[go: up one dir, main page]

JP2004285473A - Method for recovering valuable metals from waste containing V, Mo and Ni - Google Patents

Method for recovering valuable metals from waste containing V, Mo and Ni Download PDF

Info

Publication number
JP2004285473A
JP2004285473A JP2003409513A JP2003409513A JP2004285473A JP 2004285473 A JP2004285473 A JP 2004285473A JP 2003409513 A JP2003409513 A JP 2003409513A JP 2003409513 A JP2003409513 A JP 2003409513A JP 2004285473 A JP2004285473 A JP 2004285473A
Authority
JP
Japan
Prior art keywords
slag
waste
based alloy
valuable metals
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003409513A
Other languages
Japanese (ja)
Other versions
JP3705498B2 (en
JP2004285473A5 (en
Inventor
Hiroichi Sugimori
博一 杉森
進 ▲吉▼川
Susumu Yoshikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Corp
Kashima Kita Electric Power Corp
JFE Material Co Ltd
Original Assignee
Mitsubishi Corp
Kashima Kita Electric Power Corp
JFE Material Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Corp, Kashima Kita Electric Power Corp, JFE Material Co Ltd filed Critical Mitsubishi Corp
Priority to JP2003409513A priority Critical patent/JP3705498B2/en
Publication of JP2004285473A publication Critical patent/JP2004285473A/en
Publication of JP2004285473A5 publication Critical patent/JP2004285473A5/ja
Application granted granted Critical
Publication of JP3705498B2 publication Critical patent/JP3705498B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

【課題】 V、Mo及びNi含有廃棄物から、Fe−Mo−Ni系合金及びFe−V系合金を安定して歩留りよく回収できる方法を提供する。
【解決手段】 本発明によるV、Mo及びNi含有廃棄物からの有価金属の回収方法は、V、Mo及びNi含有廃棄物を乾燥する工程と、前記V、Mo及びNi含有廃棄、還元剤としてのFe、及びフラックスを加熱炉に装入し、これらを加熱還元することで、V含有スラグ及びFe−Mo−Ni系合金を生成させる工程と、前記V含有スラグにAl還元剤を投入して、Fe−V系合金及びCaO−Al23スラグを生成させる工程とを備える。
【選択図】 図2
PROBLEM TO BE SOLVED: To provide a method capable of stably recovering a Fe-Mo-Ni-based alloy and an Fe-V-based alloy from V, Mo and Ni-containing wastes with good yield.
SOLUTION: The method for recovering valuable metals from V, Mo and Ni-containing wastes according to the present invention comprises a step of drying V, Mo and Ni-containing wastes, and a step of drying the V, Mo and Ni-containing wastes as a reducing agent. And a step of generating a V-containing slag and an Fe-Mo-Ni-based alloy by heating and reducing the Fe and flux into a heating furnace, and charging an Al reducing agent to the V-containing slag. , and a step of generating a Fe-V alloys and CaO-Al 2 O 3 slag.
[Selection] Fig. 2

Description

本発明は、使用済脱硫触媒、ボイラー灰、ボイラースラッジ、ニッケル系スラッジ、メタバナジン酸アンモニウム等の廃棄物から有価金属を回収する方法に関する。   The present invention relates to a method for recovering valuable metals from waste such as a used desulfurization catalyst, boiler ash, boiler sludge, nickel-based sludge, and ammonium metavanadate.

例えば発電所のように石油系燃料を燃料とするボイラーにおいては、ボイラーの底に沈着するボイラースラッジ、集塵装置に捕捉されるボイラー灰の中に、Ni、Vの重金属が酸化物の形態で凝縮されている。ボイラー灰を湿式アルカリ処理して得られるメタバナジン酸アンモニウムにも、Vの重金属が酸化物の形態で凝縮されている。   For example, in a boiler that uses petroleum-based fuel as a power plant, Ni and V heavy metals are in the form of oxides in boiler sludge deposited on the bottom of the boiler and boiler ash captured by a dust collector. Condensed. Ammonium metavanadate obtained by subjecting boiler ash to wet alkali treatment also condenses heavy metals of V in the form of oxides.

石油精製、ガス処理工業等の分野においては、精製過程で脱硫触媒が設けられている。この使用済脱硫触媒にも、Ni、Mo、Vの重金属が酸化物の形態で凝縮されている。これらNi、Mo、Vの酸化物をメタルの形態で回収することが、廃棄物の有効活用として望まれている。   In the fields of petroleum refining, gas processing industry and the like, a desulfurization catalyst is provided in the refining process. Also in this used desulfurization catalyst, heavy metals of Ni, Mo and V are condensed in the form of oxides. It is desired to recover these oxides of Ni, Mo, and V in the form of metal as effective use of waste.

こうした回収技術の一つに、V含有廃棄物を450〜950℃に加熱して廃棄物中のS分、N分及びC分を除去した後、この廃棄物を鉄源及び還元剤と共に混合、粉砕してから粒状に成形し、次いで、1150〜1350℃に過熱して原料中のFe分、Ni分、Mo分を固相還元した後、電気炉に装入し過熱してFe、Ni、Moを主成分とするメタルとVリッチなフラックスとを生成させ、このFe、Ni、Moを主成分とするメタルには脱P処理を行なって低P合金を得る一方、Vリッチなフラックスには強攪拌機能を有する容器にて還元材を投入するとともに攪拌を行ってフラックス中のVを還元しFe−V系合金を得る方法が開示されている(特許文献1、請求項1参照)。   One of such recovery techniques is to heat V-containing waste to 450 to 950 ° C. to remove S, N, and C in the waste, and then mix the waste with an iron source and a reducing agent. After pulverizing and forming into granules, the mixture is heated to 1150 to 1350 ° C. to solid-phase reduce Fe, Ni, and Mo in the raw material, and then charged into an electric furnace and heated to obtain Fe, Ni, A metal containing Mo as a main component and a V-rich flux are generated. The metal containing Fe, Ni, and Mo as a main component is subjected to a de-P treatment to obtain a low-P alloy, while a V-rich flux is obtained. A method is disclosed in which a reducing agent is charged into a container having a strong stirring function and stirring is performed to reduce V in the flux to obtain an Fe-V-based alloy (see Patent Document 1 and Claim 1).

他の回収技術として、V、Mo、Co及びNi含有廃棄物を焙焼する第1工程と、Mo、Ni及びCo酸化物を金属にまで還元するのに必要な化学的当量の50〜120%相当の金属Si及び/又は金属Alを添加し、加熱還元して溶解することにより、Mo−Ni系合金又はMo−Co系合金又はMo−Ni−Co系合金とCaO−Al23系スラグとを分離してそれぞれを回収する第2工程と、前記CaO−Al23系スラグに対し、このスラグ中に含まれるVの酸化物を金属にまで還元するのに必要な化学的当量以上の金属Si及び/又は金属Alを添加し、加熱還元して溶解することにより、V−Si系合金又はV−Al系合金とCaO−Al23系スラグとを分離してそれぞれを回収する第3工程とを備える方法が開示されている(特許文献2、請求項1参照)。 Other recovery techniques include a first step of roasting V, Mo, Co and Ni-containing waste and 50-120% of the chemical equivalent required to reduce Mo, Ni and Co oxides to metal. was added equivalent of the metal Si and / or a metal Al, by dissolving heat reduced to, Mo-Ni alloy or Mo-Co alloy or Mo-Ni-Co alloy and CaO-Al 2 O 3 slag And a second step of recovering each of the slags, and a chemical equivalent or more to the CaO—Al 2 O 3 -based slag which is necessary to reduce oxides of V contained in the slag to metal. added a metallic Si and / or a metal Al, by dissolving heat reduced to, to recover each separating the V-Si alloy or V-Al alloys and CaO-Al 2 O 3 slag And a third step is disclosed. That (see Patent Document 2, claim 1).

