[go: up one dir, main page]

JP2004282403A - Antenna and data reader - Google Patents

Antenna and data reader Download PDF

Info

Publication number
JP2004282403A
JP2004282403A JP2003071020A JP2003071020A JP2004282403A JP 2004282403 A JP2004282403 A JP 2004282403A JP 2003071020 A JP2003071020 A JP 2003071020A JP 2003071020 A JP2003071020 A JP 2003071020A JP 2004282403 A JP2004282403 A JP 2004282403A
Authority
JP
Japan
Prior art keywords
reactance
capacitor
antenna
circuit
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003071020A
Other languages
Japanese (ja)
Other versions
JP4010263B2 (en
Inventor
Tatsuyuki Shikura
達之 四蔵
Masuo Murakami
益雄 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2003071020A priority Critical patent/JP4010263B2/en
Publication of JP2004282403A publication Critical patent/JP2004282403A/en
Application granted granted Critical
Publication of JP4010263B2 publication Critical patent/JP4010263B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Near-Field Transmission Systems (AREA)

Abstract

【課題】通信距離を延ばすことが可能なデータ読取装置、及びアンテナを提供することである。
【解決手段】本発明のデータ読取装置に備えられたアンテナは、1次コイル側のリアクタンス回路のリアクタンスCを、2次コイル側のコンデンサの値Cに基づいて設定する構成であり、通信距離を延ばすことが可能である。
【選択図】 図1
An object of the present invention is to provide a data reading device and an antenna capable of extending a communication distance.
A data reading antennas equipped in the apparatus of the present invention, the reactance C a reactance circuit of the primary coil side, a construction set based on the value C b of the secondary coil side capacitor, a communication It is possible to increase the distance.
[Selection diagram] Fig. 1

Description

【0001】
【発明の属する技術分野】
本発明は、無線信号を送受信することによって、非接触式カードなどの被読取媒体上のデータを読み取るデータ読取装置に関する。
【0002】
【従来技術】
従来、無線信号により非接触で通信可能な非接触式ICカードがある。情報読取装置がこのICカードから情報を読み出す場合の動作を図15を参照しつつ説明する。情報読取装置の信号処理回路50内のキャリア信号発生器で所定のキャリア信号を発生し、増幅器51により所定の電圧レベルまで増幅した後、ループアンテナ52から磁界として放出する。カード60がループアンテナ52と十分に電磁誘導を引き起こす範囲内にあると、電力がカード60に供給される。このとき、カード60のスイッチ61を読み出し情報に応じてオン/オフすると、キャリアレベルが変化し、この変動を信号処理回路50側で検波回路53により検波すればデータを読み出すことができる。
【0003】
【発明が解決しようとする課題】
図15に示すような非接触IDカードシステムでは、情報読取装置とカードとの通信距離を延ばすことが望まれている。通信距離を延ばす1つの方法としては、ループアンテナが発生する磁界強度を大きくすることが考えられるが、この方法では、例えば増幅器の増幅度を大きくする必要があり、装置の大型化やコストアップにつながるという問題がある。
【0004】
そこで、通信距離を延ばす他の方法として、下記特許文献1に示すような方法が考えられている。この方法では、図16に示すように、1次ループと2次ループとでトランスを形成し、2次ループにはコンデンサを接続して、このコンデンサの値を可変に制御してアンテナの入力インピーダンスを調整し通信距離を延ばしている。なお、1次ループ側には、固定値として数千pF程度の値を有する直流カット用のコンデンサが必要に応じて設けられている。
【0005】
なお、図17に示すように、アンテナから信号処理回路(RF回路)70を見たとき、RF回路70は開放電圧V(アンテナを接続していないときの信号処理回路の出力電圧)と内部インピーダンス(抵抗分R及び内部リアクタンス分X)で表現することができる(例えば下記文献2を参照)。なお、図ではリアクタンスXとして誘導性であるインダクタLを図示しているが、容量性の場合もあり得る。以下では、リアクタンスXが誘導性の場合を説明する。
【0006】
アンテナは1次ループ71と2次ループ72とからなり、1次ループ71は自己インダクタンスLと抵抗Rを、また、2次ループ72は自己インダクタンスLと抵抗Rを、それぞれ有する。Mは1次ループ71と2次ループ72の相互インダクタンスである。ここで、2次ループ72に直列に接続されているコンデンサCとアンテナの放射磁界強度との関係を図18に示す。
【0007】
図18において、横軸のキャパシタンス比Kは、アンテナの共振周波数がキャリアの周波数と一致するときのコンデンサCの値Cとの比(K=C/C)であり、縦軸の磁界強度比は、コンデンサC=Cのときの磁界強度Hとの比(=H/H)である。
【0008】
図から明らかなように、比率Kが約1.2となるようにコンデンサCを調整すると、アンテナの共振周波数をキャリアの周波数と一致させた場合(すなわち、K=1の場合)に比べ、約1.4倍だけ磁界強度比を大きくすることができる。
【0009】
しかし、この方法では、無線信号を送受信することによって、被読取媒体上のデータを読み取るデータ読取装置において、回路係数などが必ずしも最適に調整されているとは限らないという問題がある。
【0010】
本発明の課題は、通信距離を延ばすことが可能なデータ読取装置、及びアンテナを提供することである。
【0011】
【特許文献1】
特開2001−185939「アンテナコイル及び電磁誘導型非接触データキャリアシステム」
【非特許文献1】
「回路の応答」コロナ社、電子通信学会編
【0012】
【課題を解決するための手段】
本発明は、上記課題を解決するため、下記のような構成を採用した。
すなわち、本発明の一態様によれば、本発明のアンテナは、無線信号を送受信することによって、被読取媒体上のデータを読み取るデータ読取装置に備えられたアンテナにおいて、信号処理回路から電圧を供給されると共に、コンデンサ及びインダクタの少なくとも1つを含むリアクタンス回路が接続された1次コイルと、該1次コイルと相互誘導により結合し、コンデンサが接続された2次コイルとを備え、前記2次コイル側のコンデンサの値に基づいて、前記1次コイル側のリアクタンス回路のリアクタンスを設定したことを特徴とするアンテナである。
【0013】
ここで、前記1次コイル側のリアクタンスのリアクタンスを、前記2次コイル側のコンデンサの値に基づいて設定するので、従来例のように、前記2次コイル側のコンデンサの値に関係なく、1次コイル側に固定値として数千pF程度の値を有するコンデンサを直流カット用に設ける場合と比較して、通信距離を延ばすことが可能なアンテナを提供することができる。
【0014】
また、本発明の別態様によれば、本発明のデータ読取装置は、無線信号を送受信することによって、被読取媒体上のデータを読み取るデータ読取装置において、コンデンサ及びインダクタの少なくとも1つを含むリアクタンス回路が設けられた1次コイルと、該1次コイルと相互誘導により結合し、コンデンサが設けられた2次コイルとを有するアンテナと、前記1次コイルに電圧を供給する信号処理回路とを備え、前記2次コイル側のコンデンサの値に基づいて、前記1次コイル側のリアクタンス回路のリアクタンスを設定したことを特徴とするデータ読取装置である。
【0015】
ここで、前記1次コイル側のリアクタンス回路のリアクタンスを、前記2次コイル側のコンデンサの値に基づいて設定するので、従来例のように、前記2次コイル側のコンデンサの値に関係なく、1次コイル側に固定値として数千pF程度の値を有するコンデンサを直流カット用に設ける場合と比較して、通信距離を延ばすことが可能なデータ読取装置を提供することができる。
【0016】
【発明の実施形態】
以下、本発明の実施の形態を図面を参照しながら説明する。
図1は、本発明の一実施形態のアンテナを示す図である。このアンテナは、無線信号を送受信することによって、被読取媒体上のデータを読み取るデータ読取装置に備えられたアンテナである。
【0017】
図1において、アンテナは、1次ループ(1次コイル)と2次ループ(2次コイル)とからなり、1次ループには、リアクタンス成分(図ではコンデンサC)が直列に接続されている。また、2次ループには、共振コンデンサCが直列に接続されている。なお、図1では、1次ループには、コンデンサCを直列に接続しているが、コンデンサの替わりにインダクタを直列に接続したり、コンデンサとインダクタの組み合わせを接続したりしてもよい。
【0018】
以下では、1次ループに接続するリアクタンスの値(コンデンサ、またはインダクタ、あるいは、これらコンデンサとインダクタとの組み合わせ)をどのようにして求めるかにつき説明する。
【0019】
図2は、図1のアンテナとそのアンテナの1次ループ側に接続された送信回路(RF回路、または電源)とを示す等価回路である。なお、図2においては、1次ループ側に以下の手順により値を設定され挿入されることになる上記リアクタンス(例えば図1ではコンデンサCに対応)は含まれていない。
【0020】
また、図2において、誘導性のリアクタンスを有するRF回路10は交流電圧Vが印加される電源11、電源抵抗12、電源インダクタンス13により構成される。Rは電源抵抗12の抵抗値、Lは電源インダクタンス13のインダクタンス値である。なお、RF回路10のリアクタンスが容量性の場合、電源インダクタンス13は(電源)キャパシタンスで置き換えられる。
【0021】
図2においてRF回路10は1次ループ(主要部)20に接続されている。1次ループ20は、図1の1次コイルに対応しており、抵抗21と自己インダクタンス22とを有する。Rは抵抗21の抵抗値、Lは自己インダクタンス22のインダクタンス値である。
【0022】
2次ループ(共振器)30は、図1の2次コイルに対応すると共に、1次ループ20と相互誘導により結合し、抵抗31と自己インダクタンス32と共振キャパシタンス(共振コンデンサ)33とを有する。Rは抵抗31の抵抗値、Lは自己インダクタンス32のインダクタンス値、Cは共振キャパシタンス33のキャパシタンス値である。また、Vは、共振コンデンサ33の両端に生じる電圧、Mは1次ループと2次ループとの相互インダクタンスである。
【0023】
カードの受信電圧はアンテナが作る磁束に比例し、その磁束はアンテナを流れる電流に比例する。アンテナを流れる電流には、1次ループを流れる電流Iと2次ループを流れる電流Iとがあり、それらの間には、I>>Iの関係が成り立つので、与えられたアンテナ定数(R,R,L,L,M)の下で、通信距離をより長くするには、上記Iが最大となるように、等価回路における上記アンテナ定数以外の回路定数を調整することになる。なお、回路定数Rをどこまでも小さく調整することはできない。その理由は、Rを小さくすればIの値を大きくすることができるが、回路が安定動作するためには、Rは所定値以上でなければならず、この所定値がRの下限値となるからである。一方、Iが最大のとき、Vも最大となるので、以下ではVが最大となる場合について、2次ループ側のコンデンサの値に基づいて、1次ループ側のリアクタンスを設定する場合を考える。
【0024】
すなわち、まず、RF回路のリアクタンスが誘導性の場合には、Vを最大とするLとCとの組を求め、そのようにして求めたLとCとの組に対し、Lとアンテナ側から見たRF回路のリアクタンスとの差をなくすように値を設定したリアクタンス(インダクタ、コンデンサ、またはそれらの組み合わせ)を1次ループに直列に接続する。
【0025】
次に、RF回路のリアクタンスが容量性の場合には、Vを最大とするCとCとの組を求め、そのようにして求めたCとCとの組に対し、Cとアンテナ側から見たRF回路のリアクタンスとの差をなくすように値を設定したリアクタンス(インダクタ、コンデンサ、またはそれらの組み合わせ)を1次ループに直列に接続する。
【0026】
以下では、図2を参照しつつ、上記した1次ループ側のリアクタンスを設定するプロセスをより具体的に説明する。
図2の回路において、以下の式が成り立つ。

