JP2004211160A - Chemical vapor deposition method and apparatus - Google Patents
Chemical vapor deposition method and apparatus Download PDFInfo
- Publication number
- JP2004211160A JP2004211160A JP2002382530A JP2002382530A JP2004211160A JP 2004211160 A JP2004211160 A JP 2004211160A JP 2002382530 A JP2002382530 A JP 2002382530A JP 2002382530 A JP2002382530 A JP 2002382530A JP 2004211160 A JP2004211160 A JP 2004211160A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- heating element
- inlet
- vapor deposition
- silane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005229 chemical vapour deposition Methods 0.000 title claims description 16
- 238000000034 method Methods 0.000 title claims description 16
- 238000010438 heat treatment Methods 0.000 claims abstract description 130
- 229910052581 Si3N4 Inorganic materials 0.000 claims abstract description 19
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims abstract description 19
- 239000007789 gas Substances 0.000 claims description 200
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 32
- 125000004433 nitrogen atom Chemical group N* 0.000 claims description 18
- 239000002994 raw material Substances 0.000 claims description 13
- 239000013049 sediment Substances 0.000 claims description 13
- 229910052710 silicon Inorganic materials 0.000 claims description 12
- 229910052757 nitrogen Inorganic materials 0.000 claims description 8
- 238000000151 deposition Methods 0.000 claims description 4
- 150000001875 compounds Chemical class 0.000 claims description 2
- 230000008021 deposition Effects 0.000 claims 1
- 238000001704 evaporation Methods 0.000 claims 1
- 239000000126 substance Substances 0.000 claims 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 abstract description 71
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 abstract description 60
- 229910000077 silane Inorganic materials 0.000 abstract description 60
- 239000000758 substrate Substances 0.000 abstract description 42
- 229910021529 ammonia Inorganic materials 0.000 abstract description 18
- 238000004050 hot filament vapor deposition Methods 0.000 abstract description 10
- 238000005979 thermal decomposition reaction Methods 0.000 abstract description 5
- 238000004519 manufacturing process Methods 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 abstract 1
- 239000010408 film Substances 0.000 description 59
- 238000000354 decomposition reaction Methods 0.000 description 18
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 16
- 230000015572 biosynthetic process Effects 0.000 description 11
- 230000003213 activating effect Effects 0.000 description 10
- 239000000203 mixture Substances 0.000 description 10
- 229910052721 tungsten Inorganic materials 0.000 description 10
- 239000010937 tungsten Substances 0.000 description 10
- 230000007246 mechanism Effects 0.000 description 7
- 239000010703 silicon Substances 0.000 description 7
- 239000010409 thin film Substances 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 230000004913 activation Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 4
- 125000004429 atom Chemical group 0.000 description 3
- 230000009849 deactivation Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 239000011796 hollow space material Substances 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000001451 molecular beam epitaxy Methods 0.000 description 2
- 239000002985 plastic film Substances 0.000 description 2
- 229920006255 plastic film Polymers 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- PZPGRFITIJYNEJ-UHFFFAOYSA-N disilane Chemical compound [SiH3][SiH3] PZPGRFITIJYNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000005401 electroluminescence Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 150000004756 silanes Chemical class 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 1
- 150000003377 silicon compounds Chemical class 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 230000003685 thermal hair damage Effects 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Images
Landscapes
- Chemical Vapour Deposition (AREA)
Abstract
【課題】窒化シリコン膜を、高速成膜し、大量生産を容易にすること。
【解決手段】気密容器42内の空間71には、被堆積物である基板41を配置し、シランガスを、中空4角錐体状の導入口手段45から空間71内に供給し、アンモニアガスを、もう1つの導入口手段46から導入する。各導入口手段45,46の導入口毎に、それらの近傍領域に、電気ヒータからなる発熱体47,48をそれぞれ配置し、これによってシランおよびアンモニアの熱分解によって活性種が生成される。シランとアンモニアとのガスの混合が生じることなく、また障害物の表面に接触することなく、窒化シリコン膜が基板41上に堆積される。こうして触媒化学蒸着が達成される。
【選択図】 図1An object of the present invention is to form a silicon nitride film at high speed to facilitate mass production.
A substrate 41 to be deposited is disposed in a space 71 in an airtight container 42, silane gas is supplied into the space 71 from a hollow quadrangular pyramid-shaped inlet means 45, and ammonia gas is supplied to the space 71. It is introduced from another inlet means 46. Heating elements 47 and 48 each composed of an electric heater are arranged in the vicinity of each of the inlets of the inlets 45 and 46, respectively, in the vicinity thereof, whereby active species are generated by thermal decomposition of silane and ammonia. The silicon nitride film is deposited on the substrate 41 without mixing of the gas of silane and ammonia and without contacting the surface of the obstacle. Thus, catalytic chemical vapor deposition is achieved.
[Selection diagram] Fig. 1
Description
【0001】
【発明の属する技術分野】
本発明は、複数種類の原料ガスを熱分解して活性化し、成膜する化学蒸着方法および装置に関する。
【0002】
【従来の技術】
窒化シリコン膜は、主に半導体基板上に形成されるLSI(大規模集積回路)のサイドウォール膜、ゲート絶縁膜、強誘電体メモリーの保護膜や、主にガラス基板上に形成されるLCD(液晶ディスプレイ)や有機EL(エレクトロルミネセンス)ディスプレイのアクティブマトリックス駆動表示に用いられるTFT(薄膜トランジスタ)のゲート絶縁膜、また有機ELディスプレイの封止膜や、さらにはロール・ツー・ロールによるプラスチックフィルムへの防湿膜やガスバリア膜作製等に対し、利用されていたり、また利用されつつある。
【0003】
窒化シリコン膜の形成においては、従来より、スパッタ法や化学蒸着(Chemical Vapor Deposition:略称CVD)法による成膜が広く用いられている。その中で、たとえば、1600〜1800℃程度に加熱したタングステン線からなる1つの発熱体に、たとえば、シランガスおよびアンモニアガスを原料ガスとして供給して分解活性化させることにより、基板上に窒化シリコン膜を堆積させる化学蒸着法は、触媒CVD(略称Cat CVD)法、またはホットワイア(Hot Wire)CVD法と呼ばれる。プラズマを利用しないため、ダメージが少なく、低基板温度で低応力かつ緻密な窒化シリコン膜形成が可能であることから、近年注目を集めている。
【0004】
図8は、従来型の触媒CVD成膜装置の断面図である。この装置は、内部を真空に保持できる気密な真空容器1と、真空容器1内に所定の原料ガスを供給する原料ガス導入パイプ2と、供給された原料ガスを分解活性化させるために真空容器1内に配備された発熱体3と、発熱体3の作用によって所定の薄膜が堆積する位置に基板4を保持する基板保持機構5とから主に構成されている。基板保持機構5内には、基板の加熱体6が設けられており、所定の温度に維持が可能なものとなっている。
【0005】
この従来型の触媒CVD成膜装置により、たとえば、原料ガスとしてシランガスおよびアンモニアガスの2種類のガスを使用して窒化シリコン膜を形成する。
流量計7で所定の流量に調節されたシランガス、および、流量計8で所定の流量に調節されたアンモニアガスが、原料ガス導入パイプ2より混合ガス状態で真空容器内に放出される。放出されたシランガス分子9およびアンモニアガス分子10は、それぞれ約1700℃に加熱された発熱体3を通過することで、シラン活性種11およびアンモニア活性種12に変わり、これらが基板4に達することで、その表面上に所定の薄膜を形成する。
【0006】
シランガスおよびアンモニアガスを用いて、前述した従来型の触媒CVDにより窒化シリコン膜を形成する場合、シラン分子が優先的に発熱体3の表面上の分解活性点を占有して、アンモニア分子の分解活性点を減少させる傾向がある。たとえば化学量論組成であるSi3N4膜を形成する場合、膜組成ではSi原子数:N原子数=3:4であるにもかかわらず、成膜におけるアンモニア/シラン分圧比を数十から数百、すなわち、供給アンモニアガス流量を供給シランガス流量の数十から数百倍程度にする必要があることが判っている。このことは、大流量のアンモニアを浪費してしまうために、コスト的にも環境的にも問題である。
【0007】
コスト面においては、スループットの増大、すなわち膜の成長速度の高速化が望まれる。膜成長の高速化のために供給シランガス流量を増加させると、ある一定流量を超えたところで、シラン分子が発熱体表面上の分解活性点をほぼ全て占有してしまい、アンモニア活性種の生成がほとんど起こらなくなってしまう。すなわちSi原子過剰組成となる窒化シリコン膜の形成しか、できなくなる問題を有している。
【0008】
このような分解活性点の増大という問題を解決するために、本発明の前提となる技術では、発熱体の表面積を増やしたり、発熱体の温度を上げる構成が考えられる。これによって発熱体の表面積の増大に対し、分解活性点は比例的に増大するが、発熱体への供給電力量、および、基板への熱輻射量も比例的に増大してしまう。さらに、発熱体の温度を上げる手段に対しては、たとえば分解の活性化エネルギーを約1.5eVとすると、発熱体温度の1600℃から2000℃への上昇に対し、約5倍程度の分解活性点の増加に対し、基板への熱輻射量が約2倍程度に増大し、発熱体への供給電力量も増大してしまう。このため、これらの方法では、たとえば大面積基板へ対応する装置などへの適用を考えた場合、発熱体電源部の大型化が必要となり、ひいては装置コストやランニングコストの増大化を招いて望ましくない。また、基板が一般に耐熱性の低いプラスチックフィルムや有機EL素子が形成された基板であった場合、発熱体からの熱輻射による基板温度の上昇を抑える必要があり、発熱体の表面積を増やしたり、発熱体の温度を上げる手段による分解活性点の増大は好ましくない。
【0009】
これらの問題を解決するために、図9に示すような本発明の前提となる他の技術では、内部を真空に保持できる真空容器21に、真空容器21内に所定の原料ガス供給する原料ガス導入パイプ22と、供給された原料ガスを分解活性化させるために真空容器21内に配備された発熱体23と、さらに内部に原料ガス導入パイプ24と発熱体25が配備されたセル26と、発熱体23および25により生成した活性種により所定の薄膜が堆積する位置に基板27および該基板を保持する基板保持機構28が配備されている、たとえば分子線エピタキシー(略称MBE)装置に用いられているようなセル26を配備した構成の装置を用いることにより、前述の問題を克服する構成が考えられる。これによれば、たとえば、原料ガス導入パイプ22よりシランガスを導入すると、約1700℃に加熱された発熱体23に該シランガス分子が通過することによって、シランガス活性種が生成する。また、原料ガス導入パイプ24よりアンモニアガスを導入すると、約1200℃以上に加熱された発熱体25に該アンモニアガス分子が通過することによって、アンモニアガス活性種がセル26内に生成して、該アンモニアガス活性種がセル26の孔29を通過して真空容器内21に導入される。アンモニアを分解活性化させる発熱体25は、シランガス分子が到達し難い、セル26で覆われた、シランガス分子とは別の位置にある。そのため、シランガス供給量を増大させても、シランによる発熱体25の表面上の分解活性点の占有によるアンモニアの分解活性点の減少を起こすことなく、アンモニア活性種を生成することが可能である。
【0010】
しかしながら、この図9の構成では、セル26内において高効率でアンモニアが分解活性化しても、アンモニア活性種が、セル26の内壁との衝突により失活してしまう。そのため、真空容器内に導入されるアンモニア活性種は減少してしまう。結局、高成長速度で化学量論組成に近い窒化シリコン膜を形成することは困難となってしまうという新たな問題を有する。
【0011】
また、本発明の前提となるさらに他の技術では、図9の構成とは逆に、原料ガス導入パイプ22にアンモニアガスを、原料ガス導入パイプ24にシランガスをそれぞれ導入する。セル26内において分解生成したシラン活性種は、セル26の内壁との衝突により、失活して膜成長を起こす。そのため、結果として真空容器内に導入されるシラン活性種は減少してしまい、成長速度を高速化することが困難となる問題を有する。
【0012】
【発明が解決しようとする課題】
本発明の目的は、複数種類の原料ガスを供給して熱分解活性化させることにより、被堆積物、たとえば基板上に窒化シリコンなどの膜を堆積させるにあたり、高速成膜かつ化学量論組成に等しいかまたは近似した各種類のガス流量を供給して膜を堆積可能とする化学蒸着方法および装置を提供することである。
【0013】
【課題を解決するための手段】
本発明に係る触媒CVD装置とも呼ばれるCVD装置は、真空容器内で発熱体により、特に2種類以上の原料ガスであるガス種を分解活性化させて、被堆積物、たとえば基板に成膜を行うCVD装置であって、上記目的を達成するために次のように構成されている。各ガス種が互いに独立に真空容器すなわち気密容器内に導入され、そのそれぞれの導入口と被堆積物との間に、導入されたガス種を分解活性化する発熱体を有し、かつ、少なくとも1つの導入口の近傍領域に導入ガスを分解活性化する発熱体が配置され、該発熱体と隔離されることなく、同一真空容器内に基板を搭載する基板保持機構が備えられているものである。もしくは、そのそれぞれの導入口の近傍領域に導入ガスを分解活性化する発熱体が配置され、該発熱体と隔離されることなく、同一真空容器内に基板を搭載する基板保持機構が備えられているものである。
【0014】
本発明は、原料となる複数のガス種を熱分解して活性種を生成することにより、被堆積物上に複数のガス種の成分からなる化合物を堆積させる化学蒸着方法において、
真空容器の空間に、複数種類の各ガス種を前記空間に臨む導入口手段の各導入口から個別に導入し、
各導入口は、前記空間に開放しており、被堆積物に臨み、
各導入口と被堆積物との間に1個以上の発熱体を設け、
かつ、複数のガス種のうちの少なくとも1つのガス種の導入口近傍で他のガス種と混合しない領域に前記発熱体の1個以上または一部を設け、
各ガス種を発熱体によって熱分解し、活性種を生成することを特徴とする化学蒸着方法である。
【0015】
本発明は、真空容器の空間に、複数種類の各原料ガスを、前記空間に臨む各導入口から個別的に導入し、
各導入口は、前記空間に開放しており、被堆積物に臨み、
各導入口毎に、各導入口からの原料ガスが混合しない近傍領域に、発熱体を設け、
各原料ガスを、発熱体によって熱分解し、活性種を生成することを特徴とする化学蒸着方法である。
【0016】
本発明は、真空容器と、
原料となる各ガス種毎に設けられ、被堆積物に向けられて真空容器内の空間に開放している複数の導入口を有する導入口手段と、
前記複数の導入口と被堆積物との間に設けられた1個以上の発熱体とを有し、前記発熱体の1個以上または一部が、少なくとも1つのガス種の導入口近傍であり他のガス種と混合しない領域に設けられ、また前記発熱体は該各ガス種を熱分解して活性種を生成することを特徴とする化学蒸着装置である。
【0017】
本発明は、真空容器と、
原料ガスの複数の各種類毎に設けられる導入口手段であって、
真空容器内の空間に個別的に臨む導入口を有し、各導入口は、被堆積物に向けられて前記空間に開放している導入口手段と、
導入口手段に、原料ガスをそれぞれ供給するガス供給手段と、
導入口毎に設けられる発熱体であって、各導入口からの原料が混合しない近傍領域に設けられ、原料ガスを熱分解して活性種を生成する発熱体とを含むことを特徴とする化学蒸着装置である。
【0018】
本発明は、前記発熱体が複数であり、さらにそれぞれの発熱体が各ガス種の各導入口近傍でありかつ他のガス種と混合しない領域に設けられていることを特徴とする。
【0019】
また本発明は、複数のガス種のうちの少なくとも1つのガス種の導入口近傍で他のガス種と混合しない領域に前記発熱体の1個以上または一部を設け、また複数のガス種が混合する領域に前記発熱体の他の1個以上または他の一部を設けたことを特徴とする。
【0020】
本発明は、発熱体をその近傍に有する導入口手段は、原料ガスの下流になるにつれて流路断面積が大きくなるように形成されることを特徴とする。
【0021】
本発明は、発熱体をその近傍に有する導入口手段は、下流が拡がった中空の錐体状であることを特徴とする。
【0022】
本発明は、発熱体は、電気ヒータであることを特徴とする。
本発明は、発熱体は、発熱線であることを特徴とする。
【0023】
本発明は、発熱体をその領域に有する導入口手段は、下流が拡がった中空の前記空間から見た開口端の正面形状が矩形である4角錐体状であり、
発熱体は、導入口手段の開口端の対向する一対の辺の間にわたって、発熱線が張架されて構成されることを特徴とする。
【0024】
本発明は、前記各ガス種は、シリコン原子を含有する第1ガスと、窒素原子を含有する第2ガスとを含み、
第1ガスの導入口手段に対応して設けられる第1発熱体は、1600℃以上2000℃未満であり、
第2ガスの導入口手段に対応して設けられる第2発熱体は、1200℃以上2000℃未満であり、
被堆積物上に窒化シリコンを成膜することを特徴とする。
【0025】
本発明のCVD装置においては、たとえばシリコン原子を含有するガスおよび窒素原子を含有するガスを用いて窒化シリコン膜の成膜を行う場合、真空容器内に導入されたシリコン原子を含有するガスは、シリコン原子を含有するガスの導入口と被堆積物との間に配備された加熱した発熱体との接触により、シリコン原子を含有する活性種に変化して真空容器内を拡散する。また別の場所により真空容器内に導入された窒素原子を含有するガスは、窒素原子を含有するガスの導入口の近傍領域に配置された加熱した発熱体を通過して、窒素原子を含有する活性種に変化して真空容器内に拡散する。それらの活性種は、基板に達して、その表面上に薄膜を形成する。
【0026】
もしくは、本発明のCVD装置においては、ガス種として、たとえばシリコン原子を含有するガスおよび窒素原子を含有するガスを用いて、窒化シリコン膜の成膜を行う場合、真空容器内に導入されたシリコン原子を含有するガスは、シリコン原子を含有するガスの導入口の近傍領域に配置された加熱した発熱体を通過して、シリコン原子を含有する活性種に変化して真空容器内に拡散する。また別の場所より真空容器内に導入された窒素原子を含有するガスは、窒素原子を含有するガスの導入口の近傍領域に配置された加熱した発熱体を通過して、窒素原子を含有する活性種に変化して真空容器内に拡散する。それら活性種は、基板に達して、その表面上に薄膜を形成する。
【0027】
発熱体には通常高融点金属が用いられ、たとえばタングステンが好ましく、線状であってもよく、その他の構造であってもよい。またシリコン原子を含有するガスはシランガス(SiH4)が好ましく、窒素原子を含有するガスはアンモニア(NH3)が好ましい。
【0028】
発熱体の温度に関しては、発熱体にタングステン、供給ガスにシランおよびアンモニアを用いた場合、シランガスの分解活性化に用いる発熱体は、タングステンとシリコン化合物形成を防ぐ意味から1600℃以上が望ましく、また、膜のタングステン汚染を防ぐために、タングステンが蒸発しない2000℃以下とすることが望ましい。アンモニアガス導入口の近傍領域の発熱体は、アンモニアが効率的に分解する1200℃以上が望ましく、また、膜のタングステン汚染を防ぐために、タングステンが蒸発しない2000℃以下とすることが望ましい。
【0029】
本発明によれば、各原料ガスを独立に分解活性化する。したがって、たとえば、シリコン原子を含有するガスと窒素原子を含有するガスの混合ガスを同時に分解活性化する際に起こる、シリコン原子を含有するガスの優先的発熱体表面活性点占有による窒素原子を含有するガスの分解低下が、発生しない。よって、シリコン原子を含有するガスと窒素原子を含有するガスの混合ガスを、同時に分解活性化する際に必要とされる、シリコン原子を含有するガス供給流量の数十から数百倍の窒素原子を含有するガス供給流量を、必要としない。
【0030】
また、本発明によれば、各供給ガス流量に必要な分だけの分解活性点が、少なくとも1つの供給ガスの導入口の近傍領域および残りの供給ガスの導入口と被堆積物との間、もしくは、各供給ガスの導入口の近傍領域にあればよいので、シリコン原子を含有するガスと窒素原子を含有するガスの混合ガスを同時に分解活性化する際に必要とされる、窒素原子を含有するガスの分解活性化向上のために、発熱体の表面積を増やしたり、発熱体の温度を上昇させたりする必要がなくなる。したがって発熱体への供給電力量の低減化が可能となり、熱的ダメージが問題となる基板への成膜が可能となる。
【0031】
また、本発明によれば、少なくとも1つの原料ガスの導入口の近傍領域および残りの原料ガスの導入口と被堆積物との間、もしくは、各原料ガスの導入口の近傍領域において分解活性化された活性種は、壁等によりさえぎられることなく基板などの被堆積物まで到達するので、活性種の失活による膜成長速度の低下を招くことなく、膜形成を行うことが可能となる。導入口の近傍領域というのは、各導入口の近傍であって、他の導入口からの原料が拡散して混合しない領域である。これによって、少なくとも1つの原料ガスの導入口の近傍領域および残りの原料ガスの導入口と被堆積物との間に発熱体を設けている場合、導入口の近傍領域の発熱体は、その導入口より放出されるガス種のみを熱分解し、導入口と被堆積物との間の発熱体は、他の残りのガス種を熱分解する。また、各供給ガスの導入口の近傍領域に発熱体を設けている場合、発熱体は、各導入口からの原料ガスのみを熱分解する。各導入口は、真空容器の空間に開放しており、しかもその導入口は被堆積物に向けられているので、発熱体によって熱分解された活性種が、障害物に接触することはない。
【0032】
本発明は、ガス供給手段による第1ガスの流量は、
第1ガスの導入口手段に対応して設けられる第1発熱体の単位時間あたりの第1ガスの熱分解能力(単位リットル/分)以下に選ばれることを特徴とする。
【0033】
また、さらに、単位時間当りのたとえばシリコン原子を含有する第1ガスの供給流量を、シリコン原子を含有する第1ガスの真空容器内の導入口の近傍領域、もしくは、導入口と被堆積物との間に配置されている発熱体の、単位時間当たりの該シリコン原子を含有するガスの熱分解能力以下の供給流量にすることにより、未分解のシリコン原子を含むガスの、窒素原子を含むガスの真空容器内導入口部に配置されている発熱体への拡散移動ならびに接触を抑制できる。したがって該発熱体の、シリコン原子を含有するガスの優先的な発熱体表面活性点占有による窒素原子を含有するガスの分解低下が発生せずに、なお好ましい様態となる。
【0034】
シリコン原子を含有するガスの真空容器内導入口の近傍領域、もしくは、導入口と被堆積物との間に配置されている発熱体の、単位時間当たりの該シリコン原子を含有するガスの分解能力は、次のように、見積もることができる。真空容器内に該シリコン原子を含有するガスのみを供給し、真空容器内の圧力を一定とした場合において、単位時間当たりの該シリコン原子を含有するガスの供給流量と、これによるシリコン含有膜の成長速度との相関について、原理上、図4のような関係が得られる。この図4において、成長速度が比例的に増大する流量の領域31における単位時間当たりの該シリコン原子を含有するガスの供給流量の最大値32が、該発熱体の単位時間当たりの該シリコン原子を含有するガスの熱分解能力とみなすことができる。
【0035】
以下に、実施形態例を挙げ、添付図面を参照して、本発明の実施の形態を具体的かつ詳細に説明する。
【0036】
【発明の実施の形態】
図1は、本発明の実施の一形態の触媒化学蒸着装置の断面図である。この図1に示すCVD装置は、被堆積物である半導体ウエハなどの基板41上に窒化シリコン膜を成膜するものである。この実施の形態では、第1の原料ガスとしてシランおよび第2の原料ガスとしてアンモニアを用いた場合について説明する。シランの代りにジシランを用いることもでき、またアンモニアの代りにヒドラジンを用いることもできる。
【0037】
CVD装置の容器42は、成膜を行う際に、圧力調整バルブ43および排気ポンプ44によってその内部が所望の圧力となる真空状態に保持される気密の真空容器である。真空容器42の内部の空間71には、中空4角錐体状の形状をした、シランガスが導入される導入口45、および、同じく中空4角錐体状の形状をした、アンモニアガスが導入される導入口46が設けられる。この導入口45,46の近傍領域には、活性種を生成するための発熱体47および48がそれぞれ取り付けられている。
【0038】
図2は、導入口45を有する導入口手段72を示す簡略化した斜視図である。
もう1つの導入口46に関しても同様な導入口手段73が設けられ、図1の紙面に垂直な対称面74に関して左右対称に配置され、この対称面74に関して対称に配置された基板41上への成膜が行われる。
【0039】
図3は、発熱体47,47aを示す斜視図である。図3(1)に示される発熱体47としては、一例として電気ヒータであってもよく、この電気ヒータは、発熱線であるタングステン線が使用されている。タングステン線は、たとえば直径0.5mm程度の太さのものであり、図2に示されるように、ガス配管との電気的および熱的絶縁を図るために取り付けられた、たとえばアルミナ等の一対の絶縁材料からなる直円柱状の支持部材53に巻き掛けられたタンタル製支持部54を介し、ジグザグ状に張られている。導入口手段72は、図1および図2の斜め上方が拡がった中空の空間71から見た開口端75が矩形、たとえば長方形である中空の4角錐体状である。支持部材53は、導入口手段72の開口端75の対向する一対の辺76の間にわたって、タングステン線から成る発熱体47が張架される。分解活性化の効率を高めるため、導入口45の限られた近傍領域内での発熱体の表面積を高めるべく、図3(2)に示されるように本発明の実施の他の形態では、タングステン線をコイル状にすることは、より好ましい。
【0040】
発熱体47の材質としては、タングステンの他、モリブデン、タンタル、チタン、白金、もしくはバナジウムを使用することが可能である。もう1つの導入口手段73は、導入口手段72と同様に構成され、発熱体48を有する。
【0041】
成膜中、発熱体47は、タングステン線を用いる場合、シランを分解し、かつタングステンとの反応によるシリサイドを形成しない温度に加熱することが望ましく、約1600〜2000℃に加熱される。また、成膜中、発熱体48は、タングステン線を用いる場合、アンモニアを効率的に分解する温度以上が望ましく、約1200〜2000℃に加熱される。
【0042】
基板41は、基板保持機構49内に設けられた基板のための加熱もしくは冷却機構50により、所望の温度で保持される。この保持される温度は、基板41や、基板41上に形成された素子の耐熱性や、所望の膜質が得られる温度条件等により選ばれる。シランガスは、質量流量計(マスフローコントローラ)51により所望の流量に調整され、また、アンモニアガスは、質量流量計(マスフローコントローラ)52により所望の流量に調整されて導入される。シランガスは、シランガス源95から供給され、アンモニアガスはアンモニアガス源96から供給される。シランガス源95からのシランガスは、質量流量計51から管路77を経て導入口手段72の基端部78に供給される。またアンモニアガス源96からのアンモニアガスは、質量流量計52から管路81を経て導入口手段73の基端部82に供給される。
【0043】
質量流量計51によって制御されるシランガスの流量と基板41上に成膜される膜成長速度の関係は、原理上、図4に示すグラフに従う。シランガス流量については、望ましくは、シランガスのみを用い、圧力一定条件としてシリコン膜を成膜したときに得られる、シランガス流量とシリコン膜の膜厚の関係において、シラン流量増大とともに成長速度が0から比例的に増大する最大シランガス流量の値32以下の範囲31に設定することが好ましい。この流量の値32以下では、導入口45より真空容器42内に放出されるシランガス分子のほとんどは、発熱体47により分解活性化され、該シラン活性種量は、発熱体47を離れるにつれ、基板や壁等への成膜により消費されるため減少する。このため、アンモニアガス導入口46に設置された発熱体48に達するシランガス分子やシラン活性種量が低減されることとなり、発熱体48表面の分解活性点を、該シランガス分子やシラン活性種が優先的に占有することによる、発熱体48表面でのアンモニアガス分子分解効率の著しい低下を抑制することができる。
【0044】
アンモニアガス流量については、前述のように定めたシランガス流量に対し、所望の膜質が得られる流量を設定すればよい。
【0045】
図5は、本発明の実施の他の形態の簡略化した斜視図である。図5の導入口手段83は、図1〜図4に示される前述の実施の形態における導入口手段72の位置に同様に配置され、もう1つの導入口手段73にも、図5に示される導入口手段83が対象に配置される。図5に示される導入口手段を用いる実施の形態では、基板面積が大きく、面内の膜厚および膜質の均一性が求められる場合には、図5に示したような、シランガス導入口S1〜S5とアンモニアガス導入口N1〜N4を増やし、発熱体85〜87が備えられたシランガス導入口S1〜S5とアンモニアガス導入口N1〜N4を交互にアレイ状に配置すればよい。
【0046】
図6は、図5に示される導入口手段83の開口端の簡略化した正面図である。
シランガス導入口S1〜S5とアンモニア導入口N1〜N4とは、図6の横方向および縦方向にマトリクス状に配置され、しかも横方向および縦方向に交互に配置される。発熱線85〜87は、縦方向に配列された導入口、たとえばS1,N1,S2;N2,S3,N3;S4,N4,S5に共通に設けられ、構成の簡略化が図られる。
【0047】
また、図7に示される本発明の実施の他の形態では、このような構成を用いることにより、発熱体を有する個々のシランガス導入口を省略でき、さらに簡略化が可能である。これによれば、各発熱線91〜93に対し、等間隔に前述と同様なアンモニアガス導入口N1〜N4が取付けられ、一方、シランガスは板部材99のシャワー状の多数の分布されたガス導入口98より、発熱線91〜93に対し、アンモニアガス導入口N1〜N4と同じ側より供給される。アンモニアガスは導入口N1〜N4部で分解活性化し、シランガスは、発熱線91〜93のアンモニアガス導入口N1〜N4が取付けられていない部分101で分解活性化する。そのほかの構成は、前述の実施の形態と同様である。
【0048】
図1〜図3および図5〜図7の本発明の実施の各形態において、添付図面での装置構成、ならびに前述の基板温度、発熱体温度、シランガス流量およびアンモニアガス流量条件を設定することにより、従来に比べ、アンモニアガス流量/シランガス流量比を上げることなく、化学量論組成に近い窒化シリコン膜の作製が行える、本発明の好ましい実施の形態例を説明したが、本発明はかかる実施の形態に限定されるものではなく、特許請求の範囲の記載から把握される技術的範囲において、種々の形態に変更可能である。
【0049】
所望の膜質を得るために、導入するシランガスやアンモニアガスを水素や窒素、希ガス等で希釈することや、真空容器42内の別の場所より、水素や窒素、希ガス等を導入することは、なんら本発明を妨げるものではない。
【0050】
【発明の効果】
以上の説明で明らかなように、本発明のCVD装置によれば、真空容器の空間に、複数種類の原料ガスを各導入口から個別的に導入し、各導入口毎に設けられた発熱体によって、導入口の近傍領域で、発熱体によって各原料ガスを加熱分解して活性種を生成し、この活性種は、基板などの被堆積物に到達するまで、壁などの障害物の面に衝突することはなく、そのため失活量を低減することができ、したがって高速成膜が可能となり、その堆積される膜の化学量論組成に等しいかまたは近似した各種類の原料ガスの流量で成膜することができ、大量生産が容易になる。たとえば、特に化学量論組成に近い窒化シリコン成膜に対し、シリコン原子を含むガスと窒素原子を含むガスが別々の発熱体により分解活性化され、かつ生成した分解活性種の、基板などの被堆積物への到達までの壁等衝突による失活量を低減できることから、発熱体温度を上げたり、表面積を増やしたりすることなく、窒素原子を含むガス量/シリコン原子を含むガス量比が低減でき、かつ成長速度を高速化することが可能となって、量産性に優れた化学蒸着装置を提供することができる。
【図面の簡単な説明】
【図1】本発明の実施の一形態の触媒化学蒸着装置の断面図である。
【図2】導入口45を有する導入口手段72を示す簡略化した斜視図である。
【図3】発熱体47,47aを示す斜視図である。
【図4】質量流量計51によって制御されるシランガスの流量と基板41上に成膜される膜成長速度の関係を示すグラフである。
【図5】本発明の実施の他の形態の簡略化した斜視図である。
【図6】図5に示される導入口手段83の開口端の簡略化した正面図である。
【図7】本発明の実施のさらに他の形態の構成を簡略化して示す斜視図である。
【図8】従来型の触媒CVD装置の構成を示す断面図である。
【図9】本発明の前提となるシランガスとアンモニアガスを別々に分解活性化するCVD装置の構成を示す断面図の一例である。
【符号の説明】
41 基板
42 真空容器
45 シランガス導入口
46 アンモニアガス導入口
47,47a,48,85〜87 発熱体
71 空間
72,73,83 導入口手段[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a chemical vapor deposition method and apparatus for thermally decomposing and activating a plurality of types of source gases to form a film.
[0002]
[Prior art]
The silicon nitride film is mainly formed on a semiconductor substrate, such as a sidewall film of an LSI (large-scale integrated circuit), a gate insulating film, a protective film of a ferroelectric memory, and an LCD (LCD) mainly formed on a glass substrate. For gate insulating film of TFT (thin film transistor) used for active matrix driving display of liquid crystal display) and organic EL (electroluminescence) display, sealing film of organic EL display, and plastic film by roll-to-roll For the production of moisture-proof films and gas barrier films.
[0003]
Conventionally, in forming a silicon nitride film, film formation by a sputtering method or a chemical vapor deposition (abbreviated to CVD) method has been widely used. Among them, for example, a silane gas and an ammonia gas are supplied as a source gas to one heating element made of a tungsten wire heated to about 1600 to 1800 ° C., for example, to be decomposed and activated, so that a silicon nitride film is formed on the substrate. Is called a catalytic CVD (Cat CVD) method or a Hot Wire CVD method. Since plasma is not used, the silicon nitride film has attracted attention in recent years because it can be formed with low damage and low stress at a low substrate temperature and dense silicon nitride film.
[0004]
FIG. 8 is a cross-sectional view of a conventional catalytic CVD film forming apparatus. The apparatus includes an
[0005]
With this conventional catalytic CVD film forming apparatus, for example, a silicon nitride film is formed using two kinds of gases, a silane gas and an ammonia gas, as source gases.
The silane gas adjusted to a predetermined flow rate by the flow meter 7 and the ammonia gas adjusted to a predetermined flow rate by the
[0006]
When a silicon nitride film is formed by the above-described conventional catalytic CVD using silane gas and ammonia gas, the silane molecules preferentially occupy the decomposition active sites on the surface of the
[0007]
In terms of cost, it is desired to increase the throughput, that is, to increase the film growth rate. When the flow rate of the supplied silane gas is increased to speed up the film growth, the silane molecules occupy almost all of the decomposition active sites on the surface of the heating element when a certain flow rate is exceeded, and the generation of active ammonia species is almost complete. It will not happen. That is, there is a problem that only the formation of a silicon nitride film having an excess composition of Si atoms can be performed.
[0008]
In order to solve the problem of the increase in the number of decomposition active sites, in the technology that is the premise of the present invention, it is possible to increase the surface area of the heating element or increase the temperature of the heating element. As a result, as the surface area of the heating element increases, the decomposition active point increases proportionally, but the amount of power supplied to the heating element and the amount of heat radiation to the substrate also increase proportionally. Further, as for the means for raising the temperature of the heating element, for example, when the activation energy for decomposition is about 1.5 eV, the decomposition activity is about 5 times as high as the heating element temperature rising from 1600 ° C. to 2000 ° C. As the number of points increases, the amount of heat radiation to the substrate increases about twice, and the amount of power supplied to the heating element also increases. For this reason, in these methods, for example, when the application to a device corresponding to a large-area substrate is considered, it is necessary to increase the size of the heating element power supply unit, which leads to an increase in device cost and running cost, which is not desirable. . In addition, when the substrate is generally a substrate on which a plastic film or an organic EL element having low heat resistance is formed, it is necessary to suppress a rise in the substrate temperature due to heat radiation from the heating element, and to increase the surface area of the heating element, It is not preferable to increase the number of decomposition active sites by means for increasing the temperature of the heating element.
[0009]
In order to solve these problems, in another technique which is a premise of the present invention as shown in FIG. 9, a source gas for supplying a predetermined source gas into the
[0010]
However, in the configuration of FIG. 9, even if ammonia is decomposed and activated with high efficiency in the
[0011]
Further, in still another technique which is a premise of the present invention, an ammonia gas is introduced into the source
[0012]
[Problems to be solved by the invention]
An object of the present invention is to supply a plurality of types of source gases and activate them by thermal decomposition, so that when depositing a film such as silicon nitride on an object to be deposited, for example, a substrate, a high-speed film formation and a stoichiometric composition can be achieved. An object of the present invention is to provide a chemical vapor deposition method and apparatus capable of supplying an equal or approximate gas flow rate to deposit a film.
[0013]
[Means for Solving the Problems]
A CVD apparatus, also called a catalytic CVD apparatus according to the present invention, forms a film on an object to be deposited, for example, a substrate, by decomposing and activating two or more kinds of source gases in a vacuum vessel by a heating element. This is a CVD apparatus configured as follows to achieve the above object. Each gas type is independently introduced into a vacuum container, that is, an airtight container, and has a heating element that decomposes and activates the introduced gas type between its respective inlet and the deposit, and at least. A heating element for decomposing and activating the introduced gas is arranged in a region near one introduction port, and is provided with a substrate holding mechanism for mounting a substrate in the same vacuum vessel without being isolated from the heating element. is there. Alternatively, a heating element for decomposing and activating the introduced gas is disposed in a region near each of the introduction ports, and a substrate holding mechanism for mounting the substrate in the same vacuum vessel without being isolated from the heating element is provided. Is what it is.
[0014]
The present invention is a chemical vapor deposition method for depositing a compound composed of components of a plurality of gas species on an object to be deposited by thermally decomposing a plurality of gas species as raw materials to generate active species.
Into the space of the vacuum vessel, individually introduce a plurality of types of gas species from each inlet of the inlet means facing the space,
Each inlet is open to the space, facing the sediment,
At least one heating element is provided between each inlet and the sediment,
And, one or more or a part of the heating element is provided in a region near the inlet of at least one gas type of the plurality of gas types and not mixed with other gas types,
This is a chemical vapor deposition method characterized in that each gas species is thermally decomposed by a heating element to generate active species.
[0015]
The present invention, in the space of the vacuum vessel, a plurality of types of each source gas, individually introduced from each inlet facing the space,
Each inlet is open to the space, facing the sediment,
For each inlet, a heating element is provided in the vicinity where the raw material gas from each inlet is not mixed,
This is a chemical vapor deposition method characterized in that each source gas is thermally decomposed by a heating element to generate active species.
[0016]
The present invention provides a vacuum container,
Inlet means having a plurality of inlets provided for each gas type serving as a raw material and directed to the sediment and open to the space in the vacuum vessel,
It has one or more heating elements provided between the plurality of inlets and the sediment, and one or more or a part of the heating elements is near an inlet of at least one gas type. The chemical vapor deposition apparatus is provided in a region that is not mixed with other gas species, and the heating element thermally decomposes each gas species to generate an active species.
[0017]
The present invention provides a vacuum container,
Inlet means provided for each of a plurality of types of source gas,
Introducing means individually having an inlet facing the space in the vacuum vessel, each inlet is directed to the sediment, and is open to the space,
Gas supply means for supplying a source gas to the inlet means,
A heating element provided for each introduction port, wherein the heating element is provided in a vicinity region where the raw materials from each of the introduction ports are not mixed, and includes a heating element for thermally decomposing the raw material gas to generate active species. It is a vapor deposition device.
[0018]
The present invention is characterized in that a plurality of the heating elements are provided, and each of the heating elements is provided in a region near each inlet of each gas type and not mixed with other gas types.
[0019]
Further, according to the present invention, one or more or a part of the heating element is provided in a region near the inlet of at least one of the gas types and not mixed with other gas types, One or more or another part of the heating element is provided in the mixing area.
[0020]
The present invention is characterized in that the inlet means having the heating element in the vicinity thereof is formed so that the cross-sectional area of the flow path increases toward the downstream of the raw material gas.
[0021]
The present invention is characterized in that the inlet means having the heating element in the vicinity thereof has a hollow conical shape with the downstream expanding.
[0022]
The present invention is characterized in that the heating element is an electric heater.
The present invention is characterized in that the heating element is a heating wire.
[0023]
In the present invention, the inlet means having a heating element in its area is a quadrangular pyramid in which the front shape of the open end viewed from the hollow space where the downstream is expanded is rectangular.
The heating element is characterized in that a heating wire is stretched between a pair of opposing sides of the opening end of the inlet means.
[0024]
In the present invention, each of the gas types includes a first gas containing a silicon atom and a second gas containing a nitrogen atom,
The first heating element provided corresponding to the first gas inlet means is at least 1600 ° C and less than 2000 ° C,
The second heating element provided corresponding to the second gas inlet means is at least 1200 ° C. and less than 2000 ° C.,
It is characterized in that a film of silicon nitride is formed on an object to be deposited.
[0025]
In the CVD apparatus of the present invention, for example, when a silicon nitride film is formed using a gas containing silicon atoms and a gas containing nitrogen atoms, the gas containing silicon atoms introduced into the vacuum vessel is: By contact with a heated heating element disposed between the inlet of the gas containing silicon atoms and the deposit, the active species are changed into active species containing silicon atoms and diffuse in the vacuum vessel. The gas containing nitrogen atoms introduced into the vacuum vessel by another place passes through a heated heating element arranged in the vicinity of the inlet of the gas containing nitrogen atoms and contains nitrogen atoms. It changes into active species and diffuses into the vacuum vessel. These active species reach the substrate and form a thin film on its surface.
[0026]
Alternatively, in the CVD apparatus of the present invention, when a silicon nitride film is formed using a gas containing, for example, a gas containing silicon atoms and a gas containing nitrogen atoms, the silicon introduced into the vacuum vessel may be used. The gas containing atoms passes through a heated heating element arranged in the vicinity of the inlet of the gas containing silicon atoms, changes into active species containing silicon atoms, and diffuses into the vacuum vessel. Further, the gas containing nitrogen atoms introduced into the vacuum vessel from another place passes through a heated heating element arranged in the vicinity of the inlet of the gas containing nitrogen atoms and contains nitrogen atoms. It changes into active species and diffuses into the vacuum vessel. The active species reach the substrate and form a thin film on its surface.
[0027]
A high-melting-point metal is generally used for the heating element, for example, tungsten is preferable, and the heating element may have a linear shape or another structure. The gas containing silicon atoms is silane gas (SiH 4 ) Is preferable, and the gas containing a nitrogen atom is ammonia (NH 3 Is preferred.
[0028]
Regarding the temperature of the heating element, when tungsten is used as the heating element and silane and ammonia are used as the supply gas, the heating element used for activating the decomposition of the silane gas is desirably 1600 ° C. or more from the viewpoint of preventing the formation of a silicon compound with tungsten. In order to prevent tungsten contamination of the film, the temperature is preferably set to 2000 ° C. or less at which tungsten does not evaporate. The heating element in the region near the ammonia gas inlet is desirably at 1200 ° C. or higher at which ammonia is efficiently decomposed, and desirably at 2000 ° C. or lower at which tungsten does not evaporate in order to prevent tungsten contamination of the film.
[0029]
According to the present invention, each source gas is independently decomposed and activated. Therefore, for example, when a mixed gas of a silicon-containing gas and a nitrogen-containing gas is simultaneously decomposed and activated, the nitrogen-containing gas is preferentially occupied by the active heating element surface active sites of the silicon-containing gas. There is no degradation of the generated gas. Therefore, when simultaneously decomposing and activating the mixed gas of the gas containing the silicon atom and the gas containing the nitrogen atom, the nitrogen atom is required to be several tens to several hundred times the supply flow rate of the gas containing the silicon atom. No gas supply flow rate is required.
[0030]
Further, according to the present invention, the decomposition active points required for each supply gas flow rate are provided in the vicinity of at least one supply gas introduction port and between the remaining supply gas introduction ports and the deposit. Alternatively, since it is only necessary to be in the region near the inlet of each supply gas, the nitrogen-containing gas required when simultaneously decomposing and activating the mixed gas of the silicon-containing gas and the nitrogen-containing gas is used. There is no need to increase the surface area of the heating element or increase the temperature of the heating element to improve the activation of decomposition of the generated gas. Therefore, the amount of electric power supplied to the heating element can be reduced, and a film can be formed on a substrate where thermal damage is a problem.
[0031]
Further, according to the present invention, decomposition activation is performed in a region near the inlet of at least one source gas and between the inlet of the remaining source gas and the deposit, or in a region near the inlet of each source gas. The activated species reach the deposit such as the substrate without being interrupted by the walls or the like, so that the film can be formed without causing a decrease in the film growth rate due to deactivation of the activated species. The region near the inlets is a region near each inlet and where the raw materials from the other inlets do not diffuse and mix. Accordingly, when a heating element is provided between the area near the inlet for at least one source gas and the inlet for the remaining source gas and the deposit, the heating element near the inlet is Only the gas species emitted from the mouth is thermally decomposed, and the heating element between the inlet and the sediment thermally decomposes the other remaining gas species. When a heating element is provided in the vicinity of the inlet of each supply gas, the heating element thermally decomposes only the raw material gas from each inlet. Each inlet is open to the space of the vacuum vessel, and since the inlet is directed to the sediment, the active species thermally decomposed by the heating element does not come into contact with obstacles.
[0032]
In the present invention, the flow rate of the first gas by the gas supply unit is:
It is characterized in that it is selected to be equal to or less than the thermal decomposition capacity of the first gas per unit time (unit: liter / minute) of the first heating element provided corresponding to the first gas inlet means.
[0033]
Further, the supply flow rate of the first gas containing, for example, silicon atoms per unit time may be adjusted in a region near the inlet of the first gas containing silicon atoms in the vacuum vessel, or between the inlet and the deposit. By setting the supply flow rate of the heating element disposed between the gas and the gas containing the silicon atoms per unit time to be equal to or less than the thermal decomposition capability, the gas containing the undecomposed silicon atoms and the gas containing the nitrogen atoms are removed. The diffusion movement and contact with the heating element arranged at the introduction port in the vacuum vessel can be suppressed. Therefore, the preferred mode is one in which the decomposition of the nitrogen atom-containing gas does not occur due to the preferential occupation of the silicon atom-containing gas by the heating element surface active sites.
[0034]
Decomposition capacity of the gas containing silicon atoms per unit time of the heating element disposed in the vicinity of the inlet of the gas containing silicon atoms in the vacuum vessel or between the inlet and the deposit Can be estimated as follows: When only the gas containing the silicon atoms is supplied into the vacuum vessel and the pressure in the vacuum vessel is kept constant, the supply flow rate of the gas containing the silicon atoms per unit time and the resulting flow rate of the silicon-containing film As for the correlation with the growth rate, a relation as shown in FIG. 4 is obtained in principle. In FIG. 4, the
[0035]
Hereinafter, embodiments of the present invention will be described specifically and in detail with reference to the accompanying drawings.
[0036]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a sectional view of a catalytic chemical vapor deposition apparatus according to one embodiment of the present invention. The CVD apparatus shown in FIG. 1 is for forming a silicon nitride film on a substrate 41 such as a semiconductor wafer as an object to be deposited. In this embodiment, a case where silane is used as the first source gas and ammonia is used as the second source gas will be described. Disilane can be used instead of silane, and hydrazine can be used instead of ammonia.
[0037]
The
[0038]
FIG. 2 is a simplified perspective view showing the inlet means 72 having the
A similar inlet means 73 is provided for the
[0039]
FIG. 3 is a perspective view showing the
[0040]
As the material of the
[0041]
During the film formation, when a tungsten wire is used, the
[0042]
The substrate 41 is held at a desired temperature by a substrate heating or
[0043]
The relationship between the flow rate of the silane gas controlled by the
[0044]
Regarding the ammonia gas flow rate, a flow rate that can obtain a desired film quality may be set with respect to the silane gas flow rate determined as described above.
[0045]
FIG. 5 is a simplified perspective view of another embodiment of the present invention. The
[0046]
FIG. 6 is a simplified front view of the opening end of the introduction port means 83 shown in FIG.
The silane gas inlets S1 to S5 and the ammonia inlets N1 to N4 are arranged in a matrix in the horizontal and vertical directions in FIG. 6, and are alternately arranged in the horizontal and vertical directions. The
[0047]
Further, in another embodiment of the present invention shown in FIG. 7, by using such a configuration, individual silane gas inlets having a heating element can be omitted, and further simplification is possible. According to this, the same ammonia gas inlets N1 to N4 as described above are attached to the
[0048]
In each of the embodiments of the present invention shown in FIGS. 1 to 3 and FIGS. 5 to 7, by setting the apparatus configuration in the accompanying drawings, and setting the above-described substrate temperature, heating element temperature, silane gas flow rate and ammonia gas flow rate conditions. Although a preferred embodiment of the present invention has been described in which a silicon nitride film having a stoichiometric composition can be formed with a stoichiometric composition without increasing the ammonia gas flow rate / silane gas flow rate ratio as compared with the related art, the present invention has been described. The present invention is not limited to the form, and can be changed to various forms within the technical scope understood from the description of the claims.
[0049]
In order to obtain a desired film quality, it is not possible to dilute a silane gas or an ammonia gas to be introduced with hydrogen, nitrogen, a rare gas, or the like, or to introduce hydrogen, nitrogen, a rare gas, or the like from another place in the
[0050]
【The invention's effect】
As apparent from the above description, according to the CVD apparatus of the present invention, a plurality of types of source gases are individually introduced from the respective inlets into the space of the vacuum vessel, and the heating elements provided for the respective inlets are provided. In the area near the inlet, each source gas is heated and decomposed by a heating element to generate active species, and this active species is applied to the surface of obstacles such as walls until it reaches a deposit such as a substrate. There is no collision, so the amount of deactivation can be reduced, thus enabling high-speed film formation, and at a flow rate of each type of source gas equal to or close to the stoichiometric composition of the film to be deposited. The film can be mass-produced easily. For example, a gas containing silicon atoms and a gas containing nitrogen atoms are decomposed and activated by separate heating elements, particularly for silicon nitride film having a stoichiometric composition close to the stoichiometric composition. Since the amount of deactivation due to collisions such as walls before reaching the sediment can be reduced, the ratio of the amount of gas containing nitrogen atoms to the amount of gas containing silicon atoms is reduced without increasing the temperature of the heating element or increasing the surface area. In addition, the growth rate can be increased, and a chemical vapor deposition apparatus excellent in mass productivity can be provided.
[Brief description of the drawings]
FIG. 1 is a sectional view of a catalytic chemical vapor deposition apparatus according to an embodiment of the present invention.
FIG. 2 is a simplified perspective view showing an inlet means 72 having an
FIG. 3 is a perspective view showing
4 is a graph showing a relationship between a flow rate of a silane gas controlled by a
FIG. 5 is a simplified perspective view of another embodiment of the present invention.
FIG. 6 is a simplified front view of the open end of the inlet means 83 shown in FIG.
FIG. 7 is a simplified perspective view showing a configuration of still another embodiment of the present invention.
FIG. 8 is a cross-sectional view showing a configuration of a conventional catalytic CVD apparatus.
FIG. 9 is an example of a cross-sectional view showing a configuration of a CVD apparatus that separately decomposes and activates a silane gas and an ammonia gas as a premise of the present invention.
[Explanation of symbols]
41 substrate
42 vacuum container
45 Silane gas inlet
46 Ammonia gas inlet
47,47a, 48,85-87 Heating element
71 Space
72, 73, 83 Inlet means
Claims (7)
真空容器の空間に、複数種類の各ガス種を前記空間に臨む導入口手段の各導入口から個別に導入し、
各導入口は、前記空間に開放しており、被堆積物に臨み、
各導入口と被堆積物との間に1個以上の発熱体を設け、
かつ、複数のガス種のうちの少なくとも1つのガス種の導入口近傍で他のガス種と混合しない領域に前記発熱体の1個以上または一部を設け、
各ガス種を発熱体によって熱分解し、活性種を生成することを特徴とする化学蒸着方法。In a chemical vapor deposition method for depositing a compound composed of components of a plurality of gas species on a deposition target by thermally decomposing a plurality of gas species as a raw material to generate active species,
Into the space of the vacuum vessel, individually introduce a plurality of types of gas species from each inlet of the inlet means facing the space,
Each inlet is open to the space, facing the sediment,
At least one heating element is provided between each inlet and the sediment,
And, one or more or a part of the heating element is provided in a region near the inlet of at least one gas type of the plurality of gas types and not mixed with other gas types,
A chemical vapor deposition method characterized in that each gas species is thermally decomposed by a heating element to generate active species.
原料となる各ガス種毎に設けられ、被堆積物に向けられて真空容器内の空間に開放している複数の導入口を有する導入口手段と、
前記複数の導入口と被堆積物との間に設けられた1個以上の発熱体とを有し、前記発熱体の1個以上または一部が、少なくとも1つのガス種の導入口近傍であり他のガス種と混合しない領域に設けられ、また前記発熱体は該各ガス種を熱分解して活性種を生成することを特徴とする化学蒸着装置。A vacuum vessel,
Inlet means having a plurality of inlets provided for each gas type serving as a raw material and directed to the sediment and open to the space in the vacuum vessel,
It has one or more heating elements provided between the plurality of inlets and the sediment, and one or more or a part of the heating elements is near an inlet of at least one gas type. A chemical vapor deposition apparatus provided in a region not mixed with other gas species, and wherein the heating element thermally decomposes each gas species to generate active species.
