[go: up one dir, main page]

JP2004281417A - Fuel cell power generator and device using it - Google Patents

Fuel cell power generator and device using it Download PDF

Info

Publication number
JP2004281417A
JP2004281417A JP2004166723A JP2004166723A JP2004281417A JP 2004281417 A JP2004281417 A JP 2004281417A JP 2004166723 A JP2004166723 A JP 2004166723A JP 2004166723 A JP2004166723 A JP 2004166723A JP 2004281417 A JP2004281417 A JP 2004281417A
Authority
JP
Japan
Prior art keywords
fuel
fuel cell
cathode
anode
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004166723A
Other languages
Japanese (ja)
Other versions
JP3902609B2 (en
Inventor
Yuichi Kamo
友一 加茂
Shuichi Ohara
周一 大原
Shin Morishima
森島  慎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2004166723A priority Critical patent/JP3902609B2/en
Publication of JP2004281417A publication Critical patent/JP2004281417A/en
Application granted granted Critical
Publication of JP3902609B2 publication Critical patent/JP3902609B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel cell power generator suitable for a portable power source without necessitating a separator and an auxiliary device for fluid supply or the like. <P>SOLUTION: In the fuel cell power generation in which an anode oxidizing fuel and a cathode reducing oxygen are formed through an electrolyte film and liquid is used as fuel, more than one of vent holes are formed in the wall surface of a fuel container and a plurality of unit cells each having the anode and the cathode are mounted thereon, and the unit cells are electrically connected to one another. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明はアノード、電解質膜、カソード、拡散層から構成され、アノードで燃料が酸化され、カソードで酸素が還元される燃料電池発電装置に係わり、特に、燃料としてメタノールのような液体燃料を用いた小型の携帯用電源と、これを用いた携帯用電子機器に関する。   The present invention relates to a fuel cell power generator including an anode, an electrolyte membrane, a cathode, and a diffusion layer, in which fuel is oxidized at the anode and oxygen is reduced at the cathode, and in particular, a liquid fuel such as methanol is used as the fuel. The present invention relates to a small portable power supply and a portable electronic device using the same.

最近の電子技術の進歩によって、電話器、ブックタイプパーソナルコンピュータ、オーデイオ・ビジュアル機器、或いは、モバイル用情報端末機器などが小型化され、携帯用電子機器として急速に普及が進んでいる。   Recent advances in electronic technology have reduced the size of telephones, book-type personal computers, audiovisual devices, mobile information terminal devices, and the like, and are rapidly spreading as portable electronic devices.

従来こうした携帯用電子機器は二次電池によって駆動するシステムであり、シール鉛バッテリーからNi/Cd電池、Ni/水素電池、更にはLiイオン電池へと新型二次電池の出現、小型軽量化および高エネルギー密度化によって発展してきた。何れの二次電池においても、エネルギー密度を高めるための電池活物質開発や高容量電池構造の開発が行われ、より一充電での使用時間の長い電源を実現する努力が払われている。   Conventionally, such a portable electronic device is a system driven by a secondary battery, and the appearance of a new type of secondary battery from a sealed lead battery to a Ni / Cd battery, a Ni / hydrogen battery, and a Li-ion battery, and a reduction in size and weight, and an increase in the size of the battery. It has been developed by energy density. In any of the secondary batteries, a battery active material has been developed to increase the energy density and a high-capacity battery structure has been developed, and efforts have been made to realize a power source that can be used for a longer time with one charge.

しかしながら、二次電池は一定量の電力使用後には充電が必須であり、充電設備と比較的長い充電時間が必要となるために、携帯用電子機器の長時間連続駆動には多くの問題が残されている。今後、携帯用電子機器は増加する情報量とその高速化に対応して、より高出力密度で高エネルギー密度の電源、即ち、連続使用時間の長い電源を必要とする方向に向かっており、充電を必要としない小型発電機(マイクロ発電機)の必要性が高まっている。   However, secondary batteries must be charged after a certain amount of power is used, and charging equipment and a relatively long charging time are required. Therefore, many problems remain for long-term continuous operation of portable electronic devices. Have been. In the future, portable electronic devices are going to require power supplies with higher output density and higher energy density, that is, power supplies with longer continuous use time, in response to the increasing amount of information and the speeding up, The need for small generators (micro-generators) that do not require is increasing.

こうした要請に対応するものとして燃料電池電源が考えられる。燃料電池は燃料の持つ化学エネルギーを電気化学的に直接電気エネルギーに変換するもので、通常のエンジン発電機などの内燃機関を用いた発電機のような動力部を必要としないため、小型発電デバイスとしての実現性は高い。また、燃料電池は燃料を補給する限り発電を継続するために、通常の二次電池の場合のような充電のために一時機器の動作を停止すると云うことが不要となる。   A fuel cell power supply can be considered to meet such demands. Fuel cells convert the chemical energy of fuel directly into electrical energy electrochemically, and do not require a power unit such as a generator using an internal combustion engine such as a normal engine generator. Is highly feasible. Further, since the fuel cell continues power generation as long as refueling is performed, it is not necessary to temporarily stop the operation of the device for charging as in the case of a normal secondary battery.

このような要請の中でパーフロロカーボンスルフォン酸系樹脂の電解質膜を用いてアノードで水素ガスを酸化し、カソードで酸素を還元して発電する固体高分子形燃料電池(PEFC:Polymer Electrolyte Fuel Cell)は,出力密度が高い電池として知られている。   Under such demands, a polymer electrolyte fuel cell (PEFC) that oxidizes hydrogen gas at an anode using an electrolyte membrane of a perfluorocarbon sulfonic acid-based resin and reduces oxygen at a cathode to generate power. Are known as batteries with high power density.

この燃料電池をより小型化するために、例えば、特開平9−223507号公報に示されるように、中空糸形の電解質の内面と外面にアノードおよびカソード電極を付設した円筒状電池の集合体とし、円筒内部と外部にそれぞれ水素ガスと空気を供給する小型PEFC発電装置が提案されている。しかし、携帯用電子機器の電源に適用する場合には、燃料が水素ガスであるために燃料の体積エネルギー密度が低く、燃料タンクの体積を大きくする必要がある。   In order to further reduce the size of this fuel cell, for example, as shown in Japanese Patent Application Laid-Open No. 9-223507, an assembly of a cylindrical cell in which an anode and a cathode are provided on the inner surface and the outer surface of a hollow fiber electrolyte is provided. There has been proposed a small-sized PEFC power generator for supplying hydrogen gas and air to the inside and outside of a cylinder, respectively. However, when applied to the power supply of a portable electronic device, since the fuel is hydrogen gas, the volume energy density of the fuel is low, and the volume of the fuel tank needs to be increased.

また、このシステムでは燃料ガスや酸化剤ガス(空気など)を発電装置に送り込む装置や、電池性能維持のために電解質膜を加湿する装置などの補機が必要であり、発電システムが複雑な構成となり小型化するには十分とは云えない。   In addition, this system requires auxiliary equipment such as a device that feeds fuel gas or oxidizing gas (air, etc.) to the power generation device, and a device that humidifies the electrolyte membrane to maintain battery performance. This is not enough for miniaturization.

燃料の体積エネルギー密度を上げるには液体燃料を用いること、燃料や酸化剤などを電池に供給する補機を無くし単純構成とすることが有効となる。こうしたものとしては、特開2000−268835号、特開2000−268836号公報に、メタノールと水を燃料とする直接形メタノール燃料電池(DMFC:Direct Methanol Fuel Cell)が提案されている。   In order to increase the volume energy density of the fuel, it is effective to use a liquid fuel and to eliminate the auxiliary equipment for supplying the fuel or the oxidant to the battery and to adopt a simple configuration. As such a device, a direct methanol fuel cell (DMFC) using methanol and water as fuel is proposed in JP-A-2000-268835 and JP-A-2000-268636.

この発電装置は、液体燃料容器の外壁側に、毛管力によって液体燃料を供給する材料を介して、これに接するようにアノードを配し、更に、固体高分子電解質膜、カソードを順次接合して構成される。   In this power generation device, an anode is arranged on the outer wall side of a liquid fuel container via a material for supplying liquid fuel by capillary force so as to be in contact with the material, and a solid polymer electrolyte membrane and a cathode are sequentially joined. Be composed.

酸素は外気に接触するカソード外表面への拡散によって供給されるので、この方式の発電装置は、燃料および酸化剤ガスを供給する補機を必要としない簡単な構成となり、複数の電池を直列に組合せる時には電気的接続のみでセパレータと云う単位電池の結合部品を必要としないことが特徴である。   Since oxygen is supplied by diffusion to the outer surface of the cathode that comes into contact with the outside air, this type of power generator has a simple configuration that does not require auxiliary equipment for supplying fuel and oxidizing gas, and multiple batteries are connected in series. When combined, it is characterized in that only electrical connection is required, and no unit battery connecting part called a separator is required.

しかし、DMFCは、負荷時の出力電圧が単位電池当たり0.3〜0.4Vであるため、携帯用電子機器などが必要とする電圧に対応するには、燃料電池付設の燃料タンクを複数用いて、各電池を直列に接続する必要がある。また、発電装置を小型化するには電池の直列数が増加し、単位電池当たりの燃料容器の容量を小さくする必要があり、燃料容器の数が直列数に応じて分散してしまうと云う課題が残されている。   However, since the output voltage of a DMFC under load is 0.3 to 0.4 V per unit battery, a plurality of fuel tanks provided with a fuel cell are used to cope with the voltage required by portable electronic devices. Therefore, it is necessary to connect each battery in series. In addition, in order to reduce the size of the power generation device, the number of series-connected cells increases, and the capacity of the fuel container per unit cell must be reduced, and the number of fuel containers is dispersed according to the number of series. Is left.

また、この酸性型電解質の燃料電池の作動に伴って、液体燃料タンク内にはアノードの酸化反応で生成したガスを排出する機構を実現しないと、連続使用が困難となる。   Further, with the operation of the acidic electrolyte fuel cell, continuous use becomes difficult unless a mechanism for discharging the gas generated by the oxidation reaction of the anode in the liquid fuel tank is realized.

本発明の目的は、電力の使用に伴って二次電池のように一定容量の電力を消費する度に充電することなく、燃料を補給することによって容易に発電が継続できる燃料電池発電装置であって、体積エネルギー密度の高い燃料を用いるシステムを提供することにある。   An object of the present invention is to provide a fuel cell power generation device that can easily continue power generation by replenishing fuel without being charged every time a certain amount of power is consumed as in a secondary battery as power is used. Another object of the present invention is to provide a system using a fuel having a high volume energy density.

また、所定の電圧を得るためにアノード、電解質膜およびカソードからなる単位電池を、導電性の流体通路構造を持ったセパレータを介して積層することで燃料電池発電装置を構成し、燃料、酸化剤ガスを強制的に流通させる流体供給機構を持った従来型の燃料電池に代えて、セパレータを必要としない小型の燃料電池で流体供給機構のような補機を持たず、電源がどのような姿勢あっても各単位電池への液体燃料の供給が可能で、アノードで酸化生成したガスを燃料容器から排出する機能を有する携帯用に最適で、コンパクトな電源、並びに、それを用いた携帯用電子機器を提供することにある。   Further, in order to obtain a predetermined voltage, a unit cell including an anode, an electrolyte membrane, and a cathode is stacked via a separator having a conductive fluid passage structure to constitute a fuel cell power generator, and a fuel, an oxidant Instead of a conventional fuel cell with a fluid supply mechanism for forcibly flowing gas, it is a small fuel cell that does not require a separator, does not have auxiliary equipment such as a fluid supply mechanism, and the power supply Even if it is possible, it is possible to supply liquid fuel to each unit cell, and it is suitable for portable use that has a function of discharging gas generated by oxidation at the anode from the fuel container, and a compact power supply, and a portable electronic device using the same. To provide equipment.

前記目的を達成する本発明の要旨は次のとおりである。燃料を酸化するアノードと酸素を還元するカソードが電解質膜を介して形成され、液体を燃料とする燃料電池発電装置において、
燃料容器の壁面に通気孔を1つ以上備え、かつ、該燃料容器の壁面に電解質膜、アノードおよびカソードを有する単電池を複数装着し、それぞれの単電池を電気的に接続したことを特徴とする。
The gist of the present invention that achieves the above object is as follows. An anode for oxidizing fuel and a cathode for reducing oxygen are formed through an electrolyte membrane, and in a fuel cell power generator using liquid as fuel,
A fuel cell is provided with one or more ventilation holes on the wall thereof, and a plurality of cells having an electrolyte membrane, an anode and a cathode are mounted on the wall of the fuel container, and the respective cells are electrically connected. I do.

液体燃料を収納する容器をプラットホームとしてその外壁面にアノード、電解質膜、カソードから構成される単電池が複数設けられることを特徴としている。   It is characterized in that a plurality of single cells each comprising an anode, an electrolyte membrane, and a cathode are provided on an outer wall surface of a container for storing liquid fuel as a platform.

特に、所要電流が比較的小さく、高い電圧を必要とする場合には、液体燃料を収納する容器の外周面にアノード、電解質膜、カソードから構成される複数の単電池を配置し、各単電池を導電性のインターコネクタで直列または直列と並列の組合せで接続することで高電圧化を図ることができる。   In particular, when the required current is relatively small and a high voltage is required, a plurality of cells composed of an anode, an electrolyte membrane, and a cathode are arranged on the outer peripheral surface of the container for storing the liquid fuel, and each cell is Are connected in series or in a combination of series and parallel with a conductive interconnector, so that a higher voltage can be achieved.

燃料は、燃料容器をプラットホームとして結合することにより、各々の単電池に強制的に供給する補機を設けることなく供給される。この時、液体燃料容器内に液体燃料を保持し、毛管力によって吸い上げる材料を充填することによって燃料補給はより安定化される。   The fuel is supplied without any auxiliary equipment for forcing each unit cell by connecting the fuel container as a platform. At this time, the refueling is further stabilized by holding the liquid fuel in the liquid fuel container and filling the liquid fuel with a material that is sucked up by capillary force.

一方、液体燃料容器の外壁面に発電部を有する各単電池は、空気中の酸素の拡散によって酸化剤が供給される。燃料には体積エネルギー密度の高いメタノールの水溶液等を液体燃料として用いることで、同一容積の収納容器に水素ガスを燃料として用いた場合に比較して、より長時間の発電を継続できる。   On the other hand, each cell having a power generation unit on the outer wall surface of the liquid fuel container is supplied with an oxidant by diffusion of oxygen in the air. By using an aqueous solution of methanol or the like having a high volume energy density as a liquid fuel, power generation can be continued for a longer time than when hydrogen gas is used as a fuel in a storage container having the same volume.

本発明による燃料電池からなる電源を二次電池搭載の携帯電話器、携帯用パーソナルコンピュータ、携帯用オーデイオ、ビジュアル機器、その他の携帯用情報端末を休止時に充電するために付設されるバッテリーチャージャとして用いたり、或いは二次電池を搭載することなく直接内蔵電源とすることによって、これらの電子機器は長時間の使用が可能となり、燃料の補給によって連続的に使用することが可能となる。   A power supply comprising a fuel cell according to the present invention is used as a battery charger provided for charging a portable telephone, a portable personal computer, a portable audio device, a visual device, and other portable information terminals equipped with a secondary battery at rest. Or, by using a built-in power supply directly without mounting a secondary battery, these electronic devices can be used for a long time, and can be used continuously by refueling.

本発明によれば、液体燃料を収納する容器をプラットホームとし、その壁面に燃料電池を装着し、該電池を直列、または、直列と並列の組合せで電気的に接続したことを特徴としている。燃料容器をプラットホームとして燃料電池を装着し、該容器内に液体燃料保持材を設けたことによって、液体燃料は毛管力により吸上げられて各燃料電池に供給される。   According to the present invention, a container for storing liquid fuel is used as a platform, a fuel cell is mounted on a wall of the platform, and the cells are electrically connected in series or in a combination of series and parallel. By mounting a fuel cell with the fuel container as a platform and providing a liquid fuel holding material in the container, the liquid fuel is sucked up by capillary force and supplied to each fuel cell.

外周面に発電部を有する各燃料電池は、空気中の酸素(酸化剤)が拡散孔をとおして供給される。これらによって燃料,酸化剤供給用の補機を必要としない単純なシステムの燃料電池が実現できる。   In each fuel cell having a power generation unit on the outer peripheral surface, oxygen (oxidant) in the air is supplied through diffusion holes. Thus, a fuel cell having a simple system that does not require auxiliary equipment for supplying fuel and oxidant can be realized.