Figure 2004282403
ここで、(2)(3)式より、
=(C/M)(jωL+(1/jωC)+R)V ・・・(4)
(4)式を(1)式に代入すると、次式となる。
【0027】
/V=1/α ・・・(5)
ただし、α=(C/M)(R+R+jωL+jωL)(jωL+1/jωC+R)+ωCM ・・・(6)
ここで、上記比V/Vを最大、すなわち、αを最小とするCの値を下記(7)式より求める。
0=∂(|α|)/∂C=2A・(dA/dC)+2B・(dB/dC)・・・(7)
ただし、Aはαの実数部、Bはαの虚数部で、|α|=A+B
(6)式を(7)式に代入して計算することにより、下記(8)式が得られ、この式により与えられたLに対し上記比V/Vを最大とするCの値が求められる。
【0028】
Figure 2004282403
ここで、計算により、∂(|α|)/∂C>0となるので、(8)式を満たすCに対し、|α|が極小となり、(5)式の比V/Vが最大となることが分かる。
【0029】
送信回路(RF回路)のリアクタンスが容量性の場合は、そのキャパシタンスをCとすると、(1)式において、Lを(−1/ω)で置き換えた次式により計算を行い、下記(9)式により与えられたCに対し上記比V/Vを最大とするCの値を求める。
【0030】
Figure 2004282403
このようにして、(8)または(9)式により、与えられたLに対してVを最大とするC、または、与えられたCに対してVを最大とするCを求めている。
【0031】
ここで、例えばVを最大にするLとCの組を決めるには、(8)式を(5)(6)式に代入して比V/VをCを用いずにLで表した式を求め、その式をLで偏微分して、微係数=0となるLの値を求める。そして、このようにして求めたLに対応するCを(8)式により算出する。
【0032】
その後は、そのようにして求めたLとCとの組に対し、Lとアンテナ側から見たリアクタンスとの差をなくすように値を設定したリアクタンス(インダクタ、コンデンサ、またはそれらの組み合わせ)を1次ループに直列に接続する。
【0033】
なお、Vを最大にするCとCの組についても同様の方法で決めることができるので、説明を省略する。
以下では、アンテナとそのアンテナの1次ループ側に接続されたRF回路とに具体的な数値を設定し、上記した1次ループに接続するリアクタンスの値を回路計算ツールにより求めた。
【0034】
図3は、この計算において使用したアンテナの形状を示す図であり、図4はアンテナやRF回路に設定した抵抗、インダクタンス等の値を示す図である。
まず、アンテナからRF回路側を見たRFインピーダンス+アンテナの接続リードのインピーダンスとを求める。図5(a)は回路計算ツールによる計算回路である。RF回路の実測した抵抗及びリアクタンスの値は図4よりそれぞれ26Ω、0.282μH(j24Ωに相当)であり、アンテナ接続位置に電圧源を接続して、ノード▲7▼の電圧とノード▲1▼−▲4▼を流れる電流の比からインピーダンスの周波数特性を計算する。図5(b)はその周波数特性の計算結果を示す図である。図5(b)に示すグラフは、RF回路の交流電源の周波数を横軸にとり、インピーダンスの実数部(抵抗分)とインピーダンスの虚数部(リアクタンス分)とを縦軸にとっている。そして、その実数部と虚数部とに対応して2本の直線がグラフ上に描かれている。この計算例では、交流電源の周波数の値を13.56MHzに設定しているので、この13.56MHzのところでの抵抗分と、リアクタンス分とを読み取ることにより、図6に示すように、アンテナ側から見たRF側定数が求められる。
【0035】
続いて、(8)式によりLとCとの関係を求めて図示すると、図7(a)に示すグラフが得られる。また、このLとCの組み合わせを(5)(6)式に代入してLとV/Vの関係を求めて図示すると、図7(b)に示すグラフが得られ、L=1.2μH(C=354pF)に対し電圧比V/Vが最大となることがわかる。
【0036】
同様に、(9)式によりCとCとの関係を求めて図示すると、図8(a)に示すグラフが得られる。また、このCとCの組み合わせを(5)(6)式に代入してCとV/Vの関係を求めて図示すると、図8(b)に示すグラフが得られ、C=80pF(C=293pF)に対し電圧比V/Vが最大となることがわかる。
【0037】
そして、図7(b)と図8(b)との電圧比V/Vのピーク値を比較すればわかるように、この計算例では、RF回路のリアクタンスが容量性であった方が、RF回路のリアクタンスが誘導性である場合より、発生磁束を高くすることができる。
【0038】
この発生磁束がより高くなる場合、すなわち、RF回路のリアクタンスC=80pF、共振器のキャパシタンスC=293pFの場合につき以下で、1次ループ側のリアクタンスの設定方法を説明する。
【0039】
図6に示すように、接続リードを含めたアンテナから見たRF回路のリアクタンスはX=+35.55であるので、RF回路のリアクタンスCとアンテナから見たRF回路のリアクタンスXとの差により1次ループに直列に接続するキャパシタンスCを次式により求めることができる。
【0040】
−1/ωC=1/ωC
上式より、C=1/[(1/ωC+X)ω]=1/[(1/2π×13.56×10×80×10−12)+35.55]×(2π×13.56×10)≒64pF
以上の計算から、磁束を最大とするには、図9に示すように、主要部のキャパシタンスの値として64pF,共振器のキャパシタンスの値として293pFを設定すればよい。
【0041】
図10は、1次コイル側のリアクタンスがコンデンサである場合に、その1次コイル側に直列に接続したコンデンサの容量Cと磁界強度比(上記電圧比V/Vに比例)との関係を示す図である。
【0042】
図10において、各曲線は、所定のKの値に対応している。ここで、K=C/C(Cは2次コイルの共振コンデンサの容量、Cはアンテナの共振周波数がキャリア周波数と一致するときのCの値)である。グラフの尺度が異なるので一概にはいえないが、各Kに対応する曲線のピークを結べば図7や図8に対応する図が得られる。
【0043】
図11は、1次ループと2次ループとのキャパシタンス比C/Cと磁界強度との関係を示す図であり、特に、回路係数としてのコンデンサの容量が取る範囲が従来例と本実施形態とでは異なることを説明する図である。なお、グラフ上の点に対応するCとCの値は、図10の各Kにおいて磁界が最大となるCとCである。従来の場合、1次ループ側に設けられるコンデンサの容量Cは、直流カット用のため、一般に数千pF以上である(ここでは1000pFとした)。これに対し、本実施形態では、上記計算例からも明らかなように、Cの代表的な値は数十pFである。これにより、本実施形態と従来例とでは、1次ループ側に設けられるコンデンサの容量Cに1桁以上の開きが生じることがわかる。
【0044】
図12は、本実施形態における回路係数としてのコンデンサの容量が取る範囲を示す図である。
図13は、磁界強度比と上記Kとの関係を示す図であり、磁界強度比のピーク値を本実施形態と従来例とで比較している。本実施形態では、従来例と比較し、2次ループ側のキャパシタンスに応じて、1次ループ側のキャパシタンスを設定する構成としていることから、磁界強度比として従来の約1.4倍の値が得られる。
【0045】
なお、図1では、C(もしくは対応するリアクタンス成分)、Cをアンテナ面と同じ平面に接続しているが、図14に示すように、アンテナと、RF回路が含まれる信号処理回路基板をケーブル等で接続し、この基板上にC、またはCの少なくとも1つを設置するようにしてもよい(図では、CとCの双方を設置している)。アンテナを機器、例えば自動販売機等に取り付ける場合、アンテナ周囲には、金属や取り付けパネル等の構成品がある。そして、それら構成品によってコンデンサの調整スペースがなくなったり、それら構成品の影響でアンテナ特性が変化したりするという問題がある。そこで、上記したC、Cを信号処理回路基板上に設置することにより、コンデンサC、Cの回路係数に対する上記構成品による悪影響を防ぐことができる。
【0046】
【発明の効果】
以上、説明したように、本発明によれば、本発明のデータ読取装置に備えられたアンテナでは、1次コイル側のリアクタンス回路のリアクタンスを、2次コイル側のコンデンサの値に基づいて設定するので、通信距離を延ばすことが可能である。
【図面の簡単な説明】
【図1】本発明の一実施形態のアンテナを示す図である。
【図2】図1のアンテナとそのアンテナの1次ループ側に接続されたRF回路とを示す等価回路から1次ループ側に挿入されるリアクタンスを除いた図である。
【図3】計算例において使用したアンテナの形状を示す図である。
【図4】計算例において、アンテナやRF回路に設定した抵抗、インダクタンス等の数値を示す図である。
【図5】アンテナから見たRF回路側の定数の計算プロセスを説明する図であり、(a)は回路計算ツールによる計算回路を、(b)はその周波数特性の計算結果を、それぞれ示す図である。
【図6】アンテナ側から見たRF定数を示す図である。
【図7】RF回路(電源)のリアクタンスが誘導性の場合において、(a)は電源インダクタンスLと共振キャパシタンスCとの関係を示す図であり、(b)は電源インダクタンスLと入出力電圧比との関係を示す図である。
【図8】RF回路(電源)のリアクタンスが容量性の場合において、(a)は電源キャパシタンスCと共振キャパシタンスCとの関係を示す図であり、(b)は電源キャパシタンスCと入出力電圧比との関係を示す図である。
【図9】計算例の計算結果を示す図である。
【図10】1次コイル側のコンデンサの容量Cと磁界強度比との関係を示す図である。
【図11】1次ループと2次ループとのキャパシタンス比C/Cと磁界強度との関係を示す図であり、特に、回路係数としてのコンデンサの容量が取る範囲が従来例と本実施形態とでは異なることを説明する図である。
【図12】本実施形態における回路係数としてのコンデンサの容量が取る範囲を示す図である。
【図13】磁界強度比と上記Kとの関係を示す図であり、磁界強度比のピーク値を本実施形態と従来例とで比較している図である。
【図14】本実施形態のアンテナとそのアンテナの1次ループ側に接続されたRF回路とを含む情報読取装置の構成例である。
【図15】従来例の非接触式ICカードシステムである。
【図16】従来例のアンテナを示す図である。
【図17】従来例のアンテナとそのアンテナの1次ループ側に接続されたRF回路とを示す等価回路である。
【図18】2次ループ側のコンデンサCとアンテナの放射磁界強度との関係を示す図である。
【符号の説明】
10 RF回路
11 電源
12 抵抗
13 インダクタンス
20 1次ループ
21 抵抗
22 インダクタンス
30 2次ループ
31 抵抗
32 インダクタンス
33 共振キャパシタンス
50 信号処理回路
51 増幅器
52 ループアンテナ
53 検波回路
60 カード
61 スイッチ
70 信号処理回路
71 1次ループ
72 2次ループ[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a data reading device that reads data on a medium to be read such as a non-contact card by transmitting and receiving a wireless signal.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, there is a non-contact type IC card which can perform non-contact communication by wireless signals. The operation when the information reading device reads information from the IC card will be described with reference to FIG. A predetermined carrier signal is generated by a carrier signal generator in a signal processing circuit 50 of the information reading apparatus, amplified to a predetermined voltage level by an amplifier 51, and then emitted from a loop antenna 52 as a magnetic field. Power is supplied to the card 60 when the card 60 is sufficiently within the range to cause electromagnetic induction with the loop antenna 52. At this time, when the switch 61 of the card 60 is turned on / off according to the read information, the carrier level changes. If this change is detected by the detection circuit 53 on the signal processing circuit 50 side, the data can be read.
[0003]
[Problems to be solved by the invention]
In the non-contact ID card system as shown in FIG. 15, it is desired to extend the communication distance between the information reading device and the card. One way to extend the communication distance is to increase the magnetic field strength generated by the loop antenna. However, this method requires, for example, an increase in the amplification of the amplifier, which results in an increase in the size and cost of the device. There is a problem of being connected.
[0004]
Then, as another method of extending the communication distance, a method as shown in Patent Document 1 below has been considered. In this method, as shown in FIG. 16, a transformer is formed by a primary loop and a secondary loop, a capacitor is connected to the secondary loop, and the value of the capacitor is variably controlled to control the input impedance of the antenna. Is adjusted to extend the communication distance. On the primary loop side, a DC cut capacitor having a fixed value of about several thousands pF is provided as necessary.
[0005]
As shown in FIG. 17, when the signal processing circuit (RF circuit) 70 is viewed from the antenna, the RF circuit 70 has an open circuit voltage V 0 (the output voltage of the signal processing circuit when the antenna is not connected) and the internal voltage. it can be expressed by impedance (resistance component R g and internal reactance X g) (e.g., see the following reference 2). Although the figure illustrates the inductor L g is an inductive as reactance X g, it may also be a capacitive. In the following, the reactance X g will be described the case of inductive.
[0006]
The antenna consists of the primary loop 71 and the secondary loop 72., the primary loop 71 of self-inductance L 1 and a resistance R 1, The secondary loop 72 is a self-inductance L 2 of the resistor R 2, a, respectively. M is the mutual inductance of the primary loop 71 and the secondary loop 72. Here, a secondary loop 72 the relationship between the radiation field strength of the capacitor C 2 and the antenna connected in series in Figure 18.
[0007]
In FIG. 18, the capacitance ratio K 2 on the horizontal axis is the ratio (K 2 = C 2 / C 0 ) to the value C 0 of the capacitor C 2 when the resonance frequency of the antenna matches the frequency of the carrier. The magnetic field strength ratio of the axis is the ratio (= H / H 0 ) to the magnetic field strength H 0 when the capacitor C 2 = C 0 .
[0008]
As can be seen, by adjusting the capacitor C 2 so that the ratio K 2 is about 1.2, when the resonance frequency of the antenna to match the frequency of the carrier (i.e., the case of K 2 = 1) In comparison, the magnetic field intensity ratio can be increased by about 1.4 times.
[0009]
However, this method has a problem in that a data reading device that reads data on a medium to be read by transmitting and receiving a wireless signal does not always adjust circuit coefficients and the like optimally.
[0010]
An object of the present invention is to provide a data reading device and an antenna capable of extending a communication distance.
[0011]
[Patent Document 1]
JP 2001-185939 "Antenna coil and electromagnetic induction type non-contact data carrier system"
[Non-patent document 1]
"Circuit response" Corona, IEICE edition [0012]
[Means for Solving the Problems]
The present invention employs the following configuration in order to solve the above problems.
That is, according to one embodiment of the present invention, the antenna of the present invention supplies voltage from a signal processing circuit to an antenna provided in a data reading device which reads data on a medium to be read by transmitting and receiving a radio signal. A primary coil connected to a reactance circuit including at least one of a capacitor and an inductor; and a secondary coil coupled to the primary coil by mutual induction and connected to a capacitor. An antenna, wherein the reactance of the reactance circuit on the primary coil side is set based on a value of a capacitor on a coil side.