第1ガスの導入口手段に対応して設けられる第1発熱体は、1600℃以上2000℃未満であり、
第2ガスの導入口手段に対応して設けられる第2発熱体は、1200℃以上2000℃未満であり、
被堆積物上に窒化シリコンを成膜することを特徴とする請求項1〜3のうちのいずれか1つに記載の化学蒸着方法。Each of the gas types includes a first gas containing a silicon atom and a second gas containing a nitrogen atom,
The first heating element provided corresponding to the first gas inlet means is at least 1600 ° C and less than 2000 ° C,
The second heating element provided corresponding to the second gas inlet means is at least 1200 ° C. and less than 2000 ° C.,
The chemical vapor deposition method according to any one of claims 1 to 3, wherein a film of silicon nitride is formed on the object to be deposited.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2002382530A JP4144697B2 (en) | 2002-12-27 | 2002-12-27 | Chemical vapor deposition method and apparatus |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2002382530A JP4144697B2 (en) | 2002-12-27 | 2002-12-27 | Chemical vapor deposition method and apparatus |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2004211160A true JP2004211160A (en) | 2004-07-29 |
| JP4144697B2 JP4144697B2 (en) | 2008-09-03 |
Family
ID=32818066
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2002382530A Expired - Fee Related JP4144697B2 (en) | 2002-12-27 | 2002-12-27 | Chemical vapor deposition method and apparatus |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP4144697B2 (en) |
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2005179768A (en) * | 2003-11-26 | 2005-07-07 | Kyocera Corp | Heating element CVD apparatus and film forming method by heating element CVD method |
| WO2007111092A1 (en) | 2006-03-24 | 2007-10-04 | Konica Minolta Medical & Graphic, Inc. | Transparent barrier sheet and method for producing transparent barrier sheet |
| WO2007111074A1 (en) | 2006-03-24 | 2007-10-04 | Konica Minolta Medical & Graphic, Inc. | Transparent barrier sheet and method for producing transparent barrier sheet |
| WO2007111075A1 (en) | 2006-03-24 | 2007-10-04 | Konica Minolta Medical & Graphic, Inc. | Transparent barrier sheet and method for producing transparent barrier sheet |
| WO2007111076A1 (en) | 2006-03-24 | 2007-10-04 | Konica Minolta Medical & Graphic, Inc. | Transparent barrier sheet and method for producing transparent barrier sheet |
| WO2007111098A1 (en) | 2006-03-24 | 2007-10-04 | Konica Minolta Medical & Graphic, Inc. | Transparent barrier sheet and method for producing same |
| EP1884472A4 (en) * | 2005-05-27 | 2010-04-28 | Kirin Brewery | APPARATUS FOR MANUFACTURING PLASTIC GAS PROTECTION CONTAINER, PROCESS FOR MANUFACTURING CONTAINER AND CONTAINER |
-
2002
- 2002-12-27 JP JP2002382530A patent/JP4144697B2/en not_active Expired - Fee Related
Cited By (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2005179768A (en) * | 2003-11-26 | 2005-07-07 | Kyocera Corp | Heating element CVD apparatus and film forming method by heating element CVD method |
| CN101184669B (en) * | 2005-05-27 | 2012-06-06 | 麒麟麦酒株式会社 | Apparatus for manufacturing gas barrier plastic container, method for manufacturing the container, and the container |
| EP1884472A4 (en) * | 2005-05-27 | 2010-04-28 | Kirin Brewery | APPARATUS FOR MANUFACTURING PLASTIC GAS PROTECTION CONTAINER, PROCESS FOR MANUFACTURING CONTAINER AND CONTAINER |
| AU2006250336B2 (en) * | 2005-05-27 | 2011-07-21 | Kirin Beer Kabushiki Kaisha | Apparatus for manufacturing gas barrier plastic container, method for manufacturing the container, and the container |
| US8186301B2 (en) | 2005-05-27 | 2012-05-29 | Kirin Beer Kabushiki Kaisha | Apparatus for manufacturing gas barrier plastic container, method for manufacturing the container, and the container |
| JP5260050B2 (en) * | 2005-05-27 | 2013-08-14 | 麒麟麦酒株式会社 | Gas barrier plastic container manufacturing apparatus and method for manufacturing the container |
| KR101307040B1 (en) * | 2005-05-27 | 2013-09-11 | 기린비루 가부시키가이샤 | Apparatus for manufacturing gas barrier plastic container, and method for manufacturing the container |
| KR101319809B1 (en) * | 2005-05-27 | 2013-10-17 | 기린비루 가부시키가이샤 | Apparatus for manufacturing gas barrier plastic container, method for manufacturing the container, and the container |
| US8808797B2 (en) | 2005-05-27 | 2014-08-19 | Kirin Beer Kabushiki Kaisha | Method of manufacturing a gas barrier plastic container |
| WO2007111074A1 (en) | 2006-03-24 | 2007-10-04 | Konica Minolta Medical & Graphic, Inc. | Transparent barrier sheet and method for producing transparent barrier sheet |
| WO2007111075A1 (en) | 2006-03-24 | 2007-10-04 | Konica Minolta Medical & Graphic, Inc. | Transparent barrier sheet and method for producing transparent barrier sheet |
| WO2007111076A1 (en) | 2006-03-24 | 2007-10-04 | Konica Minolta Medical & Graphic, Inc. | Transparent barrier sheet and method for producing transparent barrier sheet |
| WO2007111098A1 (en) | 2006-03-24 | 2007-10-04 | Konica Minolta Medical & Graphic, Inc. | Transparent barrier sheet and method for producing same |
| WO2007111092A1 (en) | 2006-03-24 | 2007-10-04 | Konica Minolta Medical & Graphic, Inc. | Transparent barrier sheet and method for producing transparent barrier sheet |
Also Published As
| Publication number | Publication date |
|---|---|
| JP4144697B2 (en) | 2008-09-03 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| KR100901892B1 (en) | Gas treatment device and process gas discharging structure | |
| EP1420079B1 (en) | Film-forming system and film-forming method | |
| KR100954243B1 (en) | Film forming apparatus and method for semiconductor processing and computer readable medium | |
| KR20110079831A (en) | Weather epitaxy system | |
| CN103597580A (en) | Equipment for depositing materials on substrates | |
| WO2000044033A1 (en) | Method and apparatus for film deposition | |
| JP7549556B2 (en) | Semiconductor manufacturing method and semiconductor manufacturing apparatus | |
| EP2231896B1 (en) | Separate injection of reactive species in selective formation of films | |
| KR100688837B1 (en) | Chemical Vapor Deposition Apparatus for Crystalline Silicon Deposition | |
| JP4933894B2 (en) | Vaporizer module | |
| JP2009521797A (en) | Method and apparatus for producing polycrystalline silicon thin film using transparent substrate | |
| JP2004211160A (en) | Chemical vapor deposition method and apparatus | |
| TWI502096B (en) | Reaction device and manufacture method for chemical vapor deposition | |
| JP2006049544A (en) | Substrate processing apparatus and substrate processing method using the same | |
| JP4119330B2 (en) | Shower head and film forming apparatus | |
| JP4979578B2 (en) | Nanocrystalline silicon deposition using a single wafer chamber | |
| JP2008211109A (en) | Vapor growth apparatus and vapor growth method | |
| JP2011151118A (en) | Apparatus and method for manufacturing semiconductor | |
| JP2010001541A (en) | Film deposition method and film deposition apparatus | |
| TW200901290A (en) | Method and apparatus for depositing thin film | |
| JP3644864B2 (en) | Deposition equipment | |
| JP4874842B2 (en) | Vapor growth equipment | |
| JP2007234891A (en) | Substrate processing equipment | |
| JP2010001560A (en) | Film deposition method and film deposition apparatus | |
| JPH1088353A (en) | Formation of zrn coating using cvd system |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20040818 |
|
| A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20051110 |
|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051110 |
|
| RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20051110 |
|
| A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20051110 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080519 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080527 |
|
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080611 |
|
| R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110627 Year of fee payment: 3 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110627 Year of fee payment: 3 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120627 Year of fee payment: 4 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120627 Year of fee payment: 4 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130627 Year of fee payment: 5 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| LAPS | Cancellation because of no payment of annual fees |