また、液体燃料は体積エネルギー密度の高いメタノール水溶液を用いることにより、水素ガスを燃料として用いた場合に比較して、リッター当たり長時間の発電が継続でき、燃料の逐次補給によって従来の二次電池のような充電を必要としない連続発電装置を得ることができる。   In addition, by using a methanol solution with a high volume energy density as the liquid fuel, power generation can be continued for a longer time per liter than when hydrogen gas is used as the fuel. It is possible to obtain a continuous power generator that does not require charging as described above.

更に、燃料容器の複数の壁面に燃料電池を装着し、それらの壁面には複数の気液分離機能を有する通気孔を設けることで、どのような姿勢でも安定発電が継続可能な発電装置を実現できる。   Furthermore, by mounting fuel cells on multiple walls of the fuel container and providing multiple vents with gas-liquid separation functions on those walls, a power generation device that can continue stable power generation in any position is realized. it can.

本発明の実施形態について、図面を用いて詳細に記述する。図1は、本発明の構成する液体燃料容器の断面構造の一例を示す。   Embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 shows an example of a sectional structure of a liquid fuel container according to the present invention.

燃料容器1の外壁面には表面が絶縁性の燃料電池装着部2が複数設けられ、この電池装着部2の容器壁は、予め液体燃料が透過するに十分な網目状構造、多孔質層、もしくは、スリット上の拡散孔3を形成している。   A plurality of fuel cell mounting portions 2 having an insulating surface are provided on the outer wall surface of the fuel container 1. The container wall of the battery mounting portion 2 has a mesh structure, a porous layer, Alternatively, the diffusion hole 3 on the slit is formed.

燃料電池装着部2の表面には、隣接する燃料電池と電気的接続をするための耐食性,導電性を有する材料を塗布,焼付けてアノード側インターコネクタ4を形成しておく。インターコネクタ4は、液体燃料が透過するに十分な網目状構造、多孔質層もしくはスリット上の拡散孔構造を持っている。   The anode interconnector 4 is formed on the surface of the fuel cell mounting portion 2 by applying and baking a material having corrosion resistance and conductivity for electrical connection with an adjacent fuel cell. The interconnector 4 has a network structure, a porous layer or a diffusion hole structure on a slit, which is sufficient for liquid fuel to permeate.

燃料容器1の内壁面には、電気化学的に不活性な液体燃料吸上げ材5が装着されている。燃料容器の壁面に装着された燃料電池を、電気的に直列あるいは直列と並列の組合せで接続し、発電装置外部へ取出すアノードおよびカソードの燃料電池端子6を設けておく。   An electrochemically inert liquid fuel wicking material 5 is mounted on the inner wall surface of the fuel container 1. The fuel cells mounted on the wall surface of the fuel container are electrically connected in series or in a combination of series and parallel, and anode and cathode fuel cell terminals 6 to be taken out of the power generator are provided.

単電池は図2に示すように、予め固体の電解質膜21の両面にアノード層22およびカソード層23を一体接合し、電解質膜/電極接合体(MEA;Membrane Electrode Assembly)を形成しておく。燃料電池を燃料容器に固定するための燃料電池固定板8は、図3に示すように電気的に絶縁性の板を用い、燃料電池と接触する部分は、空気が拡散して燃料電池に供給するに十分な網目状構造,多孔質層もしくはスリット状の拡散孔3を有しており、拡散孔部分の燃料電池と接する面には、隣接する燃料電池のアノード側インターコネクタ4と接続するためのカソード集電板7を備えている。   In the unit cell, as shown in FIG. 2, an anode layer 22 and a cathode layer 23 are integrally joined to both surfaces of a solid electrolyte membrane 21 in advance to form an electrolyte membrane / electrode assembly (MEA; Membrane Electrode Assembly). As shown in FIG. 3, the fuel cell fixing plate 8 for fixing the fuel cell to the fuel container uses an electrically insulating plate, and a portion in contact with the fuel cell diffuses air to supply the fuel cell to the fuel cell. And a diffusion layer 3 having a mesh-like structure, a porous layer or a slit shape, which is sufficient to be connected to the anode-side interconnector 4 of the adjacent fuel cell. The cathode current collector plate 7 is provided.

このカソード集電板7の燃料電池に接する部分は、空気を供給するに十分な拡散孔3を持たせている。発電に際して燃料容器1内では、燃料が酸化されて炭酸ガスが発生することになるが、この炭酸ガスは図4(a)に示すような断面構造の液不透過性の気液分離機能を持った通気孔15を介して、燃料容器の外部へ排出される。   The portion of the cathode current collector 7 which is in contact with the fuel cell has diffusion holes 3 sufficient to supply air. During power generation, the fuel is oxidized in the fuel container 1 to generate carbon dioxide gas, which has a liquid-impermeable gas-liquid separation function having a cross-sectional structure as shown in FIG. The fuel is discharged to the outside of the fuel container through the vent hole 15.

通気孔15は、通気管51とネジ締め方式の通気蓋52で構成され、撥水性,多孔質の気液分離膜50を通気蓋で固定する構造となっている。この通気孔15は、図4(b)に示す断面構造のように、燃料電池発電装置が如何なる姿勢をとっても1つ以上の通気孔が通気状態となるように燃料容器1の複数の面に配置される。   The ventilation hole 15 includes a ventilation pipe 51 and a screw-type ventilation lid 52, and has a structure in which a water-repellent, porous gas-liquid separation membrane 50 is fixed with the ventilation lid. The ventilation holes 15 are arranged on a plurality of surfaces of the fuel container 1 such that one or more ventilation holes are in a ventilation state regardless of the posture of the fuel cell power generator, as shown in the sectional structure of FIG. Is done.

燃料電池発電装置の組立ては図5に示すように、燃料容器の燃料電池装着部にガスケット10、MEA9、ガスケット10、空気と生成する水の拡散を容易にするために炭素繊維織布にポリテトラフロロエチレンを微細に分散した多孔質の拡散層11の順に積層して、通気孔装着孔19を有する燃料電池固定板8を燃料容器1に接着あるいはネジ留め等の方法で固定する。この固定過程でカソード集電板は、隣接する燃料電池のアノード側インターコネクタと接触して電気的に接続され、始点と終点部が出力端子16として取出される。   As shown in FIG. 5, the assembly of the fuel cell power generator is performed by installing a gasket 10, a MEA 9, a gasket 10 on a fuel cell mounting portion of a fuel container, and a polytetrafluorocarbon cloth to facilitate diffusion of air and generated water. The porous diffusion layer 11 in which fluoroethylene is finely dispersed is laminated in this order, and the fuel cell fixing plate 8 having the vent hole mounting holes 19 is fixed to the fuel container 1 by a method such as bonding or screwing. In this fixing process, the cathode current collector contacts and is electrically connected to the anode interconnector of the adjacent fuel cell, and the start point and the end point are taken out as the output terminal 16.

燃料電池発電装置の作動に当たり、図4(b)に示した燃料補給孔を兼ねた通気孔15の蓋を外し、ここから液体燃料、例えば、メタノール水溶液が充填される。容器下面に装着された単電池には充填されたメタノール水溶液が浸透してアノードに安定的に供給され、上面に装着された単電池には吸い上げ材から吸い上げられてアノードに安定的に供給されることになる。   In operation of the fuel cell power generator, the lid of the ventilation hole 15 also serving as a fuel supply hole shown in FIG. 4B is removed, and a liquid fuel, for example, an aqueous methanol solution is filled from here. The filled methanol aqueous solution permeates the cell mounted on the lower surface of the container and is stably supplied to the anode, and the cell mounted on the upper surface is sucked up from the suction material and supplied stably to the anode. Will be.

各単電池のカソードは網目状,多孔質あるいはスリット上の貫通孔,カソード集電板とカソード拡散層を介して外気と接しているため、空気中の酸素が拡散供給され、発電で生成した水は拡散で排除される。   Since the cathode of each cell is in contact with the outside air through a mesh-like, porous or through-hole in the slit, the cathode current collector and the cathode diffusion layer, oxygen in the air is diffused and supplied, and water generated by power generation is generated. Are eliminated by diffusion.

本例の燃料電池発電装置の外観を図6に示す。通気孔15を有する燃料容器1は発電装置の構造体として機能すると共に、その壁面に複数の単電池13が燃料電池固定板8で固定され、電気的に直列接続された両端を出力端子16として外部に取出す構造となっている。   FIG. 6 shows the appearance of the fuel cell power generation device of this example. The fuel container 1 having the ventilation hole 15 functions as a structure of the power generation device, and a plurality of cells 13 are fixed to a wall surface of the fuel container 1 with the fuel cell fixing plate 8, and both ends electrically connected in series as output terminals 16. It has a structure to take it out.

発電に際してアノード側、即ち、燃料容器内には燃料が酸化されて炭酸ガスが発生するが、この炭酸ガスは液不透過性の気液分離機能を持った通気孔を介して燃料容器の外部へ排出される。この通気孔は、燃料容器壁面に複数個設けて、燃料容器が発電中に如何なる姿勢をとっても、1個以上の通気孔が燃料液体で遮蔽されることがないような位置に配置しておくことによって、安定な発電動作を保証しているのが特徴である。   During power generation, fuel is oxidized on the anode side, that is, in the fuel container, and carbon dioxide gas is generated. The carbon dioxide gas is discharged to the outside of the fuel container through a liquid-impermeable gas-liquid separation vent. Is discharged. A plurality of such vents should be provided on the wall surface of the fuel container, and should be arranged at a position where one or more vents are not blocked by the fuel liquid regardless of the posture of the fuel container during power generation. The feature is that a stable power generation operation is guaranteed.

本発明による燃料発電装置は、燃料や酸化剤ガスなどを強制的に供給する設備を必要とせず、容器壁面には単電池が一層装着されるのみで、電池がセパレータを介して複数積層される構造をとらず、放熱が十分であるために強制冷却機構を設ける必要がない。そのため、補機動力損が無く、積層のための導電性セパレータを必要としない、部品点数の少ない構造とすることができる。   The fuel power generation device according to the present invention does not require a facility for forcibly supplying a fuel, an oxidizing gas, or the like, only a single cell is mounted on the container wall, and a plurality of cells are stacked via a separator. Since it does not have a structure and has sufficient heat radiation, there is no need to provide a forced cooling mechanism. Therefore, it is possible to provide a structure with a small number of components, which has no power loss of auxiliary equipment and does not require a conductive separator for lamination.

メタノール水溶液を燃料とする燃料電池では、以下に示す電気化学反応でメタノールが持っている化学エネルギーが直接電気エネルギーに変換される形で発電される。   In a fuel cell using an aqueous methanol solution as a fuel, power is generated in such a manner that chemical energy of methanol is directly converted into electrical energy by an electrochemical reaction described below.

アノード電極側では供給されたメタノール水溶液が(1)式に従って反応して炭酸ガスと水素イオンと電子に解離する。
〔化1〕
CHOH+HO → CO+6H+6e …(1)
生成された水素イオンは、電解質膜中をアノードからカソード側に移動し、カソード電極上で空気中から拡散してきた酸素ガスと電極上の電子とが(2)式に従って反応し、水を生成する。
〔化2〕
6H+3/2O+6e → 3HO …(2)
従って、発電に伴う全化学反応は(3)式に示すように、メタノールが酸素によって酸化され炭酸ガスと水を生成し、化学反応式は形式上メタノールの火炎燃焼と同じになる。
〔化3〕
CHOH+3/2O → CO+3HO …(3)
単位電池の開路電圧は、概ね室温近傍で1.2Vであるが、燃料が電解質膜を浸透する影響で実質的には0.85〜1.0Vであり、特に、限定されるものではないが、実用的な負荷運転の下での電圧は0.3〜0.6V程度の領域となる負荷電流密度が選ばれる。従って、実際に電源として用いる場合には負荷機器の要求に従って所定の電圧が得られるよう複数の単位電池を直列接続して用いられる。単電池の出力電流密度は電極触媒,電極構造,その他の影響で変化するが、実効的に単電池の発電部面積を選択して所定の電流が得られるように設計される。
On the anode electrode side, the supplied aqueous methanol solution reacts according to the equation (1) and dissociates into carbon dioxide, hydrogen ions and electrons.
[Formula 1]
CH 3 OH + H 2 O → CO 2 + 6H + + 6e (1)
The generated hydrogen ions move from the anode to the cathode in the electrolyte membrane, and the oxygen gas diffused from the air on the cathode electrode reacts with the electrons on the electrode according to the equation (2) to generate water. .
[Formula 2]
6H + + 3 / 2O 2 + 6e → 3H 2 O (2)
Therefore, as shown in equation (3), the entire chemical reaction associated with power generation oxidizes methanol with oxygen to produce carbon dioxide gas and water, and the chemical reaction equation is formally the same as that of methanol flame combustion.
[Formula 3]
CH 3 OH + 3 / 2O 2 → CO 2 + 3H 2 O (3)
The open circuit voltage of the unit cell is approximately 1.2 V near room temperature, but is substantially 0.85 to 1.0 V due to the effect of fuel permeating the electrolyte membrane, and is not particularly limited. The voltage under a practical load operation is selected to be a load current density in a range of about 0.3 to 0.6 V. Therefore, when actually used as a power supply, a plurality of unit batteries are used in series so that a predetermined voltage can be obtained according to the requirements of the load equipment. Although the output current density of the unit cell varies depending on the electrode catalyst, the electrode structure, and other factors, the unit is designed so that the power generation unit area of the unit cell is effectively selected to obtain a predetermined current.

本発明による燃料電池発電装置を構成する支持体は、液体燃料を収容する燃料容器に特徴があり、その断面形状は角型,円型あるいはその他の形状であってもコンパクトに単電池が必要な数だけ装着できる形状であれば、特に制限はない。しかし、単電池を規定の容積中にコンパクトに装填するには円筒型または角型が装着効率も良く、燃料電池発電部を装着する加工性の上でも好ましい形状と云える。   The support constituting the fuel cell power generator according to the present invention is characterized by a fuel container for containing a liquid fuel, and a single cell is required to be compact even if its cross-sectional shape is square, circular or other. There is no particular limitation as long as it can be mounted in a number. However, in order to compactly load a single cell into a predetermined volume, a cylindrical or square shape has good mounting efficiency, and it can be said that the shape is preferable in view of workability for mounting the fuel cell power generation unit.

支持体の材料は、電気化学的に不活性で使用環境下で耐久性,耐食性を持った薄型で十分な強度を持つ材料であれば特に制限はない。例えば、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、塩化ビニル、ポリアクリル系樹脂、その他のエンジニアリング樹脂やこれらを各種のフィラ等で補強した電気絶縁性の材料、または、電池作動雰囲気での耐食性に優れた炭素材料、ステンレス系鋼、あるいは通常の鉄、ニッケル、銅、アルミニウムまたはこれらの合金の表面を耐食化および電気絶縁化処理した材料を挙げることができる。いずれにしても形状を支持する強度,耐食性と電気化学的に不活性な材料であれば特に限定されるものではない。   The material of the support is not particularly limited as long as it is electrochemically inert, is thin and has sufficient strength in the environment of use and durability and corrosion resistance. For example, polyethylene, polypropylene, polyethylene terephthalate, vinyl chloride, polyacrylic resin, other engineering resins, electrically insulating materials reinforced with various fillers, or carbon materials with excellent corrosion resistance in battery operating atmosphere , Stainless steel, or ordinary iron, nickel, copper, aluminum, or alloys thereof in which the surface is subjected to corrosion resistance and electrical insulation. In any case, the material is not particularly limited as long as it is a material that supports the shape, has corrosion resistance, and is electrochemically inert.

燃料電池支持体内部は、燃料貯蔵および輸送空間として使用されるが、筒状支持体内部に充填され燃料供給を安定化する吸上げ材は、メタノール水溶液との接触角が小さく、電気化学的に不活性で耐食性のある材料であれば良く、粉末あるいは繊維状のものを用いるとよい。例えば、ガラス,アルミナ,シリカアルミナ,シリカ,非黒鉛系炭素,セルロースなどの繊維や、吸水性高分子繊維などは充填密度が低く、メタノール水溶液保持性に優れた材料である。   The interior of the fuel cell support is used as a fuel storage and transport space, but the wicking material that fills the interior of the tubular support and stabilizes the fuel supply has a small contact angle with the aqueous methanol solution and is electrochemically Any material may be used as long as it is inert and has corrosion resistance, and powder or a fibrous material may be used. For example, fibers such as glass, alumina, silica-alumina, silica, non-graphitic carbon, and cellulose, and water-absorbing polymer fibers are materials having a low packing density and excellent methanol aqueous solution retention.