[0013]
Here, the reactance of the reactance on the primary coil side is set based on the value of the capacitor on the secondary coil side. Therefore, as in the conventional example, regardless of the value of the capacitor on the secondary coil side, 1 An antenna capable of extending the communication distance can be provided as compared with the case where a capacitor having a fixed value of about several thousand pF is provided on the next coil side for DC cut.
[0014]
According to another aspect of the present invention, there is provided a data reading apparatus for reading data on a medium to be read by transmitting and receiving a radio signal, the reactance including at least one of a capacitor and an inductor. An antenna having a primary coil provided with a circuit, a secondary coil coupled to the primary coil by mutual induction and provided with a capacitor, and a signal processing circuit for supplying a voltage to the primary coil is provided. And a reactance of a reactance circuit on the primary coil side is set based on a value of a capacitor on the secondary coil side.
[0015]
Here, the reactance of the reactance circuit on the primary coil side is set based on the value of the capacitor on the secondary coil side. Therefore, as in the conventional example, regardless of the value of the capacitor on the secondary coil side, As compared with the case where a capacitor having a fixed value of about several thousands pF is provided on the primary coil side for DC cut, a data reading device capable of extending the communication distance can be provided.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram illustrating an antenna according to an embodiment of the present invention. This antenna is an antenna provided in a data reading device that reads data on a medium to be read by transmitting and receiving a radio signal.
[0017]
In FIG. 1, the antenna includes a primary loop (primary coil) and a secondary loop (secondary coil), and a reactance component (capacitor C a in the figure) is connected in series to the primary loop. . Further, in the secondary loop, the resonance capacitor C b is connected in series. In FIG 1, the primary loop, but by connecting a capacitor C a in series, or to connect an inductor in series instead of the capacitor may or connect a combination of capacitors and inductors.
[0018]
The following describes how to determine the value of the reactance (capacitor or inductor, or a combination of these capacitors and inductor) connected to the primary loop.
[0019]
FIG. 2 is an equivalent circuit showing the antenna of FIG. 1 and a transmission circuit (RF circuit or power supply) connected to the primary loop side of the antenna. In FIG. 2, (corresponding to, for example, in Figure 1 the capacitor C a) above reactance to be inserted is set to a value by the following procedure in the primary loop side is not included.
[0020]
Also configured in FIG. 2, power supply 11 RF circuit 10 where the alternating voltages V 1 is applied with an inductive reactance, the power resistor 12, a source inductance 13. R g is the resistance value of the power supply resistor 12, and L g is the inductance value of the power supply inductance 13. When the reactance of the RF circuit 10 is capacitive, the power supply inductance 13 is replaced by a (power supply) capacitance.
[0021]
In FIG. 2, the RF circuit 10 is connected to a primary loop (main part) 20. The primary loop 20 corresponds to the primary coil in FIG. 1 and has a resistor 21 and a self inductance 22. R 1 is the resistance value of the resistor 21, and L 1 is the inductance value of the self inductance 22.
[0022]
The secondary loop (resonator) 30 corresponds to the secondary coil of FIG. 1 and is coupled to the primary loop 20 by mutual induction, and has a resistor 31, a self-inductance 32, and a resonance capacitance (resonance capacitor) 33. The resistance of R 2 the resistance 31, L 2 is the inductance value of the self-inductance 32, C is the capacitance value of the resonant capacitor 33. Also, V 2 is the voltage developed across the resonant capacitor 33, M is the mutual inductance between the primary loop and the secondary loop.
[0023]
The received voltage of the card is proportional to the magnetic flux created by the antenna, and the magnetic flux is proportional to the current flowing through the antenna. Antenna The current flowing through the antenna, there is a current I 1 flowing through the primary loop and the current I 2 flowing through the secondary loop, between them, the relationship I 2 >> I 1 holds, given Under the constants (R 1 , R 2 , L 1 , L 2 , M), in order to make the communication distance longer, the circuit constants other than the antenna constants in the equivalent circuit should be set so that I 2 becomes the maximum. Will be adjusted. Note that the circuit constant Rg cannot be adjusted to any small value. The reason is that it is possible to increase the value of I 2 by reducing the R g, for the circuit to operate stably, R g has to be not less than the predetermined value, the predetermined value is R g This is because the lower limit is reached. On the other hand, when I 2 is maximum, V 2 is also maximum. In the following, when V 2 is maximum, the case where the reactance on the primary loop side is set based on the value of the capacitor on the secondary loop side think of.
[0024]
That is, first, when the reactance of the RF circuit is inductive obtains a set of the L g and C to maximize V 2, with respect to the set of its way obtained L g and C, L g And a reactance (an inductor, a capacitor, or a combination thereof) whose value is set so as to eliminate a difference between the reactance and the reactance of the RF circuit viewed from the antenna side, is connected in series to the primary loop.
[0025]
Then, when the reactance of the RF circuit of the capacitive obtains a set of the C g and C to maximize V 2, with respect to the set of its way C g and C obtained, and C g A reactance (an inductor, a capacitor, or a combination thereof) whose value is set so as to eliminate a difference from the reactance of the RF circuit viewed from the antenna side is connected in series to the primary loop.
[0026]
Hereinafter, the process of setting the reactance on the primary loop side will be described more specifically with reference to FIG.
In the circuit of FIG. 2, the following equation holds.
Figure 2004282403
Here, from equations (2) and (3),
I 1 = (C / M) (jωL 2 + (1 / jωC) + R 2 ) V 2 (4)
When the equation (4) is substituted into the equation (1), the following equation is obtained.
[0027]
V 2 / V 1 = 1 / α ··· (5)
However, α = (C / M) (R g + R 1 + jωL g + jωL 1) (jωL 2 + 1 / jωC + R 2) + ω 2 CM ··· (6)
Here, the value of C that maximizes the ratio V 2 / V 1 , that is, minimizes α, is obtained from the following equation (7).
0 = ∂ (| α | 2 ) / ∂C = 2A · (dA / dC) + 2B · (dB / dC) (7)
Where A is the real part of α, B is the imaginary part of α, and | α | 2 = A 2 + B 2
By calculating by substituting the equation (6) (7), the following equation (8) is obtained, with respect to L g given by the equation of C that maximizes the ratio V 2 / V 1 A value is required.
[0028]
Figure 2004282403
Here, 計算2 (| α | 2 ) / ∂C 2 > 0 is obtained by calculation, so | α | 2 is minimized with respect to C satisfying the expression (8), and the ratio V 2 in the expression (5) is obtained. It can be seen that / V 1 is maximum.
[0029]
In the case where the reactance of the transmission circuit (RF circuit) is capacitive, assuming that the capacitance is C g , calculation is performed by the following equation in which L g is replaced by (−1 / ω 2 C g ) in the equation (1). , to C g given by the following expression (9) determines the value of C that maximizes the ratio V 2 / V 1.
[0030]
Figure 2004282403
In this way, we obtain a C to maximize C, or the V 2 for a given C g to maximize V 2 relative to (8) or (9) below, given L g ing.
[0031]
L Here, To determine the set of L g and C to maximize the example V 2, the ratio V 2 / V 1 by substituting (8) (5) (6) without using the C obtains a formula expressed in g, the expression and partial differentiation in L g, finding the value of L g which is a derivative = 0. Then, C corresponding to Lg thus obtained is calculated by equation (8).
[0032]
After that, a reactance (inductor, capacitor, or a combination thereof) is set for the set of L g and C obtained in this manner so as to eliminate the difference between L g and the reactance seen from the antenna side. Are connected in series to the primary loop.
[0033]
Since the V 2 can be determined in a similar manner for the set of C g and C to maximize omitted.
In the following, specific numerical values are set for the antenna and the RF circuit connected to the primary loop side of the antenna, and the value of the reactance connected to the primary loop is obtained by a circuit calculation tool.
[0034]
FIG. 3 is a diagram illustrating the shape of the antenna used in this calculation, and FIG. 4 is a diagram illustrating values of resistance, inductance, and the like set for the antenna and the RF circuit.