特開2000−204420号公報JP-A-2000-204420 特開2001−214423号公報JP 2001-214423 A

しかしながら特許文献1に記載の回収方法にあっては、原料中のFe、Ni、及びMo成分を固相還元する還元剤として、微粉炭又はコークスを用いている(特許文献1、段落0022参照)。このため、生成されるFe、Ni、Moを主成分とするメタル中にカーボンが残ってしまう。カーボンはメタル中のFe−Mo、Fe−Ni等に結合し易いので、後の工程でカーボンを除去するのが困難になる。また固相還元する際にMo成分がキルン内で昇華してしまい、Mo成分の回収歩留りが悪化してしまうという問題もある。さらに工程が長く設備費が増大してしまうという問題もある。   However, in the recovery method described in Patent Document 1, pulverized coal or coke is used as a reducing agent for solid-phase reduction of Fe, Ni, and Mo components in the raw material (see Patent Document 1, paragraph 0022). . For this reason, carbon remains in the generated metal mainly composed of Fe, Ni, and Mo. Since carbon is easily bonded to Fe-Mo, Fe-Ni, and the like in the metal, it becomes difficult to remove carbon in a later step. There is also a problem that the Mo component is sublimated in the kiln during the solid phase reduction, and the recovery yield of the Mo component is deteriorated. Further, there is a problem that the process is long and the equipment cost increases.

特許文献2に記載の回収方法にあっては、第1工程において、廃棄物をペレットにしないで粉のまま焙焼する(特許文献2、段落0010参照)。このため廃棄物がキルン内で焼結してしまい、流れなくなるという問題がある。   In the recovery method described in Patent Literature 2, in the first step, the waste is roasted in powder form without being pelletized (see Paragraph 0010 of Patent Literature 2). For this reason, there is a problem that the waste is sintered in the kiln and does not flow.

また第2工程において、廃棄物を粉のまま溶解するので、炉況が悪化し、例えば溶解炉内で棚吊りや吹き上げが生じてしまう。炉況の悪化は電力原単位の悪化や操業の不安定を招く。さらに第2工程において、還元剤として金属Si及び/又は金属Alを用いているので、V成分とMo、Ni成分との分離が困難になるという問題も生じる。すなわち金属Si及び/又は金属Alの量を少なくして弱還元したときには、Mo及びNi成分の歩留りが悪くなり、V含有スラグにMo及びNi成分が入ってしまう。一方強還元したときには、還元されたV成分がMo−Ni系合金に入ってしまうのみならず、Si及び/又はAl還元剤がMo−Ni系合金に入ってしまう。特に還元剤としてAlを用いると、Alが大気中の酸素と反応してしまい、酸化ロスも大きくなる。   Further, in the second step, the waste is melted as powder, so that the furnace condition is deteriorated, and for example, shelves are suspended or blown up in the melting furnace. Deteriorating reactor conditions lead to a deterioration in power consumption and operation instability. Further, in the second step, since metal Si and / or metal Al is used as the reducing agent, there is a problem that it becomes difficult to separate the V component from the Mo and Ni components. That is, when the amount of the metal Si and / or the metal Al is reduced and weakly reduced, the yield of the Mo and Ni components deteriorates, and the Mo and Ni components enter the V-containing slag. On the other hand, when strong reduction is performed, not only the reduced V component enters the Mo—Ni-based alloy, but also the Si and / or Al reducing agent enters the Mo—Ni-based alloy. In particular, when Al is used as the reducing agent, Al reacts with oxygen in the atmosphere, and the oxidation loss increases.

本発明は上記事情に鑑みなされたもので、その目的とするところは、V、Mo及びNi含有廃棄物から、Fe−Mo−Ni系合金及びFe−V系合金を安定して歩留りよく回収できる方法を提供することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to stably recover Fe-Mo-Ni-based alloys and Fe-V-based alloys from V, Mo, and Ni-containing wastes with good yield. It is to provide a method.

本発明者は、溶融還元温度1400℃〜1800℃におけるNi、Mo、Vの酸素親和力に着目した。そして図1(酸化物の標準生成自由エネルギのグラフ)に示されるように、FeがNi及びMoよりも酸素親和力が強く、Vよりも弱いことに着目し、還元剤としてFeを用いればV含有スラグとFe−Mo−Ni系合金とを歩留まり良く分離できることを知見した。   The present inventors focused on the oxygen affinity of Ni, Mo, and V at a smelting reduction temperature of 1400 ° C to 1800 ° C. As shown in FIG. 1 (graph of standard free energy of formation of oxide), attention is paid to the fact that Fe has a higher oxygen affinity than Ni and Mo and is weaker than V. It has been found that the slag and the Fe—Mo—Ni alloy can be separated with good yield.

すなわち本発明は、V、Mo及びNi含有廃棄物をFeで還元して、V含有スラグ及びFe−Mo−Ni系合金を生成させる工程と、前記V含有スラグに還元剤を投入してFe−V系合金を生成させる工程と、を備えることを特徴とする有価金属の回収方法により、上述した課題を解決する。   That is, the present invention provides a step of reducing V, Mo and Ni-containing waste with Fe to produce a V-containing slag and an Fe-Mo-Ni-based alloy, and adding a reducing agent to the V-containing slag to reduce the Fe- The above object is attained by a method for recovering valuable metals, which comprises a step of generating a V-based alloy.

また本発明は、V、Mo及びNi含有廃棄物からの有価金属の回収方法であって、以下の工程を備える:V、Mo及びNi含有廃棄物を焙焼する工程;前記V、Mo及びNi含有廃棄物、還元剤としてのFe、及びフラックスを加熱炉に装入し、これらを加熱還元することで、V含有スラグ及びFe−Mo−Ni系合金を生成させる工程;前記V含有スラグにAl還元剤を投入して、Fe−V系合金及びCaO−Al23スラグを生成させる工程、としても構成することができる。 The present invention also provides a method for recovering valuable metals from V, Mo and Ni-containing waste, comprising the following steps: a step of roasting V, Mo and Ni-containing waste; A step of charging V-containing slag and an Fe-Mo-Ni-based alloy by charging the waste containing Fe, Fe as a reducing agent, and flux into a heating furnace and reducing them by heating; and the reducing agent were charged, can also be configured as a step, to produce a Fe-V alloys and CaO-Al 2 O 3 slag.