発電部を構成するアノード触媒としては、炭素系粉末担体に白金とルテニウムあるいは白金/ルテニウム合金の微粒子を分散担持したもの、カソード触媒としては、炭素系担体に白金微粒子を分散担持したものは容易に製造できる材料である。しかし、本発明の燃料電池のアノードおよびカソードの触媒は、通常の直接形メタノール燃料電池に用いられるものであれば、特に、制限されるものではなく、電極触媒の安定化や長寿命化のために上記の貴金属成分に鉄,錫,希土類元素等から選ばれた第3の成分を添加した触媒を用いることは好ましい。   As the anode catalyst constituting the power generation unit, a catalyst in which platinum and ruthenium or platinum / ruthenium alloy fine particles are dispersed and supported on a carbon-based powder carrier, and a cathode catalyst in which platinum fine particles are dispersed and supported on a carbon-based carrier are easily used. It is a material that can be manufactured. However, the anode and cathode catalysts of the fuel cell of the present invention are not particularly limited as long as they are used in ordinary direct methanol fuel cells. It is preferable to use a catalyst obtained by adding a third component selected from iron, tin, rare earth element and the like to the above-mentioned noble metal component.

電解質膜には限定的ではないが水素イオン導電性を示す膜が用いられる。代表的な材料としてパーフロロカーボン系スルフォン酸樹脂,ポリパーフロロスチレン系スルフォン酸樹脂などに代表されるスルフォン酸化やアルキレンスルフォン酸化したフッ素系ポリマやポリスチレン類,ポリスルフォン類,ポリエーテルスルフォン類,ポリエーテルエーテルスルフォン類,ポリエーテルエーテルケトン類,その他の炭化水素系ポリマをスルフォン化した材料を用いることができる。   As the electrolyte membrane, a membrane exhibiting hydrogen ion conductivity is used without limitation. Typical materials are sulfonated or alkylene sulfonated fluorine-based polymers such as perfluorocarbon sulfonic acid resins and polyperfluorostyrene sulfonic acid resins, and polystyrenes, polysulfones, polyether sulfones, and polyethers. Ether sulfones, polyether ether ketones, and other materials obtained by sulfonating hydrocarbon polymers can be used.

これらの電解質膜でメタノールの透過性の小さい材料は、燃料の利用率を高く採ることができ、燃料のクロスオーバによる電池電圧の低下も無く、好ましい材料であり、一般に燃料電池を90℃以下の温度で運転することができる。また、タングステン酸化物水和物,ジルコニウム酸化物水和物,スズ酸化物水和物,ケイタングステン酸,ケイモリブデン酸,タングストリン酸,モリブドリン酸などの水素イオン導電性無機物を、耐熱性樹脂にミクロ分散した複合電解質膜等を用いることによって、より高温域まで運転できる燃料電池とすることもできる。   Materials having a low methanol permeability in these electrolyte membranes are preferable materials because they can use a high fuel utilization rate and do not cause a decrease in cell voltage due to fuel crossover. Can be operated at temperature. In addition, hydrogen ion conductive inorganic substances such as tungsten oxide hydrate, zirconium oxide hydrate, tin oxide hydrate, silicotungstic acid, silicomolybdic acid, tungstophosphoric acid, and molybdophosphoric acid are used as heat-resistant resins. By using a micro-dispersed composite electrolyte membrane or the like, a fuel cell that can be operated up to a higher temperature range can be obtained.

いずれにしても水素イオン伝導性が高く、メタノール透過性の低い電解質膜を用いると、燃料の利用率が高くなるため本発明の効果であるコンパクト化および長時間発電を、より高いレベルで達成することができる。   In any case, when an electrolyte membrane having high hydrogen ion conductivity and low methanol permeability is used, the utilization rate of fuel is increased, so that the compactness and long-time power generation, which are the effects of the present invention, are achieved at a higher level. be able to.

上記した水和型の酸性電解質膜は、一般に乾燥時と湿潤時とでは膨潤によって膜の変形が発生したり、十分にイオン導電性の高い膜では機械強度が十分でない場合が生じる。このような場合には、機械強度,耐久性,耐熱性に優れた繊維を不織布あるいは織布状で芯材として用いたり、電解質膜製造時にこれらの繊維をフィラとして添加,補強することは、電池性能の信頼性を高める上で有効な方法である。 また、電解質膜の燃料透過性を低減するために、ポリベンズイミダゾール類に硫酸,リン酸,スルフォン酸類やフォスフォン酸類をドープした膜を使用することもできる。   The above-mentioned hydrated acidic electrolyte membrane generally causes deformation of the membrane due to swelling between when dry and when wet, and sometimes the mechanical strength is insufficient when a membrane having sufficiently high ionic conductivity is used. In such a case, using fibers having excellent mechanical strength, durability, and heat resistance as a core material in the form of a nonwoven fabric or a woven fabric, or adding or reinforcing these fibers as fillers during the production of an electrolyte membrane requires a battery. This is an effective way to increase performance reliability. Further, in order to reduce the fuel permeability of the electrolyte membrane, a membrane in which polybenzimidazoles are doped with sulfuric acid, phosphoric acid, sulfonic acids or phosphonic acids can be used.

単電池を構成する発電部は、上記に代わるもう一つ例として、例えば、以下のような方法によって作製することもできる。即ち、(1)液体燃料容器の電気絶縁性外周面に導電性のインタコネクタを塗布してアノード接合部の壁面を貫通孔による多孔質化する工程、(2)アノード触媒と電解質樹脂を予め揮発性有機溶媒に溶解した溶液をバインダとして添加、分散してペースト状にしたものを液体燃料の収納容器の切込みの多孔質部分に10〜50μmの一定厚さに塗布して電極を形成する工程、(3)アノード塗布部をマスクして切込み部にシール用のガスケットを塗布し燃料容器と接合する工程、(4)その後、予め揮発性有機溶媒に溶解した電解質溶液をアノード電極に接して切込み部に、膜形成後の厚さが20〜50μmとなるように塗布する工程、(5)次いで、カソード触媒と電解質膜を予め揮発性有機溶媒に溶解した溶液をバインダとして混練してペースト状にしたものを電解質膜の上に10〜50μmの一定厚さに塗布して電極を形成する工程、(6)更に、その外部に炭素系粉末と所定量の撥水性分散材、例えば、ポリテトラフルオロエチレン微粒子の水性分散液をペースト状にして、カソード電極表面に接合するように切込み部に塗布し、拡散層を形成する工程、を経て単電池が作られる。この時、(4)の工程において電解質膜部分はカソード面積よりも大きくとり、ガスケットと電解質膜を密着させるか、あるいは、接着剤を用いて接着することによってシールすることが重要である。   As another example instead of the above, the power generation unit constituting the unit cell can be manufactured by the following method, for example. That is, (1) a step of applying a conductive interconnector to the electrically insulating outer peripheral surface of the liquid fuel container to make the wall surface of the anode junction porous by a through hole, and (2) volatilizing the anode catalyst and the electrolyte resin in advance. Adding a solution dissolved in a neutral organic solvent as a binder, dispersing the solution into a paste, applying a constant thickness of 10 to 50 μm to the cut porous portion of the liquid fuel storage container to form an electrode, (3) a step of applying a sealing gasket to the cut portion by masking the anode coating portion and joining the gasket to the fuel container; (4) After that, an electrolyte solution previously dissolved in a volatile organic solvent is brought into contact with the anode electrode to cut the cut portion. (5) Next, a solution obtained by previously dissolving the cathode catalyst and the electrolyte membrane in a volatile organic solvent is kneaded as a binder. A step of applying the paste into a constant thickness of 10 to 50 μm on an electrolyte membrane to form an electrode; (6) further, a carbon-based powder and a predetermined amount of a water-repellent dispersion material, A single cell is produced through a process in which an aqueous dispersion of polytetrafluoroethylene fine particles is made into a paste, applied to the cut portions so as to be bonded to the surface of the cathode electrode, and a diffusion layer is formed. At this time, in the step (4), it is important that the electrolyte membrane portion be larger than the cathode area, and that the gasket and the electrolyte membrane be closely adhered or sealed by bonding using an adhesive.

得られた単電池のカソード側拡散層部分に、導電性の多孔質材あるいはネットを装着してカソードカレントコレクタとし、隣接する単電池からのインターコネクターと電気的に接続し、直列接続された両端から端子を取出す。カソード側に拡散層を設けることは燃料電池作動時に生成する水のフラッデイングを防止する上で有効な方法である。   A conductive porous material or net is attached to the cathode-side diffusion layer portion of the obtained cell to form a cathode current collector, electrically connected to an interconnector from an adjacent cell, and both ends connected in series. Remove the terminal from. Providing a diffusion layer on the cathode side is an effective method for preventing flooding of water generated during fuel cell operation.

また、拡散層を製造するに当たって、撥水性の水性分散材が白金触媒または白金・ルテニウム合金触媒の触媒毒成分となる界面活性剤を含んでいるような場合には、例えば、炭素繊維のような導電性の織布面の片側に、炭素系粉末と所定量の撥水性分散材、例えば、ポリテトラフルオロエチレン微粒子の水性分散液をペースト状にして塗布し、予め、界面活性剤が分解する温度で焼成してから塗布面をカソードに接するように装着し、炭素繊維織布をカソードカレントコレクタとする方法は有効である。   In producing the diffusion layer, when the water-repellent aqueous dispersion material contains a surfactant which is a catalyst poison component of a platinum catalyst or a platinum-ruthenium alloy catalyst, for example, such as carbon fiber On one side of the conductive woven fabric surface, a carbon-based powder and a predetermined amount of a water-repellent dispersion material, for example, an aqueous dispersion of polytetrafluoroethylene fine particles are applied in paste form, and the temperature at which the surfactant is decomposed in advance It is effective to mount the coated surface so as to be in contact with the cathode after baking with, and use a carbon fiber woven fabric as a cathode current collector.

いずれにしても単電池が支持体表面にアノード,電解質膜,カソード,拡散層の順に重ねられ、アノード/電解質膜,カソード/電解質膜間に十分な反応界面を形成する方法であれば、その製法に特別な制限はない。また、カソードを形成する際にカソード触媒、電解質膜と電解質を予め揮発性有機溶媒に溶解した溶液に所定量の撥水性分散材、例えば、ポリテトラフルオロエチレン微粒子を加えてペースト状にし、これを塗布することによって拡散層を必要としない電池を構成することもできる。   In any case, if the unit cell is a method in which an anode, an electrolyte membrane, a cathode, and a diffusion layer are stacked in this order on a support surface and a sufficient reaction interface is formed between the anode / electrolyte membrane and the cathode / electrolyte membrane, the manufacturing method There are no special restrictions. Further, when forming a cathode, a predetermined amount of a water-repellent dispersion material, for example, polytetrafluoroethylene fine particles are added to a solution in which a cathode catalyst, an electrolyte membrane and an electrolyte are previously dissolved in a volatile organic solvent, and the paste is formed. By coating, a battery that does not require a diffusion layer can be formed.

本発明の趣旨である液体燃料容器を、プラットホームとしてその外周面にアノード,電解質膜,カソードから構成される複数の単電池を作製し、各単電池を導電性のインターコネクタで直列に接続することで高電圧化を図ることがでる。また、燃料や酸化剤を強制供給する補機を用いることなく、燃料電池を強制冷却するための補機を用いることなく運転でき、燃料には体積エネルギー密度の高いメタノール水溶液を液体燃料として用いることによって、長時間の発電を継続できる小型電源を実現することができる。   Using the liquid fuel container as the platform of the present invention as a platform, a plurality of cells composed of an anode, an electrolyte membrane, and a cathode are produced on the outer peripheral surface thereof, and each cell is connected in series by a conductive interconnector. Thus, a higher voltage can be achieved. In addition, operation can be performed without using auxiliary equipment for forcibly cooling the fuel cell without using auxiliary equipment for forcibly supplying fuel or oxidant, and a methanol aqueous solution with a high volume energy density can be used as the liquid fuel. Thus, a small power supply that can continue power generation for a long time can be realized.

この小型電源を、例えば、携帯電話機、ブックタイプパーソナルコンピュータや携帯用ビデオカメラなどの電源として内蔵して駆動することができ、予め、用意された燃料を逐次補給することによって長時間の連続使用が可能となる。   This small power source can be built in and driven as a power source for a mobile phone, a book-type personal computer, a portable video camera, or the like, and can be used continuously for a long time by sequentially replenishing the prepared fuel in advance. It becomes possible.

また、前記の場合よりも燃料補給の頻度を大幅に少なくする目的で、この小型電源を、例えば、二次電池搭載の携帯電話機、ブックタイプパーソナルコンピュータや携帯用ビデオカメラの充電器と結合し、それらの収納ケースの一部に装着することによって、バッテリーチャージャとして用いることは有効である。この場合、携帯用電子機器使用時には収納ケースより取出して二次電池で駆動し、使用しない時にはケースに収納することによって、ケースに内蔵された小型燃料電池発電装置が充電器を介して接続され二次電池を充電する。こうすることによって燃料タンクの容積を大きくでき、燃料補給の頻度は大幅に少なくすることができる。   Also, for the purpose of significantly reducing the frequency of refueling than in the case described above, this small power supply, for example, a secondary battery-equipped mobile phone, a book-type personal computer or a portable video camera charger, It is effective to use it as a battery charger by attaching it to a part of those storage cases. In this case, when the portable electronic device is used, it is taken out of the storage case and driven by the secondary battery, and when not in use, it is stored in the case, so that the small fuel cell power generation device built in the case is connected via the charger and the secondary battery is connected. Charge the next battery. By doing so, the capacity of the fuel tank can be increased, and the frequency of refueling can be significantly reduced.

次に、本発明を実施例に基づき説明する。
〔比較例1〕
図7は、従来の構造に基づくセパレータ構造を示す断面図である。一方の面内構造と縦断面を図7(a)に、他方の面内構造と横断面を図7(b)に示し、電池積層構成を図8に、セルホルダーの構成を図9に、単電池18個を直列で2組積層し、燃料容器を付設して構成された電源システム構造を図10(a)に、そして、積層端の燃料電池と燃料容器との接続を示す断面構造を図10(b)に示す。
Next, the present invention will be described based on examples.
[Comparative Example 1]
FIG. 7 is a sectional view showing a separator structure based on a conventional structure. FIG. 7A shows an in-plane structure and a vertical cross section, and FIG. 7B shows another in-plane structure and a cross section. FIG. 8 shows a battery stack configuration, and FIG. 9 shows a cell holder configuration. FIG. 10A shows a power supply system structure in which 18 single cells are stacked in series and a fuel container is attached, and a cross-sectional structure showing the connection between the fuel cell and the fuel container at the stack end is shown in FIG. It is shown in FIG.

セパレータ81は、16mm幅×33mm長さ×厚さ2.5mmの黒鉛化炭素板を用いた。セパレータ81の底部には10mm幅×4mm長さの内部マニフォルド82が設けられ、図7(a)のセパレータ横断面図で符号84に示すように、1mm幅×0.8mm深さ×23mm長さの溝を1mm間隔で構成しリブ部54を形成して、マニフォルド82とセパレータ81の上面を繋ぐ燃料供給溝を設けた。   As the separator 81, a graphitized carbon plate of 16 mm width × 33 mm length × 2.5 mm thickness was used. An inner manifold 82 having a width of 10 mm and a length of 4 mm is provided at the bottom of the separator 81. As shown by a reference numeral 84 in the cross-sectional view of the separator in FIG. 7A, a 1 mm width × 0.8 mm depth × 23 mm length is provided. Are formed at intervals of 1 mm to form the rib portions 54, and a fuel supply groove connecting the manifold 82 and the upper surface of the separator 81 is provided.

一方、図7(b)とセパレータ縦断面図83に示すように、セパレータの他方の面にはこれと直交する方向に1mm幅×1.4mm深さ×16mm長さの溝を1mm間隔で構成したリブ部54を形成してセパレータ81の側面を繋ぐ酸化剤供給溝を設けた。   On the other hand, as shown in FIG. 7 (b) and the separator longitudinal sectional view 83, grooves of 1 mm width × 1.4 mm depth × 16 mm length are formed on the other surface of the separator at intervals of 1 mm in a direction perpendicular to the separator. An oxidant supply groove connecting the side surfaces of the separator 81 was formed by forming the rib portion 54 thus formed.