First, the RF impedance when viewing the RF circuit side from the antenna + the impedance of the connection lead of the antenna is obtained. FIG. 5A shows a calculation circuit using a circuit calculation tool. The measured resistance and reactance values of the RF circuit are 26 Ω and 0.282 μH (corresponding to j24 Ω) from FIG. 4 respectively. Calculate the frequency characteristics of impedance from the ratio of the current flowing through (4). FIG. 5B is a diagram showing a calculation result of the frequency characteristic. In the graph shown in FIG. 5B, the horizontal axis represents the frequency of the AC power supply of the RF circuit, and the vertical axis represents the real part (resistance) of the impedance and the imaginary part (reactance) of the impedance. Then, two straight lines are drawn on the graph corresponding to the real part and the imaginary part. In this calculation example, since the value of the frequency of the AC power supply is set to 13.56 MHz, by reading the resistance component and the reactance component at 13.56 MHz, as shown in FIG. From the RF side.
[0035]
Subsequently, when the relationship between Lg and C is obtained and shown by equation (8), a graph shown in FIG. 7A is obtained. When the relationship between L g and V 2 / V 1 is obtained by substituting the combination of L g and C into Expressions (5) and (6), a graph shown in FIG. 7B is obtained. It can be seen that the voltage ratio V 2 / V 1 becomes maximum for g = 1.2 μH (C = 354 pF).
[0036]
Similarly, when the relationship between Cg and C is obtained and shown by equation (9), a graph shown in FIG. 8A is obtained. When the relationship between C g and V 2 / V 1 is obtained by substituting the combination of C g and C into Expressions (5) and (6), a graph shown in FIG. 8B is obtained. It can be seen that the voltage ratio V 2 / V 1 becomes maximum for g = 80 pF (C = 293 pF).
[0037]
As it can be seen by comparing the peak value of the voltage ratio V 2 / V 1 in FIG. 7 (b) and FIG. 8 (b) and, in this calculation example, is more reactance of RF circuits were capacitive The generated magnetic flux can be made higher than when the reactance of the RF circuit is inductive.
[0038]
If the magnetic flux generated is higher, i.e., the reactance C g = 80 pF of RF circuits, the following per case capacitance C = 293pF resonator, illustrating a method of setting the primary loop side reactance.
[0039]
As shown in FIG. 6, since the reactance of the RF circuit viewed from the antenna including the connection leads is X g = + 35.55, the reactance C g of the RF circuit and the reactance X g of the RF circuit viewed from the antenna are determined. the capacitance C c connected in series to the primary loop by the difference can be obtained by the following equation.
[0040]
X g −1 / ωC c = 1 / ωC g
From the above equation, C c = 1 / [(1 / ωC g + X g ) ω] = 1 / [(1 / 2π × 13.56 × 10 6 × 80 × 10 -12 ) +35.55] × (2π × 13.56 × 10 6 ) ≒ 64 pF
From the above calculation, in order to maximize the magnetic flux, as shown in FIG. 9, the capacitance value of the main part may be set to 64 pF, and the capacitance value of the resonator may be set to 293 pF.
[0041]
FIG. 10 shows the relationship between the capacitance C a of a capacitor connected in series to the primary coil side and the magnetic field strength ratio (proportional to the voltage ratio V 1 / V 2 ) when the reactance on the primary coil side is a capacitor. It is a figure showing a relation.
[0042]
10, each curve corresponds to the value of the predetermined K 2. Here, K 2 = C b / C 0 (C b is the capacitance of the resonance capacitor of the secondary coil, and C 0 is the value of C b when the resonance frequency of the antenna matches the carrier frequency). Because scale of the graph is different it can not be said sweepingly, corresponding to FIG. 7 and 8 if Musube the peak of the curve corresponding to the K 2 is obtained.
[0043]
FIG. 11 is a diagram showing a relationship between the capacitance ratio C a / C b of the primary loop and the secondary loop and the magnetic field strength. In particular, the range of the capacitance of the capacitor as the circuit coefficient is the conventional example and the present embodiment. It is a figure explaining what differs from a form. The value of C a and C b corresponding to a point on the graph is the C a and C b the magnetic field is maximized at each K 2 in FIG. 10. In the conventional case, the capacitance C a of the capacitor provided on the primary loop side is generally several thousand pF or more (here, 1000 pF) for DC cut. On the other hand, in the present embodiment, a typical value of Ca is several tens of pF, as is clear from the above calculation example. Thus, in the present embodiment and the conventional example, it can be seen that one digit or more open to the capacitance C a of the capacitor provided in the primary loop side occurs.
[0044]
FIG. 12 is a diagram showing the range of the capacitance of the capacitor as the circuit coefficient in the present embodiment.
Figure 13 is a graph showing the relationship between the magnetic field intensity ratio and the K 2, it compares the peak value of the magnetic field intensity ratio in the present embodiment and the conventional example. In this embodiment, as compared with the conventional example, the primary loop side capacitance is set in accordance with the secondary loop side capacitance, so that the value of the magnetic field intensity ratio is about 1.4 times the conventional value. can get.
[0045]
In FIG. 1, C a (or a corresponding reactance component) and C b are connected to the same plane as the antenna surface. However, as shown in FIG. 14, the antenna and a signal processing circuit board including an RF circuit are included. the connected by cable or the like, C a to the substrate or may be installed at least one of the C b, (in the figure, are installed both C a and C b). When the antenna is mounted on a device, for example, a vending machine, there are components such as metal and a mounting panel around the antenna. Then, there is a problem that the space for adjusting the capacitor is lost due to the components, or the antenna characteristics change due to the effects of the components. Thus, by installing the above-described C a and C b on the signal processing circuit board, it is possible to prevent the circuit components of the capacitors C a and C b from being adversely affected by the above components.
[0046]
【The invention's effect】
As described above, according to the present invention, in the antenna provided in the data reader of the present invention, the reactance of the reactance circuit on the primary coil side is set based on the value of the capacitor on the secondary coil side. Therefore, it is possible to extend the communication distance.
[Brief description of the drawings]
FIG. 1 is a diagram showing an antenna according to an embodiment of the present invention.
FIG. 2 is a diagram in which a reactance inserted on a primary loop side is removed from an equivalent circuit showing the antenna of FIG. 1 and an RF circuit connected to the primary loop side of the antenna.
FIG. 3 is a diagram showing the shape of an antenna used in a calculation example.
FIG. 4 is a diagram showing numerical values such as resistance and inductance set for an antenna and an RF circuit in a calculation example.
5A and 5B are diagrams illustrating a process of calculating a constant on an RF circuit side as viewed from an antenna, wherein FIG. 5A illustrates a calculation circuit using a circuit calculation tool, and FIG. 5B illustrates a calculation result of a frequency characteristic thereof. It is.
FIG. 6 is a diagram showing an RF constant as viewed from the antenna side.
7A is a diagram illustrating a relationship between a power supply inductance Lg and a resonance capacitance C when the reactance of the RF circuit (power supply) is inductive, and FIG. 7B is a diagram illustrating the power supply inductance Lg and input / output; FIG. 4 is a diagram illustrating a relationship with a voltage ratio.
8A is a diagram illustrating a relationship between a power supply capacitance Cg and a resonance capacitance C when the reactance of the RF circuit (power supply) is capacitive; FIG. 8B is a diagram illustrating the relationship between the power supply capacitance Cg and input / output; FIG. 4 is a diagram illustrating a relationship with a voltage ratio.
FIG. 9 is a diagram illustrating calculation results of a calculation example.
FIG. 10 is a diagram showing a relationship between a capacitance C a of a primary coil side capacitor and a magnetic field strength ratio.
FIG. 11 is a diagram showing the relationship between the capacitance ratio C a / C b of the primary loop and the secondary loop and the magnetic field strength. In particular, the range of the capacitance of the capacitor as a circuit coefficient is the range between the conventional example and the present embodiment. It is a figure explaining what differs from a form.
FIG. 12 is a diagram illustrating a range taken by a capacitance of a capacitor as a circuit coefficient in the present embodiment.
[Figure 13] is a diagram showing the relationship between the magnetic field intensity ratio and the K 2, it is a diagram that compares the peak value of the magnetic field intensity ratio in the present embodiment and the conventional example.
FIG. 14 is a configuration example of an information reading device including the antenna of the present embodiment and an RF circuit connected to the primary loop side of the antenna.
FIG. 15 is a conventional non-contact type IC card system.
FIG. 16 is a diagram showing a conventional antenna.
FIG. 17 is an equivalent circuit showing a conventional antenna and an RF circuit connected to the primary loop side of the antenna.
18 is a diagram showing the relationship between the radiation field strength of the secondary loop side of the capacitor C 2 and the antenna.
[Explanation of symbols]
Reference Signs List 10 RF circuit 11 Power supply 12 Resistance 13 Inductance 20 Primary loop 21 Resistance 22 Inductance 30 Secondary loop 31 Resistance 32 Inductance 33 Resonance capacitance 50 Signal processing circuit 51 Amplifier 52 Loop antenna 53 Detection circuit 60 Card 61 Switch 70 Signal processing circuit 71 1 Next loop 72 Secondary loop