前記V含有スラグ及びFe−Mo−Ni系合金を生成させる工程において、前記V、Mo及びNi含有廃棄物を前記Feで還元した後、前記Feで還元することにより生じたFe酸化物を、Al、Si、及びCの少なくとも一つで還元してもよい。   In the step of producing the V-containing slag and the Fe-Mo-Ni-based alloy, the V, Mo and Ni-containing waste is reduced with the Fe, and then the Fe oxide generated by the reduction with the Fe is converted into an Al oxide. , Si, and C may be reduced.

この発明によれば、還元反応により生じたFe酸化物をFe−Mo−Ni系合金の鉄源として用いることができる。またV含有スラグ中のFe分を調整することができ、ひいては最終的に得られるFe−V系合金の規格に合わせてFe分を調整することができる。   According to the present invention, the Fe oxide generated by the reduction reaction can be used as the iron source of the Fe—Mo—Ni alloy. Further, the Fe content in the V-containing slag can be adjusted, and thus the Fe content can be adjusted according to the standard of the finally obtained Fe-V alloy.

前記V、Mo及びNi含有廃棄物を乾燥する工程において、前記V、Mo及びNi含有廃棄物を乾燥した後、粉砕し、団鉱に成形し、これを焙焼することが望ましい。   In the step of drying the V, Mo, and Ni-containing waste, it is preferable that the V, Mo, and Ni-containing waste be dried, crushed, formed into briquettes, and roasted.

この発明によれば、V、Mo及びNi含有廃棄物を粉のまま加熱炉に装入することがないので、棚吊りや吹き上げが生ずることがなく、したがって安定した操業をすることがで
きる。
According to the present invention, waste containing V, Mo and Ni is not charged into the heating furnace as powder, so that shelving or blowing up does not occur, and thus stable operation can be performed.

また、前記V、Mo及びNi含有廃棄物を焙焼する工程において、前記V、Mo及びNi含有廃棄物を焙焼した後、団鉱に成形してもよい。   In the step of roasting the waste containing V, Mo and Ni, the waste containing V, Mo and Ni may be roasted and then formed into briquettes.

前記V含有スラグ及びFe−Mo−Ni系合金を生成させる工程において、あらかじめ鉄浴を生成しておき、該鉄浴に前記V、Mo及びNi含有廃棄物を装入して溶融還元反応を行うことが望ましい。   In the step of generating the V-containing slag and the Fe-Mo-Ni-based alloy, an iron bath is generated in advance, and the V, Mo, and Ni-containing waste is charged into the iron bath to perform a smelting reduction reaction. It is desirable.

この発明によれば、還元反応の反応効率を向上させることができ、しかも熱効率も向上させることができる。また加熱炉の連続した操業も可能になる。   According to the present invention, the reaction efficiency of the reduction reaction can be improved, and the thermal efficiency can be improved. In addition, continuous operation of the heating furnace becomes possible.

前記V含有スラグ及びFe−Mo−Ni系合金を生成させる工程において、前記Fe−Mo−Ni系合金を前記V含有スラグと分離した後、前記Fe−Mo−Ni系合金の脱S,脱P,脱Cを行うことが望ましい。   In the step of producing the V-containing slag and the Fe-Mo-Ni-based alloy, after the Fe-Mo-Ni-based alloy is separated from the V-containing slag, the removal of S and P from the Fe-Mo-Ni-based alloy is performed. , Desirably.

この発明によれば、Fe−Mo−Ni系合金の規格に合わせてS分,P分及びC分の不純物を除去することができる。また、団鉱に成形したV、Mo及びNi含有廃棄物を焙焼する際に廃棄物中に含まれるS分をSOxにし、C分をCO2にして排出するが、Fe−
Mo−Ni系合金をV含有スラグと分離した後に脱S、脱Cすることで、焙焼する際の負担を軽減することができる。
According to the present invention, impurities for S, P, and C can be removed according to the standard of the Fe—Mo—Ni alloy. Also, V molded into briquettes, the S component contained in waste when roasting Mo and Ni-containing waste to SOx, but discharges to the C content in the CO 2, Fe-
By removing S and C after separating the Mo-Ni-based alloy from the V-containing slag, the burden of roasting can be reduced.

前記Fe−Mo−Ni系合金の脱S,脱P,脱Cを行うのに使用される加熱用容器と、前記V含有スラグに還元剤を投入してFe−V系合金を生成させる工程において使用される加熱用容器とが、共用されることが望ましい。   In the heating vessel used to remove S, P and C from the Fe-Mo-Ni alloy, and in the step of adding a reducing agent to the V-containing slag to generate an Fe-V alloy. It is desirable that the heating container used be shared.

この発明によれば、最少の設備で回収方法を実施することができる。   According to the present invention, the collection method can be performed with the minimum equipment.

前記V含有スラグ及びFe−Mo−Ni系合金を生成させる工程において、前記Fe−Mo−Ni系合金が一回出湯される間に、前記V含有スラグが複数回出湯されるのが望ましい。   In the step of generating the V-containing slag and the Fe-Mo-Ni-based alloy, it is preferable that the V-containing slag is discharged a plurality of times while the Fe-Mo-Ni-based alloy is discharged once.

生成されるFe−Mo−Ni系合金の量はV含有スラグに比較して非常に少ない。この発明によれば、V含有スラグを頻繁に出湯することにより、熱効率が向上する。またV含有スラグを出湯するバッチ毎にFe−Mo−Ni系合金を出湯する場合に比較して、生産性も向上する。   The amount of the produced Fe-Mo-Ni-based alloy is much smaller than that of the V-containing slag. According to the present invention, the thermal efficiency is improved by frequently tapping the V-containing slag. In addition, productivity is also improved as compared with the case where the Fe-Mo-Ni-based alloy is tapped for each batch in which the V-containing slag is tapped.

以上説明したように本発明によれば、還元剤としてFeを用いるので、V、Mo及びNi含有廃棄物から、Fe−Mo−Ni系合金及びFe−V系合金を安定して歩留りよく回収できる。   As described above, according to the present invention, since Fe is used as the reducing agent, Fe-Mo-Ni-based alloys and Fe-V-based alloys can be recovered from V, Mo, and Ni-containing waste stably with good yield. .

以下、本発明の一実施形態について説明する。本実施形態では、V、Mo及びNiを含有する廃棄物を原料とする。具体的には使用済脱硫触媒(直接脱硫触媒、間接脱硫触媒)、ボイラー灰、ボイラースラッジ、ニッケル系スラッジ、メタバナジン酸アンモニウム等の少なくとも一つ又はこれらを混合した廃棄物を原料とする。表1は原料毎の成分の一例を示す。   Hereinafter, an embodiment of the present invention will be described. In this embodiment, a waste containing V, Mo, and Ni is used as a raw material. Specifically, at least one of a used desulfurization catalyst (direct desulfurization catalyst, indirect desulfurization catalyst), boiler ash, boiler sludge, nickel-based sludge, ammonium metavanadate, and the like, or a mixture thereof is used as a raw material. Table 1 shows an example of components for each raw material.