アノード層は、炭素担体上に白金/ルテニウムの原子比が1/1の白金/ルテニウム合金微粒子を50wt%分散担持した触媒粉末と、30wt%パーフロロカーボンスルフォン酸(商品名:Nafion117、DuPont社製)電解質を、バインダとして水/アルコール混合溶媒〔水:イソプロパノール:ノルマルプロパノールが20:40:40(重量比)の混合溶媒〕のスラリーを調製し、スクリーン印刷法でポリイミドフィルム上に厚さ約20μmの多孔質膜に形成した。   The anode layer is composed of a catalyst powder in which platinum / ruthenium alloy fine particles having a platinum / ruthenium atomic ratio of 1/1 are dispersed and supported on a carbon support by 50 wt%, and 30 wt% perfluorocarbon sulfonic acid (trade name: Nafion 117, manufactured by DuPont) As an electrolyte, a slurry of a water / alcohol mixed solvent [a mixed solvent of water: isopropanol: normal propanol of 20:40:40 (weight ratio)] was prepared as a binder, and about 20 μm thick was formed on a polyimide film by a screen printing method. Formed on a porous membrane.

カソード層は、炭素担体上に30wt%の白金微粒子を担持した触媒粉末と、電解質をバインダとして水/アルコール混合溶媒のスラリーを調製してスクリーン印刷法でポリイミドフィルム上に厚さ約25μmの多孔質膜に形成した。こうして調製したアノード多孔質膜およびカソード多孔質膜を、それぞれ10mm幅×20mm長さに切出して、アノード層およびカソード層とした。   The cathode layer is prepared by preparing a slurry of a catalyst powder in which 30 wt% of platinum fine particles are supported on a carbon carrier and a water / alcohol mixed solvent using an electrolyte as a binder, and forming a porous film having a thickness of about 25 μm on a polyimide film by a screen printing method. Formed on the membrane. The thus prepared anode porous membrane and cathode porous membrane were each cut into a 10 mm width × 20 mm length to obtain an anode layer and a cathode layer.

次に、電解質膜として16mm幅×33mm長さ×50μm厚さのナフィオン117にマニフォルド開孔部86を設けた。   Next, a manifold opening 86 was provided in Nafion 117 having a width of 16 mm × a length of 33 mm × a thickness of 50 μm as an electrolyte membrane.

アノード層表面に、5重量%のナフィオン117アルコール水溶液〔水:イソプロパノール:ノルマルプロパノールが20:40:40(重量比)の混合溶媒:Fluka Chemika社製〕を約0.5ml浸透させた後、上記の電解質膜の発電部に接合し、約1kgの荷重を加えて80℃,3時間乾燥する。次に、カソード層表面に5重量%の前記ナフィオン117アルコール水溶液を約0.5ml浸透させた後、電解質膜に先に接合したアノード層と重なるように接合し、約1kgの荷重を加えて80℃,3時間乾燥することによって、MEA9を調製した。   About 0.5 ml of a 5% by weight aqueous solution of Nafion 117 alcohol [a mixed solvent of 20:40:40 (weight ratio: water: isopropanol: normal propanol: manufactured by Fluka Chemika)] was infiltrated into the surface of the anode layer. And dried at 80 ° C. for 3 hours under a load of about 1 kg. Next, about 0.5 ml of the 5% by weight Nafion 117 alcohol aqueous solution is permeated into the surface of the cathode layer, and then joined so as to overlap with the anode layer previously joined to the electrolyte membrane. By drying at 3 ° C. for 3 hours, MEA9 was prepared.

次いで、セパレータ81と同じサイズで、マニフォルド開孔部86と発電部開孔部85を設けた厚み250μmのポリエチレンテレフタレート製ライナー92と、厚み400μmのネオプレン製ガスケット10を作製した。   Next, a polyethylene terephthalate liner 92 having a thickness of 250 μm having the same size as the separator 81 and having a manifold opening 86 and a power generation unit opening 85 and a neoprene gasket 10 having a thickness of 400 μm were produced.

次に、炭素粉末に焼成後の重量で40wt%となるよう撥水剤ポリテトラフロロエチレン微粒子の水性分散液(テフロンデイスパージョンD−1:ダイキン工業製)を添加,混練し、ペースト状になったものを、厚さ約350μm,空隙率87%の炭素繊維織布上の片面に厚さ約20μmとなるように塗布し、室温で乾燥後、270℃,3時間焼成して炭素シートを形成した。得られたシートを前記のMEAの電極サイズと同じ形状に切り出して拡散層11を調製した。(注)テフロン;登録商標
次に、セパレータ81の燃料極側溝埋込み部88と、マニフォルド埋込み部87で構成されるパルプ紙製の燃料吸上げ材5を作製した。
Next, an aqueous dispersion (Teflon Dispersion D-1: manufactured by Daikin Industries, Ltd.) of water repellent polytetrafluoroethylene fine particles is added to the carbon powder so that the weight after firing becomes 40 wt%, and the mixture is kneaded to form a paste. The resultant was applied to one side of a carbon fiber woven fabric having a thickness of about 350 μm and a porosity of 87% so as to have a thickness of about 20 μm, dried at room temperature, and fired at 270 ° C. for 3 hours to obtain a carbon sheet. Formed. The obtained sheet was cut out into the same shape as the electrode size of the MEA to prepare a diffusion layer 11. (Note) Teflon; registered trademark Next, a fuel wicking material 5 made of pulp paper and composed of a fuel electrode side groove embedding portion 88 of the separator 81 and a manifold embedding portion 87 was prepared.

これらの部品を図8に示すようにセパレータ81、液体燃料吸上げ材5、ライナー92、ガスケット10、MEA9、拡散層11、ライナー92、セパレータ81の順序を単位に14層積み上げて、約5kg/cmでプレス加圧し積層電池94とした。該積層電池94を、図9に示す構造の表面をエポキシ系樹脂(フレップ;東レ・チオコール社製)で絶縁化したSUS316製のホルダー105を介して、フッ素系ゴム(バイトン;DuPont社製)の締付けバンド17で図10(a)に示すように締め付けて固定した。燃料容器1は、積層電池装着部103を持ったポリプロピレン製の外形33mm高さ×85mm長さ×65mm幅のサイズで側壁厚さ2mmのものを作製した。 As shown in FIG. 8, 14 parts of these parts are stacked in the order of the separator 81, the liquid fuel wicking material 5, the liner 92, the gasket 10, the MEA 9, the diffusion layer 11, the liner 92, and the separator 81, and about 5 kg / Pressing was performed at a pressure of 2 cm 2 to obtain a laminated battery 94. The laminated battery 94 is made of fluorinated rubber (Viton; manufactured by DuPont) through a SUS316 holder 105 in which the surface of the structure shown in FIG. 9 is insulated with epoxy resin (Flep; manufactured by Toray Thiokol). As shown in FIG. 10 (a), it was fastened and fixed with a fastening band 17. The fuel container 1 was made of polypropylene having a laminated cell mounting portion 103 and having a size of 33 mm in height × 85 mm in length × 65 mm in width and a side wall thickness of 2 mm.

図10(b)に示すように、燃料容器1の中央部には図4(a)に示した構造と同様な多孔質ポリテトラフルオロエチレン膜を、気液分離膜50として装着したガス選択透過機能を持つネジ蓋52付きの通気管51を通気孔15として備え、燃料容器内部には燃料としてメタノール水溶液12が充填されている。作製した2つの積層電池は図10(b)示すような構造で、燃料電池装着部103と結合し、図10(a)に示すような構造の電源を作製した。   As shown in FIG. 10B, gas selective permeation in which a porous polytetrafluoroethylene membrane having the same structure as that shown in FIG. A vent pipe 51 having a screw cap 52 having a function is provided as a vent hole 15, and the inside of the fuel container is filled with a methanol aqueous solution 12 as fuel. The two stacked batteries thus produced have a structure as shown in FIG. 10B and are combined with the fuel cell mounting portion 103 to produce a power supply having a structure as shown in FIG. 10A.

上記電源は、概ね33mm高さ×120mm長さ×65mm幅のもので発電部面積が約2cm、容量約150mlの燃料容器を備えている。運転温度50℃で負荷電流0.2Aの時5.7Vの電圧を示し、セパレータの空気極側溝で構成される電源の側壁の開孔部全面に、ファンで送風しながら発電した時の電圧は11.8Vであった。これは電源負荷時には、セパレータの空気極側溝構造では十分な空気の拡散による酸素の供給が不足するためと考えられる。この電源の体積出力密度は、通気ファンを用いないと約4.4W/lで、通気ファンを用いた場合には約9.2W/lであった。 The power source has a height of about 120 mm, a length of about 120 mm, and a width of about 65 mm, and has a power generation unit area of about 2 cm 2 and a capacity of about 150 ml. A voltage of 5.7 V at an operating temperature of 50 ° C. and a load current of 0.2 A indicates a voltage of 5.7 V when power is generated by blowing a fan over the entire opening of the side wall of the power supply formed by the air electrode side groove of the separator. It was 11.8V. It is considered that this is because the supply of oxygen due to sufficient diffusion of air is insufficient in the air electrode side groove structure of the separator at the time of power supply load. The volume output density of this power supply was about 4.4 W / l without using a ventilation fan, and was about 9.2 W / l when using a ventilation fan.

燃料容器に10wt%メタノール水溶液を150ml充填し、送風ファンを使用し、運転温度50℃、負荷電流0.2Aで運転したところ、出力電圧11.8Vで約4.5時間継続した後に、電圧が急速に低下した。従って、10wt%メタノール水溶液燃料を充填した時の体積エネルギー密度は、通気ファンを用いた時に41Wh/lであった。   The fuel container was filled with 150 ml of a 10 wt% methanol aqueous solution, and operated at an operating temperature of 50 ° C. and a load current of 0.2 A using a blower fan. Dropped rapidly. Therefore, the volume energy density at the time of filling with the 10 wt% methanol aqueous solution fuel was 41 Wh / l when the ventilation fan was used.

この燃料電池発電装置は、積層電池下部のマニフォルドから液体燃料を吸上げ、積層電池上部から燃料の酸化によって発生する炭酸ガスを、排出する構造を採っている。そのために運転時には上下転置や横転すると発電が継続しないと云う問題を有している。
〔実施例1〕
図11に本実施例によるMEAの構造を示す。MEAはアノード層22とカソード層23が電解質膜21の両面に重なるよう電解質樹脂をバインダとして接合して形成される。
This fuel cell power generation device adopts a structure in which liquid fuel is sucked up from a manifold below a stacked battery and carbon dioxide generated by oxidation of the fuel is discharged from an upper portion of the stacked battery. For this reason, there is a problem that power generation does not continue if the vehicle is upside down or rolled over during operation.
[Example 1]
FIG. 11 shows the structure of the MEA according to the present embodiment. The MEA is formed by bonding an electrolyte resin as a binder so that the anode layer 22 and the cathode layer 23 overlap on both surfaces of the electrolyte membrane 21.

アノード層は、炭素担体上に白金/ルテニウムが1/1(原子比)の白金/ルテニウム合金微粒子を50wt%分散担持した触媒粉末と、30wt%パーフロロカーボンスルフォン酸(ナフィオン117)電解質を、バインダとして水/アルコール混合溶媒(水:イソプロパノール:ノルマルプロパノールが重量比で20:40:40の混合溶媒)のスラリーを調製し、スクリーン印刷法で厚さ約20μmの多孔質膜に形成した。   The anode layer is formed by using, as a binder, a catalyst powder in which platinum / ruthenium alloy fine particles of platinum / ruthenium (1/1) (atomic ratio) are dispersed and supported on a carbon support by 50 wt%, and a 30 wt% perfluorocarbonsulfonic acid (Nafion 117) electrolyte is used. A slurry of a water / alcohol mixed solvent (a mixed solvent of water: isopropanol: normal propanol at a weight ratio of 20:40:40) was prepared and formed into a porous film having a thickness of about 20 μm by a screen printing method.

カソード層は、炭素担体上に30wt%の白金微粒子を担持した触媒粉末と電解質をバインダとして水/アルコール混合溶媒のスラリーを、スクリーン印刷法で厚さ約25μmの多孔質膜に形成した。   As the cathode layer, a slurry of a mixed solvent of water / alcohol was used to form a porous film having a thickness of about 25 μm by a screen printing method using a catalyst powder in which 30% by weight of platinum fine particles were supported on a carbon support and an electrolyte as a binder.

上記のアノード多孔質膜およびカソード多孔質膜を、それぞれ10mm幅×20mm長さに切出してアノード層22およびカソード層23とした。厚さ50μmのナフィオン117電解質膜20mm幅×30mm長さを切出し、アノード層表面に5重量%のナフィオン117アルコール水溶液(水:イソプロパノール:ノルマルプロパノールが重量比で20:40:40の混合溶媒:Fluka Chemika社製)を、約0.5ml浸透させた後、電解質膜中央部に接合し約1kgの荷重を加えて80℃,3時間乾燥する。   The above-mentioned anode porous membrane and cathode porous membrane were cut into 10 mm width × 20 mm length, respectively, to obtain an anode layer 22 and a cathode layer 23. A 50 μm thick Nafion 117 electrolyte membrane, 20 mm wide × 30 mm long, was cut out, and a 5% by weight Nafion 117 alcohol aqueous solution (water: isopropanol: normal propanol mixed solvent: Fluka in a weight ratio of 20:40:40) was cut on the anode layer surface. After about 0.5 ml of permeate (Chemika Co., Ltd.) was infiltrated, it was joined to the center of the electrolyte membrane, and a load of about 1 kg was applied thereto, followed by drying at 80 ° C. for 3 hours.

次に、カソード層表面に5重量%のナフィオン117アルコール水溶液(Fluka Chemika社製)を約0.5ml浸透させた後、電解質膜中央部に先に接合したアノード層22と重なるように接合し、約1kgの荷重を加えて80℃,3時間乾燥し、MEAを調製した。   Next, about 0.5 ml of a 5% by weight Nafion 117 alcohol aqueous solution (manufactured by Fluka Chemika) is infiltrated into the surface of the cathode layer, and then joined so as to overlap with the anode layer 22 previously joined to the center of the electrolyte membrane. By applying a load of about 1 kg and drying at 80 ° C. for 3 hours, MEA was prepared.

次に、炭素粉末に焼成後の重量で40wt%となるように撥水剤ポリテトラフロロエチレン微粒子の水性分散液(テフロンデイスパージョンD−1:ダイキン工業製)を添加,混練したペーストを、厚さ約350μm,空隙率87%の炭素繊維織布上の片面に厚さ約20μmとなるように塗布し、室温で乾燥後、270℃,3時間焼成して炭素シートを形成した。得られたシートを上記したMEAの電極サイズと同じ形状に切出して拡散層を調製した。   Next, an aqueous dispersion (Teflon dispersion D-1: manufactured by Daikin Industries, Ltd.) of water repellent polytetrafluoroethylene fine particles was added to the carbon powder so that the weight after firing was 40 wt%, and the paste was kneaded. It was applied on one surface of a carbon fiber woven fabric having a thickness of about 350 μm and a porosity of 87% so as to have a thickness of about 20 μm, dried at room temperature, and fired at 270 ° C. for 3 hours to form a carbon sheet. The obtained sheet was cut into the same shape as the electrode size of the MEA described above to prepare a diffusion layer.

次に、燃料容器外周面に、MEAからなる燃料電池の実装方法を燃料電池発電装置の断面構造を示す図13を用いて説明する。   Next, a method of mounting a fuel cell made of MEA on the outer peripheral surface of a fuel container will be described with reference to FIG. 13 showing a cross-sectional structure of a fuel cell power generator.

外形65mm幅×135mm長さ×25mm高さで壁面厚さ2mmの硬質塩化ビニル製燃料容器1の内壁面には厚さ5mm、空隙率85%のガラス繊維マットを燃料吸上げ材5として装着した。   A 5 mm thick, 85% porosity glass fiber mat was mounted as a fuel wicking material 5 on the inner wall surface of a rigid vinyl chloride fuel container 1 having an outer shape of 65 mm width × 135 mm length × 25 mm height and a wall thickness of 2 mm. .

燃料容器1の外壁面には、21mm幅×31mm長さ×0.5mm深さの燃料電池装着部2を上下それぞれ18個設けた。各燃料電池装着部2のアノード接触部には1mm幅×10mm長さのスリットを1mm間隔で設け拡散孔3とした。このスリット内には燃料容器内壁面に装着された燃料吸上げ材5と接触するように空隙率85%のガラス繊維マットを充填した。   On the outer wall surface of the fuel container 1, 18 upper and lower fuel cell mounting portions 2 each having a width of 21 mm x a length of 31 mm x a depth of 0.5 mm were provided. A slit having a width of 1 mm and a length of 10 mm was provided at intervals of 1 mm in the anode contact portion of each fuel cell mounting portion 2 to form a diffusion hole 3. The slit was filled with a glass fiber mat having a porosity of 85% so as to be in contact with the fuel wicking material 5 mounted on the inner wall surface of the fuel container.

