【0001】
【発明の属する技術分野】
本発明は、界磁用の永久磁石を回転子に備えている永久磁石式回転電機に関し、特に、産業用や自動車などに搭載される表面磁石構造のブラシレスDCモータ等の永久磁石式回転電機に関する。
【0002】
【従来の技術】
従来、この種の永久磁石式回転電機においては、コギングトルクを低減するために様々な形状が採用されている。例えば、特開2002−204557号公報に記載の永久磁石式回転電機においては、固定子磁極数Mと回転子の永久磁石磁極数Pとの比をM:P=6n:6n±2に設定するとともに磁極位置検出素子の取り付け位置を電気角で進ませることにより、低振動・低騒音を実現している。特開2002−101629号公報に記載の永久磁石式回転電機においては、永久磁石の外周表面を非同心形状とすることが提案されている。特開平10−126981号公報に記載のモールドモータにおいては、ティースの内面をストレート状に形成することが提案されている。
【0003】
【特許文献1】
特開2002−204557号公報
【特許文献2】
特開2002−101629号公報
【特許文献3】
特開平10−126981号公報
【0004】
【発明が解決しようとする課題】
上記従来技術では、コギングトルク低減に着目しているが、引例1はM:Pの組み合わせによる最小公倍数を大きくしてコギングトルクを低減するものであり、巻線パターンが複雑となるために数十Wの小形機にしか適用できない問題がある。引例2は永久磁石の外周面を非同心としているためにコギングトルクは小さくできるが、負荷時の脈動トルクについては言及されていない。引例3はモールドモータの固定子鉄心のティースの内周面をストレート状に形成しているが、ティース内面に発生するプリミックスの薄膜を最小限に抑えるためであり、モールドモータとしてコギングトルクを小さくして騒音低減を図るものであるが、負荷時の脈動トルクについては言及されていないため、負荷時に騒音を低減できない問題がある。
【0005】
本発明の目的は、特に負荷時の脈動トルクを小さくして、騒音問題を解決できる永久磁石式回転電機を提供することにある。
【0006】
【課題を解決するための手段】
上記目的を達成するために、本発明では、固定子鉄心に形成された複数のスロット内にティースを取り囲むように集中巻の電機子巻線が施された固定子を有し、回転子鉄心の外周表面に複数の永久磁石を配置した回転子が、該固定子の内周にギャップを介して回転軸により回転自在に支承された永久磁石式回転電機において、ティースの内周面を略直線形状とし、永久磁石の厚みを周方向に不等となる形状にした永久磁石式回転電機を提案する。
【0007】
本発明では、また、固定子鉄心に形成された複数のスロット内にティースを取り囲むように集中巻の電機子巻線が施された固定子を有し、回転子鉄心の外周表面に複数の永久磁石を配置した回転子が、該固定子の内周にギャップを介して回転軸により回転自在に支承された多極の永久磁石式回転電機において、永久磁石式回転電機の極数を6極以上とし、ティースの内周面を略直線形状とし、永久磁石の厚みを周方向に不等となる形状にした永久磁石式回転電機を提案する。
【0008】
本発明では、更に、固定子鉄心に形成された複数のスロット内にティースを取り囲むように集中巻の電機子巻線が施された固定子を有し、回転子鉄心の外周表面に複数の永久磁石を固定した回転子が、該固定子の内周にギャップを介して回転軸により回転自在に支承された永久磁石式回転電機において、ティースの内周面を略直線形状とし、永久磁石の厚みを周方向に不等となる形状にすると共に、永久磁石の中央部厚みをh1、永久磁石の周方向端部の厚みをh2とした時、
h2/h1の値を40%以上に設定した永久磁石式回転電機を提案する。
【0009】
本発明では、更に、固定子鉄心に形成された複数のスロット内にティースを取り囲むように集中巻の電機子巻線が施された固定子を有し、回転子鉄心の外周表面に複数の永久磁石を固定した回転子が、該固定子の内周にギャップを介して回転軸により回転自在に支承された永久磁石式回転電機において、ティースの内周面を略直線形状とし、永久磁石の厚みを周方向に不等となる形状とし、永久磁石の極ピッチをθ1、永久磁石の開度をθ2とした時、θ2/θ1の値を75〜85%の範囲に設定した永久磁石式回転電機を提案する。
【0010】
本発明では、更に、固定子鉄心に形成された複数のスロット内にティースを取り囲むように集中巻の電機子巻線が施された固定子を有し、回転子鉄心の外周表面に複数の永久磁石を固定した回転子が、該固定子の内周にギャップを介して回転軸により回転自在に支承された永久磁石式回転電機において、ティースの内周面を略直線形状とし、永久磁石の厚みを周方向に不等となる形状にすると共に、永久磁石の中央部厚みをh1、永久磁石の周方向端部の厚みをh2とした時、
h2/h1の値を40%以上に設定し、永久磁石の極ピッチをθ1、永久磁石の開度をθ2とした時、θ2/θ1の値を75〜85%の範囲に設定した永久磁石式回転電機を提案する。
【0011】
本発明では、更に、固定子鉄心に形成された複数のスロット内にティースを取り囲むように集中巻の電機子巻線が施された固定子を有し、回転子鉄心の外周表面に複数の永久磁石を配置した回転子が、該固定子の内周にギャップを介して回転軸により回転自在に支承された永久磁石式回転電機において、ティースの内周面を略直線形状とし、永久磁石の厚みを周方向に不等となる形状にすると共に、永久磁石を回転子の軸方向に分割し、分割した永久磁石を周方向にずらして配置した永久磁石式回転電機を提案する。
【0012】
本発明では、更に、固定子鉄心に形成された複数のスロット内にティースを取り囲むように集中巻の電機子巻線が施された固定子を有し、回転子鉄心の外周表面に複数の永久磁石を配置した回転子が、該固定子の内周にギャップを介して回転軸により回転自在に支承された多極の永久磁石式回転電機において、永久磁石式回転電機の極数を6極以上とし、ティースの内周面を略直線形状とし、永久磁石の厚みを周方向に不等となる形状にすると共に、永久磁石を回転子の軸方向に分割し、分割した永久磁石を周方向にずらして配置した永久磁石式回転電機を提案する。
【0013】
本発明では、更に、固定子鉄心に形成された複数のスロット内にティースを取り囲むように集中巻の電機子巻線が施された固定子を有し、回転子鉄心の外周表面に複数の永久磁石を固定した回転子が、該固定子の内周にギャップを介して回転軸により回転自在に支承された永久磁石式回転電機において、ティースの内周面を略直線形状とし、永久磁石の厚みを周方向に不等となる形状にすると共に、永久磁石の中央部厚みをh1、永久磁石の周方向端部の厚みをh2とした時、
h2/h1の値を40%以上に設定すると共に、永久磁石を回転子の軸方向に分割し、分割した永久磁石を周方向にずらして配置した永久磁石式回転電機を提案する。
【0014】
本発明では、更に、固定子鉄心に形成された複数のスロット内にティースを取り囲むように集中巻の電機子巻線が施された固定子を有し、回転子鉄心の外周表面に複数の永久磁石を固定した回転子が、該固定子の内周にギャップを介して回転軸により回転自在に支承された永久磁石式回転電機において、ティースの内周面を略直線形状とし、永久磁石の厚みを周方向に不等となる形状とし、永久磁石の極ピッチをθ1、永久磁石の開度をθ2とした時、θ2/θ1の値を75〜85%の範囲に設定すると共に、永久磁石を回転子の軸方向に分割し、分割した永久磁石を周方向にずらして配置した永久磁石式回転電機を提案する。
【0015】
本発明では、更に、固定子鉄心に形成された複数のスロット内にティースを取り囲むように集中巻の電機子巻線が施された固定子を有し、回転子鉄心の外周表面に複数の永久磁石を固定した回転子が、該固定子の内周にギャップを介して回転軸により回転自在に支承された永久磁石式回転電機において、ティースの内周面を略直線形状とし、永久磁石の厚みを周方向に不等となる形状にすると共に、永久磁石の中央部厚みをh1、永久磁石の周方向端部の厚みをh2とした時、
h2/h1の値を40%以上に設定し、永久磁石の極ピッチをθ1、永久磁石の開度をθ2とした時、θ2/θ1の値を75〜85%の範囲に設定すると共に、永久磁石を回転子の軸方向に分割し、分割した永久磁石を周方向にずらして配置した永久磁石式回転電機を提案する。
【0016】
本発明では、更に、固定子鉄心に形成された複数のスロット内にティースを取り囲むように集中巻の電機子巻線が施された固定子を有し、回転子鉄心の外周表面に複数の永久磁石を配置した回転子が、該固定子の内周にギャップを介して回転軸により回転自在に支承された永久磁石式回転電機において、ティースの内周面を略直線形状とし、永久磁石に異方性リング磁石を用いた永久磁石式回転電機を提案する。
【0017】
本発明では、更に、固定子鉄心に形成された複数のスロット内にティースを取り囲むように集中巻の電機子巻線が施された固定子を有し、回転子鉄心の外周表面に複数の永久磁石を配置した回転子が、該固定子の内周にギャップを介して回転軸により回転自在に支承された多極の永久磁石式回転電機において、永久磁石式回転電機の極数を6極以上とし、ティースの内周面を略直線形状とし、永久磁石に異方性リング磁石を用いると共に、異方性リング磁石を回転子の軸方向に分割し、分割した異方性リング磁石を周方向にずらして配置した永久磁石式回転電機を提案する。
【0018】
本発明では、永久磁石式回転電機の極数を6極以上でティースの内周面を略直線形状とし、かつ表面磁石構造の永久磁石の厚みを周方向に不等となる形状とし、永久磁石の開度を最適値に設定する。また、永久磁石を軸方向に分割し、かつ分割した永久磁石を周方向にずらし、永久磁石間のギャップの大きさを調整することにより、負荷時の脈動トルクを自由に調整できる。よって、回転電機の必要出力を確保しつつ騒音の小さな回転電機を提供できる。
【0019】
【発明の実施の形態】
以下、本発明の実施例を図1〜図13を用いて詳細に説明する。各図中において、共通する符号は同一物を示す。また、ここでは12極の永久磁石式回転電機について示し、回転子の極数と固定子のスロット数との比を2:3とした。
【0020】
(実施形態1)
図1は本発明による永久磁石式回転電機の実施形態1の径方向断面形状、図2は本発明による実施形態1の回転子の軸方向断面形状、図3は本発明による実施形態1の永久磁石式回転電機の拡大図の一部を示す。図1において、永久磁石式回転電機1は固定子2と回転子3から構成される。固定子2はティース4とコアバック5からなる固定子鉄心6と、ティース4間のスロット7内にはティース4を取り囲むように巻装された集中巻の電機子巻線8(三相巻線のU相巻線8a,V相巻線8b,W相巻線8cからなる)から構成される。ここで、永久磁石式回転電機1は12極18スロットであるから、磁極ピッチは電気角で30度、スロットピッチは電気角で20度である。回転子3はシャフト(図示せず)孔9を形成した回転子鉄心10の外周表面に表面が略非同心アーク状の非同心アーク永久磁石11を固定している。
【0021】
図2において、シャフト9aとシャフト孔9を勘合した回転子鉄心(ここでは塊状鉄心で示した)10の外周表面に永久磁石11を固着した表面磁石構造の回転子3と、固定子鉄心6のスロット内7の巻装した電機子巻線8からなり、固定子鉄心6の軸長LS に対し永久磁石11の軸長LR を長く設定している。
【0022】
図3において、回転子3は回転子鉄心10の外周表面に外周が非同心のアーク永久磁石11を固定している。固定子2のコアバック5と一体のティース4の内周面を直線形状(ストレート)4aに設定している。ここで、本発明ではティース4の内周面を直線形状(ストレート)4aと永久磁石11の配置に特徴がある。すなわち、回転子3の中心をOとして、θ1が磁極ピッチ、θ2が永久磁石11の開度とし、永久磁石11の中央部厚みをh1、端部厚みをh2とする。
【0023】
図4は図1〜図3の構成で極数Pを変化させた場合の電機子巻線8による銅損の増加率の逆数をp.u.で表した図であり、100%は銅損の最小値である。すなわちティース4の内周面を直線形状としているため、スロット7の巻線スペースが左右され、極数によって巻線スペースが変化する。極数を8極以上とすることにより、巻線スペースの変化がなく、銅損の増加率の逆数が100p.u.となるが、6極に設定すると銅損の増加率の逆数が約2p.u.だけ低下するが、4極に設定すると銅損の増加率の逆数が約10p.u.も低下する。これより、回転電機の性能に影響を与えずティース4の内周面を直線形状にできるのは6極以上になる。
【0024】
図5は磁石厚み比h2/h1に対する永久磁石の減磁有無を示した図である。図5において、過負荷状態では従来のように磁石厚み比h2/h1を50%に設定すると永久磁石の中央部は減磁しないが、図中に示す磁石端部に減磁は発生するので、定格出力を小さくするか、磁石端部厚みを60%以上に設定する必要があった。磁石端部を厚く設定するとコギングトルクや負荷時の脈動トルクを小さくできず、設計自由度が狭くなる問題がある。これに対し、本発明では磁石厚み比h2/h1を30%に設定すると永久磁石の中央部は減磁しないが、磁石端部に減磁は発生し、磁石厚み比h2/h1を40%に設定すると永久磁石の中央部,磁石端部とも減磁は発生しないので、磁石端部を薄く設定でき、コギングトルクや負荷時の脈動トルクを小さくするような設計自由度が大きくなる効果がある。
【0025】
図6は磁石開度の比θ2/θ1に対する脈動トルクを定格トルク比のp.u.で示した図である。図6において、従来のように脈動トルクが18p.u.の場合に対し、極数を6から14まで変化させた場合、脈動トルクが最小になる上限値と下限値が生じる。6極の場合の脈動トルクに対し極数を増加すると脈動トルクが益々小さくなることを確認した。極数が6以上で磁石開度の比θ2/θ1を75〜85%に設定すると脈動トルクを5%以下にできる効果がある。
【0026】
(実施形態2)
脈動トルクはゼロが望ましいが、出力と構造寸法制約から問題にならない回転電機の定数を決定する。しかし、負荷によっては回転電機の脈動トルクをゼロにする必要が生じる。図7は本発明による他の実施形態2の永久磁石式回転電機の回転子の軸方向断面形状の斜視図、図8には本発明による他の実施形態2の永久磁石式回転電機の正面図の一部拡大図を示す。図7において、回転子3の永久磁石11を2分割した永久磁石12(12a,12bからなる)を回転子3の周方向にずらして配置したものである。図8には磁石配置構造を示す。図8において、分割した永久磁石12aと永久磁石12bの間には周方向にずれ幅S1を設け、かつ軸方向に隙間b1を形成した。図9には磁石開度の比θ2/θ1に対する脈動トルクを定格トルク比のp.u.で示した図である。図9において、従来のように脈動トルクが18p.u.の場合に対し、極数を6から14まで変化させた場合、脈動トルクが最小になる。極数が6以上で磁石開度の比θ2/θ1を75〜85%に設定すると脈動トルクを1%以下にできる効果がある。
【0027】
(実施形態3)
図10は本発明による他の実施形態3の永久磁石式回転電機の径方向断面形状、図11には本発明による他の実施形態3の回転子の径方向断面形状を示す。図10,図11において、回転子3の永久磁石11を円筒状の異方性リング磁石13で構成したものである。異方性リング磁石13は図示するように、周方向の位置によって磁化の強さ14が異なるものであり、永久磁石11を非同心アーク磁石形状にしなくても図1と同様な効果が得られ、かつ永久磁石の取り付け配置が簡単になるので生産性が向上する効果がある。
【0028】
(実施形態4)
図12には本発明の他の実施形態4の永久磁石式回転電機の回転子の軸方向断面形状の斜視図を示す。図12において、異方性リング磁石13を2分割した永久磁石15(15a,15bからなる)を回転子3の周方向にずらして配置したものである。図12において、分割した永久磁石15aと永久磁石15bの間には周方向にずれ幅S1を設け、かつ軸方向に隙間b1を形成した。これによっても本発明と同様の効果が得られる。
【0029】
(実施形態5)
図13には本発明の他の実施形態5の永久磁石式回転電機の拡大図の一部を示す。図13において図1と異なるのは、ティース4の内周面4aの一部に同心円弧部16を設けたものであり、ギャップゲージなどにより回転子3と固定子2のギャップが正常に形成されているか否か確認でき、永久磁石式回転電機の信頼性向上が図れる効果がある。
【0030】
以下、本発明のその他の実施例を図14〜図25を用いて詳細に説明する。各図中において、共通する符号は同一物を示す。また、ここでは4極の永久磁石式回転電機について示し、回転子の極数と固定子のスロット数との比を2:3とした。
【0031】
(実施形態6)
図14は本発明による永久磁石式回転電機の実施形態1の径方向断面形状、図15は本発明による実施形態6の回転子の径方向断面形状を拡大したもの、図16は本発明による実施形態6の回転子の斜視図であり、図16のA−A′断面図を図14(a),図15(a)に、B−B′断面図を図14(b),図15(b)に示す。図14(a)において、永久磁石式回転電機101は固定子102と回転子103から構成される。
【0032】
固定子102はティース104とコアバック105からなる固定子鉄心106と、ティース104間のスロット107内にはティース104を取り囲むように巻装された集中巻の電機子巻線108(三相巻線のU相巻線108a,V相巻線108b,W相巻線108cからなる)から構成される。ここで、永久磁石式回転電機101は4極6スロットであるから、スロットピッチは電気角で120度である。回転子103はシャフト(図示せず)孔109を形成した回転子鉄心110の外周表面に表面が略非同心アーク状の非同心アーク永久磁石111を固定している。図14(a)と図14(b)の違いは、回転子103の非同心アーク永久磁石111の固定位置にある。
【0033】
図15(a)において、回転子103はシャフト孔109を形成した回転子鉄心110の外周表面に非同心アーク永久磁石111(4極であるので111a,111b,111c,111dからなる)を固定しているが、非同心アーク永久磁石111の配置に特徴がある。すなわち、回転子103の中心をOとして、横線をX軸、縦線をY軸とした場合、非同心アーク永久磁石111aはX軸とY軸の角度をθ1、非同心アーク永久磁石111の開度をθ2、X軸と永久磁石111の右サイドのなす角度をθ3、Y軸と永久磁石111の左サイドのなす角度をθ4としたとき、θ4<θ3<θ2<θ1の関係にあり、θ1は4極機であるので機械角で90度、電気角で180度となる。非同心アーク永久磁石111b,111c,111dはX軸,Y軸を基準に機械角でそれぞれ90度ずつ左方向へ回転させた配置である。図15(b)は図15(a)に対し、X軸と非同心アーク永久磁石111aの右サイドのなす角度がθ4、Y軸と非同心アーク永久磁石111の左サイドのなす角度がθ3になるのみで、他は同じである。
【0034】
図15の回転子の斜視図が図16であり、図15(a),図15(b)を回転子103の右,左に配置したものである。そして、非同心アーク永久磁石111間に隙間112を形成したものである。この結果、両サイドの非同心アーク永久磁石111は周方向配置が異なり、疑似スキューを形成することになる。
【0035】
図17は図14〜図16の構成で非同心アーク永久磁石間隙間112を変化させた場合の回転子103の回転角度に対するコギングトルク/定格トルク比の値を%で表したものである。永久磁石間隙間112が0mmの場合、すなわち両非同心アーク永久磁石111を結合すると6%強のコギングトルクとなる。これに対し非同心アーク永久磁石間隙間112を大きくしていくと、コギングトルクが小さくなり、非同心アーク永久磁石間隙間112が12mmになるとコギングトルクの値が2%を下まわる。
【0036】
図18は非同心アーク永久磁石間隙間112を変化した場合のコギングトルクの値を示す。すなわち、非同心アーク永久磁石間隙間/磁石軸長を変化させた場合のコギングトルク/定格トルク比の値を%で表したものである。図18より、非同心アーク永久磁石間隙間112を大きくしていくと、コギングトルクが小さくなり、非同心アーク永久磁石間隙間112を12%以上に設定するとコギングトルクが1%以下になる。磁石間隙間が5パーセント程度までであれば隙間を大きくすることによる効果は大きいが、15%を超えるとコギングトルク低減の効果はほとんどなくなる。元々、非同心アーク永久磁石間に隙間112を設けず、非同心アーク永久磁石111を周方向にずらさない場合のコギングトルクの値は24%であり、非同心アーク永久磁石111を周方向にずらした場合が6.7% であるので、非同心アーク永久磁石間隙間112が0mmでもコギングトルク低減に効果がある。さらに、非同心アーク永久磁石間に隙間112を設けることにより、コギングトルクを1%以下に低減できる。非同心アーク永久磁石間隙間を設けない場合は周方向にずらした非同心アーク永久磁石111同士が干渉しあってコギングトルクの値が大きくなるのに対し、非同心アーク永久磁石間隙間を設けた場合は周方向にずらした非同心アーク永久磁石111同士が干渉しなくなってコギングトルクの値が小さくなることを見い出したものである。
【0037】
永久磁石の長さは、電気角で130度を超えるとコギングトルクの値が大きくなり、120度以下でもやはりコギングトルクの値が大きくなる。したがって、永久磁石の長さを120度以上130度以下とすることが望ましい。
【0038】
永久磁石式回転電機101を用いる場合、特に電動パワーステアリング用永久磁石式回転電機ではコギングトルクによる脈動トルクがハンドルまで感じられ、ハンドル操作者に違和感を与える(ハンドル操作性)ことになるが、本発明では永久磁石を軸方向に分割し、分割した永久磁石を周方向にずらすことによりコギングトルクを低減し、さらに軸方向に分割した永久磁石間に隙間を設け、その隙間を調整することによってコギングトルクを1%以下にまで減少できるので、電動パワーステアリング用永久磁石式回転電機に用いても違和感のないハンドル操作を実現できる。
【0039】
(実施形態7)
図19は本発明による実施形態7の回転子103の斜視図であり、図15(b)の回転子103の両サイドに図15(a)の回転子103を配置したものである。そして、非同心アーク永久磁石111間に隙間112(112a,112b)を形成したものである。この結果、非同心アーク永久磁石111は軸方向にV字形状に配置され、疑似スキューを形成することになる。これによっても図14と同様の効果が得られ、軸方向推力を打ち消すことができる。
【0040】
(実施形態8)
図20は本発明による実施形態3の回転子の径方向断面形状を拡大したものである。図20(a)において、回転子103はシャフト孔109を形成した回転子鉄心110の外周表面に同心アーク永久磁石113(4極であるので113a,113b,113c,113dからなる)を固定し、表面が略同心形状の同心アーク永久磁石113の配置に特徴がある。すなわち、回転子103の中心をOとして、横線をX軸、縦線をY軸とした場合、同心アーク永久磁石113aはX軸とY軸の角度をθ1、同心アーク永久磁石113の開度をθ2、X軸と同心アーク永久磁石113aの右サイドのなす角度をθ3、Y軸と同心アーク永久磁石113bの左サイドのなす角度をθ4としたとき、θ4<θ3<θ2<θ1の関係にあり、θ1は4極機であるので機械角で90度、電気角で180度となる。同心アーク永久磁石113b,113c,113dはX軸,Y軸を基準に機械角でそれぞれ90度ずつ左方向へ回転させた配置である。図20(b)は図20(a)に対し、X軸と同心アーク永久磁石113aの右サイドのなす角度がθ4、Y軸と同心アーク永久磁石113aの左サイドのなす角度がθ3になるのみで、他は同じである。
【0041】
図21は図20の回転子の斜視図であり、図20(a),図20(b)を回転子103の右,左に配置したものである。そして、同心アーク永久磁石113間に隙間112を形成したものである。この結果、両サイドの同心アーク永久磁石113は周方向配置が異なり、疑似スキューを形成することになる。これによっても図14と同様の効果が得られる。
【0042】
(実施形態9)
図22は本発明による実施形態9の回転子103の斜視図であり、図20(b)の回転子103の両サイドに図20(a)の回転子103を配置したものである。そして、同心アーク永久磁石113間に隙間112(112a,112b)を形成したものである。この結果、同心アーク永久磁石113は軸方向にV字形状に配置され、疑似スキューを形成することになる。これによっても図14と同様の効果が得られ、軸方向推力を打ち消すことができる。
【0043】
(実施形態10)
図23は本発明による実施形態5の固定子2の径方向断面形状であり、図14に示した固定子と異なるのはティース104の内周面に円弧部分114の他に、磁極の両サイドにベベリング115を施したものである。図20,図21,図22に示した回転子103の実施例では永久磁石に同心アーク永久磁石113を用いているので、ティース104の両サイドでの磁束の変化が大きくなり、コギングトルクも大きくなるので、磁極の両サイドにベベリング115を施した固定子102と組み合わせることにより、図14と同様の効果が得られる。
【0044】
(実施形態11)
図24は本発明による実施形態11の回転子103の正面図であり、図14に示した回転子103と異なるのは隙間112の位置に当て板部116を設け、永久磁石の固定位置を規定するものであり、回転子103の組み立て精度が向上する。
【0045】
(実施形態12)
図25は本発明による実施形態12の回転子103の正面図であり、図14に示した回転子103と異なるのは隙間112の位置と永久磁石の周方向隙間118に当て板材117を設け、永久磁石の固定位置を規定するものであり、回転子103の組み立て精度が向上する。
【0046】
【発明の効果】
上述のように、本発明によれば、集中巻を採用した固定子を用い、固定子鉄心のティースの内周面を略直線形状に形成し、回転子鉄心の外周面に固定した永久磁石の厚みを周方向に不等となる形状とすることにより、脈動トルクを最小化でき、騒音問題の発生を防止できる。また永久磁石を軸方向に分割し、分割した永久磁石を周方向にずらし、軸方向に分割した永久磁石間に隙間を設けることにより、更なる脈動トルクの低減が図れる。さらに表面磁石構造の永久磁石を異方性リング磁石とすることにより、生産性を向上でき、騒音が少ない永久磁石式回転電機を提供できる。
【図面の簡単な説明】
【図1】本発明による永久磁石式回転電機の実施形態1の径方向断面形状を示す断面図。
【図2】本発明による実施形態1の回転子の軸方向断面形状。
【図3】本発明による実施形態1の永久磁石式回転電機の拡大図の一部を示す図。
【図4】本発明による極数Pを変化させた場合の銅損の増加率の逆数を表した図。
【図5】本発明による磁石厚み比h2/h1に対する永久磁石の減磁有無を示した図。
【図6】本発明による磁石開度の比θ2/θ1に対する脈動トルク/定格トルク比を示した図。
【図7】本発明による他の実施形態2の永久磁石式回転電機の回転子の軸方向断面形状の斜視図。
【図8】本発明による他の実施形態2の永久磁石式回転電機の正面図の一部拡大図を示す図。
【図9】本発明による磁石開度の比θ2/θ1に対する脈動トルク/定格トルク比を示した図。
【図10】本発明による他の実施形態3の永久磁石式回転電機の径方向断面形状を示す図。
【図11】本発明による他の実施形態3の回転子の径方向断面形状を示す図。
【図12】本発明による他の実施形態4の永久磁石式回転電機の回転子の軸方向断面形状の斜視図を示す図。
【図13】本発明による他の実施形態5の永久磁石式回転電機の拡大図の一部を示す図。
【図14】本発明による永久磁石式回転電機の実施形態6の径方向断面形状を示す断面図。
【図15】本発明による実施形態6の回転子の径方向断面形状を拡大したものを示す断面図。
【図16】本発明による実施形態6の回転子の斜視図を示す図。
【図17】本発明による実施形態6の非同心アーク永久磁石間隙間量に対するコギングトルクを表した図。
【図18】本発明による実施形態6の非同心アーク永久磁石間隙間に対するコギングトルクの値を示す図。
【図19】本発明による実施形態7の回転子103の斜視図を示す断面図。
【図20】本発明による実施形態8の回転子の径方向断面形状を拡大した断面図。
【図21】本発明による実施形態8の回転子の斜視図を示す図。
【図22】本発明による実施形態9の回転子103の斜視図を示す図。
【図23】本発明による実施形態10の固定子102の径方向断面形状を示す断面図。
【図24】本発明による実施形態11の回転子3の正面図を示す図。
【図25】本発明による実施形態12の回転子3の正面図を示す図。
【符号の説明】
1,101…永久磁石式回転電機、2,102…固定子、3,103…回転子、4,104…ティース、4a…直線形状、5,105…コアバック、6,106…固定子鉄心、7,107…スロット、8,108…電機子巻線、9,109…シャフト孔、10,110…回転子鉄心、11…永久磁石、12…分割永久磁石、13…極異方性リング磁石、14…磁化の強さ、15…分割極異方性リング磁石、16…同心円弧、111…非同心アーク永久磁石、112…永久磁石間隙間、113…同心アーク永久磁石、114…ティース円弧状部分、115…ベベリング、116…当て板部、117…当て板材、118…周方向隙間。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a permanent magnet type rotating electric machine having a permanent magnet for a field in a rotor, and more particularly to a permanent magnet type rotating electric machine such as a brushless DC motor having a surface magnet structure mounted on an industrial use or an automobile. .
[0002]
[Prior art]
Conventionally, in this type of permanent magnet type rotating electric machine, various shapes have been adopted to reduce cogging torque. For example, in the permanent magnet type rotating electric machine described in JP-A-2002-204557, the ratio of the number of stator magnetic poles M to the number of permanent magnet magnetic poles P of the rotor is set to M: P = 6n: 6n ± 2. At the same time, the mounting position of the magnetic pole position detecting element is advanced by an electrical angle, thereby realizing low vibration and low noise. In the permanent magnet type rotating electric machine described in Japanese Patent Application Laid-Open No. 2002-101629, it has been proposed that the outer peripheral surface of the permanent magnet be made non-concentric. In the molded motor described in Japanese Patent Application Laid-Open No. H10-126981, it has been proposed to form the inner surfaces of the teeth straight.
[0003]
[Patent Document 1]
JP-A-2002-204557
[Patent Document 2]
JP-A-2002-101629
[Patent Document 3]
JP-A-10-126981
[0004]
[Problems to be solved by the invention]
Although the above prior art focuses on cogging torque reduction, Reference 1 reduces cogging torque by increasing the least common multiple by the combination of M: P, and requires several tens of degrees due to a complicated winding pattern. There is a problem that can be applied only to a small W machine. In Reference 2, the cogging torque can be reduced because the outer peripheral surface of the permanent magnet is not concentric, but the pulsating torque under load is not mentioned. In Reference 3, the inner peripheral surface of the teeth of the stator core of the molded motor is formed in a straight shape, but this is for minimizing the premix thin film generated on the inner surface of the teeth. However, since there is no mention of pulsating torque at the time of load, there is a problem that noise cannot be reduced at the time of load.
[0005]
An object of the present invention is to provide a permanent magnet type rotating electric machine that can solve the noise problem by reducing the pulsating torque particularly under load.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention, a stator in which concentrated winding armature windings are provided to surround teeth in a plurality of slots formed in the stator core, In a permanent magnet type rotating electric machine in which a rotor having a plurality of permanent magnets disposed on an outer peripheral surface is rotatably supported by a rotating shaft through a gap on an inner periphery of the stator, an inner peripheral surface of the teeth is substantially linear. Then, a permanent magnet type rotating electric machine in which the thickness of the permanent magnet is made unequal in the circumferential direction is proposed.
[0007]
According to the present invention, the stator further includes a stator in which concentrated winding armature winding is provided so as to surround the teeth in a plurality of slots formed in the stator core, and a plurality of permanent magnets are provided on the outer peripheral surface of the rotor core. In a multi-pole permanent magnet type rotating electric machine in which a rotor on which a magnet is arranged is rotatably supported by a rotating shaft on the inner periphery of the stator via a gap, the number of poles of the permanent magnet type rotating electric machine is 6 or more. The present invention proposes a permanent magnet type rotating electric machine in which the inner peripheral surface of the teeth is substantially linear and the thickness of the permanent magnet is not uniform in the circumferential direction.
[0008]
In the present invention, the stator further includes a stator in which concentrated winding armature windings are provided so as to surround the teeth in a plurality of slots formed in the stator core, and a plurality of permanent magnets are provided on the outer peripheral surface of the rotor core. In a permanent magnet type rotating electric machine in which a rotor on which a magnet is fixed is rotatably supported by a rotating shaft on an inner circumference of the stator via a gap, an inner circumferential surface of the teeth is substantially linear, and a thickness of the permanent magnet is When the thickness of the central portion of the permanent magnet is h1 and the thickness of the end portion in the circumferential direction of the permanent magnet is h2,
A permanent magnet type rotating electric machine in which the value of h2 / h1 is set to 40% or more is proposed.
[0009]
In the present invention, the stator further includes a stator in which concentrated winding armature windings are provided so as to surround the teeth in a plurality of slots formed in the stator core, and a plurality of permanent magnets are provided on the outer peripheral surface of the rotor core. In a permanent magnet type rotating electric machine in which a rotor on which a magnet is fixed is rotatably supported by a rotating shaft on an inner circumference of the stator via a gap, an inner circumferential surface of the teeth is substantially linear, and a thickness of the permanent magnet is Is a shape that is unequal in the circumferential direction, and when the pole pitch of the permanent magnet is θ1 and the opening of the permanent magnet is θ2, the value of θ2 / θ1 is set in the range of 75 to 85%. Suggest.
[0010]
In the present invention, the stator further includes a stator in which concentrated winding armature windings are provided so as to surround the teeth in a plurality of slots formed in the stator core, and a plurality of permanent magnets are provided on the outer peripheral surface of the rotor core. In a permanent magnet type rotating electric machine in which a rotor on which a magnet is fixed is rotatably supported by a rotating shaft on an inner circumference of the stator via a gap, an inner circumferential surface of the teeth is substantially linear, and a thickness of the permanent magnet is When the thickness of the central portion of the permanent magnet is h1 and the thickness of the end portion in the circumferential direction of the permanent magnet is h2,
When the value of h2 / h1 is set to 40% or more, the pole pitch of the permanent magnet is θ1, and the opening of the permanent magnet is θ2, the value of θ2 / θ1 is set in the range of 75 to 85%. We propose a rotating electric machine.
[0011]
In the present invention, the stator further includes a stator in which concentrated winding armature windings are provided so as to surround the teeth in a plurality of slots formed in the stator core, and a plurality of permanent magnets are provided on the outer peripheral surface of the rotor core. In a permanent magnet type rotating electric machine in which a rotor having magnets is rotatably supported on the inner periphery of the stator by a rotating shaft via a gap, the inner peripheral surface of the teeth is substantially linear, and the thickness of the permanent magnet is The present invention proposes a permanent magnet type rotating electric machine in which a permanent magnet is formed in an irregular shape in a circumferential direction, a permanent magnet is divided in an axial direction of a rotor, and the divided permanent magnets are shifted in a circumferential direction.
[0012]
In the present invention, the stator further includes a stator in which concentrated winding armature windings are provided so as to surround the teeth in a plurality of slots formed in the stator core, and a plurality of permanent magnets are provided on the outer peripheral surface of the rotor core. In a multi-pole permanent magnet type rotating electric machine in which a rotor on which a magnet is arranged is rotatably supported by a rotating shaft on the inner periphery of the stator via a gap, the number of poles of the permanent magnet type rotating electric machine is 6 or more. The inner peripheral surface of the teeth is substantially linear, the thickness of the permanent magnet is made unequal in the circumferential direction, and the permanent magnet is divided in the axial direction of the rotor. We propose a permanent magnet type rotating electric machine that is staggered.
[0013]
In the present invention, the stator further includes a stator in which concentrated winding armature windings are provided so as to surround the teeth in a plurality of slots formed in the stator core, and a plurality of permanent magnets are provided on the outer peripheral surface of the rotor core. In a permanent magnet type rotating electric machine in which a rotor on which a magnet is fixed is rotatably supported by a rotating shaft on an inner circumference of the stator via a gap, an inner circumferential surface of the teeth is substantially linear, and a thickness of the permanent magnet is When the thickness of the central portion of the permanent magnet is h1 and the thickness of the end portion in the circumferential direction of the permanent magnet is h2,
A permanent magnet type rotating electric machine is proposed in which the value of h2 / h1 is set to 40% or more, the permanent magnets are divided in the axial direction of the rotor, and the divided permanent magnets are shifted in the circumferential direction.
[0014]
In the present invention, the stator further includes a stator in which concentrated winding armature windings are provided so as to surround the teeth in a plurality of slots formed in the stator core, and a plurality of permanent magnets are provided on the outer peripheral surface of the rotor core. In a permanent magnet type rotating electric machine in which a rotor on which a magnet is fixed is rotatably supported by a rotating shaft on an inner circumference of the stator via a gap, an inner circumferential surface of the teeth is substantially linear, and a thickness of the permanent magnet is Is a shape that is unequal in the circumferential direction, when the pole pitch of the permanent magnet is θ1 and the opening of the permanent magnet is θ2, the value of θ2 / θ1 is set in the range of 75 to 85%, and the permanent magnet is We propose a permanent magnet type rotating electric machine in which the permanent magnets are divided in the axial direction of the rotor, and the divided permanent magnets are arranged shifted in the circumferential direction.
[0015]
In the present invention, the stator further includes a stator in which concentrated winding armature windings are provided so as to surround the teeth in a plurality of slots formed in the stator core, and a plurality of permanent magnets are provided on the outer peripheral surface of the rotor core. In a permanent magnet type rotating electric machine in which a rotor on which a magnet is fixed is rotatably supported by a rotating shaft on an inner circumference of the stator via a gap, an inner circumferential surface of the teeth is substantially linear, and a thickness of the permanent magnet is When the thickness of the central portion of the permanent magnet is h1 and the thickness of the end portion in the circumferential direction of the permanent magnet is h2,
When the value of h2 / h1 is set to 40% or more, the pole pitch of the permanent magnet is θ1, and the opening of the permanent magnet is θ2, the value of θ2 / θ1 is set in the range of 75 to 85%, We propose a permanent magnet type rotating electric machine in which magnets are divided in the axial direction of the rotor, and the divided permanent magnets are shifted in the circumferential direction.
[0016]
In the present invention, the stator further includes a stator in which concentrated winding armature windings are provided so as to surround the teeth in a plurality of slots formed in the stator core, and a plurality of permanent magnets are provided on the outer peripheral surface of the rotor core. In a permanent magnet type rotating electric machine in which a rotor having magnets is rotatably supported on the inner periphery of the stator by a rotating shaft via a gap, an inner peripheral surface of the teeth is formed in a substantially linear shape, and the inner periphery of the teeth is different from the permanent magnet. We propose a permanent magnet type rotating electric machine using an isotropic ring magnet.
[0017]
In the present invention, the stator further includes a stator in which concentrated winding armature windings are provided so as to surround the teeth in a plurality of slots formed in the stator core, and a plurality of permanent magnets are provided on the outer peripheral surface of the rotor core. In a multi-pole permanent magnet type rotating electric machine in which a rotor on which a magnet is arranged is rotatably supported by a rotating shaft on the inner periphery of the stator via a gap, the number of poles of the permanent magnet type rotating electric machine is 6 or more. The inner peripheral surface of the teeth is substantially linear, an anisotropic ring magnet is used as the permanent magnet, the anisotropic ring magnet is divided in the axial direction of the rotor, and the divided anisotropic ring magnet is arranged in the circumferential direction. We propose a permanent magnet type rotating electric machine that is staggered.
[0018]
In the present invention, the permanent magnet type rotating electric machine has six or more poles, the inner peripheral surface of the teeth is substantially linear, and the thickness of the permanent magnet of the surface magnet structure is not uniform in the circumferential direction. Set the opening to the optimal value. Further, the pulsating torque at the time of load can be freely adjusted by dividing the permanent magnet in the axial direction, shifting the divided permanent magnet in the circumferential direction, and adjusting the size of the gap between the permanent magnets. Therefore, it is possible to provide a rotating electric machine with low noise while ensuring the required output of the rotating electric machine.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to FIGS. In each of the drawings, common symbols indicate the same items. Here, a 12-pole permanent magnet type rotating electric machine is shown, and the ratio between the number of poles of the rotor and the number of slots of the stator is 2: 3.
[0020]
(Embodiment 1)
FIG. 1 is a radial sectional view of a permanent magnet type rotating electric machine according to a first embodiment of the present invention, FIG. 2 is an axial sectional view of a rotor of the first embodiment according to the present invention, and FIG. 1 shows a part of an enlarged view of a magnet type rotating electric machine. In FIG. 1, a permanent magnet type rotating electric machine 1 includes a stator 2 and a rotor 3. The stator 2 includes a stator core 6 including teeth 4 and a core back 5, and a concentrated winding armature winding 8 (three-phase winding) wound around the teeth 4 in a slot 7 between the teeth 4. , U-phase winding 8a, V-phase winding 8b and W-phase winding 8c). Here, since the permanent magnet type rotating electric machine 1 has 12 poles and 18 slots, the magnetic pole pitch is 30 degrees in electrical angle and the slot pitch is 20 degrees in electrical angle. The rotor 3 has a non-concentric arc permanent magnet 11 having a substantially non-concentric arc surface fixed to an outer peripheral surface of a rotor core 10 having a shaft (not shown) hole 9 formed therein.
[0021]
In FIG. 2, a rotor 3 having a surface magnet structure in which a permanent magnet 11 is fixed to an outer peripheral surface of a rotor core (shown as a massive core) 10 in which a shaft 9 a and a shaft hole 9 are fitted, and a stator core 6. An axial length L of the stator core 6 is comprised of a wound armature winding 8 in a slot 7. S With the axial length L of the permanent magnet 11 R Is set longer.
[0022]
In FIG. 3, a rotor 3 has an arc permanent magnet 11 having a non-concentric outer periphery fixed to an outer peripheral surface of a rotor iron core 10. The inner peripheral surface of the teeth 4 integral with the core back 5 of the stator 2 is set to a linear shape (straight) 4a. Here, in the present invention, the inner peripheral surface of the teeth 4 is characterized by the linear shape (straight) 4 a and the arrangement of the permanent magnets 11. That is, with the center of the rotor 3 as O, θ1 is the magnetic pole pitch, θ2 is the opening of the permanent magnet 11, the center thickness of the permanent magnet 11 is h1, and the end thickness is h2.
[0023]
FIG. 4 shows the reciprocal of the increase rate of the copper loss due to the armature winding 8 when the number of poles P is changed in the configurations of FIGS. u. And 100% is the minimum value of copper loss. That is, since the inner peripheral surface of the tooth 4 has a linear shape, the winding space of the slot 7 is affected, and the winding space changes depending on the number of poles. By setting the number of poles to 8 or more, there is no change in the winding space, and the reciprocal of the increase rate of the copper loss is 100 p. u. However, when it is set to 6 poles, the reciprocal of the increase rate of the copper loss is about 2 p. u. However, when the number of poles is set to four, the reciprocal of the increase rate of the copper loss is about 10 p. u. Also decrease. As a result, the number of poles in which the inner peripheral surface of the teeth 4 can be linearly formed without affecting the performance of the rotating electric machine is six or more.
[0024]
FIG. 5 is a diagram showing the presence or absence of demagnetization of the permanent magnet with respect to the magnet thickness ratio h2 / h1. In FIG. 5, when the magnet thickness ratio h2 / h1 is set to 50% in the overload state as in the related art, the central portion of the permanent magnet does not demagnetize, but demagnetization occurs at the magnet end shown in the drawing. It was necessary to reduce the rated output or set the magnet end thickness to 60% or more. If the magnet end is set thick, the cogging torque and the pulsating torque at the time of load cannot be reduced, and there is a problem that the degree of freedom in design is reduced. On the other hand, in the present invention, when the magnet thickness ratio h2 / h1 is set to 30%, the central portion of the permanent magnet is not demagnetized, but the magnet ends are demagnetized, and the magnet thickness ratio h2 / h1 is reduced to 40%. When this is set, demagnetization does not occur at both the central portion and the magnet end of the permanent magnet, so that the magnet end can be set thinner, and there is an effect that the degree of design freedom to reduce cogging torque and pulsation torque under load is increased.
[0025]
FIG. 6 shows that the pulsating torque with respect to the magnet opening ratio θ2 / θ1 is expressed as p. u. FIG. In FIG. 6, a pulsating torque of 18 p. u. In contrast, when the number of poles is changed from 6 to 14, the upper limit value and the lower limit value at which the pulsating torque is minimized are generated. It was confirmed that the pulsation torque was further reduced as the number of poles was increased with respect to the pulsation torque in the case of six poles. When the number of poles is 6 or more and the ratio θ2 / θ1 of the magnet opening is set to 75 to 85%, there is an effect that the pulsating torque can be reduced to 5% or less.
[0026]
(Embodiment 2)
Although the pulsating torque is desirably zero, the constant of the rotating electric machine that does not matter from the output and the structural size constraint is determined. However, depending on the load, it is necessary to reduce the pulsating torque of the rotating electric machine to zero. FIG. 7 is a perspective view of an axial sectional shape of a rotor of a permanent magnet type rotating electric machine according to another embodiment 2 of the present invention, and FIG. 8 is a front view of a permanent magnet type rotating electric machine of another embodiment 2 according to the present invention. FIG. In FIG. 7, a permanent magnet 12 (comprised of 12a and 12b) obtained by dividing a permanent magnet 11 of a rotor 3 into two parts is shifted in the circumferential direction of the rotor 3. FIG. 8 shows a magnet arrangement structure. In FIG. 8, a deviation width S1 is provided in the circumferential direction between the divided permanent magnets 12a and 12b, and a gap b1 is formed in the axial direction. FIG. 9 shows that the pulsating torque with respect to the ratio of the magnet opening degrees θ2 / θ1 is expressed as p. u. FIG. In FIG. 9, the pulsating torque is 18 p. u. In the case where the number of poles is changed from 6 to 14, the pulsation torque is minimized. When the number of poles is 6 or more and the magnet opening ratio θ2 / θ1 is set to 75 to 85%, the pulsating torque can be reduced to 1% or less.
[0027]
(Embodiment 3)
FIG. 10 shows a radial sectional shape of a permanent magnet type rotating electric machine according to another embodiment 3 of the present invention, and FIG. 11 shows a radial sectional shape of a rotor of another embodiment 3 according to the present invention. In FIGS. 10 and 11, the permanent magnet 11 of the rotor 3 is constituted by a cylindrical anisotropic ring magnet 13. As shown in the figure, the anisotropic ring magnet 13 has a different magnetization strength 14 depending on the position in the circumferential direction, and the same effect as that of FIG. 1 can be obtained even if the permanent magnet 11 is not formed into a non-concentric arc magnet shape. In addition, since the arrangement of the permanent magnets is simplified, the productivity is improved.
[0028]
(Embodiment 4)
FIG. 12 is a perspective view of an axial cross-sectional shape of a rotor of a permanent magnet type rotating electric machine according to another embodiment 4 of the present invention. In FIG. 12, a permanent magnet 15 (comprised of 15a and 15b) obtained by dividing the anisotropic ring magnet 13 into two parts is arranged so as to be shifted in the circumferential direction of the rotor 3. In FIG. 12, a deviation width S1 is provided in the circumferential direction between the divided permanent magnets 15a and 15b, and a gap b1 is formed in the axial direction. This also provides the same effect as the present invention.
[0029]
(Embodiment 5)
FIG. 13 shows a part of an enlarged view of a permanent magnet type rotating electric machine according to another embodiment 5 of the present invention. 13 differs from FIG. 1 in that a concentric arc portion 16 is provided on a part of the inner peripheral surface 4a of the tooth 4, and the gap between the rotor 3 and the stator 2 is normally formed by a gap gauge or the like. It is possible to check whether or not the permanent magnet type rotating electric machine is reliable.
[0030]
Hereinafter, another embodiment of the present invention will be described in detail with reference to FIGS. In each of the drawings, common symbols indicate the same items. Here, a four-pole permanent magnet type rotating electric machine is shown, and the ratio between the number of poles of the rotor and the number of slots of the stator is set to 2: 3.
[0031]
(Embodiment 6)
FIG. 14 is a radial sectional view of a permanent magnet type rotating electric machine according to a first embodiment of the present invention, FIG. 15 is an enlarged sectional view of a rotor of a sixth embodiment of the present invention in a radial direction, and FIG. FIG. 17 is a perspective view of a rotor according to a sixth embodiment, in which AA ′ sectional views of FIG. 16 are shown in FIGS. 14 (a) and 15 (a), and BB ′ sectional views of FIGS. It is shown in b). In FIG. 14A, a permanent magnet type rotating electric machine 101 includes a stator 102 and a rotor 103.
[0032]
The stator 102 includes a stator core 106 including teeth 104 and a core back 105, and a concentrated winding armature winding 108 (three-phase winding) wound around the teeth 104 in a slot 107 between the teeth 104. , A U-phase winding 108a, a V-phase winding 108b, and a W-phase winding 108c). Here, since the permanent magnet type rotating electric machine 101 has four poles and six slots, the slot pitch is 120 degrees in electrical angle. The rotor 103 has a non-concentric arc permanent magnet 111 having a substantially non-concentric arc surface fixed to the outer peripheral surface of a rotor core 110 having a shaft (not shown) hole 109 formed therein. The difference between FIG. 14A and FIG. 14B lies in the fixed position of the non-concentric arc permanent magnet 111 of the rotor 103.
[0033]
In FIG. 15A, a rotor 103 has a non-concentric arc permanent magnet 111 (consisting of 111a, 111b, 111c, 111d because it has four poles) fixed to the outer peripheral surface of a rotor core 110 having a shaft hole 109 formed therein. However, the arrangement of the non-concentric arc permanent magnet 111 is characteristic. That is, assuming that the center of the rotor 103 is O, the horizontal line is the X axis, and the vertical line is the Y axis, the non-concentric arc permanent magnet 111a sets the angle between the X-axis and the Y-axis to θ1, and opens the non-concentric arc permanent magnet 111. When the angle is θ2, the angle between the X axis and the right side of the permanent magnet 111 is θ3, and the angle between the Y axis and the left side of the permanent magnet 111 is θ4, there is a relationship of θ4 <θ3 <θ2 <θ1, and θ1 Is a 4-pole machine, so the mechanical angle is 90 degrees and the electrical angle is 180 degrees. The non-concentric arc permanent magnets 111b, 111c, and 111d are arranged so as to rotate to the left by 90 degrees in mechanical angle with respect to the X axis and the Y axis, respectively. FIG. 15B is different from FIG. 15A in that the angle between the X axis and the right side of the non-concentric arc permanent magnet 111a is θ4, and the angle between the Y axis and the left side of the non-concentric arc permanent magnet 111 is θ3. It is just the same, the others are the same.
[0034]
FIG. 16 is a perspective view of the rotor of FIG. 15, and FIGS. 15A and 15B are arranged on the right and left sides of the rotor 103. FIG. Further, a gap 112 is formed between the non-concentric arc permanent magnets 111. As a result, the non-concentric arc permanent magnets 111 on both sides have different circumferential arrangements and form a pseudo skew.
[0035]
FIG. 17 shows the value of the ratio of the cogging torque / rated torque to the rotation angle of the rotor 103 when the gap 112 between the non-concentric arc permanent magnets is changed in the configuration of FIGS. When the gap 112 between the permanent magnets is 0 mm, that is, when the two non-concentric arc permanent magnets 111 are connected, a cogging torque of 6% or more is obtained. On the other hand, when the gap 112 between the non-concentric arc permanent magnets is increased, the cogging torque decreases. When the gap 112 between the non-concentric arc permanent magnets becomes 12 mm, the value of the cogging torque falls below 2%.
[0036]
FIG. 18 shows the value of the cogging torque when the gap 112 between the non-concentric arc permanent magnets is changed. That is, the value of the cogging torque / rated torque ratio when the gap between the non-concentric arc permanent magnets / magnet shaft length is changed is expressed in%. 18, the cogging torque decreases as the gap 112 between the non-concentric arc permanent magnets increases, and the cogging torque decreases to 1% or less when the gap 112 between the non-concentric arc permanent magnets is set to 12% or more. If the gap between the magnets is up to about 5%, the effect of increasing the gap is great, but if it exceeds 15%, the effect of reducing the cogging torque is almost nil. Originally, when no gap 112 was provided between the non-concentric arc permanent magnets and the non-concentric arc permanent magnet 111 was not shifted in the circumferential direction, the value of the cogging torque was 24%, and the non-concentric arc permanent magnet 111 was shifted in the circumferential direction. In this case, the cogging torque is 6.7%, so that even if the gap 112 between the non-concentric arc permanent magnets is 0 mm, the cogging torque can be effectively reduced. Further, by providing the gap 112 between the non-concentric arc permanent magnets, the cogging torque can be reduced to 1% or less. When the gap between the non-concentric arc permanent magnets is not provided, the non-concentric arc permanent magnets 111 shifted in the circumferential direction interfere with each other to increase the value of the cogging torque, whereas the gap between the non-concentric arc permanent magnets is provided. In the case, it has been found that the non-concentric arc permanent magnets 111 shifted in the circumferential direction do not interfere with each other and the value of the cogging torque decreases.
[0037]
When the length of the permanent magnet exceeds 130 degrees in electrical angle, the value of the cogging torque increases, and when the length is 120 degrees or less, the value of the cogging torque also increases. Therefore, it is desirable that the length of the permanent magnet be 120 degrees or more and 130 degrees or less.
[0038]
In the case of using the permanent magnet type rotating electric machine 101, especially in the case of the permanent magnet type rotating electric machine for electric power steering, pulsating torque due to cogging torque is felt up to the handle, which gives the handle operator an uncomfortable feeling (handle operability). In the invention, the cogging torque is reduced by dividing the permanent magnet in the axial direction, and shifting the divided permanent magnet in the circumferential direction. Further, a gap is provided between the permanent magnets divided in the axial direction, and the cogging is adjusted by adjusting the gap. Since the torque can be reduced to 1% or less, it is possible to realize a steering operation without a sense of incongruity even when used in a permanent magnet type rotating electric machine for electric power steering.
[0039]
(Embodiment 7)
FIG. 19 is a perspective view of the rotor 103 according to the seventh embodiment of the present invention, in which the rotor 103 of FIG. 15A is arranged on both sides of the rotor 103 of FIG. Further, a gap 112 (112a, 112b) is formed between the non-concentric arc permanent magnets 111. As a result, the non-concentric arc permanent magnets 111 are arranged in a V-shape in the axial direction, and form a pseudo skew. With this, the same effect as that of FIG. 14 is obtained, and the axial thrust can be canceled.