Figure 2004285473
Figure 2004285473

例えば脱硫触媒にはNi、Mo、及びV成分が多く、C、S成分も多い。ボイラー灰にはC成分が例えば80%程度含まれるが、Mo成分が含まれていない。カーボン系スラッジには水分が例えば50%も含まれる。このように多種多様な成分を有する廃棄物を原料としている。原料は重油又は水分が付着した状態になっている。   For example, a desulfurization catalyst has many Ni, Mo, and V components, and also has many C and S components. Boiler ash contains, for example, about 80% of a C component, but does not contain a Mo component. The carbon-based sludge contains, for example, 50% of water. Thus, wastes having various components are used as raw materials. The raw material is in a state where heavy oil or moisture is attached.

表2は最終的に得られる製品規格の一例を示す。   Table 2 shows an example of a finally obtained product standard.

Figure 2004285473
Figure 2004285473

Fe−V系合金には例えばJIS2号規格品相当の規格が求められる。この規格では、V成分を45〜55mass%に調整し、C、Si、P、S成分等を低く抑える必要があり、Ni、Mo及びAl成分も低く抑える必要がある。またFe−Ni−Mo系合金には
、例えば鉄鋼関係で使用される際の規格があり、この規格によればP、S成分を低く抑える必要がある。
For example, a standard equivalent to JIS No. 2 standard product is required for the Fe-V alloy. In this standard, it is necessary to adjust the V component to 45 to 55 mass%, to keep the C, Si, P, S components and the like low, and to keep the Ni, Mo and Al components low. In addition, Fe-Ni-Mo alloys have, for example, a standard when used in relation to iron and steel. According to this standard, it is necessary to keep P and S components low.

図2は有価金属の回収方法のフローを示し、図3はこのフローを図式化したものである。まず脱硫触媒(直接脱硫触媒、間接脱硫触媒)、ボイラー灰、カーボン系スラッジ、ニッケル系スラッジ、重質油ガス化スラッジ等の原料を乾燥する(S1)。この乾燥工程では、ロータリードライヤで原料を例えば120℃程度の温度に加熱して乾燥する。原料中には水分が例えば30〜40%程度揮発分として存在する。水分がある状態でこのまま次工程に進むと、水分が多すぎて団鉱できないことがある。なお、脱硫触媒及びコークスボイラー灰はもともと水分が少ないので、乾燥工程の後に投入することもある。   FIG. 2 shows a flow of the method for recovering valuable metals, and FIG. 3 is a schematic diagram of this flow. First, raw materials such as a desulfurization catalyst (a direct desulfurization catalyst and an indirect desulfurization catalyst), boiler ash, carbon-based sludge, nickel-based sludge, and heavy oil gasification sludge are dried (S1). In this drying step, the raw material is heated to a temperature of, for example, about 120 ° C. by a rotary dryer and dried. In the raw material, for example, about 30 to 40% of water exists as a volatile matter. If the process proceeds to the next step in a state where there is water, the water may be too much to aggregate. Since the desulfurization catalyst and the coke boiler ash originally have a low moisture content, they may be added after the drying step.

次に、乾燥したV、Mo及びNi含有廃棄物を粉砕する(S2)。例えば潤式ミルによりV、Mo及びNi含有廃棄物を粉砕する。粉砕すると多種多様な原料が混合され、均一になる。   Next, the dried V, Mo and Ni-containing waste is crushed (S2). For example, V, Mo and Ni-containing waste is pulverized by a wet mill. When pulverized, various raw materials are mixed and become uniform.

次に粉砕した廃棄物を造粒して団鉱に成形する(S3)。例えばペレタイザー又はブリケットにより粉砕物をペレット状又はブリケット状の団鉱に成形する。原料を団鉱に成形することなく粉のまま次工程に進むと、焙焼するキルンで原料が焼結したり、溶融還元する加熱炉で棚吊りや吹き上げが生じて炉況が悪くなったりするおそれがある。   Next, the crushed waste is granulated and formed into briquettes (S3). For example, the pulverized material is formed into pellets or briquettes using a pelletizer or briquettes. If the raw material proceeds to the next process without being formed into briquettes, the raw material will sinter in the kiln to be roasted, and the furnace will deteriorate due to shelving and blowing up in the heating furnace for smelting and reducing. There is a risk.

次に団鉱した原料を焙焼する(S4)。この工程では、団鉱した原料をキルンで例えば800〜900℃に加熱する。この焙焼により廃棄物中のS分、C分が加熱分解され、SOx、CO2等として除去される。800℃以上にするのは、原料に付着した重油とかC
分を酸化物にして除去するのに適した温度であり、950℃以下にするのはMoが昇華して回収率が落ちてしまうのを防止するためである。
Next, the aggregated raw material is roasted (S4). In this step, the aggregated raw material is heated to, for example, 800 to 900 ° C. by a kiln. By this roasting, S and C components in the waste are thermally decomposed and removed as SOx, CO 2 and the like. The temperature of 800 ° C or higher is determined by heavy oil or C
The temperature is suitable for removing oxides into oxides, and the temperature is set to 950 ° C. or lower to prevent the sublimation of Mo from lowering the recovery rate.

なおこれら乾燥工程(S1)から焙焼工程(S4)までは、加熱炉での操業の状況によっては省略されることもあり得る。   Note that the steps from the drying step (S1) to the roasting step (S4) may be omitted depending on the operation in the heating furnace.

次に焙焼した原料、還元剤としてのFe、及びフラックスとしての石灰を、加熱炉としての電気炉に装入する。そして、これらを約1700℃で加熱還元することで、V含有スラグ及びFe−Mo−Ni系合金を生成させる(S5)。   Next, the roasted raw material, Fe as a reducing agent, and lime as a flux are charged into an electric furnace as a heating furnace. Then, by heating and reducing these at about 1700 ° C., V-containing slag and an Fe—Mo—Ni-based alloy are generated (S5).

この工程(S5)では、焙焼した原料、Fe、及びフラックスを同時に電気炉に装入してもよいし、またあらかじめ鉄浴を生成しておき、該鉄浴に原料及び石灰を装入することで溶融還元反応を行ってもよい。あらかじめ鉄浴を生成すると、還元反応の反応効率を向上させることができ、しかも熱効率も向上させることができる。   In this step (S5), the roasted raw material, Fe, and flux may be simultaneously charged into an electric furnace, or an iron bath is generated in advance, and the raw material and lime are charged into the iron bath. Thus, a smelting reduction reaction may be performed. If an iron bath is generated in advance, the reaction efficiency of the reduction reaction can be improved, and the thermal efficiency can be improved.

原料中のMo酸化物及びNi酸化物の還元は、Feで行なわれる。還元剤としてのFeの量は、V、Mo及びNi含有廃棄物中のMo酸化物及びNi酸化物を金属にまで還元するのに必要な化学的当量に略等しく設定される。   Reduction of the Mo oxide and the Ni oxide in the raw material is performed with Fe. The amount of Fe as the reducing agent is set substantially equal to the chemical equivalent required to reduce Mo oxides and Ni oxides in V, Mo and Ni-containing wastes to metals.