スリットの外面には、隣接する燃料電池のカソード集電板7と電気的に接続するためのインターコネクタ4を、厚さ約50μmのニッケルの無電解メッキ層を設けた。得られた燃料容器の上下四隅には、図4(a)と同様な構造の気液分離機能を備えた通気孔15を設けた。   On the outer surface of the slit, an interconnector 4 for electrically connecting to a cathode current collector 7 of an adjacent fuel cell was provided with a nickel electroless plating layer having a thickness of about 50 μm. At the upper and lower four corners of the obtained fuel container, ventilation holes 15 having a gas-liquid separation function having the same structure as that of FIG. 4A were provided.

次に、燃料電池固定板8は、燃料容器1と同じ硬質塩化ビニル製の厚さ2.0mmの板で、各燃料電池のカソードに接する面には燃料容器の装着部2に設けられたスリットと直交する方向に1.0mm幅×20mm長さのスリットを拡散孔3として設けた。この燃料電池固定板8には、そのスリット部と同様の形状で隣接した燃料電池のインターコネクタ4との接続ができるよう成形したスリット付きニッケル製のカソード集電板7を固定した。   Next, the fuel cell fixing plate 8 is a plate made of the same rigid vinyl chloride as the fuel container 1 and having a thickness of 2.0 mm, and has a slit provided on the mounting portion 2 of the fuel container on a surface in contact with the cathode of each fuel cell. A slit having a width of 1.0 mm and a length of 20 mm was provided as the diffusion hole 3 in a direction perpendicular to the direction of the arrow. On this fuel cell fixing plate 8, a cathode current collector plate 7 made of nickel with a slit and formed in the same shape as the slit portion so as to be connectable to the interconnector 4 of the adjacent fuel cell was fixed.

この燃料容器に前記したMEA9を装着するに当たって、MEA9の両面にシール用ガスケット10を配したものを燃料電池装着部2に配置し、そのカソード側に拡散層11を配して、燃料電池固定板8で燃料容器に各電池を固定した。この時、燃料電池固定板8のカソード側の面に、予め、配置されたカソード集電板7は、カソードと隣接した燃料電池のアノードからのインターコネクタ4とを電気的に接続し、各電池を直列に接続する。各燃料電池を接続した終端部は、燃料電池固定板8と燃料容器の界面から容器外部へ電池端子16として取出される。本実施例による燃料電池発電装置の外観を図12に示す。   In mounting the MEA 9 on the fuel container, the gasket 10 for sealing on both sides of the MEA 9 is disposed on the fuel cell mounting section 2, and the diffusion layer 11 is disposed on the cathode side of the MEA 9. At 8 each cell was fixed to the fuel container. At this time, the cathode current collector 7 previously arranged on the surface of the fuel cell fixing plate 8 on the cathode side electrically connects the cathode and the interconnector 4 from the anode of the adjacent fuel cell, and Are connected in series. The terminal part to which each fuel cell is connected is taken out as a battery terminal 16 from the interface between the fuel cell fixing plate 8 and the fuel container to the outside of the container. FIG. 12 shows the appearance of the fuel cell power generator according to the present embodiment.

通気孔15を有する燃料容器1には、燃料電池固定板8によって上下面36個の単電池13が装着され、出力端子16が設けられている。こうして燃料電池を実装した燃料容器の通気孔15の一つから、10wt%のメタノール水溶液12を燃料として容器内に注入する。この燃料電池は、概略65mm幅×135mm長さ×29mm高さのもので、燃料収納容積は約150mlであった。また、発電装置は発電面積2cm、36直列で構成されている。 In the fuel container 1 having the ventilation hole 15, 36 unit cells 13 on the upper and lower surfaces are mounted by the fuel cell fixing plate 8, and the output terminal 16 is provided. Thus, a 10 wt% methanol aqueous solution 12 is injected into the container as fuel from one of the vent holes 15 of the fuel container in which the fuel cell is mounted. This fuel cell was approximately 65 mm wide × 135 mm long × 29 mm high and had a fuel storage volume of about 150 ml. The power generator has a power generation area of 2 cm 2 and is configured in 36 series.

この燃料電池発電装置を温度50℃,負荷電流200mAで運転したところ出力電圧は12.2Vであった。10wt%のメタノール水溶液を充填して負荷電流200mAで運転すると約4.5時間発電を継続することができ、この燃料電池発電装置の出力密度は約9.6W/lで、燃料リッター当たりの体積エネルギー密度は約50Wh/lであった。また、この運転中に発電装置を天地逆転、または、横転した姿勢で運転しても、特に出力電圧の変化は観測されず、燃料容器内の圧力上昇も観測されなかった。   When this fuel cell power generator was operated at a temperature of 50 ° C. and a load current of 200 mA, the output voltage was 12.2 V. When a 10 wt% methanol aqueous solution is charged and operated at a load current of 200 mA, power generation can be continued for about 4.5 hours. The output density of this fuel cell power generator is about 9.6 W / l, and the volume per fuel liter is obtained. The energy density was about 50 Wh / l. In addition, even if the power generator was operated upside down or turned over during this operation, no particular change in output voltage was observed, and no increase in pressure in the fuel container was observed.

このように液体燃料容器外壁面に、複数の燃料電池を装着しインターコネクタで直列接続することによって、セパレータを介して積層することなく12V級の高電圧型の小型燃料電池を実現できる。この時、アノード側を液体燃料吸上げ材で収納容器内とアノードを接触させ、カソードが拡散層を介して外気に曝されることで、燃料送液ポンプやカソードガス用ファンなどの補機を必要としない電源が可能となった。   As described above, by mounting a plurality of fuel cells on the outer wall surface of the liquid fuel container and connecting them in series with the interconnector, it is possible to realize a 12V-class high-voltage small-sized fuel cell without stacking via a separator. At this time, the anode side is brought into contact with the inside of the container and the anode with a liquid fuel wicking material, and the cathode is exposed to the outside air through the diffusion layer, so that auxiliary equipment such as a fuel feed pump and a cathode gas fan are operated. Unnecessary power supply became possible.

特に燃料容器の複数の面に配置された気液分離機能を備えた通気孔の設置によって、燃料電池がいかなる姿勢をとっても正常な発電が可能で、携帯用の発電装置として必須の特性が達成できた。
〔比較例2〕
セパレータを用いた低電圧型小型燃料電池発電装置を図14を用いて説明する。電池の構成材であるセパレータ,吸上げ材,ライナー,ガスケット,MEA,拡散層は比較例1と同じ材料で同サイズのものを用い、同一手順で単電池が4セルになるように積層電池23を作製した。この積層電池を比較例1と同じようにセルホルダー105に挿入し、フッ素系ゴムの締付けバンド17で固定した。
In particular, by installing ventilation holes with gas-liquid separation functions arranged on multiple surfaces of the fuel container, normal power generation is possible regardless of the orientation of the fuel cell, and the essential characteristics of a portable power generator can be achieved. Was.
[Comparative Example 2]
A low voltage small fuel cell power generator using a separator will be described with reference to FIG. The separator, the wicking material, the liner, the gasket, the MEA, and the diffusion layer, which are the constituent materials of the battery, are made of the same material and of the same size as in Comparative Example 1, and the laminated battery 23 is formed in the same procedure so that the unit cell becomes four cells. Was prepared. This laminated battery was inserted into the cell holder 105 in the same manner as in Comparative Example 1, and was fixed with the fastening band 17 made of fluorine-based rubber.

燃料容器1は、ポリプロピレン製の外形が33mm高さ×16mm長さ×65mm幅のもので側壁厚さ2mmである。図14に示すように、燃料容器1の上面の中央部には図4(a)に示した構造と同様に、多孔質ポリテトラフロロエチレン膜を装着した通気孔15を備えている。   The fuel container 1 has a polypropylene outer shape having a height of 33 mm × a length of 16 mm × a width of 65 mm and a side wall thickness of 2 mm. As shown in FIG. 14, a vent 15 provided with a porous polytetrafluoroethylene membrane is provided at the center of the upper surface of the fuel container 1, similarly to the structure shown in FIG.

作製された積層電池23は、比較例1と同じ構成で燃料容器1と結合して電源を構成した。得られた電源は概ね33mm高さ×82mm長さ×16mm幅で発電部面積が約2cm、容量約20mlの燃料容器1を備えている。 The manufactured laminated battery 23 was combined with the fuel container 1 in the same configuration as Comparative Example 1 to form a power source. The obtained power source is provided with a fuel container 1 having a height of approximately 33 mm × a length of 82 mm × a width of 16 mm, a power generation unit area of about 2 cm 2 , and a capacity of about 20 ml.

運転温度50℃で負荷電流0.2Aの時0.58Vの電圧を示し、セパレータの空気極側溝で構成される電源の側壁の開孔部全面に、ファンで送風しながら発電した時の電圧は1.26Vであった。これは電源負荷時には、セパレータの空気極側溝構造では、空気の拡散による酸素の供給が不足するためと考えられる。この電源の体積出力密度は通気ファンを用いないと約2.7W/lで、通気ファンを用いた場合には約5.8W/lであった。   A voltage of 0.58 V at an operating temperature of 50 ° C. and a load current of 0.2 A indicates a voltage of 0.58 V. 1.26V. It is considered that this is because the supply of oxygen due to the diffusion of air is insufficient in the air electrode side groove structure of the separator when the power is loaded. The volume output density of this power supply was about 2.7 W / l without using a ventilation fan, and was about 5.8 W / l when using a ventilation fan.

10wt%メタノール水溶液を20ml充填し、送風ファンを用い、運転温度50℃,負荷電流0.2Aで運転した場合の出力電圧は約1.26Vで、約5時間継続した後、電圧が急速に低下した。従って10wt%メタノール水溶液燃料リッター当たりの体積エネルギー密度は、通気ファンを用いた場合、29Wh/lであった。   The output voltage is about 1.26 V when the reactor is operated at an operating temperature of 50 ° C. and a load current of 0.2 A using a blower fan and filled with 20 ml of a 10 wt% methanol aqueous solution, and after continuing for about 5 hours, the voltage drops rapidly. did. Therefore, the volume energy density per 10 wt% methanol aqueous fuel liter was 29 Wh / l when a ventilation fan was used.

この燃料電池発電装置は、積層電池下部のマニホールドから液体燃料を吸上げ、積層電池上部から燃料の酸化によって発生する炭酸ガスを排出する構造となっている。そのために運転時に、上下転置や横転すると発電が継続しないと云う問題がある。
〔実施例2〕
本実施例によるメタノールを燃料とした角柱型で低電圧型の発電装置の断面構造を図15に、燃料電池の実装方法の概略を図16に示す。MEAの調製法は実施例1とほぼ同じ方法で行った。30mm幅×50mm長さのポリイミドフィルム上に、炭素担体上に白金/ルテニウムが1/1(原子比)の白金/ルテニウム合金微粒子を50wt%分散担持した触媒粉末と、30wt%パーフロロカーボンスルフォン酸(ナフィオン117)電解質をバインダとし、水/アルコール混合溶媒(水:イソプロパノール:ノルマルプロパノールが重量比で20:40:40の混合溶媒)からなるスラリーを、スクリーン印刷法で厚さ約20μmの多孔質膜に形成し、これを90℃,3時間乾燥してアノード多孔質層とした。
This fuel cell power generator has a structure in which liquid fuel is sucked up from a manifold below a stacked battery and carbon dioxide generated by oxidation of the fuel is discharged from an upper portion of the stacked battery. For this reason, there is a problem that power generation does not continue if the vehicle is upside down or overturned during operation.
[Example 2]
FIG. 15 shows a cross-sectional structure of a prismatic, low-voltage power generating apparatus using methanol as a fuel according to the present embodiment, and FIG. MEA was prepared in substantially the same manner as in Example 1. On a polyimide film of 30 mm width × 50 mm length, 50 wt% of platinum / ruthenium alloy fine particles in which platinum / ruthenium is 1/1 (atomic ratio) dispersed and supported on a carbon carrier, and 30 wt% of perfluorocarbon sulfonic acid ( Nafion 117) A porous membrane having a thickness of about 20 μm by a screen printing method using a slurry composed of a water / alcohol mixed solvent (a mixed solvent of water: isopropanol: normal propanol at a weight ratio of 20:40:40) using an electrolyte as a binder. And dried at 90 ° C. for 3 hours to form an anode porous layer.

カソード多孔質層には、炭素担体上に30wt%の白金微粒子を担持した触媒粉末と、電解質をバインダとして水/アルコール混合溶媒のスラリーを調製し、スクリーン印刷法で30mm幅×50mm長さのポリイミドフィルム上に厚さ約25μmに形成後、90℃,3時間乾燥した。   For the cathode porous layer, a slurry of a water / alcohol mixed solvent was prepared by using a catalyst powder in which 30% by weight of platinum fine particles were supported on a carbon support and an electrolyte was used as a binder. After being formed on the film to a thickness of about 25 μm, the film was dried at 90 ° C. for 3 hours.

上記のアノード多孔質膜およびカソード多孔質膜をそれぞれ10×10mmサイズに切出してアノード層およびカソード層とした。電解質には790g/eqで28mm幅×56mm長さ×厚さ50μmのスルフォン酸化ポリエーテルエーテルスルフォン膜を用いた。   The anode porous membrane and the cathode porous membrane were cut into a size of 10 × 10 mm, respectively, to form an anode layer and a cathode layer. As the electrolyte, a sulfonated polyetherethersulfone film having a width of 28 mm × a length of 56 mm × a thickness of 50 μm at 790 g / eq was used.

初めに、アノード層8枚の各表面に5重量%のナフィオン117アルコール水溶液(Fluka Chemika社製)を約0.5ml浸透させ、これを電解質膜の一方の面に均等に配置し、各電極を約1kgの荷重を加えて80℃,3時間乾燥する。   First, about 0.5 ml of a 5% by weight aqueous solution of Nafion 117 alcohol (manufactured by Fluka Chemika) was infiltrated into each surface of the eight anode layers, and this was evenly arranged on one surface of the electrolyte membrane. Apply a load of about 1 kg and dry at 80 ° C for 3 hours.

次に、カソード層表面に5重量%のナフィオン117アルコール水溶液を、約0.5ml浸透させた後、上記アノードを接合した電解質膜の反対側の面にアノード層と重なるように配置し、各電池に約1kgの荷重を加えて80℃,3時間乾燥してMEAを調製した。   Next, about 0.5 ml of a 5% by weight aqueous solution of Nafion 117 alcohol was infiltrated into the surface of the cathode layer, and then placed on the opposite surface of the electrolyte membrane to which the anode was joined so as to overlap the anode layer. Was applied with a load of about 1 kg and dried at 80 ° C. for 3 hours to prepare MEA.

燃料容器1は、図16に示すように外形が22mm幅×79mm長さ×23mm高さで2mm壁厚の硬質塩化ビニル製のものを用いた。断面構造は、図15に示すように燃料容器1の上下の面には、16mm幅×16mm長さ×0.5mm深さの燃料電池装着部2をそれぞれ4面設けた。燃料電池装着部2の中央部の10mm幅×10mm長さの部分に、1mm幅×10mm長さの燃料容器1内部と貫通するスリットを拡散孔3として設けた。   As shown in FIG. 16, the fuel container 1 was made of hard vinyl chloride having an outer shape of 22 mm wide × 79 mm long × 23 mm high and a wall thickness of 2 mm. As shown in FIG. 15, four fuel cell mounting portions 2 each having a width of 16 mm × a length of 16 mm × a depth of 0.5 mm were provided on the upper and lower surfaces of the fuel container 1 as shown in FIG. In the central part of the fuel cell mounting part 2, a slit having a width of 10 mm × 10 mm and a slit penetrating the inside of the fuel container 1 having a width of 1 mm × 10 mm was provided as a diffusion hole 3.

