[go: up one dir, main page]

JP2004296341A - Secondary battery and method of manufacturing the same - Google Patents

Secondary battery and method of manufacturing the same Download PDF

Info

Publication number
JP2004296341A
JP2004296341A JP2003089101A JP2003089101A JP2004296341A JP 2004296341 A JP2004296341 A JP 2004296341A JP 2003089101 A JP2003089101 A JP 2003089101A JP 2003089101 A JP2003089101 A JP 2003089101A JP 2004296341 A JP2004296341 A JP 2004296341A
Authority
JP
Japan
Prior art keywords
electrode
main body
edge
current collector
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003089101A
Other languages
Japanese (ja)
Inventor
Koichi Sato
広一 佐藤
Hideo Hagino
秀雄 萩野
Naoya Nakanishi
直哉 中西
Atsuhiro Funabashi
淳浩 船橋
Toshiyuki Noma
俊之 能間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2003089101A priority Critical patent/JP2004296341A/en
Publication of JP2004296341A publication Critical patent/JP2004296341A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

【課題】集電板の厚さを増大させたとしても、リード部のみを容易に折り曲げることが出来る二次電池を提供する。
【解決手段】本発明に係る二次電池においては、電極体4の一方の端部に正極41を構成する帯状芯体の端縁48が突出し、該端縁48を覆って集電板5が設置されている。該集電板5は、焼鈍し処理を施されたアルミニウム板によって作製され、前記端縁48と接触する円板状の本体51と、該本体51の外周に突設された帯状のリード部55とから構成されている。前記本体51には、前記端縁48に向かって突出する円弧状凸条部52及び切り起し片53が塑性加工によって形成され、前記リード部55は、その先端が前記本体51に向かって折り返されて正極端子91と連結されている。
【選択図】 図1
An object of the present invention is to provide a secondary battery in which only a lead portion can be easily bent even when the thickness of a current collector plate is increased.
In a secondary battery according to the present invention, an edge of a band-shaped core constituting a positive electrode projects from one end of an electrode, and a current collector plate covers the edge. is set up. The current collecting plate 5 is made of an annealed aluminum plate, and has a disk-shaped main body 51 in contact with the edge 48, and a strip-shaped lead portion 55 protruding from the outer periphery of the main body 51. It is composed of On the main body 51, an arc-shaped ridge 52 protruding toward the edge 48 and a cut-and-raised piece 53 are formed by plastic working, and the leading end of the lead portion 55 is folded back toward the main body 51. And is connected to the positive electrode terminal 91.
[Selection diagram] Fig. 1

Description

【0001】
【発明の属する技術分野】
本発明は、電池缶の内部に二次電池要素となる電極体が収容され、電池缶に設けた一対の電極端子部から電極体の発生電力を取り出すことが出来る二次電池、及びその製造方法に関するものである。
【0002】
【従来の技術】
近年、携帯型電子機器の電源として、エネルギー密度の高いリチウムイオン二次電池が注目されている。又、電気自動車の電源として、大容量の円筒型二次電池が注目されている。
従来の円筒型リチウムイオン二次電池は、図7及び図8に示す様に、筒体(11)の両端部に蓋体(12)(12)を溶接固定してなる円筒状の電池缶(1)の内部に、巻き取り電極体(4)を収容して構成されている。両蓋体(12)(12)には、正負一対の電極端子機構(9)(9)が取り付けられており、巻き取り電極体(4)の両極と両電極端子機構(9)(9)とが互いに接続されて、巻き取り電極体(4)が発生する電力を一対の電極端子機構(9)(9)から外部に取り出すことが可能となっている。又、各蓋体(12)には圧力開閉式のガス排出弁(13)が取り付けられている。
【0003】
巻き取り電極体(4)は、図9に示す如く、それぞれ帯状の正極(41)と負極(43)の間に帯状のセパレータ(42)を介在させて、これらを渦巻き状に巻回して構成されている。正極(41)は、アルミニウム箔からなる帯状芯体(45)の両面にリチウム複合酸化物からなる正極活物質(44)を塗布して構成され、負極(43)は、銅箔からなる帯状芯体(47)の両面に炭素材料を含む負極活物質(46)を塗布して構成されている。セパレータ(42)には、非水電解液が含浸されている。
【0004】
ここで、正極(41)及び負極(43)はそれぞれセパレータ(42)上に幅方向へずらして重ね合わされ、渦巻き状に巻き取られている。これによって、巻き取り電極体(4)の巻き軸方向の両端部の内、一方の端部では、セパレータ(42)の端縁よりも外方へ正極(41)の芯体(45)の端縁(48)が突出すると共に、他方の端部では、セパレータ(42)の端縁よりも外方へ負極(43)の芯体(47)の端縁(48)が突出している。
巻き取り電極体(4)の両端部には、帯状芯体の端縁(48)を覆って集電板(6)が設置されている。該集電板(6)は、円板状の本体(61)の表面に帯状のリード板(65)を溶接接合して構成され、円板状本体(61)の裏面には、巻き取り電極体(4)の端縁(48)が抵抗溶接される。
【0005】
電極端子機構(9)は、電池缶(1)の蓋体(12)を貫通して取り付けられた電極端子(91)を具え、該電極端子(91)の基端部には鍔部(92)が形成されている。蓋体(12)の貫通孔には絶縁パッキング(93)が装着され、蓋体(12)と締結部材(91)の間の電気的絶縁性とシール性が保たれている。電極端子(91)には、蓋体(12)の外側からワッシャ(94)が嵌められると共に、第1ナット(95)及び第2ナット(96)が螺合している。そして、第1ナット(95)を締め付けて、電極端子(91)の鍔部(92)とワッシャ(94)によって絶縁パッキング(93)を挟圧することにより、シール性を高めている。
尚、集電板(6)のリード部(65)の先端部は、電極端子(91)の鍔部(92)にスポット溶接或いは超音波溶接によって固定されている。
【0006】
しかしながら、図8に示す集電構造を有する円筒型リチウムイオン二次電池においては、リード板(65)が本体(61)に溶接接続されるため、該接続部に溶接による抵抗が生じることとなり、これによって電池の内部抵抗が大きくなる問題があった。又、リード板(65)を本体(61)に溶接する工程が必要となるので、生産性が悪い問題があった。
そこで、生産性に優れた低抵抗な電池として、集電板の本体の外周縁にリード部を一体に形成し、該リード部の先端部を本体に向けて折り返し、該先端部を電極端子の鍔部に連結する構造が提案されている(特許文献1参照)。
かかる集電構造を具えた二次電池においては、リード部が集電板に一体に成型されているので、リード部を本体に溶接する必要がない。これによって、集電板での電気抵抗を従来よりも低下させることが出来、又、製造工程を簡略化することが出来る。
【0007】
【特許文献1】
特公平2−4102号公報
【0008】
【発明が解決しようとする課題】
【0009】
しかしながら、本体にリード部が一体成型された集電板を具えた二次電池(特許文献1)においては、本体とリード部が同じ板厚に形成されることになるので、集電板の電気抵抗を小さくすると共に本体の剛性を必要な大きさとするために集電板の厚さを増大させると、リード部も厚さの大きなものとなって、リード部を電極端子部に連結する際の折り曲げが困難となる問題があった。
そこで本発明の目的は、集電板の厚さを増大させた場合にも、リード部のみを容易に折り曲げることが出来る二次電池及びその製造方法を提供することである。
【0010】
【課題を解決する為の手段】
本発明に係る二次電池は、電池缶(1)の内部に、それぞれ帯状の正極(41)と負極(43)の間にセパレータ(42)を介在させて積層した電極体(4)が収容され、正極(41)及び負極(43)はそれぞれ、帯状芯体の表面に活物質を塗布して構成され、電極体(4)が発生する電力を一対の電極端子部から外部へ取り出すことが出来る。
電極体(4)の少なくとも何れか一方の端部には、正極(41)或いは負極(43)を構成する帯状芯体の端縁(48)が突出し、該端縁(48)を覆って集電板(5)が設置されている。該集電板(5)は、全体に焼鈍し処理が施された金属板によって作製され、前記端縁(48)と接触する平板状の本体(51)と、該本体(51)に突設されたリード部(55)とから構成されている。前記本体(51)には、1或いは複数の箇所に、前記端縁(48)に向かって突出する突出部が、焼鈍し後の塑性加工によって形成され、前記リード部(55)は、その先端が一方の電極端子部と連結されている。
【0011】
具体的構成において、前記リード部(55)は、帯状に形成されており、その先端が前記本体(51)に向かって折り返されて一方の電極端子部と連結されている。
【0012】
上記本発明に係る二次電池において、集電板(5)は、該集電板(5)の製造工程での焼鈍し処理によって軟化した金属板から作製されているので、リード部(55)は容易に折り曲げることが出来る。
これに対し、本体(51)には、製造工程にて焼鈍し処理後の塑性加工により突出部が形成されているので、該塑性加工に伴って加工硬化が発生しており、これによって、全体としての剛性が塑性加工前よりも大きくなっている。従って、二次電池の組立工程にて集電板(5)の本体(51)を電極体(4)の端縁(48)に押し付けたときにも本体(51)が変形する虞はない。
【0013】
又、具体的構成において、前記本体(51)の突出部は、電極体(4)の端縁(48)に向かって突出する断面円弧状の凸条部(52)である。
該具体的構成においては、集電板(5)の本体(51)に塑性加工により凸条部(52)が形成されることによって、該凸条部(52)周辺には加工硬化が発生し、然も、凸条部(52)は、該凸条部(51)の長手方向を含む平面内での湾曲変形に対して大きな抵抗力を発揮するので、本体(51)の剛性は大きなものとなる。
又、電極体(4)の端縁(48)に集電板(5)の本体(51)を押し付けることによって、各断面円弧状の凸条部(52)が端縁(48)を押圧して、端縁(48)との間に円筒面からなる接合面が形成される。この結果、電極体(4)の端縁(48)と集電板(5)の本体(51)が大きな面積で接触することとなり、低抵抗化が図られる。
【0014】
更に具体的な構成において、前記本体(51)の突出部は、電極体(4)の端縁(48)に向かって突出する切り起し片(53)である。
該具体的構成においては、集電板(5)の本体(51)に塑性加工により切り起し片(53)が形成されることによって、該切り起し片(53)周辺に加工硬化が発生し、然も、切り起し片(53)は、該切り起し片(53)を含む平面内での湾曲変形に対して大きな抵抗力を発揮するので、本体(51)の剛性は大きなものとなる。
又、各切り起し片(53)は端縁(48)に深く食い込むこととなり、集電板(5)の本体(51)と電極体(4)の端縁(48)の間に良好な接触状態が得られる。尚、集電板(5)の本体(51)には、切り起し片(53)の形成に伴って貫通孔が形成されるので、該貫通孔によって、組立工程で電極体(4)に電解液を含浸させる際の電解液の通路が確保されることになる。
【0015】
本発明に係る二次電池の製造方法は、上記二次電池を製造する方法であって、前記集電板(5)の製造工程は、
金属板に焼鈍し処理を施す第1工程と、
第1工程にて焼鈍し処理が施された金属板を集電板(5)の外形に加工すると共に、本体(51)となる領域に金属板の表面から突出する1或いは複数の突出部を塑性加工によって形成する第2工程
とから構成されている。
【0016】
具体的構成において、前記第2工程における塑性加工は、電極体(4)の端縁(48)に向かって断面円弧状を呈する複数条の凸条部(52)を突出させる加工である。或いは、前記第2工程における塑性加工は、電極体(4)の端縁(48)に向かって切り起し片(53)を突出させる加工である。
【0017】
上記本発明に係る二次電池の製造方法における集電板(5)の製造工程においては、第1工程によって、全体が軟化した金属板が得られる。次に第2工程によって、塑性加工により加工硬化が発生した本体(51)と軟化したままのリード部(55)とからなる集電板(5)が得られることとなる。
【0018】
更に具体的な構成においては、前記集電板(5)の製造工程の後に二次電池の組立工程を有し、該組立工程では、集電板(5)の本体(51)の突出部を電極体(4)の端縁(48)に押し付けた状態で、集電板(5)を電極体(4)に接合すると共に、集電板(5)のリード部(55)を本体(51)に向けて折り曲げ、該リード部(55)の先端部を一方の電極端子部と連結する。
【0019】
該具体的構成においては、電極体(4)に集電板(5)を接合する工程で、集電板(5)の本体(51)は加工硬化によって全体の剛性が増大しているので、電極体(4)の端縁(48)に本体(51)を押し付けたときに本体(51)が変形する虞はない。又、集電板(5)の本体(51)の突出部が電極体(4)の端縁(48)に深く食い込んで、電極体(4)の端縁(48)と集電板(5)の本体(51)とが大きな面積で互いに接触するので、低抵抗化が図られる。
一方、集電板(5)のリード部(55)は軟化した状態のままであるので、リード部(55)のみを容易に折り曲げて一方の電極端子部に連結することが出来る。
【0020】
【発明の効果】
本発明に係る二次電池及びその製造方法によれば、集電板の厚さが大きい場合にも、リード部のみを容易に折り曲げることが出来る。
【0021】
【発明の実施の形態】
以下、本発明を円筒型リチウムイオン二次電池に実施した形態につき、図面に沿って具体的に説明する。
【0022】
全体構成
本発明に係る円筒型リチウムイオン二次電池は、図1に示す如く、筒体(11)の両端部に蓋体(12)(12)を溶接固定してなる円筒状の電池缶(1)の内部に、巻き取り電極体(4)を収容して構成されている。両蓋体(12)(12)には、電極端子機構(8)(9)が取り付けられている。尚、正極側の電極端子機構(9)は、従来と同一の構成を具えている。又、各蓋体(12)には圧力開閉式のガス排出弁(13)が取り付けられている。
【0023】
巻き取り電極体(4)の両端部にはそれぞれ、正極側の集電板(5)と負極側の集電板(7)が設置され、両芯体端縁(48)(48)にレーザ溶接によって接合固定されている。正極側の集電板(5)の端部に突設されたリード部(55)の先端は、正極側の電極端子機構(9)を構成する電極端子(91)の鍔部(92)に、スポット溶接、超音波溶接或いはレーザ溶接によって接合されている。又、負極側の集電板(7)の表面は、負極側の電極端子機構(8)を構成する電極端子(81)の鍔部(82)に圧接されている。
【0024】
巻き取り電極体
巻き取り電極体(4)は、図2に示す如く、それぞれ帯状の正極(41)と負極(43)の間に帯状のセパレータ(42)を介在させて、これらを渦巻き状に巻回して構成されている。正極(41)は、アルミニウム箔からなる帯状芯体(45)の両面にリチウム複合酸化物からなる正極活物質(44)を塗布して構成され、負極(43)は、銅箔からなる帯状芯体(47)の両面に炭素材料を含む負極活物質(46)を塗布して構成されている。セパレータ(42)には、非水電解液が含浸されている。
【0025】
正極(41)には、正極活物質(44)の塗布されている塗工部と、正極活物質の塗布されていない非塗工部とが形成されている。又、負極(43)にも、負極活物質(46)の塗布されている塗工部と、負極活物質の塗布されていない非塗工部とが形成されている。
正極(41)及び負極(43)は、それぞれセパレータ(42)上に幅方向へずらして重ね合わせ、正極(41)及び負極(43)の前記非塗工部をセパレータ(42)の両端縁からそれぞれ外側へ突出させる。そして、これらを渦巻き状に巻き取ることによって巻き取り電極体(4)が構成される。該巻き取り電極体(4)においては、巻き軸方向の両端部の内、一方の端部では、正極(41)の非塗工部の芯体端縁(48)が、セパレータ(42)の一方の端縁よりも外方へ突出し、他方の端部では、負極(43)の非塗工部の芯体端縁(48)が、セパレータ(42)の他方の端縁よりも外方へ突出している。
【0026】
負極側の電極端子機構
負極側の電極端子機構(8)は、図1に示す如く、電池缶(1)の蓋体(12)を貫通して取り付けられたボルト部材からなる電極端子(81)を具えている。該電極端子(81)の基端部には、円板状の鍔部(82)が形成されると共に、該鍔部(82)の裏面には、巻き取り電極体(4)に向かってねじ軸片(87)が突設されている。
蓋体(12)の貫通孔には絶縁パッキング(83)が装着され、蓋体(12)と締結部材(81)の間の電気的絶縁性とシール性が保たれている。電極端子(81)には、蓋体(12)の外側からワッシャ(94)が嵌められると共に、第1ナット(85)及び第2ナット(86)が螺合している。そして、第1ナット(85)を締め付けて、電極端子(81)の鍔部(82)とワッシャ(84)によって絶縁パッキング(83)を挟圧することにより、シール性を高めている。
【0027】
正極側集電構造
後述の製造工程によって製造された正極側の集電板(5)は、図2〜図4に示す如く円板状の本体(51)を具え、該本体(51)の外周縁には、帯状のリード部(55)が一体に形成されている。
本体(51)には、中央孔(54)が開設されると共に、本体(51)を塑性変形させることによって形成された複数(実施例では4つ)の円弧状凸条部(52)が、中央孔(54)を中心として放射状に伸びると共に巻き取り電極体(4)側に突出している。更に円弧状凸条部(52)は、本体(51)の半径線に直交する断面形状が半円の円弧状を呈している。
【0028】
又、隣接する円弧状凸条部(52)(52)の間にはそれぞれ、本体(51)を塑性変形させることによって形成された複数条(実施例では2条)の切り起し片(53)が巻き取り電極体(4)側に突出している。該切り起し片(53)の切り起こしに伴って形成された貫通孔は、後述の組立工程にて巻き取り電極体(4)に電解液を含浸させる際の電解液の通路となる。
尚、正極側の集電板(5)はアルミニウム製である。
【0029】
負極側集電構造
負極側の集電板(7)は、図2及び図5に示す如く、円板状本体(71)を具え、該本体(71)の巻き取り電極体(4)との対向面には、巻き取り電極体(4)の中央孔(40)へ嵌入可能な円筒ボス(76)が突設され、該円筒ボス(76)の内周面には、前記電極端子(81)のねじ軸片(87)が螺合可能な内ねじ(77)が形成されている。
負極側の集電板(7)のその他の構造は、本体(71)の外周縁にリード部が突設されていない点を除き、正極側の集電板(5)と同様である。
尚、負極側の集電板(7)はニッケル製である。
【0030】
組立工程
先ず、図1に示す電池缶(1)、電極端子機構(8)(9)、図2に示す巻き取り電極体(4)、及び図3に示す集電板(5)(7)をそれぞれ作製する。
【0031】
正極側の集電板(5)は図6に示す工程によって製造される。
先ず、アルミニウム板に焼鈍し処理を施す(工程P1)。ここで、アルミニウム板に対する焼鈍し処理は、アルミニウム板を不活性ガス雰囲気の中で10時間の間400℃に熱する加熱工程と、該加熱後のアルミニウム板を常温になるまで自然に冷却する除冷工程とから構成され、この工程を経て、アルミニウム板は焼鈍し処理を施す前よりも軟化する。
【0032】
次に、焼鈍し処理を施したアルミニウム板に塑性加工を施す(工程P2)。ここで、アルミニウム板にはプレス加工が施され、アルミニウム板の集電板(5)の本体(51)となる領域には、電極体(4)の端縁(48)に向かって突出する円弧状凸条部(52)が形成されると共に、該円弧状凸条部(52)と同じ方向に突出する切り起し片(53)が形成される。これによって、アルミニウム板の集電板(5)の本体(51)となる領域には、加工硬化が生じることとなる。又、円弧状凸条部(52)は、該円弧状凸条部(52)の長手方向を含む平面内での湾曲変形に対して大きな抵抗力を発揮し、切り起し片(53)は、該切り起し片(53)を含む平面内の湾曲変形に対して大きな抵抗力を発揮する。
この結果、集電板(5)の本体(51)の全体としての剛性は、プレス加工前よりも大きなものとなる。
【0033】
最後に、焼鈍し処理が施され、プレス加工によって円弧状凸条部(52)及び切り起し片(53)が形成されたアルミニウム板を、集電板(5)の外形に加工する(工程P3)。ここで、アルミニウム板には打ち抜き加工が施され、これによってアルミニウム板は、円板状の本体(51)の外周縁にリード部(55)を具えた集電板(5)の外形に打ち抜かれる。この結果、正極側の集電板(5)は、円弧状凸条部(52)及び切り起し片(53)によって加工硬化が生じて剛性を増大させた本体(51)と、焼鈍し処理が施されて軟化した状態のリード部(55)とを具えることとなる。
【0034】
上述の如く各部材を作製した後、巻き取り電極体(4)の正極側の芯体端縁(48)に正極側の集電板(5)を押し付ける。このとき、本体(51)の剛性は上述のプレス加工により大きなものとなっているので、本体(51)を電極体(4)の端縁(48)に押し付けたときにも本体(51)が変形することはない。又、集電板(5)の円弧状凸条部(52)は、巻き取り電極体(4)の芯体端縁(48)に食い込み、円弧状凸条部(52)と芯体端縁(48)の間には、円筒面からなる接合面が形成される。又、集電板(5)の切り起し片(53)は、巻き取り電極体(4)の芯体端縁(48)に深く食い込み、芯体端縁(48)と圧着することになる。
【0035】
又、巻き取り電極体(4)の負極側の芯体端縁(48)においては、巻き取り電極体(4)の中央孔(40)へ負極側の集電板(7)の円筒ボス(76)を嵌入せしめ、巻き取り電極体(4)の端部に形成されている芯体端縁(48)に集電板(7)の本体(71)を押し付ける。ここで、巻き取り電極体(4)の中央孔(40)に集電板(7)の円筒ボス(76)が密に嵌入することによって、巻き取り電極体(4)に対する集電板(70)の位置決めが自動的に行なわれることになる。又、本体(71)の円弧状凸条部(72)と切り起し片(73)は、巻き取り電極体(4)の芯体端縁(48)に深く食い込み、芯体端縁(48)と圧着することになる。
【0036】
この様に、巻き取り電極体(4)の両芯体端縁(48)(48)に両集電板(5)(7)の本体(51)(71)を押し付けた状態で、各円弧状凸条部(52)(72)の内周面に向けてレーザビームを照射し、レーザ溶接を施す。この結果、本体(51)(71)の円弧状凸条部(52)(72)と巻き取り電極体(4)の芯体端縁(48)(48)とが、大きな接触面積で互いに接合されると共に、切り起し片(53)(73)と芯体端縁(48)(48)の間の圧着状態が維持されることになる。
更に、集電板(5)のリード部(55)を、本体(51)に向けて折り返す。このとき、リード部(55)は焼鈍し処理が施されて軟化した状態であるので、容易に折り曲げることが出来る。
【0037】
その後、巻き取り電極体(4)の正極側端縁(48)においては、リード部(55)の先端が正極側の電極端子機構(9)の鍔部(92)に溶接されて、電極端子(91)と集電板(5)が接続されることとなる。
又、巻き取り電極体(4)の負極側端縁(48)においては、負極側集電板(7)の円筒ボス(76)の内ねじ(77)へ電極端子(81)のねじ軸片(77)をねじ込んで、負極側の電極端子機構(8)の鍔部(82)を集電板(7)の本体(71)の表面に圧接せしめることにより、電極端子(81)と集電板(7)は互いに接続されることとなる。
この様にして巻き取り電極体(4)の両端部の集電板(5)(7)に電極端子(91)(81)を固定した後、該巻き取り電極体(4)を図1に示す筒体(11)の内部に収容する。そして、図1の如く筒体(11)の各開口部に蓋体(12)を設置すると共に両電極端子機構(8)(9)を組み立てた後、蓋体(12)を筒体(11)に溶接固定する。
最後に、電池缶(1)内に電解液を注入した後、各蓋体(12)に安全弁(13)をねじ込んで、本発明の円筒型リチウムイオン二次電池を完成する。
【0038】
上記本発明の円筒型リチウムイオン二次電池において、正極側の集電板(5)は、焼鈍し処理を施すことによって軟化したアルミニウム板にプレス加工によって円弧状凸条部(52)及び切り起し片(53)を突出させる製造工程によって作製されるので、プレス加工が施されていないリード部(55)は、軟化した状態のままである一方、プレス加工が施された本体(51)は、円弧状凸条部(52)及び切り起し片(53)によって加工硬化が発生して全体の曲げ剛性が増大する。従って、リード部(55)のみを容易に折り曲げることが出来る。
【0039】
本発明の効果を確認するために、上述の本発明の製造工程によって作製された集電板(実施例)と、焼鈍し処理を施していないアルミニウム板によって作製された集電板(比較例1)と、上述の如きプレス加工及び打ち抜き加工によって本体とリード部を形成した後に焼鈍し処理を施して作製された集電板(比較例2)に対して、以下の試験を行なった。
尚、全ての集電板は厚さ0.5mmのアルミニウム板によって作製され、円板状の本体の半径は20mmである。
【0040】
折り曲げ試験
折り曲げ試験においては、折り曲げ位置をリード部の基端とし、折り曲げ角度を120度、折り曲げ回数を最大20回として繰り返しリード部を折り曲げ、折り曲げ位置の状態の変化を目視により確認する。
折り曲げ試験の試験結果を表1に示す。
【0041】
【表1】

Figure 2004296341
【0042】
この結果から明らかな様に、焼鈍し処理を施した集電板においては、リード部を20回連続して折り曲げても、折り曲げ位置に金属疲労が発生することはない。これは、焼鈍し処理を施すことによってアルミニウム板が軟化したためと考えられる。
【0043】
押圧試験
押圧試験においては、各集電板の本体を上記実施例の巻き取り電極体(4)の芯体端縁に押し付けたときの本体の形状の変化を確認する。
押圧試験の試験結果を表2に示す。
【0044】
【表2】
Figure 2004296341
【0045】
この結果から明らかな様に、アルミニウム板に焼鈍し処理を施した後にプレス加工を施した集電板の本体は、巻き取り電極体(4)の端縁(48)に押圧しても、本体が押圧による外力によって変形することはない。これは、焼鈍し処理によりアルミニウム板が軟化した状態にあっても、本体を形成する領域にはプレス加工により円弧状凸条部及び切り起し片が形成されており、これによって該領域に加工硬化が生じて全体の剛性が従来の本体の剛性程度に回復したためと考えられる。
【0046】
尚、本発明の各部構成は上記実施の形態に限らず、特許請求の範囲に記載の技術的範囲内で種々の変形が可能である。例えば、焼鈍し処理を施したニッケル板によって集電板を作製しても、上記実施例と同様の効果が得られる。ニッケル板に対する焼鈍し処理の加熱温度は、850℃〜950℃である。
又、焼鈍し処理を施したアルミニウム合金板及び銅板によって集電板を作製しても、上記実施例と同様の効果が得られる。
【図面の簡単な説明】
【図1】本発明に係るリチウムイオン二次電池の一部破断正面図である。
【図2】一部を展開した巻き取り電極体、両極集電板及び電極端子の分解斜視図である。
【図3】正極側の集電板の平面図である。
【図4】図3のA−A線に沿う拡大断面と及びB−B線に沿う拡大断面を示す図である。
【図5】負極側の集電板の平面図である。
【図6】正極側の集電板の製造方法を表わす工程図である。
【図7】従来のリチウムイオン二次電池の斜視図である。
【図8】該リチウムイオン二次電池の一部破断正面図である。
【図9】一部を展開した従来の巻き取り電極体及び両極集電板の分解斜視図である。
【符号の説明】
(1) 電池缶
(11) 筒体
(12) 蓋体
(13) ガス排出弁
(4) 巻き取り電極体
(41) 正極
(42) セパレータ
(43) 負極
(48) 端縁
(5) 集電板
(51) 本体
(52) 円弧状凸条部
(53) 切り起し片
(55) リード部
(7) 集電板
(71) 本体
(72) 円弧状凸条部
(73) 切り起し片
(76) 円筒ボス
(77) 内ねじ
(8) 電極端子機構
(81) 電極端子
(9) 電極端子機構
(91) 電極端子[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a secondary battery in which an electrode body serving as a secondary battery element is accommodated in a battery can and power generated by the electrode body can be taken out from a pair of electrode terminals provided in the battery can, and a method of manufacturing the same. It is about.
[0002]
[Prior art]
2. Description of the Related Art In recent years, lithium-ion secondary batteries with high energy density have attracted attention as power supplies for portable electronic devices. In addition, large-capacity cylindrical secondary batteries have attracted attention as power sources for electric vehicles.
As shown in FIGS. 7 and 8, a conventional cylindrical lithium ion secondary battery has a cylindrical battery can (see FIG. 7) in which lids (12) and (12) are fixed to both ends of a cylindrical body (11) by welding. The winding electrode body (4) is accommodated in the inside of 1). A pair of positive and negative electrode terminal mechanisms (9) and (9) are attached to the both lids (12) and (12), respectively, and both poles of the winding electrode body (4) and both electrode terminal mechanisms (9) and (9). Are connected to each other, so that the electric power generated by the winding electrode body (4) can be taken out from the pair of electrode terminal mechanisms (9) and (9). A pressure opening / closing gas discharge valve (13) is attached to each lid (12).
[0003]
As shown in FIG. 9, the winding electrode body (4) is configured such that a strip-shaped separator (42) is interposed between a strip-shaped positive electrode (41) and a strip-shaped negative electrode (43), and these are spirally wound. Have been. The positive electrode (41) is formed by applying a positive electrode active material (44) made of a lithium composite oxide to both surfaces of a band-shaped core (45) made of aluminum foil, and the negative electrode (43) is made of a band-shaped core made of copper foil. A negative electrode active material (46) containing a carbon material is applied to both surfaces of the body (47). The separator (42) is impregnated with a non-aqueous electrolyte.
[0004]
Here, the positive electrode (41) and the negative electrode (43) are superposed on the separator (42) while being shifted in the width direction, and are wound in a spiral shape. As a result, at one end of the two ends of the winding electrode body (4) in the winding axis direction, the end of the core body (45) of the positive electrode (41) is located outward of the edge of the separator (42). At the other end, the edge (48) of the core (47) of the negative electrode (43) protrudes outward from the edge of the separator (42).
At both ends of the winding electrode body (4), current collecting plates (6) are provided so as to cover the edges (48) of the band-shaped core body. The current collector plate (6) is formed by welding a strip-shaped lead plate (65) to the surface of a disk-shaped main body (61), and a winding electrode is provided on the back surface of the disk-shaped main body (61). The edge (48) of the body (4) is resistance welded.
[0005]
The electrode terminal mechanism (9) includes an electrode terminal (91) attached through the lid (12) of the battery can (1), and a flange (92) is provided at a base end of the electrode terminal (91). ) Is formed. An insulating packing (93) is attached to the through-hole of the lid (12), so that electrical insulation and sealing between the lid (12) and the fastening member (91) are maintained. A washer (94) is fitted to the electrode terminal (91) from the outside of the lid (12), and a first nut (95) and a second nut (96) are screwed into the electrode terminal (91). Then, the first nut (95) is tightened, and the insulating packing (93) is sandwiched between the flange (92) of the electrode terminal (91) and the washer (94) to enhance the sealing performance.
The tip of the lead (65) of the current collector (6) is fixed to the flange (92) of the electrode terminal (91) by spot welding or ultrasonic welding.
[0006]
However, in the cylindrical lithium ion secondary battery having the current collecting structure shown in FIG. 8, the lead plate (65) is welded and connected to the main body (61). This causes a problem that the internal resistance of the battery increases. In addition, since a step of welding the lead plate (65) to the main body (61) is required, there is a problem that productivity is poor.
Therefore, as a low-resistance battery with excellent productivity, a lead portion is integrally formed on the outer peripheral edge of the main body of the current collector plate, and the front end portion of the lead portion is turned toward the main body, and the front end portion is connected to the electrode terminal. A structure that connects to a flange has been proposed (see Patent Document 1).
In a secondary battery having such a current collecting structure, the lead portion is formed integrally with the current collecting plate, so that it is not necessary to weld the lead portion to the main body. As a result, the electric resistance of the current collector plate can be reduced as compared with the related art, and the manufacturing process can be simplified.
[0007]
[Patent Document 1]
Japanese Patent Publication No. 2-4102
[Problems to be solved by the invention]
[0009]
However, in a secondary battery including a current collector plate in which a lead portion is integrally formed with a main body (Patent Document 1), the main body and the lead portion are formed to have the same plate thickness, so that the electric current of the current collector plate is reduced. When the thickness of the current collector plate is increased to reduce the resistance and increase the rigidity of the main body to the required size, the lead portion also increases in thickness, and the lead portion is connected to the electrode terminal portion. There was a problem that bending was difficult.
Therefore, an object of the present invention is to provide a secondary battery that can easily bend only the lead portion even when the thickness of the current collector plate is increased, and a method for manufacturing the same.
[0010]
[Means for solving the problem]
In the secondary battery according to the present invention, an electrode body (4) laminated with a separator (42) interposed between a strip-shaped positive electrode (41) and a negative electrode (43) is housed inside a battery can (1). The positive electrode (41) and the negative electrode (43) are each formed by applying an active material to the surface of a band-shaped core, and the electric power generated by the electrode (4) can be taken out from a pair of electrode terminals to the outside. I can do it.
At least one of the ends of the electrode body (4) protrudes an edge (48) of a band-shaped core constituting the positive electrode (41) or the negative electrode (43), and gathers over the edge (48). An electric board (5) is provided. The current collector plate (5) is made of a metal plate that has been entirely annealed, and has a flat main body (51) in contact with the edge (48), and protrudes from the main body (51). And a lead portion (55). In the main body (51), at one or a plurality of positions, a protruding portion protruding toward the edge (48) is formed by plastic working after annealing, and the lead portion (55) has a tip end. Are connected to one of the electrode terminals.
[0011]
In a specific configuration, the lead portion (55) is formed in a band shape, and its tip is folded toward the main body (51) and connected to one of the electrode terminal portions.
[0012]
In the above secondary battery according to the present invention, since the current collector plate (5) is made of a metal plate softened by annealing treatment in the manufacturing process of the current collector plate (5), the lead portion (55) Can be easily folded.
On the other hand, since the projecting portion is formed on the main body (51) by plastic working after annealing in the manufacturing process, work hardening occurs due to the plastic working, and as a result, Is greater than before plastic working. Therefore, even when the main body (51) of the current collector plate (5) is pressed against the edge (48) of the electrode body (4) in the assembly process of the secondary battery, the main body (51) is not likely to be deformed.
[0013]
In a specific configuration, the protruding portion of the main body (51) is a protruding ridge (52) having a circular arc cross section protruding toward the edge (48) of the electrode body (4).
In this specific configuration, the convex portion (52) is formed by plastic working on the main body (51) of the current collector plate (5), so that work hardening occurs around the convex portion (52). Of course, the ridge (52) exerts a large resistance to bending deformation in a plane including the longitudinal direction of the ridge (51), so that the rigidity of the main body (51) is large. It becomes.
Further, by pressing the main body (51) of the current collector plate (5) against the edge (48) of the electrode body (4), each convex ridge (52) having a circular arc cross section presses the edge (48). Thus, a joint surface formed of a cylindrical surface is formed between the end surface (48). As a result, the edge (48) of the electrode body (4) and the main body (51) of the current collector plate (5) come into contact with a large area, and the resistance is reduced.
[0014]
In a more specific configuration, the projecting portion of the main body (51) is a cut-and-raised piece (53) projecting toward an edge (48) of the electrode body (4).
In the specific configuration, the cut-and-raised piece (53) is formed by plastic working on the main body (51) of the current collector plate (5), so that work hardening occurs around the cut-and-raised piece (53). However, since the cut-and-raised piece (53) exerts a large resistance to bending deformation in a plane including the cut-and-raised piece (53), the rigidity of the main body (51) is large. It becomes.
Further, each cut-and-raised piece (53) is deeply cut into the edge (48), and a good gap is formed between the main body (51) of the current collector (5) and the edge (48) of the electrode body (4). A contact state is obtained. Since a through-hole is formed in the main body (51) of the current collector plate (5) along with the formation of the cut and raised piece (53), the through-hole allows the electrode body (4) to be assembled in the assembling process. A passage for the electrolyte when impregnating the electrolyte is secured.
[0015]
The method for manufacturing a secondary battery according to the present invention is a method for manufacturing the above secondary battery, wherein the manufacturing process of the current collector plate (5) includes:
A first step of annealing the metal plate;
The metal plate annealed in the first step is processed into an outer shape of the current collector plate (5), and one or a plurality of protrusions projecting from the surface of the metal plate are formed in a region to be the main body (51). And a second step of forming by plastic working.
[0016]
In a specific configuration, the plastic working in the second step is a work of projecting a plurality of protruding ridges (52) having an arc-shaped cross section toward the edge (48) of the electrode body (4). Alternatively, the plastic working in the second step is a work of cutting and raising the piece (53) toward the edge (48) of the electrode body (4).
[0017]
In the step of manufacturing the current collector plate (5) in the method of manufacturing a secondary battery according to the present invention, the first step yields a softened metal plate as a whole. Next, in the second step, a current collector plate (5) including the main body (51) that has undergone work hardening by plastic working and the lead portion (55) that has been softened is obtained.
[0018]
In a more specific configuration, a secondary battery assembling step is provided after the manufacturing process of the current collector plate (5), and the projecting portion of the main body (51) of the current collector plate (5) is provided in the assembly process. The current collector plate (5) is joined to the electrode body (4) while being pressed against the edge (48) of the electrode body (4), and the lead portion (55) of the current collector plate (5) is connected to the main body (51). ), And the leading end of the lead (55) is connected to one electrode terminal.
[0019]
In the specific configuration, in the step of joining the current collector plate (5) to the electrode body (4), the entire rigidity of the main body (51) of the current collector plate (5) is increased by work hardening. When the main body (51) is pressed against the edge (48) of the electrode body (4), there is no possibility that the main body (51) is deformed. Further, the projecting portion of the main body (51) of the current collector plate (5) penetrates deeply into the edge (48) of the electrode body (4), and the edge (48) of the electrode body (4) and the current collector plate (5). ) Comes into contact with each other in a large area, so that the resistance can be reduced.
On the other hand, since the lead portion (55) of the current collector plate (5) remains in a softened state, only the lead portion (55) can be easily bent and connected to one of the electrode terminal portions.
[0020]
【The invention's effect】
According to the secondary battery and the method of manufacturing the same according to the present invention, even when the thickness of the current collector plate is large, only the lead portion can be easily bent.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment in which the present invention is applied to a cylindrical lithium ion secondary battery will be specifically described with reference to the drawings.
[0022]
Overall configuration As shown in FIG. 1, a cylindrical lithium ion secondary battery according to the present invention has a cylindrical shape formed by welding and fixing lids (12) and (12) to both ends of a cylindrical body (11). The battery electrode (4) is housed inside the battery can (1). Electrode terminal mechanisms (8) and (9) are attached to both lids (12) and (12). The positive electrode terminal mechanism (9) has the same configuration as the conventional one. A pressure opening / closing gas discharge valve (13) is attached to each lid (12).
[0023]
A current collecting plate (5) on the positive electrode side and a current collecting plate (7) on the negative electrode side are installed at both ends of the wound electrode body (4), respectively. It is joined and fixed by welding. The tip of the lead (55) projecting from the end of the current collector plate (5) on the positive electrode side is connected to the flange (92) of the electrode terminal (91) constituting the electrode terminal mechanism (9) on the positive electrode side. , Spot welding, ultrasonic welding or laser welding. The surface of the current collector plate (7) on the negative electrode side is pressed against the flange (82) of the electrode terminal (81) constituting the electrode terminal mechanism (8) on the negative electrode side.
[0024]
Winding electrode body ( 4 )
As shown in FIG. 2, the winding electrode body (4) is configured such that a strip-shaped separator (42) is interposed between a strip-shaped positive electrode (41) and a strip-shaped negative electrode (43), and these are spirally wound. Have been. The positive electrode (41) is formed by applying a positive electrode active material (44) made of a lithium composite oxide to both surfaces of a band-shaped core (45) made of aluminum foil, and the negative electrode (43) is made of a band-shaped core made of copper foil. A negative electrode active material (46) containing a carbon material is applied to both surfaces of the body (47). The separator (42) is impregnated with a non-aqueous electrolyte.
[0025]
The positive electrode (41) has a coated portion on which the positive electrode active material (44) is applied and a non-coated portion on which the positive electrode active material is not applied. The negative electrode (43) also has a coated portion on which the negative electrode active material (46) is applied and a non-coated portion on which the negative electrode active material is not applied.
The positive electrode (41) and the negative electrode (43) are superimposed on the separator (42) so as to be shifted in the width direction, and the uncoated portions of the positive electrode (41) and the negative electrode (43) are separated from both end edges of the separator (42). Each project outward. Then, these are spirally wound to form a wound electrode body (4). In the winding electrode body (4), at one end of both ends in the winding axis direction, the core edge (48) of the uncoated portion of the positive electrode (41) is connected to the separator (42). At the other end, the core edge (48) of the non-coated portion of the negative electrode (43) extends outward from the other edge of the separator (42). It is protruding.
[0026]
Negative electrode side electrode terminal mechanism ( 8 )
As shown in FIG. 1, the electrode terminal mechanism (8) on the negative electrode side has an electrode terminal (81) made of a bolt member and attached through the lid (12) of the battery can (1). A disc-shaped flange (82) is formed at the base end of the electrode terminal (81), and a screw is formed on the back surface of the flange (82) toward the winding electrode body (4). A shaft piece (87) protrudes.
An insulating packing (83) is attached to the through-hole of the lid (12), so that electrical insulation and sealing between the lid (12) and the fastening member (81) are maintained. A washer (94) is fitted to the electrode terminal (81) from outside the lid (12), and a first nut (85) and a second nut (86) are screwed into the electrode terminal (81). Then, the first nut (85) is tightened, and the insulating packing (83) is sandwiched between the flange (82) of the electrode terminal (81) and the washer (84) to enhance the sealing performance.
[0027]
Positive-side current collecting structure The positive-side current collecting plate (5) manufactured by a manufacturing process described below includes a disk-shaped main body (51) as shown in FIGS. A strip-shaped lead portion (55) is integrally formed on the outer peripheral edge of the portion (51).
In the main body (51), a central hole (54) is opened, and a plurality (four in the example) of arc-shaped ridges (52) formed by plastically deforming the main body (51) are provided. It extends radially around the central hole (54) and protrudes toward the winding electrode body (4). Further, the arc-shaped convex portion (52) has a semi-circular cross section perpendicular to the radius line of the main body (51).
[0028]
A plurality of (two in this embodiment) cut-and-raised pieces (53) formed by plastically deforming the main body (51) are respectively provided between adjacent arc-shaped convex ridges (52) (52). ) Protrudes toward the winding electrode body (4). The through-hole formed along with the cut-and-raised piece (53) serves as a passage for the electrolyte when the wound electrode body (4) is impregnated with the electrolyte in an assembling process described later.
The current collector plate (5) on the positive electrode side is made of aluminum.
[0029]
Negative electrode side current collecting structure As shown in FIGS. 2 and 5, the negative electrode side current collecting plate (7) includes a disk-shaped main body (71), and the winding electrode body ( A cylindrical boss (76), which can be fitted into the central hole (40) of the winding electrode body (4), protrudes from a surface opposing the cylindrical electrode (4). An internal screw (77) into which the screw shaft piece (87) of the electrode terminal (81) can be screwed is formed.
The other structure of the current collector plate 7 on the negative electrode side is the same as that of the current collector plate 5 on the positive electrode side except that the lead portion is not protruded from the outer peripheral edge of the main body 71.
The current collector (7) on the negative electrode side is made of nickel.
[0030]
Assembly process First, the battery can (1) shown in FIG. 1, the electrode terminal mechanism (8) (9), the winding electrode body (4) shown in FIG. 2, and the current collector plate (5) shown in FIG. And (7) are manufactured.
[0031]
The current collector plate (5) on the positive electrode side is manufactured by the process shown in FIG.
First, the aluminum plate is annealed (step P1). Here, the annealing treatment for the aluminum plate includes a heating step of heating the aluminum plate to 400 ° C. for 10 hours in an inert gas atmosphere, and a cooling step of naturally cooling the heated aluminum plate to normal temperature. And a cooling step. Through this step, the aluminum plate is softened more than before annealing.
[0032]
Next, plastic processing is performed on the annealed aluminum plate (step P2). Here, the aluminum plate is subjected to press working, and a region protruding toward the edge (48) of the electrode body (4) is formed in a region to be the main body (51) of the current collector plate (5) of the aluminum plate. An arc-shaped ridge (52) is formed, and a cut-and-raised piece (53) projecting in the same direction as the arc-shaped ridge (52) is formed. As a result, work hardening occurs in a region of the current collector plate (5) made of an aluminum plate, which becomes the main body (51). Further, the arc-shaped ridge (52) exerts a large resistance against bending deformation in a plane including the longitudinal direction of the arc-shaped ridge (52), and the cut-and-raised piece (53) In addition, it exerts a large resistance against a curved deformation in a plane including the cut and raised piece (53).
As a result, the overall rigidity of the main body (51) of the current collector plate (5) becomes larger than before the press working.
[0033]
Finally, the aluminum plate on which the arc-shaped ridges (52) and the cut-and-raised pieces (53) have been formed by the annealing and press working is processed into the outer shape of the current collector plate (5) (step). P3). Here, the aluminum plate is subjected to a punching process, whereby the aluminum plate is punched into an outer shape of a current collector plate (5) having a lead portion (55) on an outer peripheral edge of a disk-shaped main body (51). . As a result, the current collector plate (5) on the positive electrode side has a body (51) whose work-hardening is increased by the arc-shaped ridges (52) and the cut and raised pieces (53) to increase rigidity, and an annealing treatment. And a lead portion (55) in a softened state.
[0034]
After each member is manufactured as described above, the positive electrode side current collector plate (5) is pressed against the positive electrode side core edge (48) of the winding electrode body (4). At this time, since the rigidity of the main body (51) is increased by the above-described press working, the main body (51) is also pressed when the main body (51) is pressed against the edge (48) of the electrode body (4). There is no deformation. Further, the arc-shaped ridges (52) of the current collector plate (5) bite into the core edge (48) of the winding electrode body (4), and the arc-shaped ridges (52) and the core edge. Between (48), a joining surface composed of a cylindrical surface is formed. The cut-and-raised pieces (53) of the current collector plate (5) bite into the core edge (48) of the winding electrode body (4) and are pressed against the core edge (48). .
[0035]
Also, at the edge (48) of the core on the negative electrode side of the winding electrode body (4), the cylindrical boss (7) of the current collecting plate (7) on the negative electrode side is inserted into the central hole (40) of the winding electrode body (4). 76) is fitted, and the main body (71) of the current collector (7) is pressed against the core body edge (48) formed at the end of the wound electrode body (4). Here, the cylindrical boss (76) of the current collecting plate (7) is closely fitted into the central hole (40) of the winding electrode body (4), so that the current collecting plate (70) for the winding electrode body (4). ) Will be performed automatically. Further, the arc-shaped convex ridge portion (72) and the cut-and-raised piece (73) of the main body (71) bite into the core edge (48) of the winding electrode body (4), and the core edge (48). ).
[0036]
In this way, each of the circles is held in a state where the main bodies (51) and (71) of the current collectors (5) and (7) are pressed against the edges (48) and (48) of the cores of the winding electrode body (4). The inner peripheral surfaces of the arc-shaped ridges (52) and (72) are irradiated with a laser beam to perform laser welding. As a result, the arcuate ridges (52) (72) of the main bodies (51) (71) and the core edges (48) (48) of the winding electrode body (4) are joined to each other with a large contact area. At the same time, the crimped state between the cut-and-raised pieces (53) (73) and the core body edges (48) (48) is maintained.
Further, the lead portion (55) of the current collector (5) is folded back toward the main body (51). At this time, since the lead portion (55) has been softened by annealing, it can be easily bent.
[0037]
Thereafter, at the positive electrode side edge (48) of the wound electrode body (4), the tip of the lead portion (55) is welded to the flange portion (92) of the positive electrode side electrode terminal mechanism (9), and the electrode terminal is formed. (91) and the current collector (5) are connected.
At the negative edge (48) of the wound electrode body (4), the screw (77) of the electrode terminal (81) is screwed into the internal screw (77) of the cylindrical boss (76) of the negative current collector (7). (77) is screwed, and the flange (82) of the electrode terminal mechanism (8) on the negative electrode side is pressed against the surface of the main body (71) of the current collector plate (7). The plates (7) will be connected to each other.
After the electrode terminals (91) and (81) are fixed to the current collector plates (5) and (7) at both ends of the winding electrode body (4) in this way, the winding electrode body (4) is shown in FIG. Housed in the cylindrical body (11) shown. Then, as shown in FIG. 1, after the lid (12) is installed in each opening of the cylinder (11) and the two electrode terminal mechanisms (8) and (9) are assembled, the lid (12) is attached to the cylinder (11). ) Is fixed by welding.
Finally, after injecting the electrolyte into the battery can (1), the safety valve (13) is screwed into each lid (12) to complete the cylindrical lithium ion secondary battery of the present invention.
[0038]
In the cylindrical lithium ion secondary battery of the present invention, the current collector plate (5) on the positive electrode side is formed by pressing the arc-shaped ridges (52) and the cut and raised portions on the aluminum plate softened by annealing. Since the lead portion (55) which has not been subjected to the press working is kept in a softened state, the main body (51) which has been subjected to the press working is formed by the manufacturing process for projecting the strip (53). Work hardening occurs due to the arcuate ridges (52) and the cut-and-raised pieces (53), thereby increasing the overall bending rigidity. Therefore, only the lead portion (55) can be easily bent.
[0039]
In order to confirm the effect of the present invention, a current collector plate manufactured by the above-described manufacturing process of the present invention (Example) and a current collector plate manufactured by an aluminum plate not subjected to annealing treatment (Comparative Example 1) ) And the current collector plate (Comparative Example 2) produced by forming the main body and the lead portion by the press working and the punching work as described above and then performing an annealing treatment, and the following test was performed.
In addition, all the current collector plates are made of an aluminum plate having a thickness of 0.5 mm, and the radius of the disk-shaped main body is 20 mm.
[0040]
Bending test In the bending test, the bending position is set to the base end of the lead part, the bending angle is 120 degrees, and the number of times of bending is up to 20 times. I do.
Table 1 shows the results of the bending test.
[0041]
[Table 1]
Figure 2004296341
[0042]
As is evident from the result, in the current-collecting plate subjected to the annealing treatment, even if the lead portion is continuously bent 20 times, no metal fatigue occurs at the bent position. This is considered to be because the aluminum plate was softened by the annealing treatment.
[0043]
Pressing test In the pressing test, a change in the shape of the main body when the main body of each current collector plate is pressed against the edge of the core of the wound electrode body (4) of the above embodiment is confirmed.
Table 2 shows the test results of the pressing test.
[0044]
[Table 2]
Figure 2004296341
[0045]
As is clear from the results, the main body of the current collector plate which has been subjected to the press working after the aluminum plate has been annealed is pressed against the edge (48) of the wound electrode body (4). Are not deformed by external force due to pressing. This is because even when the aluminum plate is softened by the annealing process, the arc-shaped ridges and the cut and raised pieces are formed by pressing in the region where the main body is formed. This is probably because hardening occurred and the overall rigidity was restored to the level of the rigidity of the conventional body.
[0046]
The configuration of each part of the present invention is not limited to the above embodiment, and various modifications can be made within the technical scope described in the claims. For example, the same effect as in the above embodiment can be obtained even if the current collector plate is made of an annealed nickel plate. The heating temperature of the annealing treatment for the nickel plate is 850 ° C to 950 ° C.
Also, the same effect as in the above embodiment can be obtained by manufacturing a current collector plate from an aluminum alloy plate and a copper plate subjected to annealing.
[Brief description of the drawings]
FIG. 1 is a partially broken front view of a lithium ion secondary battery according to the present invention.
FIG. 2 is an exploded perspective view of a partially wound-up electrode body, a bipolar current collector, and an electrode terminal.
FIG. 3 is a plan view of a current collector plate on a positive electrode side.
4 is an enlarged sectional view taken along line AA of FIG. 3 and an enlarged sectional view taken along line BB of FIG. 3;
FIG. 5 is a plan view of a current collector plate on the negative electrode side.
FIG. 6 is a process chart showing a method for manufacturing a current collector plate on the positive electrode side.
FIG. 7 is a perspective view of a conventional lithium ion secondary battery.
FIG. 8 is a partially cutaway front view of the lithium ion secondary battery.
FIG. 9 is an exploded perspective view of a conventional rolled-up electrode body and a bipolar current collector plate in which a part is developed.
[Explanation of symbols]
(1) Battery can (11) Cylindrical body (12) Lid (13) Gas exhaust valve (4) Winding electrode body (41) Positive electrode (42) Separator (43) Negative electrode (48) Edge (5) Current collection Plate (51) Body (52) Arc-shaped ridge (53) Cut-and-raised piece (55) Lead (7) Current collector plate (71) Body (72) Arc-shaped ridge (73) Cut-and-raised piece (76) Cylindrical boss (77) Internal screw (8) Electrode terminal mechanism (81) Electrode terminal (9) Electrode terminal mechanism (91) Electrode terminal

Claims (8)

電池缶(1)の内部に、それぞれ帯状の正極(41)と負極(43)の間にセパレータ(42)を介在させて積層した電極体(4)が収容され、正極(41)及び負極(43)はそれぞれ、帯状芯体の表面に活物質を塗布して構成され、電極体(4)が発生する電力を一対の電極端子部から外部へ取り出すことが出来る二次電池において、
電極体(4)の少なくとも何れか一方の端部には、正極(41)或いは負極(43)を構成する帯状芯体の端縁(48)が突出し、該端縁(48)を覆って集電板(5)が設置され、該集電板(5)は、全体に焼鈍し処理が施された金属板によって作製され、前記端縁(48)と接触する平板状の本体(51)と、該本体(51)に突設されたリード部(55)とから構成されており、前記本体(51)には、1或いは複数の箇所に、前記端縁(48)に向かって突出する突出部が、焼鈍し後の塑性加工によって形成され、前記リード部(55)は、その先端が一方の電極端子部と連結されていることを特徴とする二次電池。
An electrode body (4) laminated with a separator (42) interposed between a strip-shaped positive electrode (41) and a negative electrode (43) is accommodated inside the battery can (1), and the positive electrode (41) and the negative electrode ( 43) is a secondary battery in which the active material is applied to the surface of the band-shaped core, and the electric power generated by the electrode (4) can be taken out from the pair of electrode terminals.
At least one of the ends of the electrode body (4) protrudes an edge (48) of a band-shaped core constituting the positive electrode (41) or the negative electrode (43), and gathers over the edge (48). An electric plate (5) is installed, and the current collector plate (5) is made of a metal plate that has been entirely annealed and has a flat main body (51) in contact with the edge (48). And a lead portion (55) protruding from the main body (51), and the main body (51) has one or a plurality of protrusions protruding toward the edge (48). The lead part (55) is formed by plastic working after annealing, and the tip of the lead part (55) is connected to one electrode terminal part.
前記リード部(55)は、帯状に形成されており、その先端が前記本体(51)に向かって折り返されて一方の電極端子部と連結されている請求項1に記載の二次電池。2. The secondary battery according to claim 1, wherein the lead portion (55) is formed in a band shape, and a tip thereof is folded toward the main body (51) and connected to one of the electrode terminal portions. 3. 前記本体(51)の突出部は、電極体(4)の端縁(48)に向かって突出する断面円弧状の凸条部(52)である請求項1又は請求項2に記載の二次電池。3. The secondary according to claim 1, wherein the projecting portion of the main body (51) is a convex ridge (52) having an arc-shaped cross section projecting toward an edge (48) of the electrode body (4). battery. 前記本体(51)の突出部は、電極体(4)の端縁(48)に向かって突出する切り起し片(53)である請求項1又は請求項2に記載の二次電池。The secondary battery according to claim 1, wherein the projecting portion of the main body is a cut-and-raised piece protruding toward an edge of the electrode body. 電池缶(1)の内部に、電極体(4)が収容され、該電極体(4)の少なくとも何れか一方の端縁(48)に集電板(5)が設置され、該集電板(5)は、前記端縁(48)と接触する平板状の本体(51)と、該本体(51)の外周縁に突設された帯状のリード部(55)とから構成されており、該リード部(55)の先端部が一方の電極端子部と連結されている二次電池の製造方法において、前記集電板(5)の製造工程は、
金属板に焼鈍し処理を施す第1工程と、
第1工程にて焼鈍し処理が施された金属板を集電板(5)の外形に加工すると共に、本体(51)となる領域に金属板の表面から突出する1或いは複数の突出部を塑性加工によって形成する第2工程
とから構成されていることを特徴とする二次電池の製造方法。
An electrode assembly (4) is housed inside the battery can (1), and a current collector (5) is installed on at least one edge (48) of the electrode assembly (4). (5) is composed of a flat plate-shaped main body (51) in contact with the edge (48), and a strip-shaped lead (55) protruding from the outer peripheral edge of the main body (51); In the method for manufacturing a secondary battery in which the tip of the lead portion (55) is connected to one electrode terminal portion, the manufacturing process of the current collector plate (5) includes:
A first step of annealing the metal plate;
The metal plate annealed in the first step is processed into an outer shape of the current collector plate (5), and one or a plurality of protrusions projecting from the surface of the metal plate are formed in a region to be the main body (51). And a second step of forming by plastic working.
前記第2工程における塑性加工は、電極体(4)の端縁(48)に向かって断面円弧状を呈する凸条部(52)を突出させる加工である請求項5に記載の二次電池の製造方法。6. The secondary battery according to claim 5, wherein the plastic working in the second step is a work of projecting a ridge (52) having an arc-shaped cross section toward an edge (48) of the electrode body (4). 7. Production method. 前記第2工程における塑性加工は、電極体(4)の端縁(48)に向かって切り起し片(53)を突出させる加工である請求項5に記載の二次電池の製造方法。The method of manufacturing a secondary battery according to claim 5, wherein the plastic working in the second step is a work of cutting and raising the piece (53) toward an edge (48) of the electrode body (4). 前記集電板(5)の製造工程の後に二次電池の組立工程を有し、該組立工程では、集電板(5)の本体(51)の突出部を電極体(4)の端縁(48)に押し付けた状態で、集電板(5)を電極体(4)に接合すると共に、集電板(5)のリード部(55)を本体(51)に向けて折り曲げ、該リード部(55)の先端部を一方の電極端子部と連結する請求項5乃至請求項7の何れかに記載の二次電池の製造方法。After the manufacturing process of the current collector plate (5), there is provided a process of assembling a secondary battery. While being pressed against (48), the current collector plate (5) is joined to the electrode body (4), and the lead portion (55) of the current collector plate (5) is bent toward the main body (51). The method for manufacturing a secondary battery according to claim 5, wherein a tip of the portion is connected to one of the electrode terminals.
JP2003089101A 2003-03-27 2003-03-27 Secondary battery and method of manufacturing the same Pending JP2004296341A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003089101A JP2004296341A (en) 2003-03-27 2003-03-27 Secondary battery and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003089101A JP2004296341A (en) 2003-03-27 2003-03-27 Secondary battery and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2004296341A true JP2004296341A (en) 2004-10-21

Family

ID=33403061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003089101A Pending JP2004296341A (en) 2003-03-27 2003-03-27 Secondary battery and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2004296341A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008035495A1 (en) * 2006-09-20 2008-03-27 Panasonic Corporation Secondary battery and method for manufacturing secondary battery
CN115207264A (en) * 2021-04-09 2022-10-18 株式会社Lg新能源 Electrode assembly, battery cell, processing device thereof, battery pack containing the same, and vehicle
WO2022241615A1 (en) * 2021-05-17 2022-11-24 微宏动力系统(湖州)有限公司 Positive electrode current collector disc and cylindrical battery
JP2024035073A (en) * 2022-09-01 2024-03-13 湖北億緯動力有限公司 Batteries and battery modules
JP2024176306A (en) * 2023-06-08 2024-12-19 プライムプラネットエナジー&ソリューションズ株式会社 Secondary battery and method for manufacturing the same
US12308441B2 (en) 2022-09-01 2025-05-20 Eve Power Co., Ltd. Battery and battery module

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008035495A1 (en) * 2006-09-20 2008-03-27 Panasonic Corporation Secondary battery and method for manufacturing secondary battery
US7976979B2 (en) 2006-09-20 2011-07-12 Panasonic Corporation Secondary battery and method for manufacturing secondary battery
KR101057954B1 (en) 2006-09-20 2011-08-18 파나소닉 주식회사 Secondary Battery and Manufacturing Method of Secondary Battery
US8142922B2 (en) 2006-09-20 2012-03-27 Panasonic Corporation Secondary battery and method for manufacturing secondary battery
CN115207264A (en) * 2021-04-09 2022-10-18 株式会社Lg新能源 Electrode assembly, battery cell, processing device thereof, battery pack containing the same, and vehicle
WO2022241615A1 (en) * 2021-05-17 2022-11-24 微宏动力系统(湖州)有限公司 Positive electrode current collector disc and cylindrical battery
JP2024035073A (en) * 2022-09-01 2024-03-13 湖北億緯動力有限公司 Batteries and battery modules
JP7639058B2 (en) 2022-09-01 2025-03-04 湖北億緯動力有限公司 Batteries and battery modules
US12308441B2 (en) 2022-09-01 2025-05-20 Eve Power Co., Ltd. Battery and battery module
JP2024176306A (en) * 2023-06-08 2024-12-19 プライムプラネットエナジー&ソリューションズ株式会社 Secondary battery and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP4401065B2 (en) Secondary battery and manufacturing method thereof
JP3334683B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP3935749B2 (en) Secondary battery
US8227107B2 (en) Cylindrical secondary battery having structure in which electrode assembly is connected with sealing cover via combination of current collector plate and current collector lead
JP3738177B2 (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
EP1134819B1 (en) Nonaqueous electrolyte secondary cells
CN101894967B (en) Rechargeable battery
US20120270085A1 (en) Secondary battery
US20230253568A1 (en) Secondary battery
JP2004119329A (en) Rechargeable battery
CN110165275A (en) The manufacturing method of battery and battery
JPH11135100A (en) Wound electrode battery and manufacture thereof
WO2024244505A1 (en) Pole assembly, energy storage apparatus, and electric device
JP3825706B2 (en) Secondary battery
JP3738166B2 (en) Non-aqueous electrolyte secondary battery
JP4159299B2 (en) Secondary battery
US7776469B2 (en) Secondary battery having a current collecting plate with improved welding characteristics
JP2000243372A (en) Secondary battery
JP2004296341A (en) Secondary battery and method of manufacturing the same
JP3825659B2 (en) Secondary battery
JP2011060644A (en) Sealed battery and method of manufacturing the same
JP4159383B2 (en) Cylindrical secondary battery
JP3707945B2 (en) Cylindrical battery
JP4293799B2 (en) Secondary battery
JP2002170531A (en) Cylindrical secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080701