原料をFeで還元した後、溶湯にAl還元剤を添加して、Fe還元により生じたFe酸化物及び原料中のFe酸化物をAl還元剤で還元する。Al還元剤で還元するのは、還元反応により生じたFe酸化物をFe−Mo−Ni系合金の鉄源としてメタル中に戻すためであり、またV含有スラグ中のFe分を調整するためでもある。Al還元剤はあくまでFe分の成分調整用に補助的に用いられる。Fe酸化物の還元剤としては、金属Al、金属Si、フェロシリコン、コークス等のいずれか一つ、又はこれらの組み合わせを用いることができる。   After reducing the raw material with Fe, an Al reducing agent is added to the molten metal, and the Fe oxide generated by the Fe reduction and the Fe oxide in the raw material are reduced with the Al reducing agent. The reduction with the Al reducing agent is for returning the Fe oxide generated by the reduction reaction to the metal as an iron source of the Fe-Mo-Ni-based alloy, and also for adjusting the Fe content in the V-containing slag. is there. The Al reducing agent is used only for adjusting the component of Fe. As the reducing agent for Fe oxide, any one of metal Al, metal Si, ferrosilicon, coke, and the like, or a combination thereof can be used.

Al還元剤を添加することなく、全てFe還元剤で還元することも、還元剤としてのFeの量にFe−Mo−Ni系合金の鉄源としての分を加えることで可能である。しかしそうすると次工程でV含有スラグ中のFe分が多くなりすぎて、V成分を還元するのが困難になってしまう。V含有スラグ中のFe分が多い場合、V含有スラグにV成分調整用にV25又はメタバナジン酸アンモニウムを装入する必要がある。 It is also possible to perform all reduction with the Fe reducing agent without adding the Al reducing agent by adding the amount of Fe as the reducing agent to the amount of Fe as the iron source of the Fe—Mo—Ni alloy. However, in this case, the amount of Fe in the V-containing slag in the next step becomes too large, and it becomes difficult to reduce the V component. When the Fe content in the V-containing slag is large, it is necessary to charge the V-containing slag with V 2 O 5 or ammonium metavanadate for adjusting the V component.

次にFe−Mo−Ni系合金をV含有スラグと分離した後、Fe−Mo−Ni系合金の脱S,脱P,脱Cを行う(S6,S7)。原料中のP成分はFe−Mo−Ni系合金中に残る。S成分は規格が厳しいので脱Sする必要があり、C成分は電極からの加炭もあるので脱Cする必要がある。   Next, after separating the Fe-Mo-Ni-based alloy from the V-containing slag, the Fe-Mo-Ni-based alloy is subjected to de-S, de-P, and de-C (S6, S7). The P component in the raw material remains in the Fe-Mo-Ni-based alloy. Since the S component has a strict standard, it is necessary to remove S, and the C component needs to be removed from C because of carburization from the electrode.

この工程では、まずFe−Mo−Ni系合金を加熱用容器としてのレードル・ファーネスに出湯する(S6)。次に、石灰、CaO−Al23系フラックス、及びCaO−Al23−FeO系フラックス等を装入し、脱S,P,Cを行う(S7)。CaO−Al23系フラックスには、後述するV含有スラグをAl還元することで発生するスラグを利用してもよい。ArガスやO2ガス吹き(バブリング利用)は効果がある。最後に脱S,脱P
,脱Cを行ったFe−Mo−Ni系合金を鋳型に鋳込む。
In this step, first, the Fe-Mo-Ni alloy is poured into a ladle furnace as a heating vessel (S6). Next, lime was charged with CaO-Al 2 O 3 based flux, and CaO-Al 2 O 3 -FeO based flux or the like, and de-S, P, and C (S7). The CaO-Al 2 O 3 based flux, may be utilized slag generated by Al reducing the V-containing slag to be described later. Ar gas or O 2 gas blowing (using bubbling) is effective. Finally, de-S, de-P
Then, the Fe-Mo-Ni-based alloy de-C is cast into a mold.

一方V含有スラグも、加熱用容器としてのレードル・ファーネスに出湯される(S8)。このレードル・ファーネスには、Al還元剤、石灰及びV成分調整用のV25も投入され、これによりV含有スラグからFe−V系合金及びCaO−Al23スラグが生成する。ここで最少の設備にするために、Fe−Mo−Ni系合金を脱S,脱P,脱Cするのに使用されるレードル・ファーネスと、V含有スラグをAl還元するのに使用されるレードル・ファーネスとが共用される。 On the other hand, the V-containing slag is also supplied to the ladle furnace as a heating vessel (S8). An Al reducing agent, lime, and V 2 O 5 for adjusting the V component are also supplied to the ladle furnace, whereby an Fe—V alloy and a CaO—Al 2 O 3 slag are generated from the V-containing slag. Here, in order to minimize the equipment, a ladle furnace used to remove S, P, and C from the Fe-Mo-Ni alloy and a ladle used to reduce V-containing slag to Al. -Shared with furnace.

図4は電気炉における溶湯量と、メタルFe、Ni、Mo成分の経時的な変化を示す概念図である。Fe還元することにより、時間の経過に伴ってメタル中のFe成分が少なくなり、Ni及びMo成分が多くなり、その後安定させることができる。また、V含有スラグが所定の量になると、メタルをそのまま炉内に残し、V含有スラグだけレードル・ファーネスに出湯する。そしてレードル・ファーネスでV含有スラグの還元が行なわれる。一方V含有スラグがレードル・ファーネスに出湯される複数バッチに一回、Fe−Mo−Ni系合金が同じレードル・ファーネスに出湯される。そして同じレードル・ファーネスで脱S,脱P,脱Cの精錬が行われる。   FIG. 4 is a conceptual diagram showing the amount of molten metal in an electric furnace and changes over time of metal Fe, Ni, and Mo components. By reducing Fe, the Fe component in the metal decreases over time, the Ni and Mo components increase, and the metal can be stabilized thereafter. Further, when the V-containing slag reaches a predetermined amount, the metal is left as it is in the furnace, and only the V-containing slag flows into the ladle furnace. Then, the V-containing slag is reduced in the ladle furnace. On the other hand, once in a plurality of batches in which the V-containing slag is discharged to the ladle furnace, the Fe-Mo-Ni-based alloy is discharged to the same ladle furnace. Refining for removal of S, removal of P and removal of C is performed in the same ladle furnace.

生成されるFe−Mo−Ni系合金の量はV含有スラグに比較して非常に少ない。V含有スラグを頻繁に出湯することにより、電気炉の熱効率が向上する。またV含有スラグを出湯するバッチ毎にFe−Mo−Ni系合金を出湯する場合に比較して、生産性も向上する。   The amount of the produced Fe-Mo-Ni-based alloy is much smaller than that of the V-containing slag. By frequently tapping the V-containing slag, the thermal efficiency of the electric furnace is improved. In addition, productivity is also improved as compared with the case where the Fe-Mo-Ni-based alloy is tapped for each batch in which the V-containing slag is tapped.

図5は有価金属の回収方法のフローの他の例を示す。このフローでは、予備処理工程の乾燥工程と焙焼工程とを一緒にして、プロセスをシンプルにしている。まず脱硫触媒(直接脱硫触媒、間接脱硫触媒)、ボイラー灰、カーボン系スラッジ、ニッケル系スラッジ、重質油ガス化スラッジ等の原料を焙焼する(S1´)。この工程では、例えばロータリーキルンで例えば800〜900℃に加熱する。この焙焼により、廃棄物中の水分が蒸発し、また、S分、C分が除かれる。   FIG. 5 shows another example of the flow of the valuable metal recovery method. In this flow, the drying step and the roasting step of the pretreatment step are combined to simplify the process. First, raw materials such as a desulfurization catalyst (a direct desulfurization catalyst and an indirect desulfurization catalyst), boiler ash, carbon-based sludge, nickel-based sludge, and heavy oil gasification sludge are roasted (S1 '). In this step, for example, heating is performed to, for example, 800 to 900 ° C. by a rotary kiln. By this roasting, moisture in the waste evaporates, and S and C components are removed.

次に、粉々になっている原料を団鉱する(S3´)。例えばペレタイザー又はブリケットにより原料をペレット状又はブリケット状の団鉱に成形する。原料によっては、ブリケット状により団鉱しやすくするために、団鉱する前に粉砕工程を入れてもよい(S2´)。粉でないものは団鉱せずにそのまま装入してもよい。原料、還元剤としてのFe、及び
フラックスとしての石灰を、加熱炉としての電気炉に装入する(S5)以降のプロセスは、上記図2に示される回収方法のフローと同一なので、同一の符号を附してその説明を省略する。
Next, the powdered raw material is aggregated (S3 '). For example, the raw material is formed into pellets or briquettes using a pelletizer or briquettes. Depending on the raw material, a pulverizing step may be performed before briquetting to facilitate briquetting in a briquette shape (S2 '). Non-powder may be charged as it is without bridging. The process after charging the raw material, Fe as the reducing agent, and lime as the flux into the electric furnace as the heating furnace (S5) and thereafter is the same as the flow of the recovery method shown in FIG. And the description is omitted.

図6は、有価金属の回収方法のフローのさらに他の例を示す。このフローでは、さらにプロセスをシンプルにし、原料をそのまま電気炉に装入している。油、水等の揮発分が含まれる原料を電気炉に装入すると、電気炉操業が困難になるおそれがあるが、原料によっては揮発分が少ないものもある。このフローは、揮発分が少ない原料の処理に適している。原料、還元剤としてのFe、及びフラックスとしての石灰を、加熱炉としての電気炉に装入する(S5)以降のプロセスは、上記図2に示される回収方法のフローと同一なので、同一の符号を附してその説明を省略する。   FIG. 6 shows still another example of the flow of the valuable metal recovery method. In this flow, the process is further simplified, and the raw materials are directly charged into the electric furnace. If a raw material containing volatile components such as oil and water is charged into an electric furnace, the operation of the electric furnace may be difficult, but some raw materials have a small volatile component. This flow is suitable for processing a raw material having a low volatile content. The process after charging the raw material, Fe as the reducing agent, and lime as the flux into the electric furnace as the heating furnace (S5) and thereafter is the same as the flow of the recovery method shown in FIG. And the description is omitted.

脱硫触媒、ボイラー灰、ニッケル系スラッジの混合原料をドライヤで焙焼して表3の成分組成が得られた。   The raw material mixture of the desulfurization catalyst, boiler ash, and nickel-based sludge was roasted in a dryer to obtain the component compositions shown in Table 3.

Figure 2004285473
Figure 2004285473

次に500KVA電気炉に、乾燥原料100kg、生石灰14kg、Fe7kgを装入し、これらを約1700℃に加熱し、溶融還元反応を行った。表4に示される成分組成のFe−Mo−Ni系合金10kgとVリッチスラグを生成した。   Next, 100 kg of dry raw material, 14 kg of quicklime, and 7 kg of Fe were charged into a 500 KVA electric furnace, and these were heated to about 1700 ° C. to perform a smelting reduction reaction. 10 kg of an Fe-Mo-Ni-based alloy having the component composition shown in Table 4 and V-rich slag were produced.

Figure 2004285473
Figure 2004285473

分離回収したVリッチスラグ57kgを高周波炉で1600℃に保持し、還元剤として金属Alを5kgと石灰5kg、V257kgを添加して表5に示されるFe−V系合金10kgを回収した。 57 kg of the separated and recovered V-rich slag is kept at 1600 ° C. in a high-frequency furnace, and 5 kg of metal Al, 5 kg of lime and 7 kg of V 2 O 5 are added as a reducing agent, and 10 kg of an Fe-V alloy shown in Table 5 is recovered. did.

Figure 2004285473
Figure 2004285473

脱硫触媒、ボイラースラッジ、ニッケル系スラッジ、ボイラー灰等の原料を乾燥後、バインダとしてベントナイトを2%添加してから潤式ボールミルにて200mesh以下に調湿・粉砕し、次いで団鉱機を用いて直径10mm程度のペレットに成形した。その後、竪型キルンにて、800℃、3時間焙焼し、表6に示される焙焼物を得た。   After drying raw materials such as a desulfurization catalyst, boiler sludge, nickel-based sludge, and boiler ash, 2% of bentonite is added as a binder, and then moisture-conditioned and pulverized to 200 mesh or less by a wet ball mill, and then using a briquette machine. It was formed into a pellet having a diameter of about 10 mm. Thereafter, the resultant was roasted in a vertical kiln at 800 ° C. for 3 hours to obtain a roasted product shown in Table 6.

Figure 2004285473
Figure 2004285473

マグネシアライニングされた500KVA電気炉に、あらかじめFe17kgを溶融しておき、そこに上記焙焼物100kgと生石灰32、Al4kgを添加し、さらにArガスを吹き込む攪拌を加えることにより、表7に示されるFe−Mo−Ni系合金24kgを得た。   In a magnesia-lined 500 KVA electric furnace, 17 kg of Fe was previously melted, and 100 kg of the roasted material, 32 lime and 4 kg of Al were added thereto, and further, stirring was performed by blowing Ar gas to obtain Fe- 24 kg of a Mo—Ni alloy was obtained.

Figure 2004285473
Figure 2004285473

さらにFe−Mo−Ni系合金を高周波炉で加熱保持し、脱S,P,Cを行った。表8に結果を示す。   Further, the Fe-Mo-Ni alloy was heated and held in a high-frequency furnace to remove S, P, and C. Table 8 shows the results.

Figure 2004285473
Figure 2004285473

分離回収したVリッチスラグ138kgを約1600℃に保持し、Arガスで攪拌した。還元剤として金属Al25kgと、V25を21kgと、石灰25kgとを添加することで、表9に示されるFe−V系合金39kgを回収した。 138 kg of the V-rich slag separated and recovered was kept at about 1600 ° C., and stirred with Ar gas. Metal Al25kg as a reducing agent, and 21kg of V 2 O 5, by adding a lime 25 kg, was recovered Fe-V alloy 39kg shown in Table 9.

Figure 2004285473
Figure 2004285473

また、スラグ成分は、CaO31%、Al2352%、SiO22%、MgO8%、F
eO0.8%であった。
The slag components are CaO 31%, Al 2 O 3 52%, SiO 2 2%, MgO 8%,
eO was 0.8%.