Claims (10)

無線信号を送受信することによって、被読取媒体上のデータを読み取るデータ読取装置に備えられたアンテナにおいて、
信号処理回路から電圧を供給されると共に、コンデンサ及びインダクタの少なくとも1つを含むリアクタンス回路が接続された1次コイルと、
該1次コイルと相互誘導により結合し、コンデンサが接続された2次コイルとを備え、
前記2次コイル側のコンデンサの値に基づいて、前記1次コイル側のリアクタンス回路のリアクタンスを設定したことを特徴とするアンテナ。
By transmitting and receiving wireless signals, an antenna provided in a data reading device that reads data on a medium to be read,
A primary coil to which a voltage is supplied from a signal processing circuit and to which a reactance circuit including at least one of a capacitor and an inductor is connected;
A secondary coil coupled to the primary coil by mutual induction and connected to a capacitor;
An antenna, wherein the reactance of a reactance circuit on the primary coil side is set based on a value of a capacitor on the secondary coil side.
前記2次コイルのコンデンサの値を可変に制御し、該可変に制御された2次コイルのコンデンサの値に基づいて、前記1次コイル側のリアクタンス回路のリアクタンスを設定したことを特徴とする請求項1記載のアンテナ。The value of the capacitor of the secondary coil is variably controlled, and the reactance of the reactance circuit on the primary coil side is set based on the value of the variably controlled capacitor of the secondary coil. Item 7. The antenna according to Item 1. 前記信号処理回路のリアクタンスと前記アンテナから見た前記信号処理回路のリアクタンスとの差をなくすように、前記1次コイル側のリアクタンス回路のリアクタンスを設定したことを特徴とする請求項1記載のアンテナ。2. The antenna according to claim 1, wherein a reactance of the reactance circuit on the primary coil side is set so as to eliminate a difference between a reactance of the signal processing circuit and a reactance of the signal processing circuit viewed from the antenna. . 無線信号を送受信することによって、被読取媒体上のデータを読み取るデータ読取装置において、
コンデンサ及びインダクタの少なくとも1つを含むリアクタンス回路が設けられた1次コイルと、該1次コイルと相互誘導により結合し、コンデンサが設けられた2次コイルとを有するアンテナと、
前記1次コイルに電圧を供給する信号処理回路とを備え、
前記2次コイル側のコンデンサの値に基づいて、前記1次コイル側のリアクタンス回路のリアクタンスを設定したことを特徴とするデータ読取装置。
In a data reading device that reads data on a medium to be read by transmitting and receiving a wireless signal,
An antenna having a primary coil provided with a reactance circuit including at least one of a capacitor and an inductor, and a secondary coil coupled to the primary coil by mutual induction and provided with a capacitor;
A signal processing circuit for supplying a voltage to the primary coil,
A data reading device, wherein a reactance of a reactance circuit on the primary coil side is set based on a value of a capacitor on the secondary coil side.
前記2次コイルのコンデンサの値を可変に制御し、該可変に制御された2次コイルのコンデンサの値に基づいて、前記1次コイル側のリアクタンス回路のリアクタンスを設定したことを特徴とする請求項4記載のデータ読取装置。The value of the capacitor of the secondary coil is variably controlled, and the reactance of the reactance circuit on the primary coil side is set based on the value of the variably controlled capacitor of the secondary coil. Item 5. The data reading device according to Item 4. 前記信号処理回路のリアクタンスと前記アンテナから見た前記信号処理回路のリアクタンスとの差をなくすように、前記1次コイル側のリアクタンス回路のリアクタンスを設定したことを特徴とする請求項4記載のデータ読取装置。The data according to claim 4, wherein a reactance of the reactance circuit on the primary coil side is set so as to eliminate a difference between a reactance of the signal processing circuit and a reactance of the signal processing circuit viewed from the antenna. Reader. 前記1次コイルのリアクタンス回路、及び前記2次コイルのコンデンサの少なくとも1つを前記信号処理装置側に設けたことを特徴とする請求項4記載のデータ読取装置。The data reading device according to claim 4, wherein at least one of a reactance circuit of the primary coil and a capacitor of the secondary coil is provided on the signal processing device side. 無線信号を送受信することによって、被読取媒体上のデータを読み取るデータ読取装置に備えられたアンテナの定数設定方法において、
信号処理回路から電圧を供給されると共に、コンデンサ及びインダクタの少なくとも1つを含むリアクタンス回路が接続された1次コイルと、該1次コイルと相互誘導により結合し、コンデンサが接続された2次コイルとを備える前記アンテナのリアクタンス回路のリアクタンスを、前記2次コイル側のコンデンサの値に基づいて設定したことを特徴とするアンテナの定数設定方法。
By transmitting and receiving a radio signal, a method for setting the constant of an antenna provided in a data reading device that reads data on a medium to be read,
A primary coil to which a voltage is supplied from a signal processing circuit and to which a reactance circuit including at least one of a capacitor and an inductor is connected; and a secondary coil which is coupled to the primary coil by mutual induction and to which a capacitor is connected. Wherein the reactance of the reactance circuit of the antenna is set based on the value of the capacitor on the secondary coil side.
前記2次コイルのコンデンサの値を可変に制御し、
該可変に制御された2次コイルのコンデンサの値に基づいて、前記1次コイル側のリアクタンス回路のリアクタンスを設定したことを特徴とする請求項8記載のアンテナの定数設定方法。
Controlling the value of the capacitor of the secondary coil variably;
9. The method according to claim 8, wherein the reactance of the reactance circuit on the primary coil side is set based on the value of the capacitor of the secondary coil that is variably controlled.
前記信号処理回路のリアクタンスと前記アンテナから見た前記信号処理回路のリアクタンスとの差をなくすように、前記1次コイル側のリアクタンス回路のリアクタンスを設定したことを特徴とする請求項8記載のアンテナの定数設定方法。9. The antenna according to claim 8, wherein the reactance of the reactance circuit on the primary coil side is set so as to eliminate a difference between the reactance of the signal processing circuit and the reactance of the signal processing circuit viewed from the antenna. How to set the constant.
JP2003071020A 2003-03-14 2003-03-14 Antenna and data reader Expired - Fee Related JP4010263B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003071020A JP4010263B2 (en) 2003-03-14 2003-03-14 Antenna and data reader

