 (en) Current sensor
JP2008107119A (en) Current sensor
JP3399522B2 (en) Broadband current sensor
JP6446859B2 (en) Integrated circuit
JP2007033222A (en) Current sensor
JP2015232489A (en) Current measuring device
JP3989131B2 (en) Drive circuit for physical quantity detection element and rotation angle sensor
JP2544265B2 (en) Current detector
JP4035773B2 (en) Current sensor
JPH03170073A (en) Hall element current detecting device
JP3766855B2 (en) Current transformer
JP7568773B1 (en) Current measuring device and current measuring method
JP7225694B2 (en) magnetic sensor
JP3353120B2 (en) Current sensor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060606