酸化物の標準生成自由エネルギのグラフ。Graph of standard free energy of formation of oxide. 本発明の一実施形態における有価金属の回収方法のフローを示す図。The figure which shows the flow of the recovery method of valuable metals in one Embodiment of this invention. 図2のフローを図式化した図。FIG. 3 is a diagram schematically illustrating the flow of FIG. 2. 電気炉におけるメタル中のFe、Ni、Mo成分の経時的な変化と電気炉の溶湯量の変化を示す概念図。The conceptual diagram which shows the time-dependent change of Fe, Ni, and Mo components in the metal in an electric furnace, and the change of the amount of molten metal of an electric furnace. 有価金属の回収方法のフローの他の例を示す図。The figure which shows the other example of the flow of the recovery method of a valuable metal. 有価金属の回収方法のフローのさらに他の例を示す図。The figure which shows further another example of the flow of the valuable metal collection method.

符号の説明Explanation of reference numerals

S1…V,Ni,Mo含有廃棄物を乾燥する工程
S2…乾燥したV、Mo及びNi含有廃棄物を粉砕する工程
S3…粉砕した廃棄物を造粒して団鉱に成形する工程
S4…団鉱した原料を焙焼する工程
S5…V含有スラグ及びFe−Mo−Ni系合金を生成させる工程
S6…Fe−Mo−Ni系合金をレードルファーネルに出湯する工程
S7…脱S,脱P,脱Cを行う工程
S8…V含有スラグをレードル・ファーネスに出湯する工程
S1: Step of drying V, Ni, and Mo-containing waste S2: Step of pulverizing the dried V, Mo, and Ni-containing waste S3: Step of granulating the pulverized waste to form a briquette S4: Dang Step of roasting the ore raw material S5 ... Step of producing V-containing slag and Fe-Mo-Ni alloy S6 ... Step of tapping Fe-Mo-Ni alloy into ladle funnel S7 ... DeS, DeP, DeP Step of performing C S8: Step of tapping V-containing slag into ladle furnace

Claims (9)

V、Mo及びNi含有廃棄物をFeで還元して、V含有スラグ及びFe−Mo−Ni系合金を生成させる工程と、
前記V含有スラグに還元剤を投入してFe−V系合金を生成させる工程と、を備えるV、Mo及びNi含有廃棄物からの有価金属の回収方法。
Reducing V, Mo and Ni-containing waste with Fe to produce a V-containing slag and a Fe-Mo-Ni-based alloy;
Supplying a reducing agent to the V-containing slag to generate an Fe-V-based alloy, and recovering valuable metals from V, Mo, and Ni-containing waste.
V、Mo及びNi含有廃棄物からの有価金属の回収方法であって、以下の工程を備える:
V、Mo及びNi含有廃棄物を焙焼する工程;
前記V、Mo及びNi含有廃棄物、還元剤としてのFe、及びフラックスを加熱炉に装入し、これらを加熱還元することで、V含有スラグ及びFe−Mo−Ni系合金を生成させる工程;
前記V含有スラグにAl還元剤を投入して、Fe−V系合金及びCaO−Al23スラグを生成させる工程。
A method for recovering valuable metals from waste containing V, Mo and Ni, comprising the following steps:
Roasting V, Mo and Ni containing waste;
A step of charging the V, Mo, and Ni-containing waste, Fe as a reducing agent, and a flux into a heating furnace and reducing them by heating to generate a V-containing slag and an Fe-Mo-Ni-based alloy;
The V-containing slag by introducing the Al reducing agent, Fe-V alloys and CaO-Al 2 O 3 process to produce the slag.
前記V含有スラグ及びFe−Mo−Ni系合金を生成させる工程において、
前記V、Mo及びNi含有廃棄物を前記Feで還元した後、前記Feで還元することにより生じたFe酸化物をAl、Si、及びCの少なくとも一つで還元することを特徴とする請求項1又は2に記載のV、Mo及びNi含有廃棄物からの有価金属の回収方法。
In the step of producing the V-containing slag and the Fe-Mo-Ni-based alloy,
The V, Mo and Ni-containing waste is reduced with the Fe, and then the Fe oxide generated by the reduction with the Fe is reduced with at least one of Al, Si, and C. 3. The method for recovering valuable metals from waste containing V, Mo and Ni according to 1 or 2.
前記V、Mo及びNi含有廃棄物を焙焼する工程において、
前記V、Mo及びNi含有廃棄物を乾燥した後、粉砕し、団鉱に成形し、これを焙焼することを特徴とする請求項2又は3に記載のV、Mo及びNi含有廃棄物からの有価金属の回収方法。
In the step of roasting the V, Mo and Ni-containing waste,
The V, Mo, and Ni-containing waste according to claim 2 or 3, wherein the V, Mo, and Ni-containing waste is dried, pulverized, formed into briquettes, and roasted. Recovery method of valuable metals.
前記V、Mo及びNi含有廃棄物を焙焼する工程において、
前記V、Mo及びNi含有廃棄物を焙焼した後、団鉱に成形することを特徴とする請求項2又は3に記載のV、Mo及びNi含有廃棄物からの有価金属の回収方法。
In the step of roasting the V, Mo and Ni-containing waste,
The method for recovering valuable metals from V, Mo, and Ni-containing waste according to claim 2 or 3, wherein the V, Mo, and Ni-containing waste is roasted and then formed into briquettes.
前記V含有スラグ及びFe−Mo−Ni系合金を生成させる工程において、
あらかじめ鉄浴を生成しておき、該鉄浴に前記V、Mo及びNi含有廃棄物を装入して溶融還元反応を行うことを特徴とする請求項1ないし5いずれかに記載のV、Mo及びNi含有廃棄物からの有価金属の回収方法。
In the step of producing the V-containing slag and the Fe-Mo-Ni-based alloy,
The V, Mo according to any one of claims 1 to 5, wherein an iron bath is generated in advance, and the V, Mo, and Ni-containing waste is charged into the iron bath to perform a smelting reduction reaction. And a method of recovering valuable metals from Ni-containing waste.
前記V含有スラグ及びFe−Mo−Ni系合金を生成させる工程において、
前記Fe−Mo−Ni系合金を前記V含有スラグと分離した後、前記Fe−Mo−Ni系合金の脱S,脱P,脱Cを行うことを特徴とする請求項1ないし6いずれかに記載のV、Mo及びNi含有廃棄物からの有価金属の回収方法。
In the step of producing the V-containing slag and the Fe-Mo-Ni-based alloy,
The method according to any one of claims 1 to 6, wherein after the Fe-Mo-Ni-based alloy is separated from the V-containing slag, the Fe-Mo-Ni-based alloy is subjected to de-S, P, and C removal. The method for recovering valuable metals from waste containing V, Mo and Ni described in the above.
前記Fe−Mo−Ni系合金の脱S,脱P,脱Cを行うのに使用される加熱用容器と、前記V含有スラグに還元剤を投入してFe−V系合金を生成させる工程において使用される加熱用容器とが、共用されることを特徴とする請求項7に記載のV、Mo及びNi含有廃棄物からの有価金属の回収方法。   In the heating vessel used to remove S, P and C from the Fe-Mo-Ni alloy, and in the step of adding a reducing agent to the V-containing slag to generate an Fe-V alloy. The method for recovering valuable metals from V, Mo, and Ni-containing waste according to claim 7, wherein the heating vessel used is shared. 前記V含有スラグ及びFe−Mo−Ni系合金を生成させる工程において、
前記Fe−Mo−Ni系合金が一回出湯される間に、前記V含有スラグが複数回出湯されることを特徴とする請求項1ないし8いずれかに記載のV、Mo及びNi含有廃棄物からの有価金属の回収方法。
In the step of producing the V-containing slag and the Fe-Mo-Ni-based alloy,
9. The V-, Mo-, and Ni-containing waste according to any one of claims 1 to 8, wherein the V-containing slag is tapped a plurality of times while the Fe-Mo-Ni-based alloy is tapped once. For recovering valuable metals from coal.
JP2003409513A 2002-12-06 2003-12-08 Method for recovering valuable metals from waste containing V, Mo and Ni Expired - Lifetime JP3705498B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003409513A JP3705498B2 (en) 2002-12-06 2003-12-08 Method for recovering valuable metals from waste containing V, Mo and Ni

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002355729 2002-12-06
JP2003059837 2003-03-06
JP2003409513A JP3705498B2 (en) 2002-12-06 2003-12-08 Method for recovering valuable metals from waste containing V, Mo and Ni

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005119829A Division JP4485987B2 (en) 2002-12-06 2005-04-18 Method for recovering valuable metals from waste containing V, Mo and Ni

Publications (3)

Publication Number Publication Date
JP2004285473A true JP2004285473A (en) 2004-10-14
JP2004285473A5 JP2004285473A5 (en) 2005-06-23
JP3705498B2 JP3705498B2 (en) 2005-10-12

Family

ID=33303660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003409513A Expired - Lifetime JP3705498B2 (en) 2002-12-06 2003-12-08 Method for recovering valuable metals from waste containing V, Mo and Ni

Country Status (1)

Country Link
JP (1) JP3705498B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008068810A1 (en) * 2006-11-30 2008-06-12 Kohsei Co., Ltd. Process for recovering valuable metals from waste
JP2009287053A (en) * 2008-05-27 2009-12-10 Sumitomo Heavy Ind Ltd Vanadium recovery device
US8137654B2 (en) 2005-10-05 2012-03-20 Jfe Material Co., Ltd. Method of roasting material containing at least one of V, Mo and Ni and rotary kiln for roasting the same
KR101569911B1 (en) 2014-05-09 2015-11-17 주식회사 미네월드 Recovering method of ferro-molybdenum from ferro-molybdenum slag
CN110735080A (en) * 2019-10-10 2020-01-31 南京钢铁股份有限公司 Production method of steel multi-stage special container steel blank
JPWO2023084947A1 (en) * 2021-11-12 2023-05-19
WO2024225041A1 (en) * 2023-04-28 2024-10-31 Jfeスチール株式会社 Method for recovering valuable element
JPWO2024225035A1 (en) * 2023-04-28 2024-10-31

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8137654B2 (en) 2005-10-05 2012-03-20 Jfe Material Co., Ltd. Method of roasting material containing at least one of V, Mo and Ni and rotary kiln for roasting the same
WO2008068810A1 (en) * 2006-11-30 2008-06-12 Kohsei Co., Ltd. Process for recovering valuable metals from waste
US8317895B2 (en) 2006-11-30 2012-11-27 Kohsei Co., Ltd. Method for recovering valuable metals from wastes
JP2009287053A (en) * 2008-05-27 2009-12-10 Sumitomo Heavy Ind Ltd Vanadium recovery device
KR101569911B1 (en) 2014-05-09 2015-11-17 주식회사 미네월드 Recovering method of ferro-molybdenum from ferro-molybdenum slag
CN110735080A (en) * 2019-10-10 2020-01-31 南京钢铁股份有限公司 Production method of steel multi-stage special container steel blank
JP7609274B2 (en) 2021-11-12 2025-01-07 Jfeスチール株式会社 Method for recovering valuable elements
WO2023084947A1 (en) * 2021-11-12 2023-05-19 Jfeスチール株式会社 Valuable element recovery mehtod
JPWO2023084947A1 (en) * 2021-11-12 2023-05-19
EP4403658A4 (en) * 2021-11-12 2025-06-04 JFE Steel Corporation Valuable element recovery mehtod
WO2024225041A1 (en) * 2023-04-28 2024-10-31 Jfeスチール株式会社 Method for recovering valuable element
JPWO2024225035A1 (en) * 2023-04-28 2024-10-31
JPWO2024225041A1 (en) * 2023-04-28 2024-10-31
WO2024225035A1 (en) * 2023-04-28 2024-10-31 Jfeスチール株式会社 Valuable element recovery method
JP7670248B2 (en) 2023-04-28 2025-04-30 Jfeスチール株式会社 Method for recovering valuable elements
JP7670246B2 (en) 2023-04-28 2025-04-30 Jfeスチール株式会社 Method for recovering valuable elements

Also Published As

Publication number Publication date
JP3705498B2 (en) 2005-10-12

Similar Documents

Publication Publication Date Title
CA3056280C (en) Carbothermic direct reduction of chromite using a catalyst for the production of ferrochrome alloy
CN102337408B (en) Two-step reduction method for recycling stainless steel scales
JP2009079303A (en) Manufacturing method of stainless steel by reutilizing waste in stainless steel manufacturing process
KR100764259B1 (en) METHOD FOR RECOVERING VALUABLE METAL FROM WASTE CONTAINING V, Mo AND Ni
CA2607770C (en) Method for recovering valuable metals from wastes
JP3705498B2 (en) Method for recovering valuable metals from waste containing V, Mo and Ni
KR100291250B1 (en) Process for reducing the electric steelworksdusts and facility for implementing it
JP3705472B2 (en) Method for recovering useful metals from vanadium-containing waste
JP2011094207A (en) Method for producing metal manganese
WO2009145348A1 (en) Method for manufacturing pig iron
JP2002105550A (en) Method for zinc recovery
JP2011246760A (en) Method of manufacturing ferromolybdenum, and ferromolybdenum
JP6409811B2 (en) Recycling method for chromium-containing dust
JP4485987B2 (en) Method for recovering valuable metals from waste containing V, Mo and Ni
RU2612330C2 (en) Method of direct reduction of materials containing metal oxides to produce melt metal and device for carrying out method
JP2004270036A (en) Recovering method of useful metal from useful metal-containing waste
JP2004143492A (en) Melting method of ultra low phosphorus stainless steel
CN120359194A (en) A slag treatment process and equipment
CN100494423C (en) Method for recovery of valuable metals from waste containing V, Mo and Ni
KR100770059B1 (en) Recovery of valuable metals from wastes containing V, MO, and Ni
JPS59159945A (en) Method for producing metallic magnesium and calcium ferrite from dolomite
JP2001098339A (en) Method of producing vanadium alloy iron and vanadium alloy steel
JP2011094206A (en) Method for recovering valuable metal from waste battery or the like
JP2023168817A (en) RECOVERY METHOD OF VALUABLE METALS FROM Mo, Ni, V-CONTAINING WASTE
JP2004076152A (en) Method for producing stainless steel reusing waste material in stainless steel producing process

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040126

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041208

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20041208

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20041208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041210

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20050207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050721

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050721

R150 Certificate of patent or registration of utility model

Ref document number: 3705498

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080805

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090805

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100805

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110805

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120805

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130805

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term