[0040]
(Embodiment 8)
FIG. 20 is an enlarged cross-sectional shape in the radial direction of the rotor according to the third embodiment of the present invention. In FIG. 20 (a), the rotor 103 has a concentric arc permanent magnet 113 (having four poles, consisting of 113a, 113b, 113c, 113d) fixed to the outer peripheral surface of a rotor core 110 having a shaft hole 109 formed therein. The arrangement is characterized by the arrangement of the concentric arc permanent magnets 113 whose surfaces are substantially concentric. That is, assuming that the center of the rotor 103 is O, the horizontal line is the X axis, and the vertical line is the Y axis, the concentric arc permanent magnet 113a sets the angle between the X axis and the Y axis to θ1 and sets the opening of the concentric arc permanent magnet 113 to θ1. When θ2, the angle between the X axis and the right side of the concentric arc permanent magnet 113a is θ3, and the angle between the Y axis and the left side of the concentric arc permanent magnet 113b is θ4, there is a relationship of θ4 <θ3 <θ2 <θ1. , Θ1 are 90 degrees in mechanical angle and 180 degrees in electrical angle because of a 4-pole machine. The concentric arc permanent magnets 113b, 113c, and 113d are arranged so as to be rotated leftward by 90 degrees in mechanical angle with respect to the X axis and the Y axis, respectively. FIG. 20B is different from FIG. 20A only in that the angle between the X axis and the right side of the concentric arc permanent magnet 113a is θ4, and the angle between the Y axis and the left side of the concentric arc permanent magnet 113a is θ3. Others are the same.
[0041]
FIG. 21 is a perspective view of the rotor shown in FIG. 20, in which FIGS. 20 (a) and 20 (b) are arranged on the right and left sides of the rotor 103. FIG. A gap 112 is formed between the concentric arc permanent magnets 113. As a result, the concentric arc permanent magnets 113 on both sides have different circumferential arrangements and form a pseudo skew. With this, the same effect as in FIG. 14 can be obtained.
[0042]
(Embodiment 9)
FIG. 22 is a perspective view of a rotor 103 according to the ninth embodiment of the present invention, in which the rotor 103 of FIG. 20A is arranged on both sides of the rotor 103 of FIG. Further, a gap 112 (112a, 112b) is formed between the concentric arc permanent magnets 113. As a result, the concentric arc permanent magnets 113 are arranged in a V-shape in the axial direction, and form a pseudo skew. With this, the same effect as that of FIG. 14 is obtained, and the axial thrust can be canceled.
[0043]
(Embodiment 10)
FIG. 23 shows a radial cross-sectional shape of the stator 2 of the fifth embodiment according to the present invention. The difference from the stator shown in FIG. Is subjected to beveling 115. In the embodiment of the rotor 103 shown in FIGS. 20, 21 and 22, since the concentric arc permanent magnets 113 are used as the permanent magnets, the change of the magnetic flux on both sides of the teeth 104 becomes large, and the cogging torque also becomes large. Therefore, by combining the stator 102 with beveling 115 on both sides of the magnetic pole, the same effect as in FIG. 14 can be obtained.
[0044]
(Embodiment 11)
FIG. 24 is a front view of the rotor 103 according to the eleventh embodiment of the present invention. The difference from the rotor 103 shown in FIG. 14 is that a contact plate 116 is provided at the position of the gap 112 to define the fixed position of the permanent magnet. Therefore, the assembly accuracy of the rotor 103 is improved.
[0045]
(Embodiment 12)
FIG. 25 is a front view of the rotor 103 according to the twelfth embodiment of the present invention. The difference from the rotor 103 shown in FIG. 14 is that a contact plate 117 is provided at the position of the gap 112 and the circumferential gap 118 of the permanent magnet. This defines the fixing position of the permanent magnet, and the assembling accuracy of the rotor 103 is improved.
[0046]
【The invention's effect】
As described above, according to the present invention, the stator using concentrated winding, the inner peripheral surface of the teeth of the stator core is formed in a substantially linear shape, and the permanent magnet fixed to the outer peripheral surface of the rotor core is used. By making the thickness unequal in the circumferential direction, pulsating torque can be minimized, and the occurrence of noise problems can be prevented. Further, pulsating torque can be further reduced by dividing the permanent magnet in the axial direction, shifting the divided permanent magnet in the circumferential direction, and providing a gap between the permanent magnets divided in the axial direction. Further, by using a permanent magnet having a surface magnet structure as an anisotropic ring magnet, productivity can be improved and a permanent magnet type rotating electric machine with less noise can be provided.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view illustrating a radial cross-sectional shape of a first embodiment of a permanent magnet type rotating electric machine according to the present invention.
FIG. 2 is an axial cross-sectional shape of a rotor according to a first embodiment of the present invention.
FIG. 3 is a diagram showing a part of an enlarged view of the permanent magnet type rotating electric machine according to the first embodiment of the present invention.
FIG. 4 is a diagram showing the reciprocal of the rate of increase in copper loss when the number of poles P is changed according to the present invention.
FIG. 5 is a diagram showing the presence or absence of demagnetization of a permanent magnet with respect to a magnet thickness ratio h2 / h1 according to the present invention.
FIG. 6 is a diagram showing a pulsating torque / rated torque ratio with respect to a magnet opening ratio θ2 / θ1 according to the present invention.
FIG. 7 is a perspective view of an axial sectional shape of a rotor of a permanent magnet type rotating electric machine according to another embodiment 2 of the present invention.
FIG. 8 is a partially enlarged view of a front view of a permanent magnet type rotating electric machine according to another embodiment 2 of the present invention.
FIG. 9 is a diagram showing a pulsating torque / rated torque ratio with respect to a magnet opening ratio θ2 / θ1 according to the present invention.
FIG. 10 is a diagram showing a radial cross-sectional shape of a permanent magnet type rotating electric machine according to another embodiment 3 of the present invention.
FIG. 11 is a diagram showing a radial cross-sectional shape of a rotor according to another embodiment 3 of the present invention.
FIG. 12 is a perspective view showing an axial cross-sectional shape of a rotor of a permanent magnet type rotating electric machine according to Embodiment 4 of the present invention.
FIG. 13 is a diagram showing a part of an enlarged view of a permanent magnet type rotating electric machine according to another embodiment 5 of the present invention.
FIG. 14 is a sectional view showing a radial cross section of a permanent magnet type rotating electric machine according to a sixth embodiment of the present invention.
FIG. 15 is a cross-sectional view showing an enlarged cross-sectional shape in the radial direction of a rotor according to a sixth embodiment of the present invention.
FIG. 16 is a perspective view of a rotor according to a sixth embodiment of the present invention.
FIG. 17 is a diagram illustrating a cogging torque with respect to a gap between non-concentric arc permanent magnets according to a sixth embodiment of the present invention.
FIG. 18 is a diagram showing a value of a cogging torque with respect to a gap between non-concentric arc permanent magnets according to a sixth embodiment of the present invention.
FIG. 19 is a sectional view showing a perspective view of a rotor 103 according to a seventh embodiment of the present invention.
FIG. 20 is an enlarged cross-sectional view of a radial cross-sectional shape of a rotor according to an eighth embodiment of the present invention.
FIG. 21 is a perspective view of a rotor according to an eighth embodiment of the present invention.
FIG. 22 is a perspective view of a rotor 103 according to a ninth embodiment of the present invention.
FIG. 23 is a cross-sectional view showing a radial cross-sectional shape of a stator 102 according to a tenth embodiment of the present invention.
FIG. 24 is a diagram showing a front view of a rotor 3 according to Embodiment 11 of the present invention.
FIG. 25 is a diagram showing a front view of a rotor 3 according to Embodiment 12 of the present invention.
[Explanation of symbols]
1,101: permanent magnet type rotating electric machine, 2,102: stator, 3,103: rotor, 4,104: teeth, 4a: linear shape, 5,105: core back, 6,106: stator core, 7, 107: slot, 8, 108: armature winding, 9, 109: shaft hole, 10, 110: rotor core, 11: permanent magnet, 12: divided permanent magnet, 13: polar anisotropic ring magnet, 14: Magnetization strength, 15: Split polar anisotropic ring magnet, 16: Concentric arc, 111: Non-concentric arc permanent magnet, 112: Gaps between permanent magnets, 113: Concentric arc permanent magnet, 114: Teeth arc-shaped portion 115, beveling, 116, contact plate portion, 117, contact plate material, 118, circumferential gap.