この装着部2の外面にアノード側インターコネクタ4として、隣接する燃料電池と電気的接続をするために、厚さ0.1mmのニッケル層を無電解メッキ法で形成した。燃料容器1の内壁には厚さ1mmで空隙率約70%のガラス繊維マットを貼り付けて燃料吸上げ材5とし、さらにその内部を空隙率が約85%程度になるようガラス繊維を充填した低密度燃料を保持する保持層18を設けた。燃料容器1の上下面隅部には、図4(a)に示した構造の内径2mmの通気孔15を8個設けた。   A nickel layer having a thickness of 0.1 mm was formed on the outer surface of the mounting portion 2 as an anode-side interconnector 4 by an electroless plating method so as to be electrically connected to an adjacent fuel cell. A glass fiber mat having a thickness of 1 mm and a porosity of about 70% was attached to the inner wall of the fuel container 1 to form a fuel wicking material 5, and the inside thereof was filled with glass fibers so that the porosity was about 85%. The holding layer 18 for holding the low-density fuel was provided. At the upper and lower corners of the fuel container 1, eight vents 15 having an inner diameter of 2 mm having the structure shown in FIG.

燃料電池押さえ板となる燃料電池固定板8は、図16に示すように22mm幅×79mm長さ×1mm厚さの硬質塩化ビニルを用いて、各燃料電池のカソードと接する面に、燃料容器1の燃料電池装着部2のスリットとは直交する方向に1mm幅×10mm長さのスリットを設け、その4隅には通気孔装着孔19を設けた。   The fuel cell fixing plate 8 serving as a fuel cell holding plate is made of hard vinyl chloride having a width of 22 mm × 79 mm length × 1 mm as shown in FIG. A slit having a width of 1 mm and a length of 10 mm was provided in a direction orthogonal to the slit of the fuel cell mounting section 2, and vent mounting holes 19 were provided at four corners.

隣接する燃料電池アノード側のインターコネクタと接続するためのニッケル製0.2mm厚さのスリット付きカソード集電板7を、燃料電池固定板8に取り付けた。   A cathode collector plate 7 made of nickel and having a thickness of 0.2 mm and connected to an interconnector on the anode side of the adjacent fuel cell was attached to the fuel cell fixing plate 8.

本燃料電池は図16に示すように、ネオプレンゴム製のアノード側のガスケット10、MEA9、カソード側拡散層11、ネオプレンゴム製のカソード側のガスケット10、燃料電池固定板8の順で積層し、該固定板の外周部をネジ止めによって燃料容器1に固定した。   As shown in FIG. 16, the fuel cell of the present invention is formed by laminating a gasket 10 on the anode side made of neoprene rubber, a MEA 9, a cathode diffusion layer 11, a gasket 10 on the cathode side made of neoprene rubber, and a fuel cell fixing plate 8, in this order. The outer peripheral portion of the fixing plate was fixed to the fuel container 1 by screwing.

燃料容器1の上下に装着されたアノード側端子6およびカソード側端子6を、それぞれ並列に接続して出力端子16とした。得られた燃料電池発電装置の外形は22mm幅×79mm長さ×27mm高さで、発電面積が1cmの4直列×2並列燃料電池で構成されている。 The anode terminal 6 and the cathode terminal 6 mounted above and below the fuel container 1 were connected in parallel to form an output terminal 16. The outer shape of the obtained fuel cell power generator is 22 mm wide × 79 mm long × 27 mm high, and is composed of 4 series × 2 parallel fuel cells having a power generation area of 1 cm 2 .

燃料容器1の容積は概略20mlで、この燃料容器に通気孔15を介して10%メタノール水溶液を充填し、運転温度50℃で運転したところ、負荷電流200mAで1.3Vの出力電圧が得られた。また、燃料容器に20mlの10%メタノール水溶液を充填して負荷電流200mAで連続発電したところ、1.3Vの出力で約5時間の安定した電圧が得られた。この電池の出力密度は約5.5W/lで燃料リッター当たりの体積エネルギー密度は約28Wh/lであった。この運転中に発電装置を天地逆転、または、横転した姿勢で運転しても出力電圧の変化は観測されず、燃料容器内の圧力上昇も観測されなかった。   The fuel container 1 has a volume of approximately 20 ml. The fuel container is filled with a 10% aqueous methanol solution through the vent hole 15 and operated at an operating temperature of 50 ° C., and an output voltage of 1.3 V is obtained at a load current of 200 mA. Was. Further, when the fuel container was filled with 20 ml of a 10% aqueous methanol solution and a continuous power generation was performed at a load current of 200 mA, a stable voltage of about 5 hours was obtained at an output of 1.3 V. The output density of this cell was about 5.5 W / l and the volume energy density per fuel liter was about 28 Wh / l. During this operation, even when the power generator was operated upside down or turned over, no change in output voltage was observed, and no pressure increase in the fuel container was observed.

このように液体燃料容器の1つの外壁面に、複数の燃料電池を装着しインターコネクタで直列接続し、複数の面に装着された直列電池群を並列にすることによって、セパレータを介して積層することなく1.3V級の小型燃料電池を実現できる。この時、アノード側を液体燃料吸上げ材で収納容器内とアノードを接触させ、カソードが拡散層を介して外気に曝されることで、燃料送液ポンプやカソードガス用ファンなどの補機を必要としない電源が得られた。   As described above, a plurality of fuel cells are mounted on one outer wall surface of the liquid fuel container and connected in series by an interconnector, and the series cells mounted on the plurality of surfaces are arranged in parallel to be stacked via a separator. A 1.3V-class small fuel cell can be realized without the need. At this time, the anode side is brought into contact with the inside of the container and the anode with a liquid fuel wicking material, and the cathode is exposed to the outside air through the diffusion layer, so that auxiliary equipment such as a fuel feed pump and a cathode gas fan are operated. Power not needed was obtained.

さらに、燃料容器内を低密度の燃料吸上げ材で充填することにより運転中に液体燃料の揺れを緩和することができた。特に、燃料容器の複数の面に配置された気液分離機能を備えた通気孔の設置により、燃料電池がいかなる姿勢をとっても正常な発電が可能で、携帯用の発電装置として必須の特性を達成することができた。
〔実施例3〕
本実施例では、エポキシ系樹脂を被覆した金属製燃料容器をプラットホームとする燃料電池について述べる。
Further, by filling the inside of the fuel container with a low-density fuel wicking material, the fluctuation of the liquid fuel during operation was able to be reduced. In particular, by installing ventilation holes with gas-liquid separation functions arranged on multiple surfaces of the fuel container, normal power generation is possible regardless of the posture of the fuel cell, achieving the essential characteristics as a portable power generator. We were able to.
[Example 3]
In this embodiment, a fuel cell using a metal fuel container coated with an epoxy resin as a platform will be described.

MEAおよびカソード側拡散層は、実施例2と同様に作製した。燃料容器1は図17に示すように外形が22mm幅×79mm長さ×23mm高さで、厚さ0.3mmのSUS304製の燃料容器を作製した。容器はフレームとプレス加工された16mm幅×16mm長さ×0.5mm深さで4面の燃料電池装着部2を有する上下の蓋から構成されている。   The MEA and the cathode-side diffusion layer were produced in the same manner as in Example 2. As shown in FIG. 17, the fuel container 1 was a SUS304 fuel container having an outer shape of 22 mm width × 79 mm length × 23 mm height and a thickness of 0.3 mm. The container is composed of a frame and upper and lower lids each having a 16 mm width × 16 mm length × 0.5 mm depth and having four fuel cell mounting portions 2 formed by pressing.

燃料電池装着部2の中央には、10mm幅×10mm長さの部分に0.5mm幅×10mm長さのスリットが打抜き加工により拡散孔3として設けている。上下の蓋のコーナ部には、気液分離膜を用いないSUS304製の内径1mmの通気孔15を設けた。これらの部材を用いて、内部に空隙率が約80%のガラス繊維マットを燃料吸上げ材5として充填した後、溶接封止して燃料容器1とした。   In the center of the fuel cell mounting portion 2, a slit having a width of 0.5 mm and a length of 10 mm is provided as a diffusion hole 3 by punching at a portion of a width of 10 mm and a length of 10 mm. At the corners of the upper and lower lids, SUS304 vent holes 1 having an inner diameter of 1 mm without using a gas-liquid separation membrane were provided. Using these members, a glass fiber mat having a porosity of about 80% was filled therein as a fuel wicking material 5 and then welded and sealed to obtain a fuel container 1.

燃料容器1の外表面は、液状エポキシ系樹脂塗料(フレップ:東レ・チオコール社製)を厚さ0.1mmに塗布し、熱硬化して絶縁層20を形成した。燃料電池装着部2の表面には、実施例2と同様の形状にアノード側インターコネクタ4としてニッケルを無電解メッキした。   The outer surface of the fuel container 1 was coated with a liquid epoxy resin paint (Flep: manufactured by Toray Thiokol Co., Ltd.) to a thickness of 0.1 mm and thermally cured to form an insulating layer 20. The surface of the fuel cell mounting portion 2 was electrolessly plated with nickel as the anode-side interconnector 4 in the same shape as in Example 2.

燃料電池固定板には、実施例2と同様に、22mm幅×79mm長さ×1mm厚さの硬質塩化ビニルを用いて、各燃料電池のカソードと接する面に燃料電池装着部2のスリットと直交する方向に1mm幅×10mm長さのスリットを設け、その四隅には通気孔15を設けた。このスリットを用いて隣接する燃料電池アノード側のインターコネクタ4と接続するための厚さ0.2mmのスリット付きニッケル製のカソード集電板7を取付けた。   The fuel cell fixing plate is made of hard vinyl chloride of 22 mm width × 79 mm length × 1 mm thickness in the same manner as in the second embodiment, and is orthogonal to the slit of the fuel cell mounting portion 2 on the surface in contact with the cathode of each fuel cell. A slit having a width of 1 mm and a length of 10 mm was provided in the direction in which the holes were formed, and ventilation holes 15 were provided at the four corners. Using this slit, a cathode collector plate 7 made of nickel and having a thickness of 0.2 mm and connected to the adjacent interconnector 4 on the anode side of the fuel cell was attached.

本燃料電池は、実施例2と同じくフッ素系ゴムのアノード側ガスケット、MEA、フッ素系ゴムのカソード側ガスケット、カソード側拡散層、燃料電池固定板の順で積層し、該固定板の外周部を厚さ100μmのスリット付きの熱収縮性樹脂チューブによって締付け燃料容器に固定した。燃料容器の上下に装着されたアノード側端子およびカソード側端子をそれぞれ直列に接続して出力端子とした。   As in Example 2, the present fuel cell is formed by stacking a fluorine-based rubber anode-side gasket, MEA, a fluorine-based rubber cathode-side gasket, a cathode-side diffusion layer, and a fuel cell fixing plate in this order. It was fastened to the fuel container with a 100 μm thick slitted heat-shrinkable resin tube. An anode terminal and a cathode terminal mounted on the upper and lower sides of the fuel container were connected in series to form output terminals.

得られた燃料電池発電装置の外形は約22mm幅×79mm長さ×27mm高さで、発電面積が1cmの8直列の燃料電池で構成されている。燃料容器の容積は概略38mlであった。この燃料容器の通気孔を介して10%メタノール水溶液を燃料としてシリンジで充填し、運転温度50℃で運転したところ負荷電流100mAで出力電圧2.6Vが得られた。 The outer shape of the obtained fuel cell power generation system is about 22mm wide × 79 mm long × 27 mm height, power generation area is composed of 8 series fuel cell 1 cm 2. The volume of the fuel container was approximately 38 ml. The fuel container was filled with a 10% aqueous methanol solution as a fuel through a vent hole of the fuel container with a syringe, and the fuel cell was operated at an operating temperature of 50 ° C.

また、燃料容器に約37mlの10%メタノール水溶液を充填して負荷電流100mAで連続的に発電したところ、2.6Vの出力で約4時間安定した電圧が得られた。この時の燃料電池発電装置の出力密度は約5.5W/lであり、燃料リッター当たりの体積エネルギー密度は約22Wh/lであった。この燃料電池は、天地逆転、または、横転した姿勢で運転しても、出力電圧の変化は観測されず、液体燃料の漏れもなく、燃料容器内の圧力上昇も観測されなかった。   Further, when a fuel container was filled with about 37 ml of a 10% aqueous methanol solution and power was continuously generated at a load current of 100 mA, a stable voltage was obtained at an output of 2.6 V for about 4 hours. At this time, the output density of the fuel cell power generator was about 5.5 W / l, and the volume energy density per fuel liter was about 22 Wh / l. Even when this fuel cell was operated in the upside down or overturned position, no change in output voltage was observed, no liquid fuel leaked, and no increase in the pressure inside the fuel container was observed.

このように液体燃料容器の1つの外壁面に、複数の燃料電池を装着しインターコネクタで直列接続し、複数の面に装着された直列電池群を並列にすることによって、セパレータを介して積層することなく2.6V級の小型燃料電池を実現できる。この時アノード側を液体燃料吸上げ材で収納容器内とアノードを接触させ、カソードが拡散層を介して外気に曝されることで、燃料送液ポンプやカソードガス用ファンなどの補機を必要としない電源が可能となった。   As described above, a plurality of fuel cells are mounted on one outer wall surface of the liquid fuel container and connected in series by an interconnector, and the series cells mounted on the plurality of surfaces are arranged in parallel to be stacked via a separator. It is possible to realize a 2.6V-class small fuel cell without the need. At this time, the anode side is brought into contact with the inside of the container and the anode with a liquid fuel wicking material, and the cathode is exposed to the outside air through the diffusion layer, so that auxiliary equipment such as a fuel feed pump and a cathode gas fan are required. And no power supply became possible.

本実施例では、燃料容器を金属材料で構成し、その表面を絶縁処理しているために容積を大きくできると云う特徴を有する。また、燃料容器内を比較的高密度の燃料吸上げ材で充填することにより、気液分離機能を持たない小さな開放孔を設けるのみで液体燃料の漏れを防止でき、運転中どのような姿勢をとっても安定な発電が可能であった。また、該発電装置の生産において、熱収縮性樹脂チューブを用いて各燃料電池を容易に固定することが可能になった。
〔実施例4〕
エポキシ系樹脂を被覆した金属製燃料容器をプラットホームとする角筒型メタノール燃料電池発電装置について記述する。
This embodiment is characterized in that the fuel container is made of a metal material and the surface thereof is insulated so that the volume can be increased. In addition, by filling the inside of the fuel container with a relatively high-density fuel wicking material, it is possible to prevent leakage of liquid fuel only by providing a small opening hole without a gas-liquid separation function, Very stable power generation was possible. Further, in the production of the power generation device, each fuel cell can be easily fixed using the heat-shrinkable resin tube.
[Example 4]
A description will be given of a prismatic methanol fuel cell power generator using a metal fuel container coated with an epoxy resin as a platform.

MEAは電極外形が20mm幅×25mm長さで外形が24mm幅×29mm長さの形状に実施例2と同様にして製作した。また、カソード拡散層は20mm幅×25mm長さの形状で実施例2と同様に作製した。   The MEA was manufactured in the same manner as in Example 2 so that the outer shape of the electrode was 20 mm wide × 25 mm long and the outer shape was 24 mm wide × 29 mm long. Further, the cathode diffusion layer was formed in a shape of 20 mm width × 25 mm length in the same manner as in Example 2.

燃料容器の外形は、一遍が28mm,高さが190mm,壁厚0.3mmの六角形の筒で、各面には24mm幅×29mm長さ×0.5mm深さの燃料電池装着部をプレス加工し、六角形の上下蓋で構成されている。   The outer shape of the fuel container is a hexagonal cylinder with a uniform width of 28 mm, a height of 190 mm, and a wall thickness of 0.3 mm. Each side is pressed with a fuel cell mounting part of 24 mm width × 29 mm length × 0.5 mm depth. It is processed and consists of a hexagonal upper and lower lid.

燃料電池装着部の中心の20mm幅×25mm長さの部分に0.5mm幅×25mm長さのスリットを0.5mm間隔に打抜き加工した。上下の蓋は、その周辺部に各6個の図4に示すものと同様な気液分離機能を備えた内径2mmの通気孔を設けた。六各筒内壁部に厚さ5mmで空隙率約85%のガラス繊維マットを装着後、上下の蓋部を溶接で封止した。また、燃料容器の外表面は液状エポキシ系樹脂塗料(フレップ:東レ・チオコール社製)を厚さ0.1mm塗布後、熱硬化し、実施例2と同様の形状にアノード側インターコネクタとしてニッケルを無電解メッキした。   A slit having a width of 0.5 mm and a length of 25 mm was punched at an interval of 0.5 mm in a central portion of the fuel cell mounting portion having a width of 20 mm and a length of 25 mm. The upper and lower lids were provided with six ventilation holes with an inner diameter of 2 mm each having a gas-liquid separation function similar to that shown in FIG. Six glass fiber mats having a thickness of 5 mm and a porosity of about 85% were attached to the inner wall of each cylinder, and the upper and lower lids were sealed by welding. Further, the outer surface of the fuel container was coated with a liquid epoxy resin paint (Flep: manufactured by Toray Thiokol Co., Ltd.) to a thickness of 0.1 mm, and then heat-cured, and nickel was used as the anode-side interconnector in the same shape as in Example 2. Electroless plating was performed.

燃料電池押さえ板となる燃料電池固定板8は、実施例2と同様に28mm幅×190mm長さ×1mm厚さの硬質塩化ビニルを用いて、各燃料電池のカソードと接する面に、燃料容器切込み部のスリットと直交する方向に0.5mm幅×20mm長さのスリットを0.5mm間隔で設けた。このスリットを用いて隣接する燃料電池アノード側のインターコネクタと接続するため、厚さ0.2mmのスリット付きニッケル製カソード集電板を取付けた。   The fuel cell fixing plate 8 serving as a fuel cell holding plate is made of hard vinyl chloride of 28 mm width × 190 mm length × 1 mm thickness in the same manner as in Example 2, and the fuel container is cut into a surface in contact with the cathode of each fuel cell. Slits having a width of 0.5 mm and a length of 20 mm were provided at 0.5 mm intervals in a direction orthogonal to the slits of the portion. A nickel cathode current collector plate with a slit of 0.2 mm in thickness was attached in order to connect the adjacent interconnector on the anode side of the fuel cell using this slit.

本燃料電池は、実施例2と同様にフッ素系ゴムのアノード側ガスケット、MEA,フッ素系ゴムのカソード側ガスケット、カソード側拡散層、燃料電池固定板の順で積層して、燃料電池固定板の外周部を厚さ100μmのスリット付きの熱収縮製樹脂チューブにより締付けて燃料容器に固定した。得られた燃料電池発電装置を図18に示す。   As in Example 2, the fuel cell of the present invention is formed by stacking a fluorine-based rubber anode gasket, MEA, a fluorine-based rubber cathode gasket, a cathode diffusion layer, and a fuel cell fixing plate in this order. The outer peripheral portion was fixed to the fuel container by tightening with a 100 μm-thick heat-shrinkable resin tube having a slit. FIG. 18 shows the obtained fuel cell power generator.

通気孔15を上下にそれぞれ6個有する六角柱の燃料容器1の外壁には36個の単電池13が装着され、それぞれ直列に接続され、出力端子16を燃料容器1の外部に取出した。得られた燃料電池発電装置の外形は、一遍が約28mmの六角柱で高さ約190mm、発電面積が5cmの36直列の直流発電装置である。燃料容器の内容積は概略300mlであった。 36 unit cells 13 were mounted on the outer wall of a hexagonal prism fuel container 1 having six ventilation holes 15 at the top and bottom, respectively, were connected in series, and the output terminal 16 was taken out of the fuel container 1. The external shape of the obtained fuel cell power generation device is a 36-series DC power generation device having a hexagonal column of approximately 28 mm in height, a height of approximately 190 mm, and a power generation area of 5 cm 2 . The internal volume of the fuel container was approximately 300 ml.

燃料容器に約300mlの10%メタノール水溶液を充填し、負荷電流500mAで連続発電したところ、12.1Vの出力で約4時間安定した電圧が得られた。この時の出力密度は約15W/lであり、燃料リッッター当たりの体積エネルギー密度は60Wh/lであった。この燃料電池は天地逆転、または、横転した姿勢で運転しても出力電圧の変化は観測されず、液体燃料の漏れもなく、燃料容器内の圧力上昇も観測されなかった。   When about 300 ml of a 10% aqueous methanol solution was charged into the fuel container and continuous power generation was performed at a load current of 500 mA, a stable voltage was obtained at an output of 12.1 V for about 4 hours. At this time, the power density was about 15 W / l, and the volume energy density per fuel liter was 60 Wh / l. Even when the fuel cell was operated in the upside down or overturned position, no change in output voltage was observed, no leakage of liquid fuel was observed, and no increase in pressure in the fuel container was observed.

このように液体燃料容器の1つの外壁面に複数の燃料電池を装着しインターコネクタで直列接続し、複数の面に装着された直列電池群を並列にすることによって、セパレータを介し積層することなく12V級の小型燃料電池を実現できる。この時アノード側を液体燃料吸上げ材で収納容器内とアノードを接触させ、カソードが拡散層を介して外気に曝されることで、燃料送液ポンプやカソードガス用ファンなどの補機を必要としない電源が可能となった。   As described above, a plurality of fuel cells are mounted on one outer wall surface of the liquid fuel container and connected in series by an interconnector, and the series cell groups mounted on the plurality of surfaces are arranged in parallel, so that the cells are not stacked via a separator. A 12V-class small fuel cell can be realized. At this time, the anode side is brought into contact with the inside of the container and the anode with a liquid fuel wicking material, and the cathode is exposed to the outside air through the diffusion layer, so that auxiliary equipment such as a fuel feed pump and a cathode gas fan are required. And no power supply became possible.

本実施例では、発電面積を比較的大きくとり出力を上げた点が特徴で、運転中にいかなる姿勢をとっても安定な発電が可能となる。また、発電装置生産に当たり、熱収縮性樹脂チューブを用いて各燃料電池を容易に固定することが可能になった。
〔実施例5〕
角型で高出力型のメタノール水溶液を燃料とする発電装置について説明する。アノード層は炭素担体上に白金/ルテニウムが1/1(原子比)の白金/ルテニウム合金微粒子を50wt%分散担持した触媒粉末と,30wt%パーフロロカーボンスルフォン酸(ナフィオン117)電解質をバインダとし、水/アルコール混合溶媒(水:イソプロパノール:ノルマルプロパノールが重量比で20:40:40の混合溶媒)からなるスラリーを、スクリーン印刷法で厚さ約20μmの多孔質膜に形成した。
This embodiment is characterized in that the power generation area is relatively large and the output is increased, and stable power generation is possible regardless of the posture during operation. Further, in the production of the power generator, it has become possible to easily fix each fuel cell using the heat-shrinkable resin tube.
[Example 5]
A power generation device using a square, high-output methanol aqueous solution as a fuel will be described. The anode layer is composed of a catalyst powder in which platinum / ruthenium alloy particles of platinum / ruthenium 1/1 (atomic ratio) are dispersed and supported by 50 wt% on a carbon support, a 30 wt% perfluorocarbonsulfonic acid (Nafion 117) electrolyte as a binder, and water as a binder. A slurry comprising a mixed solvent of alcohol / alcohol (a mixed solvent of water: isopropanol: normal propanol at a weight ratio of 20:40:40) was formed into a porous film having a thickness of about 20 μm by a screen printing method.

カソード層は、炭素担体上に50wt%の白金微粒子を担持した触媒粉末と、乾燥時重量が25wt%となるようポリテトラフロロエチレン水性分散液をバインダとしたスラリーを、ロール法で厚さ約25μmの多孔質膜に形成した。このカソード層を290℃、1時間空気中で焼成し、水性分散液中の界面活性剤を分解した。上記のアノード多孔質膜およびカソード多孔質膜を、それぞれ16mm幅×56mm長さのサイズに切出しアノードおよびカソードとした。   The cathode layer is formed by mixing a catalyst powder in which 50 wt% of platinum fine particles are supported on a carbon support and a slurry in which a polytetrafluoroethylene aqueous dispersion is used as a binder so as to have a dry weight of 25 wt% by a roll method to a thickness of about 25 μm. Was formed on the porous membrane. The cathode layer was fired at 290 ° C. for 1 hour in air to decompose the surfactant in the aqueous dispersion. The above-mentioned anode porous membrane and cathode porous membrane were cut into a size of 16 mm width × 56 mm length, respectively, to obtain an anode and a cathode.

次に、厚さ50μmのナフィオン117電解質膜を120mm幅×180mm長さに切出し、アノード層表面に5重量%のナフィオン117アルコール水溶液(Fluka Chemika社製)を約0.5ml浸透させた後、接合し約1kgの荷重を加えて80℃で3時間乾燥する。次に、カソード層表面に10重量%のナフィオン117アルコール水溶液(Fluka Chemika社製)を乾燥時カソードの重量換算で25wt%となるように浸透させた後、電解質膜中央部に、先に接合したアノード層と重なるように接合し、約1kgの荷重を加えて80℃,3時間乾燥することによってMEAを作製した。   Next, a Nafion 117 electrolyte membrane having a thickness of 50 μm was cut into a 120 mm width × 180 mm length, and about 0.5 ml of a 5% by weight Nafion 117 alcohol aqueous solution (manufactured by Fluka Chemika) was infiltrated into the surface of the anode layer. Then, it is dried at 80 ° C. for 3 hours under a load of about 1 kg. Next, a 10% by weight aqueous solution of Nafion 117 alcohol (manufactured by Fluka Chemika) was infiltrated into the surface of the cathode layer so as to be 25% by weight in terms of the weight of the dried cathode, and then joined to the center of the electrolyte membrane first. The MEA was fabricated by joining the anode layer so as to overlap with it, applying a load of about 1 kg, and drying at 80 ° C. for 3 hours.

燃料容器は外形が28mm幅×128mm長さ×24mm高さで、接着剤で貼合せ加工した壁厚2mmの硬質塩化ビニル製の容器である。この六面体容器の外壁には、16mm幅×56mm長さ×0.1mm深さの燃料電池装着用の切込み部を実施例2と同様にして18個設けた。   The fuel container is a rigid vinyl chloride container having an outer shape of 28 mm width × 128 mm length × 24 mm height and a wall thickness of 2 mm, which is laminated with an adhesive. Eighteen cuts of 16 mm width × 56 mm length × 0.1 mm depth for mounting the fuel cell were provided on the outer wall of the hexahedral container in the same manner as in Example 2.

燃料電池装着部の中心16mm幅×56mm長さの部分に0.5mm幅×16mm長さのスリットを0.5mm間隔に設けた。燃料容器の最大面積を持つ2面の四隅には、図4(a)と同様な気液分離機能を備えた内径2mmの通気孔を8個設けた。   Slits having a width of 0.5 mm and a length of 16 mm were provided at intervals of 0.5 mm in a portion having a width of 16 mm and a length of 56 mm at the center of the fuel cell mounting portion. At the four corners of the two surfaces having the maximum area of the fuel container, eight vents having an inner diameter of 2 mm and having the same gas-liquid separation function as in FIG. 4A were provided.

燃料電池装着用切込み部には、実施例2と同様な方法で隣接する燃料電池と電気的に直列接続するためのアノード側インターコネクタとして、ニッケルの無電解メッキ膜の厚さ50μmのメタライジング層を形成した。燃料電池固定板も実施例2と同様に燃料容器各外壁面に合わせたサイズで、カソードと接触する部分には、燃料容器に設けたスリットと直交する0.5mm幅×56mm長さのスリットを0.5mm間隔で設けた。   In the notch for mounting the fuel cell, a 50 μm thick metallizing layer of a nickel electroless plated film was used as an anode interconnector for electrically connecting in series with an adjacent fuel cell in the same manner as in Example 2. Was formed. The fuel cell fixing plate is also sized according to each outer wall surface of the fuel container in the same manner as in Example 2, and a slit of 0.5 mm width × 56 mm length orthogonal to the slit provided in the fuel container is provided at a portion in contact with the cathode. They were provided at 0.5 mm intervals.

さらに、燃料電池固定板には、スリット付きのカソード集電板を取り付けた。燃料容器外壁に装着された18個の燃料電池は、アノード側インターコネクタと隣接するカソード集電板によって、直列に接続された出力端子を取出した。   Further, a cathode current collector with a slit was attached to the fuel cell fixing plate. From the 18 fuel cells mounted on the outer wall of the fuel container, output terminals connected in series were taken out by the cathode current collector adjacent to the anode-side interconnector.

こうして得られた各部材をアノード側ガスケット、MEAの順で積層し、燃料電池固定板の各燃料電池外周部および燃料容器外周部を接着剤で接合した。得られた燃料電池発電装置は図19に示すように外形が概ね28mm幅×128mm長さ×28mm高さで、燃料容器1の壁面に発電面積が概ね9cmの18直列の単電池13が装着され、出力端子16と上下面に8個の気液分離機能を備えた通気孔5を有する直流発電装置である。 The members thus obtained were laminated in the order of the anode-side gasket and the MEA, and the outer periphery of each fuel cell and the outer periphery of the fuel container of the fuel cell fixing plate were joined with an adhesive. As shown in FIG. 19, the obtained fuel cell power generation device has an outer shape of approximately 28 mm width × 128 mm length × 28 mm height, and 18 serial cells 13 having a power generation area of approximately 9 cm 2 mounted on the wall surface of the fuel container 1. This is a DC power generator having an output terminal 16 and eight air holes 5 provided on the upper and lower surfaces with a gas-liquid separation function.

燃料容器の内容積は概略59mlであった。燃料容器に約55mlの10%メタノール水溶液を充填して負荷電流1Aで連続的に発電したところ、6.1Vの出力で約45分間安定した電圧が得られた。この燃料電池は、天地逆転、または、横転した姿勢で運転しても出力電圧の変化は観測されず、液体燃料の漏れもなく、燃料容器内の圧力上昇も観測されなかった。   The internal volume of the fuel container was approximately 59 ml. When about 55 ml of a 10% aqueous methanol solution was filled in the fuel container and power was continuously generated at a load current of 1 A, a stable voltage was obtained at an output of 6.1 V for about 45 minutes. In this fuel cell, no change in the output voltage was observed even when the fuel cell was operated in the upside down or overturned posture, there was no leakage of liquid fuel, and no increase in the pressure in the fuel container was observed.

このように液体燃料容器の1つの外壁面に複数の燃料電池を装着し、インターコネクタで直列接続して、複数の面に装着された直列電池群を並列にすることによって、セパレータを介して積層することなく6V級の小型燃料電池を実現できる。この時アノード側を液体燃料吸上げ材で収納容器内とアノードを接触させ、カソードが拡散層を介して外気に曝されることで、燃料送液ポンプやカソードガス用ファンなどの補機を必要としない電源が可能となった。   As described above, a plurality of fuel cells are mounted on one outer wall surface of the liquid fuel container, connected in series by an interconnector, and a series of battery cells mounted on a plurality of surfaces are arranged in parallel to be stacked via a separator. A small fuel cell of 6V class can be realized without performing the above. At this time, the anode side is brought into contact with the inside of the container and the anode with a liquid fuel wicking material, and the cathode is exposed to the outside air through the diffusion layer, so that auxiliary equipment such as a fuel feed pump and a cathode gas fan are required. And no power supply became possible.

本実施例は、カソード触媒層にポリテトラフロロエチレンを分散させて撥水性を持たせ、生成水の拡散を容易にすることによって、拡散層を省略しても性能を低下させることなく、構成部品点数を削減した構造とすることができる。   In this embodiment, by dispersing polytetrafluoroethylene in the cathode catalyst layer to impart water repellency and to facilitate diffusion of generated water, even if the diffusion layer is omitted, the performance of the components can be reduced. A structure with a reduced number of points can be obtained.

本発明の燃料容器の断面構造図である。FIG. 2 is a sectional structural view of the fuel container of the present invention. 本発明の電極/電解質膜接合体の構成を示す模式図である。FIG. 2 is a schematic diagram illustrating a configuration of an electrode / electrolyte membrane assembly of the present invention. 本発明の燃料電池固定板の断面図である。It is sectional drawing of the fuel cell fixing plate of this invention. 本発明の通気孔断面構造と収納容器取付け断面構造の断面図である。It is sectional drawing of the ventilation hole sectional structure of this invention, and a storage container mounting sectional structure. 実施例1の燃料電池の装着部品の構成図である。FIG. 2 is a configuration diagram of a mounting part of the fuel cell according to the first embodiment. 実施例1の燃料電池発電装置の外観図である。FIG. 1 is an external view of a fuel cell power generation device according to a first embodiment. 比較例1のセパレータの外観と断面の構成図である。FIG. 2 is a configuration diagram of an appearance and a cross section of a separator of Comparative Example 1. 比較例の電池の積層構成を示す構成図である。It is a block diagram which shows the lamination structure of the battery of a comparative example. 本発明も高電圧角筒型ユニット電池の外板の構成図である。The present invention is also a configuration diagram of an outer plate of a high-voltage square-tube unit battery. 比較例1の電源外観構造と電源/燃料タンクの結合を示す図である。FIG. 9 is a diagram showing a power supply appearance structure and a power supply / fuel tank combination in Comparative Example 1. 実施例1の電極/電解質膜接合体の構成図である。1 is a configuration diagram of an electrode / electrolyte membrane assembly of Example 1. FIG. 実施例1の燃料電池発電装置の外観図である。FIG. 1 is an external view of a fuel cell power generation device according to a first embodiment. 実施例1の燃料電池発電装置の断面図である。FIG. 2 is a sectional view of the fuel cell power generation device according to the first embodiment. 比較例2の燃料電池発電装置の外観図である。FIG. 9 is an external view of a fuel cell power generation device of Comparative Example 2. 実施例2の燃料収納容器の断面図である。FIG. 9 is a cross-sectional view of a fuel storage container according to a second embodiment. 実施例2の燃料電池の装着部品の構成図である。FIG. 9 is a configuration diagram of a mounting part of the fuel cell according to the second embodiment. 実施例3の燃料容器の断面図である。FIG. 13 is a sectional view of a fuel container according to a third embodiment. 実施例4の燃料電池発電装置の外観図である。FIG. 14 is an external view of a fuel cell power generation device according to a fourth embodiment. 実施例5の燃料電池発電装置の外観図である。FIG. 14 is an external view of a fuel cell power generation device according to a fifth embodiment.

符号の説明Explanation of reference numerals

1…燃料容器、2…燃料電池装着部、3…拡散孔、4…インターコネクタ、5…液体燃料吸上げ材、6…燃料電池端子、7…カソード集電板、8…燃料電池固定板、9…MEA(電解質膜/電極接合体)、10…ガスケット、11…拡散層、12…メタノール水溶液、13…単電池、15…通気孔、16…出力端子、17…締付けバンド、18…燃料保持層、19…通気孔装着孔、20…絶縁層、21…電解質膜、22…アノード層、23…カソード層、50…気液分離膜、51…通気管、52…通気蓋、54…リブ部、81…セパレータ、82…マニフォルド、83…セパレータ縦断面図、84…セパレータ横断面図、85…発電開孔部、86…マニフォルド開孔部、87…マニフォルド埋込み部、88…溝埋込み部、89…リブ部、92…ライナー、93…吸上げ材、94…積層電池、102…燃料タンク、103…燃料電池装着部、105…セルホルダー。   DESCRIPTION OF SYMBOLS 1 ... Fuel container, 2 ... Fuel cell mounting part, 3 ... Diffusion hole, 4 ... Interconnector, 5 ... Liquid fuel suction material, 6 ... Fuel cell terminal, 7 ... Cathode current collector plate, 8 ... Fuel cell fixing plate, 9: MEA (electrolyte membrane / electrode assembly), 10: gasket, 11: diffusion layer, 12: methanol aqueous solution, 13: single cell, 15: vent hole, 16: output terminal, 17: fastening band, 18: fuel retention Layer 19: Vent mounting hole 20: Insulating layer 21: Electrolyte membrane 22: Anode layer 23: Cathode layer 50: Gas-liquid separation membrane 51: Vent pipe 52: Vent lid 54: Rib 81, separator; 82, manifold; 83, separator longitudinal sectional view, 84, separator transverse sectional view, 85, power generation opening, 86, manifold opening, 87, manifold embedding part, 88, groove embedding part, 89 ... Rib portion, 92 Liner, 93 ... wicking material, 94 ... laminated cell, 102 ... fuel tank, 103 ... fuel cell mounting part, 105 ... cell holder.

Claims (13)

燃料を酸化するアノードと酸素を還元するカソードが電解質膜を介して形成され、液体を燃料とする燃料電池発電装置において、
燃料容器の壁面に通気孔を1つ以上備え、かつ、該燃料容器の壁面に電解質膜、アノードおよびカソードを有する単電池を複数装着し、それぞれの単電池を電気的に接続したことを特徴とする燃料電池発電装置。
An anode for oxidizing fuel and a cathode for reducing oxygen are formed through an electrolyte membrane, and in a fuel cell power generator using liquid as fuel,
A fuel cell is provided with one or more ventilation holes on the wall thereof, and a plurality of cells having an electrolyte membrane, an anode and a cathode are mounted on the wall of the fuel container, and the respective cells are electrically connected. Fuel cell power generator.
燃料を酸化するアノードと酸素を還元するカソードが電解質膜を介して形成され、液体を燃料とする燃料電池発電装置において、
燃料容器内壁面に接して液体燃料保持材料が充填され、該燃料容器の壁面に気液分離能を有する通気孔を1つ以上備え、かつ、該燃料容器の外壁面に電解質膜、アノードおよびカソードを有する単電池を複数装着し、それぞれの単電池を電気的に接続したことを特徴とする燃料電池発電装置。
An anode for oxidizing fuel and a cathode for reducing oxygen are formed through an electrolyte membrane, and in a fuel cell power generator using liquid as fuel,
A liquid fuel holding material is filled in contact with the inner wall surface of the fuel container, the wall surface of the fuel container is provided with one or more air holes having gas-liquid separation capability, and the outer wall surface of the fuel container has an electrolyte membrane, an anode, and a cathode. A plurality of unit cells each having the above structure are mounted, and each unit cell is electrically connected.
アノードおよび/またはカソードの電極に接して拡散層が配置されている請求項1または2に記載の燃料電池発電装置。   3. The fuel cell power generator according to claim 1, wherein a diffusion layer is disposed in contact with the anode and / or the cathode electrode. 燃料容器内に充填された液体燃料保持材が燃料容器外壁面に装着された複数の単電池のアノードまたはアノード側拡散層と接触している請求項1,2または3に記載の燃料電池発電装置。   The fuel cell power generator according to claim 1, 2 or 3, wherein the liquid fuel holding material filled in the fuel container is in contact with the anodes or the anode-side diffusion layers of the plurality of cells mounted on the outer wall surface of the fuel container. . 液体燃料容器が電気的絶縁性を有する材料で構成されている請求項1,2または3に記載の燃料電池発電装置。   4. The fuel cell power generator according to claim 1, wherein the liquid fuel container is made of a material having electrical insulation. 燃料を酸化するアノードと酸素を還元するカソードが電解質膜を介して形成され、液体を燃料とする燃料電池発電装置において、
燃料容器の少なくとも1つの対向壁面に気液分離能を有する通気孔を複数有し、燃料容器内壁面に液体燃料保持材料が充填され、該燃料容器の外壁面に電解質膜、拡散層を有するアノードおよびカソードを有する単電池を複数装着し、前記拡散層が液体燃料保持材と接しており、各単電池が電気的に接続されていることを特徴とする燃料電池発電装置。
An anode for oxidizing fuel and a cathode for reducing oxygen are formed through an electrolyte membrane, and in a fuel cell power generator using liquid as fuel,
An anode having a plurality of ventilation holes having gas-liquid separation capability on at least one opposed wall surface of a fuel container, a liquid fuel holding material filled in an inner wall surface of the fuel container, and an electrolyte membrane and a diffusion layer on an outer wall surface of the fuel container And a plurality of unit cells each having a cathode and a cathode, wherein the diffusion layer is in contact with a liquid fuel holding material, and the unit cells are electrically connected.
複数の通気孔の少なくとも1つが、燃料補給孔の機能を有する請求項6に記載の燃料電池発電装置。   The fuel cell power generator according to claim 6, wherein at least one of the plurality of ventilation holes has a function of a fuel supply hole. 燃料を酸化するアノードと酸素を還元するカソードが電解質膜を介して形成され、液体を燃料とする燃料電池を装着する燃料容器の少なくとも外壁面が電気絶縁処理されている請求項6に記載の燃料電池発電装置。 7. The fuel according to claim 6, wherein an anode for oxidizing the fuel and a cathode for reducing the oxygen are formed via an electrolyte membrane, and at least an outer wall surface of a fuel container in which a fuel cell using a liquid as a fuel is mounted is electrically insulated. Battery generator. 燃料がメタノール水溶液である請求項1〜6のいずれかに記載の燃料電池発電装置。   The fuel cell power generator according to any one of claims 1 to 6, wherein the fuel is an aqueous methanol solution. 燃料を酸化するアノードと酸素を還元するカソードが電解質膜を介して形成され、液体を燃料とする燃料電池発電装置において、
燃料容器の少なくとも1つの対向する壁面にそれぞれ気液分離能を有する通気孔を複数有し、燃料容器内壁面に液体燃料保持材料が充填され、該燃料容器の電気的に絶縁化された外壁面に電解質膜、アノードおよび拡散層を有するカソードを有する単電池を複数装着され、拡散層が液体燃料保持材と接して構成された単電池の複数が電気的に直列、並列または直列と並列の組合せで接合されていることを特徴とする燃料電池発電装置。
An anode for oxidizing fuel and a cathode for reducing oxygen are formed through an electrolyte membrane, and in a fuel cell power generator using liquid as fuel,
At least one opposed wall surface of the fuel container has a plurality of ventilation holes each having gas-liquid separation capability, and the inner wall surface of the fuel container is filled with a liquid fuel holding material, and the electrically insulated outer wall surface of the fuel container is provided. A plurality of cells each having an electrolyte membrane, an anode, and a cathode having a diffusion layer, and a plurality of cells constituted by a diffusion layer in contact with a liquid fuel holding material are electrically connected in series, in parallel, or in a combination of series and parallel A fuel cell power generator characterized by being joined by:
メタノールを酸化するアノードと酸素を還元するカソードが電解質膜を介して形成され、液体を燃料とする燃料電池の燃料容器の少なくとも1つの対向壁面に、それぞれ気液分離能を有する通気孔を複数有し、燃料容器内壁面に液体燃料保持材が充填され、該燃料容器の電気的に絶縁化された外壁面に電解質膜,アノードおよび拡散層を有するカソードから構成される単電池を複数装着し、拡散層が液体燃料保持材と接し、それぞれの単電池が電気的に直列,並列または直列と並列の組合せで接続されている燃料電池発電装置を用いることを特徴とする充電器。   An anode for oxidizing methanol and a cathode for reducing oxygen are formed via an electrolyte membrane, and at least one opposed wall surface of a fuel container of a fuel cell using a liquid as a fuel has a plurality of vent holes each having a gas-liquid separation ability. A plurality of cells each composed of an electrolyte membrane, an anode, and a cathode having a diffusion layer are mounted on the electrically insulated outer wall surface of the fuel container, wherein the inner wall surface of the fuel container is filled with a liquid fuel holding material, A battery charger using a fuel cell power generator in which a diffusion layer is in contact with a liquid fuel holding material and each cell is electrically connected in series, parallel, or a combination of series and parallel. メタノールを酸化するアノードと酸素を還元するカソードが電解質膜を介して形成され、液体を燃料とする燃料電池の燃料容器の少なくとも1つの対向壁面に、気液分離能を有する通気孔を複数有し、燃料容器内壁面に液体燃料保持材が充填され、該燃料容器の電気的に絶縁化された外壁面に電解質膜、アノードおよび拡散層を有するカソードから構成された単電池を複数装着し、該拡散層が液体燃料保持材と接し、それぞれの単電池が電気的に直列,並列または直列と並列の組合せで接続されている燃料電池発電装置を用いることを特徴とする携帯用電源。   An anode for oxidizing methanol and a cathode for reducing oxygen are formed via an electrolyte membrane, and at least one opposed wall surface of a fuel container of a fuel cell using liquid as a fuel has a plurality of vent holes having gas-liquid separation capability. A fuel cell inner wall surface is filled with a liquid fuel holding material, and a plurality of unit cells each comprising an electrolyte membrane, an anode and a cathode having a diffusion layer are mounted on an electrically insulated outer wall surface of the fuel container, A portable power source using a fuel cell power generator in which a diffusion layer is in contact with a liquid fuel holding material and each cell is electrically connected in series, in parallel, or in a combination of series and parallel. メタノールを酸化するアノードと酸素を還元するカソードが電解質膜を介して形成され、液体を燃料とする燃料電池の燃料容器の少なくとも1つの対向壁面に、気液分離能を有する通気孔を複数有し、燃料容器内壁面に液体燃料保持材が充填され、該燃料容器の電気的に絶縁化された外壁面に電解質膜、アノードおよび拡散層を有するカソードから構成された単電池を複数装着し、該拡散層が液体燃料保持材と接し、それぞれの単電池が電気的に直列,並列または直列と並列の組合せで接続されている燃料電池発電装置により駆動することを特徴とする携帯用電子機器。
An anode for oxidizing methanol and a cathode for reducing oxygen are formed via an electrolyte membrane, and at least one opposed wall surface of a fuel container of a fuel cell using liquid as a fuel has a plurality of vent holes having gas-liquid separation capability. The inner wall surface of the fuel container is filled with a liquid fuel holding material, and a plurality of unit cells each comprising an electrolyte membrane, an anode and a cathode having a diffusion layer are mounted on the electrically insulated outer wall surface of the fuel container, A portable electronic device, wherein a diffusion layer is in contact with a liquid fuel holding material, and each unit cell is driven by a fuel cell power generation device that is electrically connected in series, parallel, or a combination of series and parallel.
JP2004166723A 2004-06-04 2004-06-04 Fuel cell power generator and device using the same Expired - Fee Related JP3902609B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004166723A JP3902609B2 (en) 2004-06-04 2004-06-04 Fuel cell power generator and device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004166723A JP3902609B2 (en) 2004-06-04 2004-06-04 Fuel cell power generator and device using the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001291044A Division JP4094265B2 (en) 2001-09-25 2001-09-25 Fuel cell power generator and device using the same

Publications (2)

Publication Number Publication Date
JP2004281417A true JP2004281417A (en) 2004-10-07
JP3902609B2 JP3902609B2 (en) 2007-04-11

Family

ID=33297117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004166723A Expired - Fee Related JP3902609B2 (en) 2004-06-04 2004-06-04 Fuel cell power generator and device using the same

Country Status (1)

Country Link
JP (1) JP3902609B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006351501A (en) * 2005-05-20 2006-12-28 Nitto Denko Corp Detachable fuel cell and power supply system
JP2007005294A (en) * 2005-06-24 2007-01-11 Samsung Sdi Co Ltd Gas-liquid separator
JP2007188810A (en) * 2006-01-16 2007-07-26 Sony Corp Fuel cell and electronic equipment
WO2009017150A1 (en) * 2007-08-02 2009-02-05 Sony Corporation Fuel cell stack system, channel structure, fuel cell, electrode, and electronic device
WO2009066589A1 (en) * 2007-11-20 2009-05-28 Kabushiki Kaisha Toshiba Fuel cell
JP2009524902A (en) * 2006-01-25 2009-07-02 オングストローム パワー インク. Method of operating a fuel cell with passive reactant supply

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006351501A (en) * 2005-05-20 2006-12-28 Nitto Denko Corp Detachable fuel cell and power supply system
JP2007005294A (en) * 2005-06-24 2007-01-11 Samsung Sdi Co Ltd Gas-liquid separator
JP2007188810A (en) * 2006-01-16 2007-07-26 Sony Corp Fuel cell and electronic equipment
JP2009524902A (en) * 2006-01-25 2009-07-02 オングストローム パワー インク. Method of operating a fuel cell with passive reactant supply
WO2009017150A1 (en) * 2007-08-02 2009-02-05 Sony Corporation Fuel cell stack system, channel structure, fuel cell, electrode, and electronic device
US8871403B2 (en) 2007-08-02 2014-10-28 Sony Corporation Fuel cell stack system, channel structure, fuel cell, electrode and electronic device
WO2009066589A1 (en) * 2007-11-20 2009-05-28 Kabushiki Kaisha Toshiba Fuel cell

Also Published As

Publication number Publication date
JP3902609B2 (en) 2007-04-11

Similar Documents

Publication Publication Date Title
JP4094265B2 (en) Fuel cell power generator and device using the same
US6869713B2 (en) Fuel cell, fuel cell generator, and equipment using the same
US6743541B2 (en) Monopolar cell pack of proton exchange membrane fuel cell and direct methanol fuel cell
JP5062392B2 (en) Polymer electrolyte fuel cell
WO2003069709A1 (en) Liquid fuel cell
JP2003323902A (en) Fuel cell power generator and portable device using the same
JP4810082B2 (en) Fuel cell
JP2006024441A (en) Fuel cell
JP3902609B2 (en) Fuel cell power generator and device using the same
JP2003331900A (en) Fuel cell
JP2004265872A (en) Fuel cell, fuel cell power generator and equipment using the same
JP4339748B2 (en) Fuel cell power generator and device using the same
JP2004259705A (en) Fuel cell, fuel cell power generator and equipment using the same
US20050158605A1 (en) Fuel cell and electronic device using it
KR20220170011A (en) Ultra-thin tube type PEM fuel cell
JP2006244852A (en) Fuel cell and electronic device equipped with the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061012

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061228

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100112

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees