[go: up one dir, main page]

JP2004212210A - Method for measuring shearing load of fastening implement - Google Patents

Method for measuring shearing load of fastening implement Download PDF

Info

Publication number
JP2004212210A
JP2004212210A JP2002381911A JP2002381911A JP2004212210A JP 2004212210 A JP2004212210 A JP 2004212210A JP 2002381911 A JP2002381911 A JP 2002381911A JP 2002381911 A JP2002381911 A JP 2002381911A JP 2004212210 A JP2004212210 A JP 2004212210A
Authority
JP
Japan
Prior art keywords
load
fastener
strain
shear load
members
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002381911A
Other languages
Japanese (ja)
Other versions
JP3728459B2 (en
Inventor
Yutaka Sato
佐藤  裕
Ippei Usu
一平 薄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Aerospace Laboratory of Japan
Original Assignee
National Aerospace Laboratory of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Aerospace Laboratory of Japan filed Critical National Aerospace Laboratory of Japan
Priority to JP2002381911A priority Critical patent/JP3728459B2/en
Publication of JP2004212210A publication Critical patent/JP2004212210A/en
Application granted granted Critical
Publication of JP3728459B2 publication Critical patent/JP3728459B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for measuring sharing load of a fastening implement which measures sharing load exerted on the fastening implement by focusing attention on axial distortion which secondarily occurs in the fastening implement for mechanically fastening a plurality of members. <P>SOLUTION: Plate-like members 1 and 2 are fastened by a bolt 4 and a nut 5, which constitute the fastening implement 3. When load P acts on the members 1 and 2 from the outside, axial distortion occurs due to "Poisson effects" in strength of materials in a form corresponding to compressive stress which occurs when a solid shaft part 7 comes into contact with the inner circumferential surface of a hole for fastening 10. The axial distortion is measured by a distribution sensor 9 embedded in a bottom part 8a of a measuring hole 8 formed in the center axis 4c of the solid shaft part 7 of the bolt 4. By previously relating the amount of the measured axial distortion with the load (sharing force) acting on the fastening implement 3, the sharing load is computed. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、複数の部材を締結するための、中実軸部を有するボルト、ピン又はリベット等の締結具において、複数の部材を締結した状態で中実軸部に作用する剪断荷重を測定する締結具の剪断荷重測定方法に関する。
【0002】
【従来の技術】
従来、ボルト、ピン、リベット等の締結具によって複数の部材を締結する締結構造は、航空機、宇宙機に限らず、一般構造物においても広く用いられている。この種の締結構造は、継手としても認識可能な構造であって、ボルト、ピン、リベット等の締結具が主としてその軸方向の引っ張り荷重を受け持つことでその締結機能を果たす、所謂、引っ張り継手と、主として剪断力を受け持つことでその締結機能を果たす、所謂、剪断継手とに大別される。
【0003】
複数の部材を締結するボルト、ピン又はリベット等の締結具の中実軸部には、通常、軸方向荷重として引っ張り力が作用する。こうした軸方向荷重については、抵抗線歪ゲージや光ファイバ歪センサ等の検出器を中実軸部の内部にその軸方向に沿って埋め込み、この検出器の検出出力に基づいて測定する方法が一般的である。こうした測定方法は、ボルト締付け力の測定や荷重変換器(ロードセル)等に応用されている。この測定方法は、専ら、複数の部材を締結する締結具に作用する軸方向荷重を測定するための方法であり、剪断荷重の測定を目的としたものではなく、剪断荷重の測定に適用可能とは考えられていない。
【0004】
しかしながら、複数の部材が特に板材である場合には、上記締結具は、その中実軸部に作用する剪断力によって、複数の部材に作用する面内応力を伝達させる用い方をされることが多い。特に、航空機や宇宙機においては、機体を軽量な薄板から成るモノコック構造で構成するため、複数の板材をリベット等の締結具で締結し、薄板面内応力を中実軸部に生じる剪断力を介して伝達している。また、固着具に限らず、複数の動力伝達部品間に働く動力を締結具における剪断力によって伝達する剪断継手のような機械要素も、各種の技術分野で用いられている。
【0005】
構造材としての複数の部材を剪断力によって締結する締結具や、剪断継手のような複数の動力伝達部品間に剪断力の形態を取って動力を伝達する締結具において、締結具が受ける剪断荷重を直接的に測定することは、従来の技術では一般には困難である。締結される部材の締結部周辺の表面について歪測定を行って剪断応力状態を推定する方法や、対応した数値シミュレーションによって剪断応力を算定する等の方法が用いられてきたが、これらの方法は効果的な測定手法であるとは言えない。特に、複数の締結具を用いた締結構造の場合には、それぞれの締結具が分担する剪断荷重を算定することが構造設計上重要となるが、個々の締結具に作用する剪断力を正確に測定することが事実上不可能であって、そうした剪断荷重を実験的に得ることが困難である。また、解析上も条件や問題が複雑であり、結果として、経験則に頼っている場合が少なくない。
【0006】
締結具がその剪断力によって破壊するときは、締結具それ自信の破断、又は締結される部材の締結部周部に生じる亀裂、塑性降伏、損傷等が破壊の起点となる場合が殆どであるが、このうち締結部周辺部に発生した塑性降伏、損傷の初期段階を検知することは一般的には非常に困難である。航空機や宇宙機等の飛翔体は、胴体や翼等を薄厚金属板を多数のリベットでつなぎ合わせたモノコック構造で構成されていることが殆どであり、こうした塑性降伏、損傷の初期段階を検知することは、従来、困難であった。
【0007】
ボルト頭部に形成した凹部にボルト軸方向の応力を受けて伸び又は縮むゲージ抵抗部を有する歪みゲージを設けて成り、ボルトの締付け緩みを検出することができる歪センサを装着したボルトが提案されている(特許文献1参照)。また、電気抵抗式ひずみゲージに存在する機械的疲労や温度の影響を解消するため、スラスト力によって伸縮するギャップを挟む二つの反射面又は鏡で反射する光の干渉を利用した光学的歪ゲージを用いることにより、エンジンの軸受スラストを測定することが提案されている(特許文献2参照)。
【0008】
【特許文献1】
特開2002−236064号公報([0010]、図1及び図2)
【特許文献2】
特開2000−321030号公報([0009]〜[0010]、図1)
【0009】
【発明が解決しようとする課題】
ところで、材料力学上、材料に剪断力が作用すると、その剪断方向と直交する方向にも軸方向歪が生じることが知られている。そこで、この材料力学上の現象に着目して、剪断力や剪断歪を直接測定するのではなく、締結具に副次的に生じる軸方向歪量を検出し、その軸方向歪量に基づいて締結具に生じる剪断荷重を測定する点で解決すべき課題がある。
【0010】
この発明の目的は、複数の部材を機械的に締結を行う締結具において、従来困難であった締結具が受ける剪断荷重を測定することができる実用的な方法を提供することである。
【0011】
【課題を解決するための手段】
この発明による締結具の剪断荷重測定方法は、中実軸部を有する締結具の前記中実軸部の内部に、前記中実軸部の軸方向歪量を検知する歪センサを埋め込み、前記歪センサが検知した軸方向歪量とポアソン効果とに基づいて前記中実軸部に作用する前記剪断荷重を測定することから成っている。
【0012】
この発明による締結具の剪断荷重測定方法の基本原理は、ボルト、ピン、リベット等の締結具が剪断荷重を受ける場合に、ポアソン効果として締結具の中実軸部の内部に副次的且つ局所的に生じる締結具の軸方向歪量を締結体内部に埋め込んだ歪センサによって検知することにより、剪断荷重を測定することにある。剪断応力に対応して中実軸部には剪断方向のみならず、ポアソン効果として軸方向にも歪が生じる。締結具に生じる剪断歪量を直接に測定することは困難であるが、軸方向歪量であれば中実軸部に埋め込まれた歪センサによって充分高精度で検出可能である。予め、剪断荷重と締結具の軸方向歪量との対応関係を求めておけば、軸方向歪量の値に基づいて締結具に作用している剪断荷重を求めることができる。測定穴を設ける位置は、応力的に偏りを回避できると推測される中実軸部の中心軸線位置とするのが好ましい。
【0013】
この締結具の剪断荷重測定方法において、前記歪センサが検知した前記軸方向歪量と前記剪断荷重とを対応させる歪−荷重較正を行うことが好ましい。歪センサとその締結具への取付けとをすべての締結具について同条件で行うのは困難であるので、歪−荷重特性は締結具毎に微妙に異なる。従って、剪断荷重を測定する際に必要となる荷重と歪センサ出力を対応させるための荷重較正が求められる。この荷重較正は、具体的には、締結具を較正試験機に装着して実際に既知の値の荷重を作用させることによって得られる。
【0014】
この締結具の剪断荷重測定方法において、前記締結具が前記中実軸部に軸方向に異なる位置で係合した状態で締結している複数の部材間に、前記中実軸部に作用する前記剪断荷重によって荷重を伝達するとき、前記剪断荷重の測定に適用することができる。締結具によって複数の部材を締結するとき、各部材は中実軸部に対して軸方向に異なる位置で係合していると、一部の部材に作用する荷重は、締結具の中実軸部に圧縮応力(面圧)として作用し、中実軸部の内部を経て、再び圧縮応力(面圧)として別の部材に伝達される。一部の部材と別の部材との中実軸部に対する当接部分が中実軸部の軸方向にオフセットしていると、中実軸部の内部には、剪断応力の形で部材間に荷重を伝達する応力場が形成される。この剪断応力は、測定される軸方向歪量とポアソン効果とに基づいて求めることができる。なお、歪センサを設ける測定穴の深さについては、締結すべき部材の構成にもよるが、部材間の境界位置を候補として挙げることができる。
【0015】
この締結具の剪断荷重測定方法において、前記部材が複数の前記締結具によって結合されるときには、前記各締結具に作用する前記剪断荷重の分布状況を把握するため、この剪断荷重測定方法を前記各締結具に個別に適用することができる。締結具毎に歪センサを埋め込み,各締結具に適用される剪断荷重測定方法によって、その締結具に作用する剪断荷重を直接に測定することができる。把握すべき荷重状況としては、例えば、複数の締結具が担う荷重の配分比を算定することが挙げられる。各締結具が担う荷重配分が判明するので、締結構造のリアルタイムな荷重配分を把握でき、締結具の最適配置の算出や、荷重やメンテナンス管理も容易に行うことができる。
【0016】
この締結具の剪断荷重測定方法において、前記締結具が軸方向の張力によって前記部材間に面圧を生じさせている場合に、前記軸方向歪量と前記剪断荷重との関係において前記軸方向歪量が生じ始めるときの前記剪断荷重に基づいて、前記部材に作用する荷重のうち、前記面圧に基づいて部材間に生じる摩擦力によって伝達される荷重を求めることができる。締結体の軸方向荷重に基づいて部材間に摩擦力が作用している場合には、部材に作用する外力の一部は、この摩擦力によって伝達される。このような場合には、摩擦力によって伝達される荷重と部材と締結体との面接触圧により伝達される荷重を分離することが好ましい。部材間に摩擦力が作用する場合の軸方向歪量と剪断荷重との関係は、摩擦力が作用しない場合と対比して、荷重の作用開始時にその摩擦力を超える荷重が作用して初めてポアソン効果に対応した軸方向歪量が検出され始めるという関係が現れる。従って、軸方向歪量と剪断荷重との関係の変化を捕らえ、軸方向歪量が生じ始めるときの剪断荷重を捕らえることで、摩擦力によって伝達される荷重を算出し、部材間の摩擦力と締結具により伝達される剪断荷重とを分離することができる。
【0017】
この締結具の剪断荷重測定方法において、前記軸方向歪量と前記剪断荷重との関係において前記剪断荷重に対する前記軸方向歪量が急激に増加する変化に基づいて、前記締結具の前記中実軸部と前記部材との接触面圧に起因して締結部近傍において生じる前記部材の塑性降伏、損傷等の非線形挙動を検知することができる。締結具の中実軸部と部材との接触面圧に起因して締結部近傍においては、部材の塑性降伏、損傷等の非線形挙動が生じることがあるが、このような締結部近傍における部材の塑性降伏、損傷の初期段階を挙動を、発生した時に検知することができれば、締結構造の荷重やメンテナンス管理にとって好ましい。このような非線形挙動は、荷重の増加量が少ないにもかあわらず、歪量が大きいという現象となって現れる。従って、軸方向歪量と剪断荷重との関係において剪断荷重に対する軸方向歪量が急激に増加する変化を見いだすことによって、締結具の中実軸部と部材との接触面圧に起因して締結部近傍において生じる部材の塑性降伏、損傷等を検知することができる。
【0018】
この締結具の剪断荷重測定方法において、前記歪センサは、前記締結体の前記中実軸部に形成された測定穴内に固定された抵抗線歪ゲージ又は光ファイバセンサであり、前記歪センサからのリード線が前記測定穴の開口を通して延びて測定機器に接続することができる。ボルト、ピン、リベット等の締結具に測定穴を形成し、その測定穴に歪センサを固定するという簡単な構造を持つ締結具によって、締結具自体の構造強度に与える影響を極力少なくしつつ、締結具に作用する剪断力を効果的に測定することができる。
【0019】
【発明の実施の形態】
この発明による締結具の剪断荷重測定方法の実施例について、図面を参照して説明する。図1は、本剪断荷重測定方法を、ボルトとナットとから成る締結具を二枚の板状部材の締結に適用した例を示す断面図、図2は締結具の剪断荷重測定原理を説明する図である。図1に示す適用例において、板状の部材1,2は、ボルト4とナット5とから成る締結具3によって締結されている。締結具3は、各部材1,2に形成された締結用孔10,11を整列させた状態で、締結用孔10,11にボルト4を挿通し、ボルト4のねじ部4bにナット5をねじ込むことによって締結状態となる。ボルト頭部4aと部材1との間、及びナット5と部材2との間には、弛み止め及び締付け荷重の分散等の周知の目的で、それぞれ、ワッシャ6、6が介装されている。
【0020】
ボルト4の円柱状の中実軸部7には、ボルト頭部4aの頂面より機械加工によってセンサ設置用のセンサ装着用の測定穴8が形成されている。測定穴8の深さは、後述するように、部材1,2の接合面の位置に合わせるのが好ましい。測定穴8は、中実軸部7の中心軸線4c位置において途中までの深さの穴として形成することもできるが、一旦、貫通孔に形成し、貫通先から途中まで熱硬化性樹脂を埋め込むことで測定穴に形成してもよい。歪センサ9は、測定穴8に挿入され、接着剤等を充填することによって測定穴8の底部8aに固定される。歪センサ9からの検出信号は、リード線12を通じて外部の計測機器13に接続される。歪センサ9を埋め込むために形成される測定穴8それ自身によって締結具であるボルト4の本来の強度に大きな影響が出ることを回避するため、歪センサ9は、ボルト4の中実軸部7の直径に比して小型のものであることが望ましい。
【0021】
歪センサ9としては、小型の抵抗線歪ゲージ、又はファブリーペロー干渉計等の光ファイバセンサ等が適用可能である。特に小径の締結具に適用する場合には、センサ自体の径が小さく且つ感度の良い小径の光ファイバーセンサが好適である。
【0022】
この締結具の剪断荷重測定原理について、図2を参照して説明する。部材1と部材2に、図1に示すような面内方向の引張り力Pが作用している場合で、与えられた力の全てが一方の部材(例えば、1)からボルト4を通じて他方の部材(例えば、2)に伝達される場合を考える。この場合、締結された部材1,2間での摩擦力による力の伝達はないものとする。即ち、一般には、ボルト4へのナット5の締付けにより部材1,2同士が押し付けられている状態では、面内方向の引張り力Pを作用させたとき、部材1,2間に生じる面圧に基づいて面内方向の摩擦力が生じ、ボルト4を介しない荷重伝達が存在する。しかし、この適用例では、先ず、初期のボルト4及びナット5による部材1、2の締付けは十分に小さく、全ての引張り力Pがボルト4を通じて伝達されるものとして取り扱う。
【0023】
一方の部材1から与えられた引張り力Pは、部材1の挿通孔10の内周面10aとボルト4の円柱部7の外周面7aとの接触部としての、ある広がりを持つ領域の圧縮面圧を介して、圧縮応力の形でボルト4に伝達される。圧縮応力に基づいてボルト4の円柱部7に働く力は、同様に、ボルト4の円柱部7の外周面7aと他方の部材2の挿通孔11の内周面11aとの接触部に生じる圧縮応力の形で他方の部材2へ伝達され、更に、部材2に作用している引張り力Pとなる。
【0024】
ボルト4は、圧縮応力の形でボルト4に伝達された力を、中実軸部7の内部において主として剪断力により伝達している。この際、中実軸部7には、各部材1,2との接触部近傍において圧縮応力場14が発生する。圧縮応力場14の領域は、内周面10aに当接する外周面7aを含む接触部15からボルト4の中心軸線4cを経て内周面11aに当接する外周面7aを含む他方の接触部16まで拡がっている。圧縮応力場14の形状及びその内部における応力の強度分布は、両部材1,2の板厚や材料の組合せ等によって変化し、ボルト4の中心軸線4c上においても中心軸線4cに沿って変化している。ボルト4の中心軸線4cに沿った位置に相当する深さ位置D(横軸に示す)における軸方向歪(縦軸に示す)が、荷重をパラメータとして、図9に示されている。圧縮応力場14においてはその圧縮応力が中実軸部7の軸方向に対称的に分布しており、圧縮応力場14にはこうした圧縮応力の変化に対応して剪断応力が生じており、引張り力Pは部材1,2間に剪断応力を介して伝達される。
【0025】
この発明による剪断荷重測定の原理は、ボルト4の中心軸線4c上に生じる圧縮応力に対応する形で生じるボルト4の軸方向歪量(引張り歪量)を、ボルト4の円柱部7の内部に埋め込んだ歪センサ9により測定し、歪センサ9で測定された軸方向歪量と締結具3に得られた外力、即ち、剪断荷重とを対応付けすることに基づいている。ボルト4に働く横方向の圧縮応力に応じて軸方向歪が生じるのは、所謂、材料力学上の「ポアソン効果」によるものである。軸方向歪分布に対するポアソン比νの影響が、図10に示されている。横軸に示す深さ位置Dにおける縦軸に示す軸方向歪の分布が、ポアソン比νの値によって変化している様子が示されている。軸方向歪量を測定することにより、ボルト3に作用する剪断荷重を計測することができる。この剪断荷重測定原理において、圧縮応力場14に生じる剪断応力が中実軸部7の軸方向に変化している程度が大きいほど、軸方向歪量が大きく測定されることが数値計算等から判明している。
【0026】
外力によって生じるボルト4の中心軸線4c上の軸方向歪の強度分布は、個々のケース毎に異なったものとなるが、多くの場合、両部材1,2が接している平面17上とボルト4の中心軸線4cが交わる付近で最大となる。従って、この近傍に歪センサ9を埋め込むことにより、剪断荷重の測定感度の向上を図ることができる。歪センサ9の最適な埋込み位置を予め正確に算定するためには、有限要素法等の数値計算を用いたシミュレーション解析が有効であるが、埋込み位置の異なるものをいくつか製作し、実験的に求めることも可能である。
【0027】
図3は、較正用の締結供試体の一例を示す断面概略図である。図3において、締結供試体20は、板状の部材1,2aを、上記に示したボルト4とナット5とから成る二つの通常の締結具3,3で締結し、部材1と部材2bとの間で較正用締結具23で締結することで構成されている。較正用締結体23は、適用しようとする締結具3と同等の材質、板厚を有する較正用部材を組み合わせることにより構成されており、通常の締結体3と同様に、ボルト24、ナット25、歪センサ9等から成っている。締結供試体20の両側を材料試験機のチャック部に固定した後、試験機を制御しながら徐々に負荷(引っ張り力P)を増すと、歪センサ9によって較正用締結具23に生じる歪量(ボルト24軸方向歪量)が検出される。この歪の値を引張り力Pの値とともに記録しこれらを対応づけることによって締結具3の較正曲線が得られる。
【0028】
この較正曲線は歪センサ9を埋め込んだ後の較正用締結具23に対して固有のものであり、較正は個々に行われなければならない。これは埋め込み条件等の違いにより、歪センサ9の荷重Pに対する感度が全く同じになるとは限らないからである。また、この較正においては、較正用締結具23の締結力は部材1,2間に作用する摩擦力が無視できる程度に小さくしておかなければならない。これは、部材1,2間の摩擦力による荷重伝達をなくし、全ての荷重が部材1,2とボルト24との接触部を通じて伝達するようにするためである。
【0029】
それぞれに較正がなされた複数の締結具3,3を、例えば、図4に示すように部材1,2を多点(図4は2点)で締結する継手に対して適用することによって、各締結具3,3が分担する荷重を測定することが可能となる。航空機や宇宙機に限らず、一般建築構造物においては、多数のボルトやピン、リベットのような締結具を用いて板状部材等の構造材を連結していたが、従来、このような多数の締結具を用いた構造物においては、個々の締結具に作用している荷重を正確に把握することは事実上、不可能であった。そうした構造物においては、1本の締結具の破損は他の締結具の荷重に影響を及ぼすので、荷重管理を厳しくせざるを得ない。従って、経験則に則り、板厚を増加させたり締結具の数を増やす対策が取られている。その結果、構造物の重量が必要以上に増加するという傾向があった。それに対して、この剪断荷重測定方法では、個々の締結具3に作用する剪断荷重を逐一検出することにより、構造物の荷重状態の把握のみならず破損に至る締結具3の個別情報をリアルタイムで把握することができるので、可能な限り少ない数の締結具3でその最適配置を決定したり、構造物の損傷を未然に防止するのに利用することができる。
【0030】
図5に示すように、ボルト4、ナット5を用いた締結具3においては、ナット5を締め付けることにより生じるボルト4の軸方向の引張力を利用して被締結部材である部材1,2に板厚方向の圧縮力Paを作用させると、外部から荷重Pが作用するときに締結部近傍の部材1,2間に生じる摩擦力Pfによって、荷重Pの一部が伝達される。摩擦力Pfの大きさが無視できない場合には、歪センサ9の検出出力は外部荷重を正しく反映しておらず、検出出力から直に外部荷重を求めることはできない。従って、剪断力と摩擦力とを分離する必要がある。
【0031】
摩擦力Pfで伝達される荷重の限度を越えて外部の荷重が作用した場合には、締結具3と部材1,2との接触による荷重伝達が生じ、この摩擦限度荷重を越えた部分の荷重については、上記の軸方向歪量とポアソン効果とによる原理を用いた剪断荷重測定方法が適用可能である。図6は、漸増する外部の荷重Pに対する締結体3に埋め込まれた歪センサ9によって検出される軸方向歪量の変化を示したものであるが、摩擦力の限界荷重がPfであり、それ以下の荷重では歪量に変化はない。しかし荷重がPfを超えると荷重の超過分が締結具3と部材1,2の接触によって伝達されるようになり、歪量が発生し次第に増加する。これにより、荷重Pは摩擦力Pfによって分担されている荷重と、締結具3と部材1,2の接触によって分担されている剪断荷重Pcに分離することができる。
【0032】
摩擦力Pfがゼロである場合は外部の荷重Pと軸方向歪量とは概ね比例関係にあるが、荷重Pの増加に伴って、図8に示すように締結具3と接触する接触部15,16近傍において、部材1,2の締結部18が塑性降伏、損傷等の非線形挙動を生じる場合がある。このような場合には、歪センサ9によって測定される軸方向歪量に、図7に示すような明らかな変化が現れる。図7に示すグラフは、塑性降伏や損傷に起因して、荷重の増加が殆どないにもかかわらず軸方向歪量が急激に増加する場合を示す特性曲線であり、荷重と軸方向歪量が比例関係から徐々に逸脱する、滑らかに変化する特性曲線を示している。材料の種類によっては、特性曲線が明らかな折れ曲がり点となって現れる場合もある。図中、塑性降伏、損傷開始点がAで示されている。このような変化は、図8に示すように、図中Bで示す締結部18の近傍で部材1,2が塑性降伏や損傷によって面外に押し出され、これが締結具3の頭部(ボルト頭部4a)を押し上げることによって締結体3に図中Cで示すような引張り力をもたらすためである。この変化点を見い出すことによって、締結具3近傍における部材1,2の塑性降伏や損傷を検知することができる。
【0033】
【発明の効果】
以上のように、この発明による締結具の剪断荷重測定方法は、中実軸部を有する締結具の前記中実軸部の内部に、前記中実軸部の軸方向歪量を検知する歪センサを埋め込み、前記歪センサが検知した軸方向歪量とポアソン効果とに基づいて前記中実軸部に作用する前記剪断荷重を測定するので、剪断応力に対応して中実軸部にはポアソン効果として生じる軸方向歪量を中実軸部に埋め込まれた歪センサによって充分高精度で検出することができる。予め、剪断荷重として作用する外力と締結具の軸方向歪量との対応関係を求めておけば、軸方向歪量の値に基づいて締結具に作用している剪断荷重を求めることができる。従来、締結具に生じる剪断歪量を直接に測定することは困難であったが、締結具が受ける剪断荷重を迅速且つ簡単に実用的に測定することができる。
【0034】
この発明による締結具の剪断荷重測定方法によれば、上記に加えて、剪断荷重を実用的な測定において必要な荷重と歪センサ出力とを対応させるための、荷重較正を得ることができる。また、締結具によって複数の部材を締結する場合には、締結具に作用する剪断荷重から部材に働く荷重を求めることもできる。また、複数の部材を複数の締結具で締結する構造の場合には、各締結具がそれぞれどのような荷重を分担していたのか、従来、必ずしも明確に解析できなかったが、個々の締結具に本剪断荷重測定方法を適用することにより、具体的に個々の締結具の分担比率を算定することができる。更に、締結体がその軸方向荷重によって発生する部材間の摩擦力を利用して剪断力を伝達する場合においては、荷重と軸方向歪の関係に着目することにより、摩擦力によって伝達される荷重と、部材と締結体との面圧接触によって伝達される荷重とを分離することができる。更にまた、荷重と軸方向歪の関係の変化に着目することにより、締結具で締結された部材の締結部近傍における部材の塑性変形、損傷の初期段階を検出することもでき、薄板構造の耐久性の評価や、修理時期等の策定に資することができる。この締結体の剪断荷重測定は、航空機、宇宙機に限らず、一般構造にも適用可能であり、実働荷重のオンラインモニタリングやファスナー配置の最適設計、締結部損傷検知等に広く応用可能である。
【図面の簡単な説明】
【図1】この発明による締結具の剪断荷重測定方法における歪測定概念図である。
【図2】図1に示す歪測定概念図において、締結体内部に生じる圧縮応力場と歪ゲージの関係を表す拡大図である。
【図3】この発明による締結具の剪断荷重測定方法における荷重較正法の一例を表す図である。
【図4】この発明による締結具の剪断荷重測定方法を、多点(2点)締結構造の荷重分担の測定への適用例を示す図である。
【図5】この発明による締結具の剪断荷重測定方法において、部材間の接触摩擦による荷重伝達を表した図である。
【図6】この発明による締結具の剪断荷重測定方法において、部材間の接触摩擦による荷重伝達がある場合における外荷重と歪ゲージの関係を表すグラフである。
【図7】この発明による締結具の剪断荷重測定方法において、締結部近傍における部材の塑性降伏、損傷が生じた場合の外荷重に対する軸方向歪量の関係を表した図である。
【図8】この発明による締結具の剪断荷重測定方法において、締結部近傍における部材の塑性降伏、損傷による軸方向歪量の変化を表した図である。
【図9】この発明による締結具の剪断荷重測定方法において、ボルトの中心軸線cに沿った深さ位置(横軸)における軸方向歪(縦軸)を、荷重をパラメータとして示す図である。
【図10】この発明による締結具の剪断荷重測定方法において、軸方向歪分布に対するポアソン比の影響を示す図である。
【符号の説明】
1,2 部材 3 締結具
4 ボルト 4a ボルト頭部 4b ねじ部 4c 中心軸線
5 ナット 6 ワッシャ 7 中実軸部 7a 外周面
8 測定穴 8a 底部 9 歪センサ
10,11 締結用孔 10a,11a 内周面
12 リード線 13 計測機器
15,16 接触部 17 平面 18 締結部
20 締結供試体
23 較正用締結具 24 ボルト 25 ナット
P 引張り力 Pa 圧縮力 Pf 摩擦力 Pc 剪断荷重
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention measures a shear load applied to a solid shaft portion in a state where a plurality of members are fastened in a fastener such as a bolt, a pin, or a rivet having a solid shaft portion for fastening a plurality of members. The present invention relates to a method for measuring a shear load of a fastener.
[0002]
[Prior art]
BACKGROUND ART Conventionally, a fastening structure for fastening a plurality of members with fasteners such as bolts, pins, and rivets is widely used not only in aircraft and spacecraft but also in general structures. This type of fastening structure is a structure that can also be recognized as a joint, and a fastener such as a bolt, a pin, or a rivet fulfills its fastening function by mainly receiving its axial tensile load. They are largely classified into so-called shear joints, which mainly perform a shearing force to fulfill their fastening function.
[0003]
Generally, a tensile force acts as an axial load on a solid shaft portion such as a bolt, a pin, or a rivet for fastening a plurality of members. For such an axial load, a method of embedding a detector, such as a resistance wire strain gauge or an optical fiber strain sensor, along the axial direction inside a solid shaft portion and measuring based on the detection output of the detector is generally used. It is a target. Such a measuring method is applied to measurement of a bolt tightening force, a load converter (load cell), and the like. This measurement method is a method for exclusively measuring the axial load acting on the fastener for fastening a plurality of members, and is not intended to measure the shear load, and is applicable to the measurement of the shear load. Is not considered.
[0004]
However, when the plurality of members are plate materials in particular, the fastener is used to transmit in-plane stress acting on the plurality of members by shearing force acting on the solid shaft portion. Many. In particular, in aircraft and spacecraft, since the fuselage is configured with a monocoque structure made of lightweight thin plates, multiple plate materials are fastened with fasteners such as rivets, and the shear force that generates in-plane stress on the solid shaft part is reduced. Is transmitted through. In addition to the fastener, mechanical elements such as a shear joint that transmits power acting between a plurality of power transmission components by a shear force of the fastener are also used in various technical fields.
[0005]
In a fastener for fastening a plurality of members as a structural material by a shear force, or in a fastener for transmitting power in the form of a shear force between a plurality of power transmission components such as a shear joint, a shear load applied to the fastener is given. Is generally difficult to measure with conventional techniques. Methods such as estimating the shear stress state by measuring strain on the surface around the joint of the member to be fastened and calculating the shear stress by corresponding numerical simulation have been used, but these methods are not effective. It cannot be said that this is a typical measurement method. In particular, in the case of a fastening structure using a plurality of fasteners, it is important in structural design to calculate the shear load shared by each fastener, but the shear force acting on each fastener is accurately determined. It is virtually impossible to measure and it is difficult to obtain such shear loads experimentally. In addition, conditions and problems are complicated in analysis, and as a result, there are many cases where empirical rules are used.
[0006]
When a fastener breaks due to its shearing force, in most cases, the breakage of the fastener itself, or a crack, plastic yield, damage, etc. occurring around the fastening portion of the member to be fastened becomes the starting point of the failure. Of these, it is generally very difficult to detect the initial stage of plastic yielding and damage that has occurred around the joint. Flying objects such as airplanes and spacecraft are almost always composed of a monocoque structure in which the fuselage, wings, etc., are connected with thin metal plates with many rivets, and detect such plastic yielding and the initial stage of damage. This has been difficult in the past.
[0007]
A bolt provided with a strain gauge having a gauge resistance portion that expands or contracts by receiving a stress in the bolt axis direction in a recess formed in the bolt head and is equipped with a strain sensor capable of detecting loosening of the bolt has been proposed. (See Patent Document 1). In addition, in order to eliminate the effects of mechanical fatigue and temperature that exist in electric resistance type strain gauges, optical strain gauges that use the interference of light reflected by two reflecting surfaces or mirrors that sandwich a gap that expands and contracts by thrust force are used. It has been proposed to measure the bearing thrust of an engine by using it (see Patent Document 2).
[0008]
[Patent Document 1]
JP 2002-236064 A ([0010], FIGS. 1 and 2)
[Patent Document 2]
JP 2000-32030 A ([0009] to [0010], FIG. 1)
[0009]
[Problems to be solved by the invention]
By the way, it is known that when a shearing force acts on a material, an axial strain is also generated in a direction orthogonal to the shearing direction. Therefore, instead of directly measuring the shear force and shear strain by focusing on this phenomenon in material mechanics, it detects the amount of axial strain secondary to the fastener, and based on the amount of axial strain. There is a problem to be solved in measuring the shear load generated on the fastener.
[0010]
SUMMARY OF THE INVENTION An object of the present invention is to provide a practical method capable of measuring a shear load applied to a fastener, which has been conventionally difficult, in a fastener for mechanically fastening a plurality of members.
[0011]
[Means for Solving the Problems]
The method for measuring the shear load of a fastener according to the present invention includes embedding a strain sensor for detecting an axial strain amount of the solid shaft portion inside the solid shaft portion of the fastener having a solid shaft portion, Measuring the shear load acting on the solid shaft based on the amount of axial strain detected by the sensor and the Poisson effect.
[0012]
The basic principle of the method for measuring the shear load of a fastener according to the present invention is that, when a fastener such as a bolt, a pin, a rivet is subjected to a shear load, a secondary and localized inside of the solid shaft portion of the fastener is performed as Poisson effect. An object of the present invention is to measure a shear load by detecting an axial strain amount of a fastener which is generated by a strain sensor embedded in a fastener. Corresponding to the shear stress, distortion occurs not only in the shear direction in the solid shaft portion but also in the axial direction as a Poisson effect. Although it is difficult to directly measure the amount of shear strain generated in the fastener, the amount of axial strain can be detected with sufficiently high accuracy by a strain sensor embedded in a solid shaft portion. If the correspondence between the shear load and the axial strain of the fastener is determined in advance, the shear load acting on the fastener can be determined based on the value of the axial strain. The position where the measurement hole is provided is preferably the center axis position of the solid shaft portion which is assumed to be able to avoid bias in terms of stress.
[0013]
In this method for measuring the shear load of the fastener, it is preferable to perform a strain-load calibration that associates the amount of axial strain detected by the strain sensor with the shear load. Since it is difficult to perform the strain sensor and its attachment to the fastener under the same conditions for all fasteners, the strain-load characteristics are slightly different for each fastener. Therefore, load calibration is required to make the load required for measuring the shear load correspond to the output of the strain sensor. Specifically, this load calibration is obtained by mounting the fastener on the calibration tester and applying a load of a actually known value.
[0014]
In the method for measuring a shear load of a fastener, the fastener acting on the solid shaft portion may be a plurality of members fastened in a state where the fastener is engaged with the solid shaft portion at different positions in the axial direction. When a load is transmitted by a shear load, the present invention can be applied to the measurement of the shear load. When a plurality of members are fastened by a fastener, when each member is engaged at a different position in the axial direction with respect to a solid shaft portion, a load acting on some members is changed to a solid shaft of the fastener. It acts as a compressive stress (surface pressure) on the portion, and is transmitted again to another member as a compressive stress (surface pressure) via the inside of the solid shaft portion. If the abutment portion of some members and another member with respect to the solid shaft portion is offset in the axial direction of the solid shaft portion, the inside of the solid shaft portion forms a shear stress between the members. A stress field transmitting the load is formed. This shear stress can be obtained based on the measured axial strain and the Poisson effect. The depth of the measurement hole provided with the strain sensor depends on the configuration of the member to be fastened, but a boundary position between the members can be cited as a candidate.
[0015]
In the method for measuring the shear load of the fastener, when the members are joined by a plurality of the fasteners, the shear load measuring method is used to grasp the distribution of the shear load acting on the fasteners. It can be applied individually to fasteners. A strain sensor is embedded for each fastener, and the shear load acting on the fastener can be directly measured by the shear load measuring method applied to each fastener. The load condition to be grasped includes, for example, calculating a distribution ratio of a load carried by a plurality of fasteners. Since the load distribution carried by each fastener is known, the real-time load distribution of the fastening structure can be grasped, and the optimum arrangement of the fasteners and the load and maintenance management can be easily performed.
[0016]
In the method for measuring a shear load of a fastener, when the fastener generates a surface pressure between the members by an axial tension, the axial strain is determined in a relationship between the axial strain and the shear load. Based on the shear load when the amount starts to occur, a load transmitted by a frictional force generated between the members based on the surface pressure can be obtained from the loads acting on the members. When a frictional force acts between the members based on the axial load of the fastener, a part of the external force acting on the members is transmitted by the frictional force. In such a case, it is preferable to separate the load transmitted by the frictional force from the load transmitted by the surface contact pressure between the member and the fastener. The relationship between the amount of axial strain and the shear load when a frictional force is applied between the members is that Poisson's force is applied only when a load exceeding the frictional force is applied at the beginning of the load, as compared to when no frictional force is applied. A relationship appears in which the amount of axial distortion corresponding to the effect starts to be detected. Therefore, by capturing the change in the relationship between the axial strain and the shear load, and by capturing the shear load when the axial strain begins to occur, the load transmitted by the frictional force is calculated, and the frictional force between the members is calculated. The shear load transmitted by the fastener can be separated.
[0017]
In the method for measuring the shear load of the fastener, the solid shaft of the fastener is determined based on a change in the amount of the axial strain with respect to the shear load in the relationship between the amount of axial strain and the shear load. Non-linear behavior such as plastic yielding and damage of the member generated near the fastening portion due to the contact surface pressure between the portion and the member can be detected. Non-linear behavior such as plastic yielding and damage of the member may occur in the vicinity of the fastening portion due to the contact surface pressure between the solid shaft portion of the fastener and the member. If the initial stage of plastic yielding and damage can be detected when the behavior occurs, it is preferable for the load and maintenance management of the fastening structure. Such a non-linear behavior appears as a phenomenon in which the amount of strain is large despite the small amount of increase in load. Therefore, in the relationship between the axial strain and the shear load, by finding a change in which the axial strain to the shear load sharply increases, the fastening due to the contact surface pressure between the solid shaft portion and the member of the fastener is performed. It is possible to detect plastic yielding, damage, and the like of the member generated near the portion.
[0018]
In the method for measuring the shear load of the fastener, the strain sensor is a resistance wire strain gauge or an optical fiber sensor fixed in a measurement hole formed in the solid shaft portion of the fastener, and A lead extends through the opening of the measurement hole and can be connected to a measurement instrument. Bolts, pins, rivets and other fasteners with a simple structure that forms a measurement hole in the fastener and fixes the strain sensor in the measurement hole, while minimizing the effect on the structural strength of the fastener itself, The shear force acting on the fastener can be effectively measured.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of a method for measuring a shear load of a fastener according to the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view showing an example in which the present shear load measuring method is applied to fastening of two plate-like members using a fastener composed of a bolt and a nut, and FIG. 2 illustrates the principle of measuring the shear load of the fastener. FIG. In the application example shown in FIG. 1, the plate-like members 1 and 2 are fastened by a fastener 3 including a bolt 4 and a nut 5. The fastener 3 inserts the bolt 4 into the fastening holes 10 and 11 in a state where the fastening holes 10 and 11 formed in the members 1 and 2 are aligned, and attaches the nut 5 to the threaded portion 4 b of the bolt 4. By screwing in, a fastening state is obtained. Washers 6, 6 are interposed between the bolt head 4a and the member 1 and between the nut 5 and the member 2 for well-known purposes such as loosening prevention and dispersion of a tightening load.
[0020]
The cylindrical solid shaft portion 7 of the bolt 4 is formed with a sensor mounting measurement hole 8 for mounting the sensor from the top surface of the bolt head 4a by machining. It is preferable that the depth of the measurement hole 8 be adjusted to the position of the joining surface of the members 1 and 2 as described later. The measurement hole 8 can be formed as a hole having a depth of a halfway at the position of the central axis 4c of the solid shaft portion 7, but it is formed once in a through hole, and a thermosetting resin is embedded halfway from the penetration destination. In this case, a measurement hole may be formed. The strain sensor 9 is inserted into the measurement hole 8 and fixed to the bottom 8a of the measurement hole 8 by filling with an adhesive or the like. A detection signal from the strain sensor 9 is connected to an external measuring device 13 through a lead wire 12. In order to avoid that the original strength of the bolt 4 serving as a fastener is largely affected by the measurement hole 8 formed for embedding the strain sensor 9 therein, the strain sensor 9 is provided with a solid shaft portion 7 of the bolt 4. It is desirable that the size be small in comparison with the diameter of the object.
[0021]
As the strain sensor 9, a small resistance wire strain gauge, an optical fiber sensor such as a Fabry-Perot interferometer, or the like can be applied. In particular, when applied to a small-diameter fastener, a small-diameter optical fiber sensor having a small diameter of the sensor itself and high sensitivity is preferable.
[0022]
The principle of measuring the shear load of the fastener will be described with reference to FIG. When a tensile force P in the in-plane direction as shown in FIG. 1 is acting on the member 1 and the member 2, all of the applied force is applied from one member (for example, 1) through the bolt 4 to the other member. (For example, 2) is considered. In this case, no force is transmitted between the fastened members 1 and 2 due to frictional force. That is, in general, in a state where the members 1 and 2 are pressed against each other by tightening the nut 5 to the bolt 4, when a tensile force P in the in-plane direction is applied, the surface pressure generated between the members 1 and 2 is reduced. As a result, a frictional force is generated in the in-plane direction, and there is load transmission without the bolt 4. However, in this application example, first, the tightening of the members 1 and 2 by the initial bolts 4 and the nuts 5 is sufficiently small, and all the tensile forces P are handled as being transmitted through the bolts 4.
[0023]
The tensile force P applied from one of the members 1 is a compression surface in a region having a certain spread as a contact portion between the inner peripheral surface 10a of the insertion hole 10 of the member 1 and the outer peripheral surface 7a of the cylindrical portion 7 of the bolt 4. The pressure is transmitted to the bolt 4 in the form of a compressive stress. Similarly, the force acting on the cylindrical portion 7 of the bolt 4 based on the compressive stress is generated at the contact portion between the outer peripheral surface 7a of the cylindrical portion 7 of the bolt 4 and the inner peripheral surface 11a of the insertion hole 11 of the other member 2. It is transmitted to the other member 2 in the form of stress, and furthermore, becomes a tensile force P acting on the member 2.
[0024]
The bolt 4 transmits the force transmitted to the bolt 4 in the form of a compressive stress mainly by a shearing force inside the solid shaft portion 7. At this time, a compressive stress field 14 is generated in the solid shaft portion 7 near the contact portion with each of the members 1 and 2. The region of the compressive stress field 14 extends from the contact portion 15 including the outer peripheral surface 7a contacting the inner peripheral surface 10a to the other contact portion 16 including the outer peripheral surface 7a contacting the inner peripheral surface 11a via the central axis 4c of the bolt 4. It is expanding. The shape of the compressive stress field 14 and the intensity distribution of the stress inside the compressive stress field 14 vary depending on the thickness of the two members 1 and 2 and the combination of materials, and also on the central axis 4c of the bolt 4 along the central axis 4c. ing. The axial strain (shown on the vertical axis) at the depth position D (shown on the horizontal axis) corresponding to the position along the central axis 4c of the bolt 4 is shown in FIG. 9 using the load as a parameter. In the compressive stress field 14, the compressive stress is symmetrically distributed in the axial direction of the solid shaft portion 7, and a shear stress is generated in the compressive stress field 14 in response to such a change in the compressive stress. The force P is transmitted between the members 1 and 2 via shear stress.
[0025]
The principle of the shear load measurement according to the present invention is that the amount of axial strain (tensile strain) of the bolt 4 generated in a form corresponding to the compressive stress generated on the center axis 4c of the bolt 4 is stored inside the cylindrical portion 7 of the bolt 4. It is based on the measurement by the embedded strain sensor 9 and the correspondence between the axial strain measured by the strain sensor 9 and the external force obtained on the fastener 3, that is, the shear load. The generation of the axial strain according to the lateral compressive stress acting on the bolt 4 is due to the so-called “Poisson effect” in the material dynamics. The effect of Poisson's ratio ν on the axial strain distribution is shown in FIG. The distribution of the axial strain shown on the vertical axis at the depth position D shown on the horizontal axis changes depending on the value of the Poisson's ratio ν. The shear load acting on the bolt 3 can be measured by measuring the amount of axial strain. In this shear load measurement principle, it is found from numerical calculations and the like that the greater the degree to which the shear stress generated in the compressive stress field 14 changes in the axial direction of the solid shaft portion 7, the greater the amount of axial strain is measured. are doing.
[0026]
Although the intensity distribution of the axial strain on the center axis 4c of the bolt 4 caused by the external force differs in each case, in many cases, the strength distribution on the plane 17 where both members 1 and 2 are in contact with the bolt 4 At the intersection of the center axis 4c. Therefore, by embedding the strain sensor 9 in this vicinity, the measurement sensitivity of the shear load can be improved. In order to accurately and accurately calculate the optimum embedding position of the strain sensor 9 in advance, a simulation analysis using a numerical calculation such as the finite element method is effective. It is also possible to ask.
[0027]
FIG. 3 is a schematic cross-sectional view showing an example of a fastening test specimen for calibration. In FIG. 3, a fastening specimen 20 fastens plate-like members 1 and 2 a with two ordinary fasteners 3 and 3 including the bolts 4 and the nuts 5 described above. And is fastened by the calibrating fastener 23. The calibration fastener 23 is formed by combining a calibration member having the same material and thickness as the fastener 3 to be applied, and the bolt 24, the nut 25, It comprises a strain sensor 9 and the like. After fixing both sides of the fastening test piece 20 to the chuck portion of the material testing machine, when the load (tensile force P) is gradually increased while controlling the testing machine, the strain amount generated in the calibration fastener 23 by the strain sensor 9 ( The amount of distortion of the bolt 24 in the axial direction) is detected. The value of this strain is recorded together with the value of the tensile force P, and the calibration curve of the fastener 3 is obtained by associating them with each other.
[0028]
This calibration curve is specific to the calibration fastener 23 after the strain sensor 9 has been embedded, and calibration must be performed individually. This is because the sensitivity of the strain sensor 9 to the load P is not always the same due to differences in the embedding conditions and the like. In this calibration, the fastening force of the calibration fastener 23 must be small enough that the frictional force acting between the members 1 and 2 can be ignored. This is to eliminate the load transmission due to the frictional force between the members 1 and 2, and to transmit all the load through the contact portion between the members 1 and 2 and the bolt 24.
[0029]
Each of the calibrated fasteners 3 and 3 is applied to a joint for fastening the members 1 and 2 at multiple points (two points in FIG. 4) as shown in FIG. It is possible to measure the load shared by the fasteners 3,3. Not only in aircraft and spacecraft, but also in general building structures, many structural members such as plate members are connected using fasteners such as bolts, pins, and rivets. In the structure using the fastener of the above, it is practically impossible to accurately grasp the load acting on each fastener. In such a structure, the failure of one fastener affects the load of the other fastener, so that the load management must be strict. Therefore, according to empirical rules, measures have been taken to increase the plate thickness or increase the number of fasteners. As a result, the weight of the structure tends to increase more than necessary. On the other hand, in this shear load measuring method, by detecting the shear load acting on each fastener 3 one by one, not only grasping the load state of the structure but also individual information of the fastener 3 leading to breakage in real time. Since it can be grasped, it can be used to determine its optimum arrangement with the smallest possible number of fasteners 3 and to prevent damage to the structure.
[0030]
As shown in FIG. 5, in the fastener 3 using the bolt 4 and the nut 5, the members 1 and 2 which are the members to be fastened are made using the tensile force in the axial direction of the bolt 4 generated by tightening the nut 5. When a compressive force Pa in the thickness direction is applied, a part of the load P is transmitted by a frictional force Pf generated between the members 1 and 2 near the fastening portion when the load P is applied from the outside. If the magnitude of the frictional force Pf cannot be ignored, the detected output of the strain sensor 9 does not accurately reflect the external load, and the external load cannot be directly obtained from the detected output. Therefore, it is necessary to separate the shearing force from the frictional force.
[0031]
When an external load is applied beyond the limit of the load transmitted by the frictional force Pf, the load is transmitted by the contact between the fastener 3 and the members 1 and 2, and the load of the portion exceeding the frictional limit load is generated. As for the method, a shear load measuring method using a principle based on the above-described amount of axial strain and Poisson effect can be applied. FIG. 6 shows a change in the amount of axial strain detected by the strain sensor 9 embedded in the fastening body 3 with respect to a gradually increasing external load P. The limit load of the frictional force is Pf. There is no change in the amount of strain under the following loads. However, when the load exceeds Pf, the excess of the load is transmitted by the contact between the fastener 3 and the members 1 and 2, and the amount of distortion is gradually increased. Thus, the load P can be separated into a load shared by the frictional force Pf and a shear load Pc shared by the contact between the fastener 3 and the members 1 and 2.
[0032]
When the frictional force Pf is zero, the external load P and the amount of axial strain are substantially proportional, but as the load P increases, as shown in FIG. , 16 in the vicinity, the fastening portion 18 of the members 1 and 2 may cause nonlinear behavior such as plastic yielding and damage. In such a case, the amount of axial strain measured by the strain sensor 9 clearly changes as shown in FIG. The graph shown in FIG. 7 is a characteristic curve showing a case where the amount of axial strain increases sharply despite little increase in load due to plastic yielding and damage. The figure shows a smoothly changing characteristic curve that gradually deviates from the proportional relationship. Depending on the type of the material, the characteristic curve may appear as a clear bending point. In the figure, the plastic yield and damage start point are indicated by A. As shown in FIG. 8, such a change causes the members 1 and 2 to be pushed out of the plane by plastic yielding or damage near the fastening portion 18 shown by B in the drawing, and this is pushed out by the head (bolt head) of the fastener 3. By pushing up the portion 4a), a tensile force as shown by C in the drawing is provided to the fastening body 3. By finding this change point, it is possible to detect plastic yielding and damage of the members 1 and 2 in the vicinity of the fastener 3.
[0033]
【The invention's effect】
As described above, the method for measuring the shear load of a fastener according to the present invention includes a strain sensor for detecting an axial strain amount of the solid shaft portion inside the solid shaft portion of the fastener having the solid shaft portion. And the shear load acting on the solid shaft portion is measured based on the amount of axial strain detected by the strain sensor and the Poisson effect, so that the Poisson effect is applied to the solid shaft portion corresponding to the shear stress. Can be detected with sufficiently high accuracy by the strain sensor embedded in the solid shaft portion. If the correspondence between the external force acting as the shear load and the axial strain of the fastener is determined in advance, the shear load acting on the fastener can be determined based on the value of the axial strain. Conventionally, it has been difficult to directly measure the amount of shear strain generated in a fastener, but the shear load applied to the fastener can be quickly and easily and practically measured.
[0034]
According to the method for measuring a shear load of a fastener according to the present invention, in addition to the above, it is possible to obtain a load calibration for associating a load required for practical measurement of a shear load with an output of a strain sensor. When a plurality of members are fastened by the fastener, a load acting on the member can be obtained from a shear load acting on the fastener. Also, in the case of a structure in which a plurality of members are fastened by a plurality of fasteners, it has not always been possible to clearly analyze what kind of load each fastener shared, but each individual fastener was By applying the present shear load measuring method to the present invention, it is possible to specifically calculate the share ratio of each fastener. Further, in the case where the fastening body transmits the shearing force by using the frictional force between the members generated by the axial load, the load transmitted by the frictional force is focused on the relationship between the load and the axial distortion. And the load transmitted by the surface pressure contact between the member and the fastening body can be separated. Furthermore, by paying attention to the change in the relationship between the load and the axial strain, it is possible to detect the initial stage of plastic deformation and damage of the member in the vicinity of the fastening portion of the member fastened by the fastener, and the durability of the thin plate structure can be detected. It can contribute to the evaluation of gender and the formulation of repair time. This measurement of the shear load of the fastener is applicable not only to aircraft and spacecraft but also to general structures, and is widely applicable to online monitoring of actual loads, optimal design of fastener arrangement, and detection of damage at the fastener.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram of strain measurement in a method for measuring a shear load of a fastener according to the present invention.
FIG. 2 is an enlarged view showing a relationship between a compressive stress field generated inside a fastening body and a strain gauge in the conceptual diagram of strain measurement shown in FIG.
FIG. 3 is a diagram illustrating an example of a load calibration method in the method for measuring a shear load of a fastener according to the present invention.
FIG. 4 is a diagram showing an application example of the method for measuring the shear load of the fastener according to the present invention to the measurement of load sharing of a multipoint (two-point) fastening structure.
FIG. 5 is a view showing load transmission by contact friction between members in the method for measuring a shear load of a fastener according to the present invention.
FIG. 6 is a graph showing a relationship between an external load and a strain gauge when a load is transmitted by contact friction between members in the method for measuring a shear load of a fastener according to the present invention.
FIG. 7 is a diagram showing a relationship between an axial load and an external load when plastic yielding or damage occurs in a member near a fastening portion in the method for measuring a shear load of a fastener according to the present invention.
FIG. 8 is a diagram showing a change in the amount of axial strain due to plastic yielding and damage in the vicinity of a fastening portion in the method for measuring a shear load of a fastener according to the present invention.
FIG. 9 is a diagram showing axial strain (vertical axis) at a depth position (horizontal axis) along the central axis c of the bolt using the load as a parameter in the method for measuring the shear load of a fastener according to the present invention.
FIG. 10 is a diagram showing the influence of Poisson's ratio on the axial strain distribution in the method for measuring the shear load of a fastener according to the present invention.
[Explanation of symbols]
1, 2 member 3 fastener
4 Bolt 4a Bolt head 4b Screw 4c Center axis
5 Nut 6 Washer 7 Solid shaft part 7a Outer peripheral surface
8 Measurement hole 8a Bottom 9 Strain sensor
10, 11 Fastening holes 10a, 11a Inner peripheral surface
12 Lead wire 13 Measuring equipment
15, 16 contact part 17 plane 18 fastening part
20 Fastened specimen
23 Calibration fastener 24 Bolt 25 Nut
P Tensile force Pa Compressive force Pf Friction force Pc Shear load

Claims (7)

中実軸部を有する締結具の前記中実軸部の内部に、前記中実軸部の軸方向歪量を検知する歪センサを埋め込み、前記歪センサが検知した軸方向歪量とポアソン効果とに基づいて前記中実軸部に作用する前記剪断荷重を測定することから成る締結具の剪断荷重測定方法。Inside the solid shaft portion of the fastener having a solid shaft portion, a strain sensor for detecting the axial strain amount of the solid shaft portion is embedded, and the axial strain amount and the Poisson effect detected by the strain sensor. Measuring the shear load acting on the solid shaft portion based on the following formula. 前記歪センサが検知した前記軸方向歪量と前記剪断荷重とを対応させる歪−荷重較正を行うことから成る請求項1に記載の締結具の剪断荷重測定方法。The method of measuring a shear load of a fastener according to claim 1, further comprising performing a strain-load calibration that associates the amount of the axial strain detected by the strain sensor with the shear load. 前記締結具が前記中実軸部に軸方向に異なる位置で係合した状態で締結している複数の部材間に、前記中実軸部に作用する前記剪断荷重によって荷重を伝達するとき、前記剪断荷重の測定に適用されていることから成る請求項1に記載の締結具の剪断荷重測定方法。When transmitting the load by the shear load acting on the solid shaft portion, between the plurality of members that are fastened in a state where the fastener is engaged with the solid shaft portion at different positions in the axial direction, The method for measuring the shear load of a fastener according to claim 1, wherein the method is applied to the measurement of a shear load. 前記部材が複数の前記締結具によって結合されるときの前記各締結具に作用する前記剪断荷重の分布状況を把握するため、前記各締結具に個別に適用されることから成る請求項3の締結具の剪断荷重測定方法。4. The fastener of claim 3 wherein said member is applied individually to each fastener to ascertain the distribution of said shear load acting on each fastener when said members are joined by a plurality of said fasteners. Method for measuring the shear load of tools. 前記締結具が軸方向の張力によって前記部材間に面圧を生じさせている場合に、前記軸方向歪量と前記剪断荷重との関係において前記軸方向歪量が生じ始めるときの前記剪断荷重に基づいて、前記部材に作用する荷重のうち、前記面圧に基づいて部材間に生じる摩擦力によって伝達される荷重を求めることから成る請求項1に記載の締結具の剪断荷重測定方法。In a case where the fastener causes a surface pressure between the members due to an axial tension, the shear load when the axial strain starts to be generated in the relationship between the axial strain and the shear load. The method according to claim 1, further comprising calculating a load transmitted by a frictional force generated between the members based on the surface pressure among loads acting on the member based on the shear force. 前記軸方向歪量と前記剪断荷重との関係において前記剪断荷重に対する前記軸方向歪量が急激に増加する変化に基づいて、前記締結具の前記中実軸部と前記部材との接触面圧に起因して締結部近傍において生じる前記部材の塑性降伏、損傷等の非線形挙動を検知することから成る請求項1に記載の締結具の剪断荷重測定方法。Based on a change in the amount of axial strain with respect to the shear load in which the amount of axial strain sharply increases in the relationship between the amount of axial strain and the shear load, the contact pressure between the solid shaft portion of the fastener and the member is reduced The method for measuring a shear load of a fastener according to claim 1, comprising detecting a non-linear behavior such as plastic yielding, damage, or the like of the member caused near the fastening portion due to the non-linear behavior. 前記歪センサは、前記締結体の前記中実軸部に形成された測定穴内に固定された抵抗線歪ゲージ又は光ファイバセンサであり、前記歪センサからのリード線が前記測定穴の開口を通して延びて測定機器に接続されていることから成る請求項1に記載の締結具の剪断荷重測定方法。The strain sensor is a resistance wire strain gauge or an optical fiber sensor fixed in a measurement hole formed in the solid shaft portion of the fastening body, and a lead wire from the strain sensor extends through an opening of the measurement hole. The method for measuring a shear load of a fastener according to claim 1, wherein the shear load is connected to the measuring device by a force.
JP2002381911A 2002-12-27 2002-12-27 Measuring method of shear load of fastener Expired - Lifetime JP3728459B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002381911A JP3728459B2 (en) 2002-12-27 2002-12-27 Measuring method of shear load of fastener

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002381911A JP3728459B2 (en) 2002-12-27 2002-12-27 Measuring method of shear load of fastener

Publications (2)

Publication Number Publication Date
JP2004212210A true JP2004212210A (en) 2004-07-29
JP3728459B2 JP3728459B2 (en) 2005-12-21

Family

ID=32817692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002381911A Expired - Lifetime JP3728459B2 (en) 2002-12-27 2002-12-27 Measuring method of shear load of fastener

Country Status (1)

Country Link
JP (1) JP3728459B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007178232A (en) * 2005-12-27 2007-07-12 Honda Motor Co Ltd Measuring method of shear load of fastener
JP2007183105A (en) * 2005-12-30 2007-07-19 Railway Technical Res Inst Roller bearing rolling element axial strain detection method and roller bearing rolling element axial strain detection device
CN107165917A (en) * 2017-05-27 2017-09-15 国网河南省电力公司电力科学研究院 A kind of built-in optical fibre intelligent screw bolt
JP2018009965A (en) * 2016-04-25 2018-01-18 ザ・ボーイング・カンパニーThe Boeing Company Fastener status detection system
WO2018037399A1 (en) * 2016-08-21 2018-03-01 Elbit Systems Ltd. System and method for detecting weakening of the adhesion strength between structural elements
KR102022320B1 (en) * 2018-04-13 2019-09-18 (주)보경종합기술 Warning system for construction vibration
KR102024832B1 (en) * 2018-04-13 2019-09-24 (주)보경종합기술 Control apparatus for construction vibration
CN110398310A (en) * 2019-08-09 2019-11-01 基康仪器股份有限公司 Force-measuring bolt and bolt stress measurement system and method based on built-in steel string sensor
CN110987254A (en) * 2019-11-25 2020-04-10 北京宇航系统工程研究所 A kind of bolt load wireless monitoring system and monitoring method
KR20200049141A (en) * 2018-10-31 2020-05-08 한국철도기술연구원 Apparatus for measuring the axial force of bolt and method for measuring the axial force of bolt using the same
CN111537331A (en) * 2020-04-30 2020-08-14 中国飞机强度研究所 Mechanical connection structure load transfer device and test method
CN111797480A (en) * 2020-06-17 2020-10-20 江西洪都航空工业集团有限责任公司 Load distribution method for airplane bolt group
CN112240424A (en) * 2019-07-16 2021-01-19 阀安格有限责任公司 Accessory
CN112711808A (en) * 2020-12-29 2021-04-27 中国航空工业集团公司西安飞机设计研究所 Method for determining load of bolt group of embedded centralized bearing structure
CN112985568A (en) * 2021-03-25 2021-06-18 梅特勒-托利多(常州)精密仪器有限公司 Digital weighing sensor
CN114486021A (en) * 2022-04-07 2022-05-13 成都凯天电子股份有限公司 Tailfiber-free optical fiber intelligent bolt and state monitoring method

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7628079B2 (en) 2005-12-27 2009-12-08 Honda Motor Co., Ltd. Method for measuring shear load of fastening tool
JP2007178232A (en) * 2005-12-27 2007-07-12 Honda Motor Co Ltd Measuring method of shear load of fastener
JP2007183105A (en) * 2005-12-30 2007-07-19 Railway Technical Res Inst Roller bearing rolling element axial strain detection method and roller bearing rolling element axial strain detection device
JP2018009965A (en) * 2016-04-25 2018-01-18 ザ・ボーイング・カンパニーThe Boeing Company Fastener status detection system
WO2018037399A1 (en) * 2016-08-21 2018-03-01 Elbit Systems Ltd. System and method for detecting weakening of the adhesion strength between structural elements
US10495608B2 (en) 2016-08-21 2019-12-03 Elbit Systems Ltd. System and method for detecting weakening of the adhesion strength between structural elements
CN107165917A (en) * 2017-05-27 2017-09-15 国网河南省电力公司电力科学研究院 A kind of built-in optical fibre intelligent screw bolt
KR102022320B1 (en) * 2018-04-13 2019-09-18 (주)보경종합기술 Warning system for construction vibration
KR102024832B1 (en) * 2018-04-13 2019-09-24 (주)보경종합기술 Control apparatus for construction vibration
KR20200049141A (en) * 2018-10-31 2020-05-08 한국철도기술연구원 Apparatus for measuring the axial force of bolt and method for measuring the axial force of bolt using the same
KR102177113B1 (en) 2018-10-31 2020-11-11 한국철도기술연구원 Apparatus for measuring the axial force of bolt and method for measuring the axial force of bolt using the same
CN112240424A (en) * 2019-07-16 2021-01-19 阀安格有限责任公司 Accessory
CN110398310A (en) * 2019-08-09 2019-11-01 基康仪器股份有限公司 Force-measuring bolt and bolt stress measurement system and method based on built-in steel string sensor
CN110987254A (en) * 2019-11-25 2020-04-10 北京宇航系统工程研究所 A kind of bolt load wireless monitoring system and monitoring method
CN110987254B (en) * 2019-11-25 2022-05-24 北京宇航系统工程研究所 A kind of bolt load wireless monitoring system and monitoring method
CN111537331A (en) * 2020-04-30 2020-08-14 中国飞机强度研究所 Mechanical connection structure load transfer device and test method
CN111537331B (en) * 2020-04-30 2023-02-10 中国飞机强度研究所 Mechanical connection structure load transfer device and test method
CN111797480A (en) * 2020-06-17 2020-10-20 江西洪都航空工业集团有限责任公司 Load distribution method for airplane bolt group
CN111797480B (en) * 2020-06-17 2022-07-12 江西洪都航空工业集团有限责任公司 Load distribution method for airplane bolt group
CN112711808A (en) * 2020-12-29 2021-04-27 中国航空工业集团公司西安飞机设计研究所 Method for determining load of bolt group of embedded centralized bearing structure
CN112711808B (en) * 2020-12-29 2024-05-24 中国航空工业集团公司西安飞机设计研究所 A method for determining bolt group loads in embedded concentrated load-bearing structures
CN112985568A (en) * 2021-03-25 2021-06-18 梅特勒-托利多(常州)精密仪器有限公司 Digital weighing sensor
CN114486021A (en) * 2022-04-07 2022-05-13 成都凯天电子股份有限公司 Tailfiber-free optical fiber intelligent bolt and state monitoring method

Also Published As

Publication number Publication date
JP3728459B2 (en) 2005-12-21

Similar Documents

Publication Publication Date Title
JP3728459B2 (en) Measuring method of shear load of fastener
EP0757238B1 (en) Bonded joint analysis
Zhang et al. Vibro-acoustic modulation (VAM)-inspired structural integrity monitoring and its applications to bolted composite joints
US8525979B2 (en) Monitoring device for detecting stress strain and method for using same
US9429485B1 (en) Bolt shear force sensor
Ruzek et al. Strain and damage monitoring in CFRP fuselage panels using fiber Bragg grating sensors. Part II: Mechanical testing and validation
JP4027258B2 (en) Debonding inspection method for bonded parts
JP2015004672A (en) Sensing screw device and system capable of pre-tensioning fiber grating and bolt simultaneously
WO2013158933A1 (en) Integration of digital image correlation with acoustic emissions
CN106768584A (en) A method and device for detecting fastening force of a low-pressure turbine shaft disk of an aeroengine based on a line laser displacement sensor group
CN106124615A (en) Method and device for fastening force detection of low-pressure turbine shaft disk of aeroengine based on eddy current sensor group
CN104764553A (en) Device and method for measuring influence of anti-loose glue on screwed fitting pretightening force
Grisso et al. Temperature corrected sensor diagnostics for impedance-based SHM
Ranjan et al. Experimental characterization and parameter identification of bolted joints under vibratory loading
Karpenko et al. Monitoring of fatigue damage in composite lap-joints using guided waves and FBG sensors
US20170023422A1 (en) System and method for taking a measurement at a connection element
US6829944B1 (en) Bolt tension gauging system
Wolf et al. A non-destructive testing method for joints by the measurement of the energy dissipation
CN110017787A (en) Strain gauge means and strain measurement method
CN209946078U (en) Calibration device of ultrasonic detection probe
Ciminello et al. Cross-correlation based algorithm for SHM de-bonding analysis of typical aeronautical structures via OFDR
EP2574894A2 (en) System, apparatus and method for in situ fastener preload measurement
Phares et al. Investigation of high-strength bolt-tightening verification techniques
Vanderklok Mechanical Behaviour of Bolted Joints Under Impact Rates of Loading
WO2014080677A1 (en) Structure and method for detecting separation in structures

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050901

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050901

R150 Certificate of patent or registration of utility model

Ref document number: 3728459

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term