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003071020A JP4010263B2 (en) 2003-03-14 2003-03-14 Antenna and data reader

Publications (2)

Publication Number Publication Date
JP2004282403A true JP2004282403A (en) 2004-10-07
JP4010263B2 JP4010263B2 (en) 2007-11-21

Family

ID=33287559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003071020A Expired - Fee Related JP4010263B2 (en) 2003-03-14 2003-03-14 Antenna and data reader

Country Status (1)

Country Link
JP (1) JP4010263B2 (en)

Cited By (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100693204B1 (en) * 2005-09-22 2007-03-13 쓰리에이로직스(주) Antenna for near field communication, near field communication terminal having the same, radio frequency antenna, and ic card having the same
JP2011109500A (en) * 2009-11-19 2011-06-02 Panasonic Corp Transmitting/receiving antenna, and transmitter/receiver device using the same
JP2011109501A (en) * 2009-11-19 2011-06-02 Panasonic Corp Transmitting/receiving antenna, and transmitter/receiver device using the same
JP2011254413A (en) * 2010-06-04 2011-12-15 Panasonic Corp Transmission/reception antenna and transmitter receiver using the same
JP4850975B1 (en) * 2011-02-15 2012-01-11 パナソニック株式会社 Transceiver
US8228765B2 (en) 2006-06-30 2012-07-24 Murata Manufacturing Co., Ltd. Optical disc
US8299929B2 (en) 2006-09-26 2012-10-30 Murata Manufacturing Co., Ltd. Inductively coupled module and item with inductively coupled module
US8336786B2 (en) 2010-03-12 2012-12-25 Murata Manufacturing Co., Ltd. Wireless communication device and metal article
US8381997B2 (en) 2009-06-03 2013-02-26 Murata Manufacturing Co., Ltd. Radio frequency IC device and method of manufacturing the same
JP2013048474A (en) * 2006-04-14 2013-03-07 Murata Mfg Co Ltd Antenna
US8400365B2 (en) 2009-11-20 2013-03-19 Murata Manufacturing Co., Ltd. Antenna device and mobile communication terminal
US8413907B2 (en) 2007-07-17 2013-04-09 Murata Manufacturing Co., Ltd. Wireless IC device and electronic apparatus
US8418928B2 (en) 2009-04-14 2013-04-16 Murata Manufacturing Co., Ltd. Wireless IC device component and wireless IC device
US8424762B2 (en) 2007-04-14 2013-04-23 Murata Manufacturing Co., Ltd. Wireless IC device and component for wireless IC device
US8424769B2 (en) 2010-07-08 2013-04-23 Murata Manufacturing Co., Ltd. Antenna and RFID device
KR101279856B1 (en) 2013-04-12 2013-06-28 주식회사 케이더파워 Attenna apparatus with ntc attenna annd wireless charging coil
US8531346B2 (en) 2007-04-26 2013-09-10 Murata Manufacturing Co., Ltd. Wireless IC device
US8546927B2 (en) 2010-09-03 2013-10-01 Murata Manufacturing Co., Ltd. RFIC chip mounting structure
US8544759B2 (en) 2009-01-09 2013-10-01 Murata Manufacturing., Ltd. Wireless IC device, wireless IC module and method of manufacturing wireless IC module
US8552870B2 (en) 2007-07-09 2013-10-08 Murata Manufacturing Co., Ltd. Wireless IC device
US8590797B2 (en) 2008-05-21 2013-11-26 Murata Manufacturing Co., Ltd. Wireless IC device
KR101335918B1 (en) * 2013-08-13 2013-12-03 유원용 Method for manufacturing wireless antenna for both radio frequency identification and wireless charging
US8602310B2 (en) 2010-03-03 2013-12-10 Murata Manufacturing Co., Ltd. Radio communication device and radio communication terminal
US8613395B2 (en) 2011-02-28 2013-12-24 Murata Manufacturing Co., Ltd. Wireless communication device
US8676117B2 (en) 2006-01-19 2014-03-18 Murata Manufacturing Co., Ltd. Wireless IC device and component for wireless IC device
US8680971B2 (en) 2009-09-28 2014-03-25 Murata Manufacturing Co., Ltd. Wireless IC device and method of detecting environmental state using the device
KR101377714B1 (en) 2013-08-14 2014-03-26 유원용 Wireless antenna for both radio frequency identification and wireless charging
US8718727B2 (en) 2009-12-24 2014-05-06 Murata Manufacturing Co., Ltd. Antenna having structure for multi-angled reception and mobile terminal including the antenna
US8720789B2 (en) 2012-01-30 2014-05-13 Murata Manufacturing Co., Ltd. Wireless IC device
US8740093B2 (en) 2011-04-13 2014-06-03 Murata Manufacturing Co., Ltd. Radio IC device and radio communication terminal
US8757500B2 (en) 2007-05-11 2014-06-24 Murata Manufacturing Co., Ltd. Wireless IC device
US8770489B2 (en) 2011-07-15 2014-07-08 Murata Manufacturing Co., Ltd. Radio communication device
US8797148B2 (en) 2008-03-03 2014-08-05 Murata Manufacturing Co., Ltd. Radio frequency IC device and radio communication system
US8810456B2 (en) 2009-06-19 2014-08-19 Murata Manufacturing Co., Ltd. Wireless IC device and coupling method for power feeding circuit and radiation plate
US8814056B2 (en) 2011-07-19 2014-08-26 Murata Manufacturing Co., Ltd. Antenna device, RFID tag, and communication terminal apparatus
US8847831B2 (en) 2009-07-03 2014-09-30 Murata Manufacturing Co., Ltd. Antenna and antenna module
US8853549B2 (en) 2009-09-30 2014-10-07 Murata Manufacturing Co., Ltd. Circuit substrate and method of manufacturing same
US8870077B2 (en) 2008-08-19 2014-10-28 Murata Manufacturing Co., Ltd. Wireless IC device and method for manufacturing same
US8878739B2 (en) 2011-07-14 2014-11-04 Murata Manufacturing Co., Ltd. Wireless communication device
US8905296B2 (en) 2011-12-01 2014-12-09 Murata Manufacturing Co., Ltd. Wireless integrated circuit device and method of manufacturing the same
US8917211B2 (en) 2008-11-17 2014-12-23 Murata Manufacturing Co., Ltd. Antenna and wireless IC device
US8915448B2 (en) 2007-12-26 2014-12-23 Murata Manufacturing Co., Ltd. Antenna device and radio frequency IC device
US8937576B2 (en) 2011-04-05 2015-01-20 Murata Manufacturing Co., Ltd. Wireless communication device
US8944335B2 (en) 2010-09-30 2015-02-03 Murata Manufacturing Co., Ltd. Wireless IC device
US8976075B2 (en) 2009-04-21 2015-03-10 Murata Manufacturing Co., Ltd. Antenna device and method of setting resonant frequency of antenna device
US8981906B2 (en) 2010-08-10 2015-03-17 Murata Manufacturing Co., Ltd. Printed wiring board and wireless communication system
US8991713B2 (en) 2011-01-14 2015-03-31 Murata Manufacturing Co., Ltd. RFID chip package and RFID tag
US9024837B2 (en) 2010-03-31 2015-05-05 Murata Manufacturing Co., Ltd. Antenna and wireless communication device
US9024725B2 (en) 2009-11-04 2015-05-05 Murata Manufacturing Co., Ltd. Communication terminal and information processing system
US9104950B2 (en) 2009-01-30 2015-08-11 Murata Manufacturing Co., Ltd. Antenna and wireless IC device
US9117157B2 (en) 2009-10-02 2015-08-25 Murata Manufacturing Co., Ltd. Wireless IC device and electromagnetic coupling module
US9165239B2 (en) 2006-04-26 2015-10-20 Murata Manufacturing Co., Ltd. Electromagnetic-coupling-module-attached article
US9166291B2 (en) 2010-10-12 2015-10-20 Murata Manufacturing Co., Ltd. Antenna device and communication terminal apparatus
US9178279B2 (en) 2009-11-04 2015-11-03 Murata Manufacturing Co., Ltd. Wireless IC tag, reader-writer, and information processing system
US9236651B2 (en) 2010-10-21 2016-01-12 Murata Manufacturing Co., Ltd. Communication terminal device
US9281873B2 (en) 2008-05-26 2016-03-08 Murata Manufacturing Co., Ltd. Wireless IC device system and method of determining authenticity of wireless IC device
US9378452B2 (en) 2011-05-16 2016-06-28 Murata Manufacturing Co., Ltd. Radio IC device
US9444143B2 (en) 2009-10-16 2016-09-13 Murata Manufacturing Co., Ltd. Antenna and wireless IC device
US9461363B2 (en) 2009-11-04 2016-10-04 Murata Manufacturing Co., Ltd. Communication terminal and information processing system
US9460376B2 (en) 2007-07-18 2016-10-04 Murata Manufacturing Co., Ltd. Radio IC device
US9460320B2 (en) 2009-10-27 2016-10-04 Murata Manufacturing Co., Ltd. Transceiver and radio frequency identification tag reader
US9543642B2 (en) 2011-09-09 2017-01-10 Murata Manufacturing Co., Ltd. Antenna device and wireless device
US9558384B2 (en) 2010-07-28 2017-01-31 Murata Manufacturing Co., Ltd. Antenna apparatus and communication terminal instrument
US9692128B2 (en) 2012-02-24 2017-06-27 Murata Manufacturing Co., Ltd. Antenna device and wireless communication device
KR101765487B1 (en) 2013-04-12 2017-08-08 주식회사 케이더파워 Installation method for attenna apparatus with ntc attenna annd wireless charging coil
KR101765482B1 (en) 2013-04-12 2017-08-08 주식회사 케이더파워 Installation method for attenna apparatus with ntc attenna annd wireless charging coil
US9727765B2 (en) 2010-03-24 2017-08-08 Murata Manufacturing Co., Ltd. RFID system including a reader/writer and RFID tag
US9761923B2 (en) 2011-01-05 2017-09-12 Murata Manufacturing Co., Ltd. Wireless communication device
KR101782793B1 (en) 2017-02-28 2017-09-28 주식회사 케이더파워 Installation method for attenna apparatus with ntc attenna annd wireless charging coil
JP6243569B1 (en) * 2017-06-20 2017-12-06 日本電信電話株式会社 Loop antenna
US10013650B2 (en) 2010-03-03 2018-07-03 Murata Manufacturing Co., Ltd. Wireless communication module and wireless communication device
US10181637B2 (en) 2014-03-28 2019-01-15 Murata Manufacturing Co., Ltd. Antenna device and communication apparatus
US10235544B2 (en) 2012-04-13 2019-03-19 Murata Manufacturing Co., Ltd. Inspection method and inspection device for RFID tag

Cited By (89)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100693204B1 (en) * 2005-09-22 2007-03-13 쓰리에이로직스(주) Antenna for near field communication, near field communication terminal having the same, radio frequency antenna, and ic card having the same
US8725071B2 (en) 2006-01-19 2014-05-13 Murata Manufacturing Co., Ltd. Wireless IC device and component for wireless IC device
US8676117B2 (en) 2006-01-19 2014-03-18 Murata Manufacturing Co., Ltd. Wireless IC device and component for wireless IC device
JP2013048474A (en) * 2006-04-14 2013-03-07 Murata Mfg Co Ltd Antenna
EP3168932A1 (en) * 2006-04-14 2017-05-17 Murata Manufacturing Co., Ltd. Antenna
US9165239B2 (en) 2006-04-26 2015-10-20 Murata Manufacturing Co., Ltd. Electromagnetic-coupling-module-attached article
US8228765B2 (en) 2006-06-30 2012-07-24 Murata Manufacturing Co., Ltd. Optical disc
US8299929B2 (en) 2006-09-26 2012-10-30 Murata Manufacturing Co., Ltd. Inductively coupled module and item with inductively coupled module
US8424762B2 (en) 2007-04-14 2013-04-23 Murata Manufacturing Co., Ltd. Wireless IC device and component for wireless IC device
US8531346B2 (en) 2007-04-26 2013-09-10 Murata Manufacturing Co., Ltd. Wireless IC device
US8757500B2 (en) 2007-05-11 2014-06-24 Murata Manufacturing Co., Ltd. Wireless IC device
US8662403B2 (en) 2007-07-04 2014-03-04 Murata Manufacturing Co., Ltd. Wireless IC device and component for wireless IC device
US8552870B2 (en) 2007-07-09 2013-10-08 Murata Manufacturing Co., Ltd. Wireless IC device
US8413907B2 (en) 2007-07-17 2013-04-09 Murata Manufacturing Co., Ltd. Wireless IC device and electronic apparatus
US9460376B2 (en) 2007-07-18 2016-10-04 Murata Manufacturing Co., Ltd. Radio IC device
US9830552B2 (en) 2007-07-18 2017-11-28 Murata Manufacturing Co., Ltd. Radio IC device
US8915448B2 (en) 2007-12-26 2014-12-23 Murata Manufacturing Co., Ltd. Antenna device and radio frequency IC device
US8797148B2 (en) 2008-03-03 2014-08-05 Murata Manufacturing Co., Ltd. Radio frequency IC device and radio communication system
US8590797B2 (en) 2008-05-21 2013-11-26 Murata Manufacturing Co., Ltd. Wireless IC device
US8973841B2 (en) 2008-05-21 2015-03-10 Murata Manufacturing Co., Ltd. Wireless IC device
US9022295B2 (en) 2008-05-21 2015-05-05 Murata Manufacturing Co., Ltd. Wireless IC device
US9281873B2 (en) 2008-05-26 2016-03-08 Murata Manufacturing Co., Ltd. Wireless IC device system and method of determining authenticity of wireless IC device
US8870077B2 (en) 2008-08-19 2014-10-28 Murata Manufacturing Co., Ltd. Wireless IC device and method for manufacturing same
US8917211B2 (en) 2008-11-17 2014-12-23 Murata Manufacturing Co., Ltd. Antenna and wireless IC device
US8544759B2 (en) 2009-01-09 2013-10-01 Murata Manufacturing., Ltd. Wireless IC device, wireless IC module and method of manufacturing wireless IC module
US9104950B2 (en) 2009-01-30 2015-08-11 Murata Manufacturing Co., Ltd. Antenna and wireless IC device
US8418928B2 (en) 2009-04-14 2013-04-16 Murata Manufacturing Co., Ltd. Wireless IC device component and wireless IC device
US8690070B2 (en) 2009-04-14 2014-04-08 Murata Manufacturing Co., Ltd. Wireless IC device component and wireless IC device
US8876010B2 (en) 2009-04-14 2014-11-04 Murata Manufacturing Co., Ltd Wireless IC device component and wireless IC device
US8976075B2 (en) 2009-04-21 2015-03-10 Murata Manufacturing Co., Ltd. Antenna device and method of setting resonant frequency of antenna device
US9564678B2 (en) 2009-04-21 2017-02-07 Murata Manufacturing Co., Ltd. Antenna device and method of setting resonant frequency of antenna device
US9203157B2 (en) 2009-04-21 2015-12-01 Murata Manufacturing Co., Ltd. Antenna device and method of setting resonant frequency of antenna device
US8381997B2 (en) 2009-06-03 2013-02-26 Murata Manufacturing Co., Ltd. Radio frequency IC device and method of manufacturing the same
US8810456B2 (en) 2009-06-19 2014-08-19 Murata Manufacturing Co., Ltd. Wireless IC device and coupling method for power feeding circuit and radiation plate
US8847831B2 (en) 2009-07-03 2014-09-30 Murata Manufacturing Co., Ltd. Antenna and antenna module
US8680971B2 (en) 2009-09-28 2014-03-25 Murata Manufacturing Co., Ltd. Wireless IC device and method of detecting environmental state using the device
US8853549B2 (en) 2009-09-30 2014-10-07 Murata Manufacturing Co., Ltd. Circuit substrate and method of manufacturing same
US9117157B2 (en) 2009-10-02 2015-08-25 Murata Manufacturing Co., Ltd. Wireless IC device and electromagnetic coupling module
US9444143B2 (en) 2009-10-16 2016-09-13 Murata Manufacturing Co., Ltd. Antenna and wireless IC device
US9460320B2 (en) 2009-10-27 2016-10-04 Murata Manufacturing Co., Ltd. Transceiver and radio frequency identification tag reader
US9024725B2 (en) 2009-11-04 2015-05-05 Murata Manufacturing Co., Ltd. Communication terminal and information processing system
US9461363B2 (en) 2009-11-04 2016-10-04 Murata Manufacturing Co., Ltd. Communication terminal and information processing system
US9178279B2 (en) 2009-11-04 2015-11-03 Murata Manufacturing Co., Ltd. Wireless IC tag, reader-writer, and information processing system
JP2011109501A (en) * 2009-11-19 2011-06-02 Panasonic Corp Transmitting/receiving antenna, and transmitter/receiver device using the same
JP2011109500A (en) * 2009-11-19 2011-06-02 Panasonic Corp Transmitting/receiving antenna, and transmitter/receiver device using the same
US8400365B2 (en) 2009-11-20 2013-03-19 Murata Manufacturing Co., Ltd. Antenna device and mobile communication terminal
US8704716B2 (en) 2009-11-20 2014-04-22 Murata Manufacturing Co., Ltd. Antenna device and mobile communication terminal
US8718727B2 (en) 2009-12-24 2014-05-06 Murata Manufacturing Co., Ltd. Antenna having structure for multi-angled reception and mobile terminal including the antenna
US8602310B2 (en) 2010-03-03 2013-12-10 Murata Manufacturing Co., Ltd. Radio communication device and radio communication terminal
US10013650B2 (en) 2010-03-03 2018-07-03 Murata Manufacturing Co., Ltd. Wireless communication module and wireless communication device
US8528829B2 (en) 2010-03-12 2013-09-10 Murata Manufacturing Co., Ltd. Wireless communication device and metal article
US8336786B2 (en) 2010-03-12 2012-12-25 Murata Manufacturing Co., Ltd. Wireless communication device and metal article
US9727765B2 (en) 2010-03-24 2017-08-08 Murata Manufacturing Co., Ltd. RFID system including a reader/writer and RFID tag
US9024837B2 (en) 2010-03-31 2015-05-05 Murata Manufacturing Co., Ltd. Antenna and wireless communication device
JP2011254413A (en) * 2010-06-04 2011-12-15 Panasonic Corp Transmission/reception antenna and transmitter receiver using the same
US8424769B2 (en) 2010-07-08 2013-04-23 Murata Manufacturing Co., Ltd. Antenna and RFID device
US9558384B2 (en) 2010-07-28 2017-01-31 Murata Manufacturing Co., Ltd. Antenna apparatus and communication terminal instrument
US8981906B2 (en) 2010-08-10 2015-03-17 Murata Manufacturing Co., Ltd. Printed wiring board and wireless communication system
US8546927B2 (en) 2010-09-03 2013-10-01 Murata Manufacturing Co., Ltd. RFIC chip mounting structure
US8944335B2 (en) 2010-09-30 2015-02-03 Murata Manufacturing Co., Ltd. Wireless IC device
US9166291B2 (en) 2010-10-12 2015-10-20 Murata Manufacturing Co., Ltd. Antenna device and communication terminal apparatus
US9236651B2 (en) 2010-10-21 2016-01-12 Murata Manufacturing Co., Ltd. Communication terminal device
US9761923B2 (en) 2011-01-05 2017-09-12 Murata Manufacturing Co., Ltd. Wireless communication device
US8991713B2 (en) 2011-01-14 2015-03-31 Murata Manufacturing Co., Ltd. RFID chip package and RFID tag
JP4850975B1 (en) * 2011-02-15 2012-01-11 パナソニック株式会社 Transceiver
US8757502B2 (en) 2011-02-28 2014-06-24 Murata Manufacturing Co., Ltd. Wireless communication device
US8613395B2 (en) 2011-02-28 2013-12-24 Murata Manufacturing Co., Ltd. Wireless communication device
US8960561B2 (en) 2011-02-28 2015-02-24 Murata Manufacturing Co., Ltd. Wireless communication device
US8937576B2 (en) 2011-04-05 2015-01-20 Murata Manufacturing Co., Ltd. Wireless communication device
US8740093B2 (en) 2011-04-13 2014-06-03 Murata Manufacturing Co., Ltd. Radio IC device and radio communication terminal
US9378452B2 (en) 2011-05-16 2016-06-28 Murata Manufacturing Co., Ltd. Radio IC device
US8878739B2 (en) 2011-07-14 2014-11-04 Murata Manufacturing Co., Ltd. Wireless communication device
US8770489B2 (en) 2011-07-15 2014-07-08 Murata Manufacturing Co., Ltd. Radio communication device
US8814056B2 (en) 2011-07-19 2014-08-26 Murata Manufacturing Co., Ltd. Antenna device, RFID tag, and communication terminal apparatus
US9543642B2 (en) 2011-09-09 2017-01-10 Murata Manufacturing Co., Ltd. Antenna device and wireless device
US8905296B2 (en) 2011-12-01 2014-12-09 Murata Manufacturing Co., Ltd. Wireless integrated circuit device and method of manufacturing the same
US8720789B2 (en) 2012-01-30 2014-05-13 Murata Manufacturing Co., Ltd. Wireless IC device
US9692128B2 (en) 2012-02-24 2017-06-27 Murata Manufacturing Co., Ltd. Antenna device and wireless communication device
US10235544B2 (en) 2012-04-13 2019-03-19 Murata Manufacturing Co., Ltd. Inspection method and inspection device for RFID tag
KR101765487B1 (en) 2013-04-12 2017-08-08 주식회사 케이더파워 Installation method for attenna apparatus with ntc attenna annd wireless charging coil
KR101765482B1 (en) 2013-04-12 2017-08-08 주식회사 케이더파워 Installation method for attenna apparatus with ntc attenna annd wireless charging coil
KR101279856B1 (en) 2013-04-12 2013-06-28 주식회사 케이더파워 Attenna apparatus with ntc attenna annd wireless charging coil
KR101335918B1 (en) * 2013-08-13 2013-12-03 유원용 Method for manufacturing wireless antenna for both radio frequency identification and wireless charging
KR101377714B1 (en) 2013-08-14 2014-03-26 유원용 Wireless antenna for both radio frequency identification and wireless charging
US10181637B2 (en) 2014-03-28 2019-01-15 Murata Manufacturing Co., Ltd. Antenna device and communication apparatus
KR101782793B1 (en) 2017-02-28 2017-09-28 주식회사 케이더파워 Installation method for attenna apparatus with ntc attenna annd wireless charging coil
JP6243569B1 (en) * 2017-06-20 2017-12-06 日本電信電話株式会社 Loop antenna
WO2018235631A1 (en) * 2017-06-20 2018-12-27 日本電信電話株式会社 Loop antenna and method of designing loop antenna
US10720706B2 (en) 2017-06-20 2020-07-21 Nippon Telegraph And Telephone Corporation Loop antenna and design method for loop antenna

Also Published As

Publication number Publication date
JP4010263B2 (en) 2007-11-21

Similar Documents

Publication Publication Date Title
JP4010263B2 (en) Antenna and data reader
US11789174B2 (en) Foreign object detection circuit
US10404107B2 (en) Non-contact charging device, and non-contact power supply system using same
US8130159B2 (en) Electromagnetic field generation antenna for a transponder
US11271429B2 (en) System for wireless power charging
US6533178B1 (en) Device for contactless transmission of data
US9190850B2 (en) Wireless power transmitter
US11349345B2 (en) Wireless power transmission device
JP2004166384A (en) Electromagnetic coupling characteristic adjustment method in non-contact power supply system, power supply device, and non-contact power supply system
JP5883890B2 (en) Non-contact communication device and antenna resonance frequency control method thereof
JP2008535437A (en) RFID reader with antenna and method of operating the same
Wegleiter et al. Automatic antenna tuning unit to improve RFID system performance
US20190068248A1 (en) Transmission Apparatus, Antenna Drive Apparatus, Tuning Method, and Program for Realizing Tuning Method
Maulana et al. Wireless power transfer characterization based on inductive coupling method
JP2005063123A (en) Non-contact type IC card reader / writer device, automatic adjustment method of antenna natural frequency, program
EP3787192B1 (en) Quality-factor control for a near-field wireless device
JP3579899B2 (en) IC card reader / writer
KR20020064451A (en) An amplifying method for RF signals in a contactless IC card system by through a mutual induced amplifying junction antenna and an apparatus therefor
JP4736306B2 (en) An antenna that generates an electromagnetic field for the transponder
JP3986701B2 (en) Wireless card communication device
Jankowski-Mihułowicz et al. Synthesis of read/write device antenna for HF proximity range RFID systems with inductive coupling
WO2015125263A1 (en) Power transmission apparatus and wireless power transmission system
JP2007060135A (en) Communication system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070814

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070827

R150 Certificate of patent or registration of utility model

Ref document number: 4010263

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130914

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees