JP2004233061A - Continuously enriched gas sampling device by nebulizer / denuder connection, gas analyzer incorporating the gas sampling device, and analysis method - Google Patents
Continuously enriched gas sampling device by nebulizer / denuder connection, gas analyzer incorporating the gas sampling device, and analysis method Download PDFInfo
- Publication number
- JP2004233061A JP2004233061A JP2003018304A JP2003018304A JP2004233061A JP 2004233061 A JP2004233061 A JP 2004233061A JP 2003018304 A JP2003018304 A JP 2003018304A JP 2003018304 A JP2003018304 A JP 2003018304A JP 2004233061 A JP2004233061 A JP 2004233061A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- tube
- liquid
- target component
- nebulizer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Investigating Or Analysing Biological Materials (AREA)
- Sampling And Sample Adjustment (AREA)
Abstract
【課題】気体試料中の対象成分を吸収液に連続的に接触させて高濃縮する気体採取装置と、この気体採取装置と可搬型検出装置を組み合わせた現場型の高精度分析システムを得る。
【解決手段】エアフィルタ1を通してエアポンプ2により吸引された気体試料は、ガス流量計3によって必要量がネブライザ4に吐出される。送液ポンプ5により供給されてネブライザで気体試料により微細な液滴状に噴霧された吸収液6は、気体試料と共にデニューダ管7の内壁及び充填材表面を接触を繰り返しながら流れ、吸収液中に対象成分が濃縮捕集される。続いて気体試料と吸収液は気液分離筒8に達し、慣性分離されて、対象成分を濃縮捕集した吸収液は対象成分検出装置の測定試料溶液9として回収され、残りの気体試料は排気される。吸収液に濃縮捕集された対象成分は検出装置により検出される。対象成分の濃縮捕集と検出の一連の分析操作が連続で行われる。
【選択図】 図1An object of the present invention is to provide a gas sampling apparatus for continuously enriching a target component in a gas sample by bringing it into contact with an absorbing liquid, and a high-precision on-site analysis system combining the gas sampling apparatus and a portable detection apparatus.
A required amount of a gas sample sucked by an air pump (2) through an air filter (1) is discharged to a nebulizer (4) by a gas flow meter (3). The absorbing liquid 6 supplied by the liquid sending pump 5 and sprayed into fine droplets by the gas sample by the nebulizer flows along the inner wall of the denuder tube 7 and the surface of the filler with the gas sample while repeating contact, and enters into the absorbing liquid. The target component is concentrated and collected. Subsequently, the gas sample and the absorption liquid reach the gas-liquid separation column 8, are inertially separated, the absorption liquid which concentrates and collects the target component is collected as the measurement sample solution 9 of the target component detection device, and the remaining gas sample is exhausted. Is done. The target component concentrated and collected in the absorbing solution is detected by the detection device. A series of analytical operations of concentration collection and detection of the target component are continuously performed.
[Selection diagram] Fig. 1
Description
【0001】
【発明の属する技術分野】
本発明は、気体試料の含有成分を連続的に濃縮捕集する装置及び、これらの連続気体濃縮捕集装置と検出器を接続することで気体試料中含有成分を連続して分析する方法及び装置に関する。
【0002】
【従来の技術】
室内空気中の汚染物質を測定する場合、そのサンプリング方法は、サンプリングバッグまたは液体や固体捕集材に一定量または一定時間室内空気を通して捕集し、現場で簡易測定を行うか捕集後に実験室に持ち帰って抽出や濃縮といった繁雑な操作を行い、高速液体クロマトグラフ(HPLC)やガスクロマトグラフ/質量分析計(GC/MS)等の大型の分析機器で測定する方法が主流である。
【0003】
例えば屋内空気中のホルムアルデヒド濃度を測定する場合、測定対象現場で気体試料を一定時間DNPH溶液含浸捕集剤を詰めたカートリッジに通して捕集した後、実験設備のある場所に戻ってアセトニトリルにより抽出を行い、高速液体クロマトグラフによりホルムアルデヒド量を測定する方法(日本工業規格JISK0303等参照)や、パッシブサンプラと呼ばれる拡散型ガスモニタにより吸着し、同様に溶媒抽出−高速液体クロマトグラフにより測定される。
【0004】
また、頭頚部がんや食道がんは、予後が悪く「難治がん」とされているため、これらのがんの高危険群を抽出することは、予防医学上急務とされている。最近少量のアルコール負荷後の呼気中アセトアルデヒド濃度測定により、これらのがんの高危険群を簡便かつ高感度にスクリーニングされる方法が見出され、その測定方法としてサンプリングバッグ捕集・ガスクロマトグラフ法が研究的に行われている。
【0005】
【発明が解決しようとする課題】
前述の従来の技術はいずれも対象成分について捕集時間内の平均濃度を測定するものであり、一捕集操作で一測定結果を得る。このため、従来の技術で経時的な濃度測定を行う場合は一定時間ごとに同じ捕集操作を行わなければならず、捕集のための器具類は一測定に捕集剤が一つと測定点の数だけ必要であり、連続測定には不向きである。
【0006】
さらに、従来の技術は対象成分の濃度が低い場合、捕集時間を長くする必要があり、しかもほとんどの場合、対象成分を捕集したカートリッジ等を実験室などに持ち帰り、溶媒抽出等の前処理を行ってから各種の分析装置にて対象成分の測定を行うため、試料採取から最終的な測定結果を得るまで長時間を用し、試料を採取したその場で測定結果を得ることは困難であった。
【0007】
現在実用化されている現場での簡易測定方法は、いずれも厚生労働省など各省庁が種々の化学物質について定めた室内空気中濃度のガイドライン及び規制値に準じているが、実際の化学物質過敏症(シックハウス、シックビルディングなど)患者によると、各規制値の10分の1以下の濃度でも重篤な症状を訴える場合が少なくない。従ってこれらの簡易測定法及び装置では、能力不足である。
【0008】
また、呼気中のアセトアルデヒド測定による頭頚部及び食道がんの高危険群スクリーニング検査は実用化には至っておらず、日常の人間ドッグや健康診断の際に簡便に検査できる測定装置の開発が求められている。
従って精密な濃度測定を行う場合、従来法ではヒト呼気の捕集方法や日射、暖房、換気などの環境によって変化しやすい室内空気中の対象物質濃度を正確に把握できない恐れがあり、適切な治療方針や室内環境対策を講じる上での障害ともなっている。
【0009】
本発明は、前述した課題に鑑み、室内空気及びヒト呼気などの気体試料中の対象成分を連続的に濃縮捕集できる方法及びその方法を実施するコンパクトで携帯に便利な気体捕集装置、ならびに可搬型の各種検出装置と接続することにより、その場で試料採取から濃度測定までを短時間でかつ連続的に行えるシステムを提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明の方法では、ポンプで吸引した気体試料をネブライザに送り、先端が細くなったノズルから噴出させて、気体試料がネブライザノズル先端から吐出する際にノズル内部が減圧されることによって吸引される、もしくは吸収液を供給するための送液ポンプにより一定の流速で供給される吸収液と接触させ、吸収液を微細な液滴状にしてネブライザと連結したデニューダ管内壁及び管内の捕集用充填材表面に吹き付ける。気体試料の流れによって、気体試料と接触している微細な液滴状吸収液は対象成分を溶解しながらデニューダ管内部の捕集用充填材表面を移動し、デニューダ管の出口に接続した気液分離筒に送られる。気液分離筒で吸収液は慣性分離により該気体と分離され、対象成分捕集後の気体試料は排気される。気液分離筒から吸収液を連続で回収することにより、連続的に対象成分を濃縮捕集することができる。
【0011】
また、気体試料の吸引量に対して吸収液の流量が小さいことから、低濃度の対象成分を高倍率で連続濃縮捕集することができる。室内空気中のホルムアルデヒドを例にとると、本発明の方法により試料である室内空気の吸引量2.0L/min.に対し、吸収液であるH2Oの流量は0.1mL/min.で98%以上の安定した捕集効率が得られており、このときの濃縮率は体積比で20000倍となる。
【0012】
さらに、可搬型の検出装置と接続して対象成分を捕集した吸収液を連続して直接導入することにより、その場で対象成分の連続濃度測定ができる。室内空気中のホルムアルデヒドを例に取ると、厚生労働省の指針値0.08ppmに対し、検出器としてフローインジェクション分析装置(FIA)を接続した本発明の方法により、0.001ppmの検出限界が得られている。
【0013】
また、吸収液をメタノールなどの有機溶媒、検出装置をガスクロマトグラフに替えて多くの揮発性有機化合物(VOC成分)に適用するなど、吸収液の種類及び可搬型検出装置を替えて組み合わせることにより、本発明による方法は多くの化学物質に対して現場型の高精度・高感度モニタリング装置として応用が可能である。
【0014】
【発明の実施の形態】
次に、図面を参照しながら、本発明の実施の形態について、具体的且つ詳細に説明する。
図1は本発明の一実施例である気体採取装置の構成図である。
対象成分を含む気体試料は、オープンフェイスタイプのエアフィルタ1の気体試料採取口1aからエアポンプ2によって吸引される。図示されていないが、エアフィルタ1にはフィルタとして気体試料中の埃塵除去用のメッシュシートが装着されており、メッシュシートの材質は対象成分及び水分を吸着しないフッ素樹脂などで、対象成分が気体状だけでなく粒子状で浮遊しているミストでも捕集されないメッシュサイズを使用する。エアポンプ2の吸引口2aで採取された気体試料は、エアポンプ吐出口2bからガス流量計3に送られ、所定の試料採取量となるように気体試料流量が調節される。
【0015】
続いて気体試料はネブライザ4に送られ、送液ポンプ5によって一定流量で供給される吸収液を微細な液滴状にし、吸収液と共にデニューダ管6へ送られ、気体試料と吸収液の微細な液滴が接触しながら移動する間に対象成分が吸収液中に捕集される。ネブライザ4から噴霧された微細な液滴状の吸収液は、デニューダ内壁およびデニューダ充填材表面に直接吹き付けられるようにする。
【0016】
その後、気体試料と吸収液は気液分離筒7に到達し、慣性分離により吸収液が対象成分を捕集した捕集液と、気体試料から対象成分を捕集除去された排ガスに分離し、捕集液は対象成分検出のために回収され、排ガスは排気される。ここで、吸収液は対象成分に対して溶解度の大きい水、無機酸溶液、アルカリ溶液、緩衝液、有機溶媒、もしくは対象成分と特異的に反応官能基を有する化合物を含む水、または有機溶媒とし、それぞれ対象成分及び使用環境により選択される。
【0017】
エアポンプ2は、吸引・吐出両用のエアポンプで、長時間の連続安定運転が可能であり、オイルを使用しないタイプで、流量0.5〜6L/min.程度が得られものを使用する。このエアポンプ2は2流路のものを用い、対象成分捕集後の排気試料ガス中に、吸収液成分で室内空気汚染の原因となる恐れがある化学物質を含む場合で、さらに除去用のデニューダ管を装備する場合に、対象成分捕集用と別の流路を使用する。
【0018】
流量計3は、ニードルバルブ付で流量を調節できるもので、流量範囲0.5〜5L/min.程度のものを使用する。対象成分捕集後の排気試料ガス中に、吸収液成分で室内空気汚染の原因となる恐れがある化学物質を含む場合で、さらに除去用のデニューダ管を装備する場合には、別の流量計を設置する。
【0019】
送液ポンプ5は、流量0.1mL/min.が長時間安定して得られる性能を有するもので、対象成分捕集用吸収液の送液用の外に、図示されていないが必要に応じて対象成分捕集後の捕集液回収用の別の送液ポンプを設置する。または、2流路の送液ポンプを使用する。もしくは対象成分を含む気体試料のネブライザ出口からの吐出に伴ってネブライザ内部が減圧され、吸収液が吸引される現象を利用して送液ポンプ使用せずにネブライザに吸収液を供給する場合もある。
【0020】
図示してないが、送液ポンプ5により吸収液を供給する吸収液供給用の容器は、前項の吸収液に対し対象成分の溶出がないことはもちろん、その他の室内空気汚染物質となるような化学物質の溶出がないこと、及び前項の吸収液と化学的な反応を起こさず、吸収液の運搬、保存に支障がない材質で、PTFE等のフッ素樹脂製や強化ガラス、PE、PP等の合成高分子またはこれらの内表面をフッ素樹脂加工したものを使用する。さらに大気との接触により保存中に変性、または対象成分の捕集や検出器での対象成分濃度測定時に支障をきたす恐れがある吸収液を使用する場合は、溶液の減少に伴って内容積が減少する減容容器を使用する。
【0021】
この吸収液供給用容器は、運転時以外に吸収液が流出しないよう、開閉コックをつける。吸収液容器交換が容易なように、開閉コックは吸収液供給用容器のフタを加工して取り付ける。さらに、吸収液供給用容器の蓋には、送液ポンプ5への吸収液供給用送液チューブが取り付けられるようにする。
【0022】
吸収液供給用送液チューブは、前項の吸収液に対し対象成分の溶出がないことはもちろん、その他の室内空気汚染物質となるような化学物質の溶出がないこと、及び前項の吸収液と化学的な反応を起こさない材質で、PTFEやPFA等のフッ素樹脂、またはその他の合成高分子、ガラス、金属及び合金を用いる。それぞれ対象成分及び使用する吸収液と、使用環境により選択される。
【0023】
図2は、対象成分の吸収液への捕集効率を向上させる目的で気体試料と吸収液の接触面積を大きくするため、吸収液を微細な液滴にするために使用するネブライザである。本発明で使用するネブライザは、気体試料噴射用ノズル4aの先端と吸収液吐出用ノズル4bの先端が直角に近接して、微細な液滴としてネブライザ出口4cから噴霧するクロスフロー型ネブライザ(a)、気体試料噴射用ノズル4aの内側に吸収液吐出用ノズル4bが同方向に設置され、同様に吸収液を気体試料の流れによって微細な液滴として噴霧する同軸型ネブライザ(b)、もしくは吸収液の供給チューブ途中に設けた液貯めに超音波発振器4dを設置し、超音波によって吸収液を霧状にし、霧状になった吸収液を気体試料の流れによってネブライザ出口4cから吸収液を噴霧する超音波ネブライザ(c)である。
【0024】
クロスフローネブライザの本体はPTFE等のフッ素樹脂またはその他の合成高分子、あるいはFRPなどの強化プラスチックであり、試料ガス及び吸収液噴射ノズルの材質は石英、パイレックス(登録商標)等の各種ガラス、ニッケル、ステンレス、白金、銅等の金属及び合金、アルミナ等のセラミック、PTFE等のフッ素樹脂をはじめとする合成高分子(合成樹脂)とし、それぞれ対象成分及び使用する吸収液と、使用環境により選択される。同軸ネブライザの材質は石英、パイレックスガラス(登録商標)またはPTFE、PFA等のフッ素樹脂、あるいはPP、PEEK、PMO、ナイロン等の合成高分子とする。
【0025】
これらのネブライザはプラズマ発光分析法(ICP)や質量分析法に(MS)において溶液試料を装置に導入される際に広く使用されており、これらの装置に使用されているネブライザはネブライザ出口が狭いために出口の流速が速く、吸収液も微細な霧状となるが、本発明の気体採取装置に使用するネブライザは、上述のICPやMSに使用されているネブライザに比較して気体試料噴射用ノズル、吸収液吐出用ノズル及びネブライザ出口とも径が大きく、出口での流速も遅く、吸収液も微細な霧状とはならず微細な液滴状であることが特徴である。吸収液が微細な霧状であると、本発明の気体採取装置では霧状の吸収液が凝集して比較的大きな液滴となってデニューダ管内を流れ、さらに気体試料の流れが速いために気体試料と吸収液の接触面積が小さくなり、結果として捕集効率は向上しない。本発明で使用するネブライザは、吸収液が霧状とならず、微細な液滴となるために凝集せず微細な液滴のままデニューダ管内を気体試料と共に流れる。
【0026】
図3は本発明の気体採取装置に組み込まれるデニューダ管の一例である。デニューダ管6は石英、ホウケイ酸ガラス、パイレックスガラス(登録商標)等の各種ガラス或いはフッ素樹脂等の透明または半透明な合成高分子等で作られ、対象成分及び吸収液中の成分と反応もしくは吸着しない材質の内壁が平滑な内径1〜20mm、長さ10〜2000mmの細管であり、形状は直管、ループ状、コイル状のいずれかとする。それぞれ対象成分及び使用する吸収液と、使用環境により選択される。
【0027】
気体試料と吸収液の接触を多くするために、デニューダ管の中に対象成分により石英、ガラス、各種ケイ酸塩化合物、金属、合金、セラミック、フッ素樹脂、炭素、あるいはその他の合成高分子をそれぞれ繊維状もしくは粒状に加工したもの、もしくはこれらの2種以上を複合して繊維状もしくは粒状に加工した充填材6aを充填またはデニューダ管内壁に付着させる。対象成分により充填材内表面をフッ化水素酸や硫酸などの無機酸、水酸化ナトリウムなどのアルカリ溶液、有機溶剤等を用いて化学的に荒れさせるか、熱や切削等により物理的に荒れさせる。あるいは細管のみで上記の充填材を用いない場合もある。
【0028】
前述したように、デニューダ管内壁は平滑であるが、必要に応じてデニューダ管内表面をフッ化水素酸や硫酸などの無機酸、水酸化ナトリウムなどのアルカリ溶液、もしくは有機溶剤を使用して化学的に荒れさせるか、熱や切削などの物理的方法により荒れさせる。または、デニューダ管内表面を荒らした後に、上記の充填材を付着させ、デニューダ管内表面及び充填材表面を微細な液滴状とした吸収液と気体試料が接触を繰り返しながら移動することにより、対象成分が吸収液に効率的に捕集される。もしくは気体試料中の対象成分がまず充填材表面に捕獲され、次いで吸収液の流れによって、吸収液中に捕集される。
【0029】
図4は対象成分を捕集除去された気体試料と対象成分を捕集した吸収液を慣性分離する気液分離筒の一例である。気液分離管の本体7は石英、ガラスまたはフッ素樹脂等の合成高分子の筒であり、下半部にデニューダ管出口との接続口7aがあり、筒の上端には気体試料排気用チューブを接続するためのL字型コネクタ7bを有し、下端には捕集液回収用チューブを接続するコネクタ7fを有し、慣性分離により気液分離を行う。吸収液が水、無機酸溶液、アルカリ溶液、緩衝液、または揮発性が極めて低い有機溶媒、対象成分と特異的に反応する官能基を有する化合物を含む水または有機溶媒のうち、慣性分離によって分離された排気試料ガス中に含まれる量が少なく、かつ新たな室内空気汚染物質となる危険性が極めて低い場合は、気液分離管上端に接続された気体試料排気用チューブ7cの先端に活性炭入りエアフィルタ7dを充填した排気用エアフィルタホルダ7eを装着する。
【0030】
なお、図示してはいないが、気液分離管での慣性分離のみでは排気試料ガス中に新たな室内環境汚染物質の放出の危険性が高い無機酸溶液、有機溶媒、または対象成分と特異的に反応する官能基を有する化合物を含む水または有機溶媒を吸収液として使用する場合、試料ガス排気用チューブの先端に活性炭、シリカゲル、無機珪酸塩、アルミナなどの固体捕集材を充填したカラム、または吸収液成分と特異的に反応する官能基を有する固体または液体をそのままあるいは上記の固体捕集材表面に担持させて捕集材とし、これを充填したカラムを通過させて室内に放出するか、あるいは別のデニューダ管を接続して排気試料ガス中の吸収液成分を別の無害の捕集溶液に吸収させて除去してから、別の気液分離管を経て、排気する。
【0031】
図5は本発明の気体採取装置と検出装置を組み合わせた気体分析装置の一実施例で、室内空気中の鎖式アルデヒド分析装置の構成図である。
エアフィルタ1を通して吸引された対象成分を含む気体試料は気体採取装置8に導入され、吸収液供給容器10から供給されるアルデヒドの吸収液である純水(H2O)中に対象成分が濃縮捕集される。対象成分を濃縮捕集した吸収液は、試料溶液として鎖式アルデヒド分析装置である例えばエフ・アイ・エー機器株式会社製PFA・NO改良型などのフローインジェクション分析装置(FIA)等の検出装置9に自動で注入され、純水対象成分の吸収液と兼用で吸収液供給容器10から分岐された純水をキャリヤ溶液としてFIAのフローラインに送られる。
【0032】
キャリヤ溶液と共に流れる試料溶液は、FIA中で試薬溶液供給容器11から供給される鎖式アルデヒド検出用試薬(酢酸緩衝液を含むシッフ試薬)と自動で混合→加熱→反応→検出され、データ処理用パソコン12により、データ処理が行われ、結果の表示及びデータの保存が行われる。
【0033】
また、気体採取装置8から必要量のFIA測定のために必要な試料溶液を採取した残りの対象成分捕集濃縮溶液及びFIAのキャリヤ溶液、試薬溶液ならびに試薬と反応後の試料溶液は廃液として、活性炭等の固体捕集材を充填した排液処理用カラム13を通して廃液中に含まれるほとんどの有機物質が除去された後、廃液タンク14に回収される。これらの工程は自動で連続的に繰り返され、長時間の自動モニタリングが可能となる。
【0034】
なお、図示されていないがFIAに液体クロマトグラフィー(LC)で使用される親水性化合物の分離用カラム(例えばShodex RSpack DE・413)を装着することにより、ホルムアルデヒドやアセトアルデヒドなどの個々の鎖式アルデヒドを分離・検出することが可能である。
【0035】
また、図示されてはいないが、これらを1つの可搬台に収納し、可搬型とすることにより、現場で気体試料中の対象成分の濃縮捕集、対象成分の分析・データ処理・廃液処理の分析に必要な工程をすべて連続で自動運転できるシステムとなる。気体採取装置8に接続可能な可搬型の検出装置9としては、前述したFIAの他、GC、GC/MS、ICを含むHPLC、UV−VIS、蛍光光度計、FT−IR、pH計、伝導度計、自動滴定装置などが含まれる。
【0036】
さらに、図示されていないがエアフィルタ1と気体採取装置8の間にヒト呼気捕集容器を接続することにより、集団検診時の頭頚がん及び食道がんの高危険群簡易スクリーニング検査装置となる。呼気サンプリングの方法としては、例えば容量既知(0.25〜1L)の気体試料採取容器(テドラーバッグ等)で、開閉コック付の入り口と、入り口の反対側に開閉コック付の出口がある容量可変の容器を使用する。この気体試料採取容器により、一定量のアルコール摂取後のヒト呼気を採取する。前述した気体採取装置のエア吸引チューブの途中に呼気を採取した前記気体試料採取容器を接続し、コックを開いてエアを通じ、採取した呼気をエアと共に前記気体採取装置に導入する。
気体採取装置により呼気中のアセトアルデヒドを吸収液(水)に濃縮捕集する。濃縮捕集された吸収液中のアセトアルデヒドをFIAまたはGCにより定量し、定量された吸収液中のホルムアルデヒド濃度と、呼気採取量(気体試料採取容器の容量)から呼気中のアセトアルデヒド量を求める。
【0037】
気体採取装置8には、エアフィルタ1を任意の高さで固定できる長さ可変の支柱を設ける。このエアフィルタ1から気体採取装置8に至る気体試料採取用チューブはPFA、PTFE等のフッ素樹脂をはじめとする合成樹脂チューブまたはゴムチューブ、あるいは石英、ガラス管など、対象成分及び水分等の吸着がなく、撥水性の高いものを使用する。それぞれ対象成分及び使用する吸収液と、使用環境により選択される。気体試料採取用チューブの長さは気体採取装置外壁より2mとし、任意の長さで使用できるよう気体試料採取用チューブを巻きつけるフック等を気体採取装置外壁に設ける。(参考:厚生労働省 室内環境指針;床上0.6〜1.5m,国土交通省 床材;床上0.3m〜)
【0038】
気体採取装置8から検出装置9への試料導入は、検出装置9側に自動導入機能がある場合はこれを使用するが、機能がない場合は、検出装置9に適応するオートサンプラ(試料自動導入装置)をシステムに組み込む。このオートサンプラには気体採取装置からの対象成分捕集液回収と、検出装置9への試料自動注入機能を持たせる。必要に応じて気体採取装置に対象成分捕集液回収用の送液ポンプを増設する。試料自動導入装置を別に組み込ませる場合、データ処理と連動させる。
【0039】
検出装置9からの試料廃液及び試薬廃液は、気体採取装置8から検出装置9へ必要量導入後の捕集液残液を水系及び有機溶媒系に分けて回収する。廃液タンク14は、これらの廃液によって侵されない材質のものであれば良い。必要に応じて転倒防止及び溢れ出るのを防止する処置を施す。この廃液のうち、水系の廃液については活性炭、無機ケイ酸塩等の対象成分及び、吸収液に含まれる対象成分と特異的に反応する官能基を有する化合物のうち新たな室内環境汚染及び水質汚濁を起こす危険性の高い物質等を吸着する固体を充填した排液処理用カラム13を通し、無害化して廃液用容器に回収する。
【0040】
無害化された水系廃液は一般家庭の排水溝に廃棄できる。ただし、水系廃液であっても有害または有毒物質を含む試薬を使用した場合は、廃液中にこれらの物質が含まれないか、あるいは法規制による基準値以下であることを確認するまで廃棄しない。これらの物質が基準値以上検出された場合は、専門業者への委託など別途処理を行ってから廃棄する。これは各自治体で規制値が異なるので注意を要する。
【0041】
有機溶媒系の廃液は、すべて廃液用容器に回収し、専門業者等へ委託する。廃液回収用容器は、使用中に対象成分、溶媒及びこれに含まれる試薬等の揮発による新たな室内環境汚染が発生しないよう、活性炭入りエアフィルタなどを用いて直接室内空気と接触して廃液の一部が揮散などにより放出されないようにする。
【0042】
【発明の効果】
本発明の気体採取装置は、対象成分を含む気体試料と、対象成分に対して溶解度の大きい、あるいは対象成分と特異的に反応する官能基を有する化合物を含む吸収液を連続的に接触させて、吸収液中に対象成分を濃縮捕集するというものであり、原理的には単純なものであるため、気体試料中の対象成分を現場で少量の吸収液中に高倍率で連続して捕集濃縮が可能である。1台の気体採取装置で吸収液の種類、気体試料との流量比、気液接触部であるデニューダ充填材の種類などの捕集条件を変えることにより、室内空気中の鎖式アルデヒド、呼気中のアセトアルデヒドだけでなく、芳香族もしくは鎖式炭化水素、ハロゲン化炭化水素などのVOC(揮発性有機化合物)成分、エステル化合物などの可塑剤成分、さらにクロルピリホスなどの防蟻剤や農薬成分など、多くの室内空気汚染物質といわれる化学物質に応用可能である。
【0043】
気体試料中の対象成分を高精度に分析しようとする場合、従来の気体採取法のように固体または液体捕集材に長時間気体試料を通して濃縮捕集後、実験室に持ち帰って溶離・濃縮等の繁雑な操作が不要となり、大幅な分析所要時間の短縮と人件費及びエネルギー削減に伴う大幅なコストダウンに加えて、本発明の気体採取装置によれば原理が単純であるため、前処理操作における系統誤差や個人誤差などの分析精度を低下させる要因が大きく減り、分析精度の向上が期待される。また、前処理工程で使用される試薬の種類及び量とも大幅に削減されることにより、分析操作による新たな室内環境汚染物質の発生や廃棄物が削減され、エネルギー問題や環境問題に大きく貢献できる。
【0044】
さらに、可搬型検出装置と組み合わせることにより、低コストで対象成分の現場での高精度リアルタイムモニタが可能となり、シックビルディングの原因物質の現場での高精度分析が可能となるため、詳細な実状把握による実状にあった対策が可能となり、快適な居住空間を提供するための有力な手段となる。
【図面の簡単な説明】
【図1】本発明の一実施例である気体採取装置の構成図である。
【図2】本発明の気体採取装置に組み込まれるネブライザの3つの例であり、(a)は気体試料噴射用ノズルと吸収液吐出用ノズルが直角に位置するクロスフロー型ネブライザ、(b)は、気体試料噴射用ノズルの中に吸収液吐出用ノズルが同方向に設置される同軸型ネブライザ、(c)は吸収液貯めに設置された超音波発振器により吸収液を霧状とし、気体試料の流れによって霧状の吸収液を吐出させる超音波ネブライザである。
【図3】本発明の気体採取装置に組み込まれるデニューダ管の一実施例である。
【図4】本発明の気体採取装置に組み込まれる気液分離等の一実施例である。
【図5】本発明の気体採取装置と検出装置を組み合わせた気体分析装置の一実施例で、室内空気中の鎖式アルデヒド分析装置の構成図である。
【符号の説明】
1 エアフィルタ
1a 気体試料採取口
2 エアポンプ
2a エアポンプ吸引口
2b エアポンプ吐出口
3 ガス流量計
4 ネブライザ
4a 気体試料噴射用ノズル
4b 吸収液吐出用ノズル
4c ネブライザ出口
4d 超音波発振器
5 送液ポンプ
6 デニューダ管
6a 糸状または粒状充填材もしくはデニューダ管内壁付着材
7 気液分離筒
7a デニューダ管出口の接続口
7b 排気用チューブ接続用L字型コネクタ
7c 排気用チューブ
7d 活性炭入りエアフィルタ
7e 排気用エアフィルタホルダ
7f 捕集液回収用チューブ接続用コネクタ
8 気体試料採取装置
9 検出装置
10 気体採取装置の吸収液及びFIAのキャリヤ溶液である純水
11 測定に使用する試薬溶液
12 データ処理用ノート型パソコン
13 排液処理用カラム
14 測定廃液回収用タンク[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an apparatus for continuously concentrating and collecting components contained in a gas sample, and a method and an apparatus for continuously analyzing components contained in a gas sample by connecting the continuous gas enrichment collecting apparatus and a detector. About.
[0002]
[Prior art]
When measuring contaminants in indoor air, the sampling method is to collect air in a sampling bag or liquid or solid collecting material through a certain amount or for a certain period of time, and perform simple measurement on site or in the laboratory after collection. The mainstream method is to carry out complicated operations such as extraction and concentration by taking them back to the laboratory and measuring them with a large analytical instrument such as a high-performance liquid chromatograph (HPLC) or a gas chromatograph / mass spectrometer (GC / MS).
[0003]
For example, when measuring the formaldehyde concentration in indoor air, a gas sample is collected at a site to be measured through a cartridge filled with a DNPH solution impregnated collecting agent for a certain period of time, then returned to a place where experimental facilities are located and extracted with acetonitrile. Then, the amount of formaldehyde is measured by a high performance liquid chromatograph (see Japanese Industrial Standard JIS K0303 or the like), or by adsorption using a diffusion type gas monitor called a passive sampler, and similarly measured by solvent extraction-high performance liquid chromatograph.
[0004]
In addition, since head and neck cancer and esophageal cancer have a poor prognosis and are regarded as “refractory cancer”, extracting high-risk groups of these cancers is urgently required in preventive medicine. Recently, a method of screening high-risk groups of these cancers easily and with high sensitivity has been found by measuring the acetaldehyde concentration in the breath after a small amount of alcohol load. Sampling bag collection and gas chromatography have been found as methods for measuring these. It has been researched.
[0005]
[Problems to be solved by the invention]
All of the above-mentioned conventional techniques measure the average concentration of the target component within the collection time, and one measurement result is obtained by one collection operation. For this reason, when performing concentration measurement over time with the conventional technology, the same collection operation must be performed at regular intervals, and the collection equipment requires only one collection agent per measurement and the measurement point. And is not suitable for continuous measurement.
[0006]
Furthermore, in the conventional technology, when the concentration of the target component is low, it is necessary to lengthen the collection time.Moreover, in most cases, the cartridge or the like that has collected the target component is returned to the laboratory or the like, and pretreatment such as solvent extraction is performed. After performing the above, it is difficult to obtain the measurement result on the spot where the sample was taken, since it takes a long time from the sampling to the final measurement result to measure the target component with various analyzers. there were.
[0007]
All of the simple measurement methods that are currently in practical use conform to the guidelines and regulation values for indoor air concentrations set by various ministries and agencies such as the Ministry of Health, Labor and Welfare. According to patients (sick house, chic building, etc.), even a concentration less than one-tenth of each regulation value often causes serious symptoms. Therefore, these simple measuring methods and devices have insufficient capacity.
[0008]
In addition, high-risk group screening tests for head and neck and esophageal cancer by measurement of acetaldehyde in exhaled breath have not yet been put to practical use, and there is a need for the development of a measurement device that can be easily tested for daily human dogs and health examinations. ing.
Therefore, when performing precise concentration measurement, the conventional method may not be able to accurately determine the concentration of the target substance in indoor air, which tends to vary depending on the method of collecting human breath and the environment such as solar radiation, heating, and ventilation. This is an obstacle to taking policies and measures for indoor environment.
[0009]
In view of the aforementioned problems, the present invention provides a method capable of continuously concentrating and collecting a target component in a gas sample such as room air and human expiration, and a compact, portable and convenient gas collecting device for implementing the method. It is an object of the present invention to provide a system capable of performing, in a short time, continuously from sampling to concentration measurement on the spot by connecting to various portable detection devices.
[0010]
[Means for Solving the Problems]
In the method of the present invention, the gas sample sucked by the pump is sent to the nebulizer, and the gas sample is ejected from the nozzle having a thinned tip. When the gas sample is discharged from the nebulizer nozzle tip, the gas sample is sucked by being decompressed inside the nozzle. Or, it is brought into contact with the absorbing liquid supplied at a constant flow rate by a liquid sending pump for supplying the absorbing liquid, and the absorbing liquid is formed into fine droplets, and the inner wall of the denuder pipe connected to the nebulizer and the filling for collection in the pipe are formed. Spray on the material surface. Due to the flow of the gas sample, the fine droplet-shaped absorbing liquid in contact with the gas sample moves on the surface of the collecting filler inside the denuder tube while dissolving the target component, and the gas-liquid connected to the outlet of the denuder tube It is sent to the separation tube. The absorption liquid is separated from the gas by inertia separation in the gas-liquid separation column, and the gas sample after the collection of the target component is exhausted. By continuously collecting the absorbing liquid from the gas-liquid separation column, the target component can be continuously concentrated and collected.
[0011]
Further, since the flow rate of the absorbing liquid is smaller than the suction amount of the gas sample, the target component having a low concentration can be continuously concentrated and collected at a high magnification. Taking formaldehyde in room air as an example, a suction rate of 2.0 L / min. On the other hand, the flow rate of the absorbing solution H2O was 0.1 mL / min. , A stable collection efficiency of 98% or more was obtained, and the concentration ratio at this time was 20000 times in volume ratio.
[0012]
Further, by continuously connecting and directly introducing the absorbing liquid that has collected the target component by connecting to a portable detection device, continuous concentration measurement of the target component can be performed on the spot. Taking formaldehyde in indoor air as an example, a detection limit of 0.001 ppm can be obtained by the method of the present invention in which a flow injection analyzer (FIA) is connected as a detector, against the guideline value of 0.08 ppm of the Ministry of Health, Labor and Welfare. ing.
[0013]
In addition, by changing the type of the absorbing solution and the portable detecting device, such as applying the absorbing solution to an organic solvent such as methanol, changing the detecting device to a gas chromatograph, and applying it to many volatile organic compounds (VOC components), The method according to the present invention can be applied as a high-precision and high-sensitivity monitoring device for many chemical substances in the field.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, embodiments of the present invention will be described specifically and in detail with reference to the drawings.
FIG. 1 is a configuration diagram of a gas sampling device according to one embodiment of the present invention.
The gas sample containing the target component is sucked by the
[0015]
Subsequently, the gas sample is sent to the nebulizer 4, where the absorbing liquid supplied at a constant flow rate by the
[0016]
After that, the gas sample and the absorbing liquid reach the gas-
[0017]
The
[0018]
The
[0019]
The
[0020]
Although not shown, the absorbing liquid supply container for supplying the absorbing liquid by the
[0021]
The absorption liquid supply container is provided with an open / close cock so that the absorption liquid does not flow out except during operation. The opening and closing cock is processed and attached to the lid of the absorbing liquid supply container so that the absorbing liquid container can be easily replaced. Further, a liquid supply tube for supplying the
[0022]
The absorption liquid supply tube has no elution of the target component with respect to the absorption liquid described in the preceding paragraph, and also has no elution of other chemicals that may be indoor air pollutants. Fluorine resin such as PTFE and PFA, or other synthetic polymers, glass, metals and alloys are used. Each is selected according to the target component, the absorption liquid to be used, and the use environment.
[0023]
FIG. 2 shows a nebulizer used to increase the contact area between the gas sample and the absorbing liquid to improve the collection efficiency of the target component in the absorbing liquid, and to convert the absorbing liquid into fine droplets. The nebulizer used in the present invention is a cross-flow nebulizer (a) in which the tip of a gas
[0024]
The main body of the cross flow nebulizer is made of fluororesin such as PTFE or other synthetic polymer, or reinforced plastic such as FRP, and the material of the sample gas and the absorbing liquid injection nozzle is quartz, Pyrex (registered trademark) and other various glasses, nickel, etc. Metals and alloys such as stainless steel, platinum and copper, ceramics such as alumina, and synthetic polymers (synthetic resins) such as PTFE and other fluororesins. You. The material of the coaxial nebulizer is quartz, Pyrex glass (registered trademark), a fluororesin such as PTFE or PFA, or a synthetic polymer such as PP, PEEK, PMO, or nylon.
[0025]
These nebulizers are widely used when introducing a solution sample into a device in plasma emission spectrometry (ICP) or mass spectrometry (MS), and the nebulizer used in these devices has a narrow nebulizer outlet. Therefore, the nebulizer used in the gas sampling device of the present invention is more suitable for injecting a gas sample than the nebulizer used in the above-described ICP and MS. The nozzle, the absorbing liquid discharge nozzle and the outlet of the nebulizer have a large diameter, the flow velocity at the outlet is low, and the absorbing liquid is not a fine mist but a fine droplet. When the absorbing liquid is in the form of fine mist, the gas sampling apparatus of the present invention aggregates the mist of absorbing liquid into relatively large droplets and flows through the denuder tube. The contact area between the sample and the absorbing solution is reduced, and as a result, the collection efficiency is not improved. In the nebulizer used in the present invention, the absorbing liquid does not form a mist and becomes fine droplets, so that the absorbing liquid does not aggregate and flows as fine droplets in the denuder tube together with the gas sample.
[0026]
FIG. 3 is an example of a denuder tube incorporated in the gas sampling device of the present invention. The denuder tube 6 is made of various glasses such as quartz, borosilicate glass, and Pyrex glass (registered trademark), or a transparent or translucent synthetic polymer such as a fluororesin, and reacts or adsorbs with the target component and the component in the absorbing solution. The inner wall is made of a thin tube having a smooth inner diameter of 1 to 20 mm and a length of 10 to 2000 mm. The shape is any of a straight tube, a loop, and a coil. Each is selected according to the target component, the absorption liquid to be used, and the use environment.
[0027]
In order to increase the contact between the gas sample and the absorbing liquid, quartz, glass, various silicate compounds, metals, alloys, ceramics, fluoroplastics, carbon, or other synthetic polymers are placed in the denuder tube depending on the target components. The filler 6a which has been processed into fibrous or granular form or a composite of two or more of these forms into fibrous or granular form is filled or adhered to the inner wall of the denuder pipe. Depending on the target component, the inner surface of the filler is chemically roughened using an inorganic acid such as hydrofluoric acid or sulfuric acid, an alkaline solution such as sodium hydroxide, an organic solvent, or physically roughened by heat or cutting. . Alternatively, there is a case where the above-mentioned filler is not used only with a thin tube.
[0028]
As described above, the inner wall of the denuder tube is smooth, but if necessary, the inner surface of the denuder tube is chemically treated using an inorganic acid such as hydrofluoric acid or sulfuric acid, an alkaline solution such as sodium hydroxide, or an organic solvent. Roughened by heat or by physical methods such as cutting. Alternatively, after the inner surface of the denuder tube has been roughened, the above-mentioned filler is adhered, and the absorbing liquid and the gas sample, which have formed fine droplets on the inner surface of the denuder tube and the surface of the filler, move while repeating contact with the target component. Is efficiently collected in the absorbing solution. Alternatively, the target component in the gas sample is first captured on the surface of the filler, and then captured in the absorbing solution by the flow of the absorbing solution.
[0029]
FIG. 4 shows an example of a gas-liquid separation cylinder for inertial separation of a gas sample from which a target component has been collected and removed and an absorbing solution having collected the target component. The
[0030]
Although not shown in the figure, the inert gas separation with the gas-liquid separation tube alone has a high risk of releasing new indoor environmental pollutants into the exhaust gas sample. When water or an organic solvent containing a compound having a functional group that reacts with is used as an absorbing solution, a column filled with a solid trapping material such as activated carbon, silica gel, inorganic silicate, or alumina at the tip of a sample gas exhaust tube, Alternatively, a solid or liquid having a functional group that specifically reacts with the absorption liquid component is used as it is or is supported on the surface of the solid collecting material to form a collecting material, which is passed through a column filled with the collecting material and discharged into a room. Alternatively, another denuder tube is connected to absorb and remove the absorbent component in the exhaust sample gas by another harmless collection solution, and then exhausted through another gas-liquid separation tube.
[0031]
FIG. 5 shows an embodiment of a gas analyzer combining a gas sampling device and a detection device according to the present invention, and is a configuration diagram of a chain aldehyde analyzer in room air.
The gas sample containing the target component sucked through the
[0032]
The sample solution flowing together with the carrier solution is automatically mixed with the reagent for chain aldehyde detection (Schiff reagent containing an acetate buffer) supplied from the reagent
[0033]
In addition, the remaining target component collection concentrated solution obtained by collecting the required amount of the sample solution for the required amount of FIA measurement from the gas sampling device 8 and the carrier solution of the FIA, the reagent solution, and the sample solution after the reaction with the reagent are used as waste liquid. After most of the organic substances contained in the waste liquid are removed through a waste
[0034]
Although not shown, the FIA is equipped with a column for separating a hydrophilic compound used in liquid chromatography (LC) (eg, Shodex RSpack DE 413), so that individual chain aldehydes such as formaldehyde and acetaldehyde can be obtained. Can be separated and detected.
[0035]
Although not shown, these are housed in one portable table to be a portable type, so that on-site concentration and collection of the target component in the gas sample, analysis of the target component, data processing, and waste liquid treatment can be performed. It is a system that can automatically and continuously perform all the processes necessary for the analysis of the system. As the portable detection device 9 connectable to the gas sampling device 8, in addition to the above-mentioned FIA, GC, GC / MS, HPLC including IC, UV-VIS, fluorimeter, FT-IR, pH meter, conductivity Includes a degree meter, an automatic titrator, and the like.
[0036]
Further, although not shown, a human breath collection container is connected between the
The acetaldehyde in the exhaled breath is concentrated and collected in an absorbing solution (water) by a gas sampling device. The acetaldehyde in the concentrated and collected absorbent is quantified by FIA or GC, and the amount of acetaldehyde in the exhaled air is determined from the determined formaldehyde concentration in the absorbent and the amount of exhaled air (the capacity of the gas sampling container).
[0037]
The gas sampling device 8 is provided with a variable-length column that can fix the
[0038]
The sample introduction from the gas sampling device 8 to the detection device 9 is used when the detection device 9 has an automatic introduction function. However, when the function is not provided, an autosampler (sample automatic introduction) adapted to the detection device 9 is used. Device) into the system. The autosampler is provided with a function of collecting a collected liquid of the target component from the gas sampling device and a function of automatically injecting the sample into the detection device 9. If necessary, an additional pump for collecting the target component collected liquid is added to the gas sampling device. When incorporating the sample automatic introduction device separately, it is linked with the data processing.
[0039]
The sample waste liquid and the reagent waste liquid from the detection device 9 are collected into the aqueous system and the organic solvent system, respectively, after collecting the remaining amount of the collected liquid after the necessary amount is introduced from the gas sampling device 8 to the detection device 9. The
[0040]
The detoxified aqueous effluent can be disposed of in a general household drain. However, if reagents containing harmful or toxic substances are used even in aqueous wastewater, do not dispose of them until it is confirmed that these substances are not contained in the wastewater or that they are below the legal standard values. If these substances are detected at or above the reference value, they must be processed separately, such as entrusting them to a specialist, and then discarded. It is necessary to pay attention to this because the regulation value differs in each local government.
[0041]
All organic solvent waste liquids are collected in a waste liquid container and entrusted to a specialist. The waste liquid collection container should be in direct contact with indoor air using an air filter containing activated carbon to prevent waste liquid from being newly polluted in the indoor environment due to volatilization of the target component, solvent and reagents contained therein during use. Prevent part from being released by volatilization.
[0042]
【The invention's effect】
The gas sampling apparatus of the present invention is to continuously contact a gas sample containing a target component and an absorbent containing a compound having a large solubility in the target component or a functional group that specifically reacts with the target component. In principle, the target component is concentrated and collected in the absorbing solution.Since it is simple in principle, the target component in the gas sample is continuously captured at high magnification in a small amount of absorbing solution on site. Collection and concentration are possible. By changing the collection conditions such as the type of absorbing liquid, the flow rate ratio to the gas sample, and the type of denuder filling material that is the gas-liquid contact part with one gas sampling device, chain aldehydes in indoor air, Not only acetaldehyde, but also VOC (volatile organic compound) components such as aromatic or chain hydrocarbons, halogenated hydrocarbons, plasticizer components such as ester compounds, and termite and agricultural chemical components such as chlorpyrifos. It can be applied to chemicals called indoor air pollutants.
[0043]
To analyze a target component in a gas sample with high accuracy, concentrate and collect the gas sample through a solid or liquid collecting material for a long time as in the conventional gas sampling method, and then bring it back to the laboratory to elute and concentrate. In addition to the need for complicated operations, the time required for analysis is greatly reduced, and labor costs and energy costs are significantly reduced.In addition, according to the gas sampling apparatus of the present invention, since the principle is simple, the preprocessing operation is Factors that lower the analysis accuracy, such as systematic errors and individual errors, are greatly reduced, and improvement in the analysis accuracy is expected. In addition, by greatly reducing the types and amounts of reagents used in the pretreatment process, the generation of new indoor environmental pollutants and wastes due to the analysis operation are reduced, which can greatly contribute to energy problems and environmental problems. .
[0044]
Furthermore, by combining it with a portable detection device, it is possible to perform on-site high-precision real-time monitoring of target components at low cost, and to perform on-site high-accuracy analysis of the causative substances of sick buildings. Measures can be taken to meet the actual situation, and this is an effective means for providing comfortable living spaces.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a gas sampling device according to an embodiment of the present invention.
FIGS. 2A and 2B are three examples of a nebulizer incorporated in the gas sampling apparatus of the present invention, wherein FIG. 2A is a cross-flow type nebulizer in which a gas sample ejection nozzle and an absorbent ejection nozzle are positioned at right angles, and FIG. A coaxial nebulizer in which an absorbing liquid discharge nozzle is installed in the same direction in a gas sample injection nozzle, and (c) forms an absorbing liquid mist by an ultrasonic oscillator installed in an absorbing liquid storage, and An ultrasonic nebulizer that discharges a mist-like absorbing liquid by a flow.
FIG. 3 is an embodiment of a denuder tube incorporated in the gas sampling device of the present invention.
FIG. 4 is an embodiment of gas-liquid separation or the like incorporated in the gas sampling device of the present invention.
FIG. 5 is a configuration diagram of a chain aldehyde analyzer in room air in one embodiment of the gas analyzer combining the gas sampling device and the detection device of the present invention.
[Explanation of symbols]
1 Air filter
1a Gas sampling port
2 air pump
2a Air pump suction port
2b Air pump outlet
3 Gas flow meter
4 Nebulizer
4a Gas sample injection nozzle
4b Absorbing liquid discharge nozzle
4c Nebulizer outlet
4d ultrasonic oscillator
5 Liquid sending pump
6 Denuder tube
6a Filamentous or granular filler or adhering material to inner wall of denuder pipe
7 Gas-liquid separation cylinder
7a Connection for outlet of denuder pipe
7b L-shaped connector for connecting exhaust tube
7c Exhaust tube
7d Air filter with activated carbon
7e Exhaust air filter holder
7f Connector for collecting liquid collection tube connection
8 Gas sampling equipment
9 Detector
10 Absorption liquid of gas sampling device and pure water as FIA carrier solution
11 Reagent solution used for measurement
12. Laptop PC for data processing
13 Wastewater treatment column
14 Measurement waste liquid recovery tank
Claims (16)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2003018304A JP2004233061A (en) | 2003-01-28 | 2003-01-28 | Continuously enriched gas sampling device by nebulizer / denuder connection, gas analyzer incorporating the gas sampling device, and analysis method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2003018304A JP2004233061A (en) | 2003-01-28 | 2003-01-28 | Continuously enriched gas sampling device by nebulizer / denuder connection, gas analyzer incorporating the gas sampling device, and analysis method |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JP2004233061A true JP2004233061A (en) | 2004-08-19 |
Family
ID=32948466
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2003018304A Pending JP2004233061A (en) | 2003-01-28 | 2003-01-28 | Continuously enriched gas sampling device by nebulizer / denuder connection, gas analyzer incorporating the gas sampling device, and analysis method |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2004233061A (en) |
Cited By (24)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2007114012A (en) * | 2005-10-19 | 2007-05-10 | Riken Keiki Co Ltd | Furnace gas measuring instrument |
| JP2007222738A (en) * | 2006-02-22 | 2007-09-06 | Suzuki Giken:Kk | Dry air supply device |
| JP2008122211A (en) * | 2006-11-11 | 2008-05-29 | National Cancer Center-Japan | Simple determination method and apparatus for exhalation of squamous cell carcinoma risk group and tube for separating and separating 13C acetaldehyde for the same |
| JP2009257839A (en) * | 2008-04-14 | 2009-11-05 | Kajima Corp | Rapid analyzing system of voc and analyzing method of voc |
| CN102636368A (en) * | 2012-04-18 | 2012-08-15 | 华东理工大学 | Multiphase online sampling device and multiphase online sampling method suitable for high-temperature hydrocarbon gas (smoke) |
| CN105203355A (en) * | 2014-06-24 | 2015-12-30 | 上海宝钢化工有限公司 | Coke oven gas sampling device and method |
| KR101620281B1 (en) * | 2015-11-02 | 2016-05-13 | 국민대학교산학협력단 | Gas Concentrating Equipment having Carbon Foam and method of operating the same |
| WO2017090895A1 (en) * | 2015-11-25 | 2017-06-01 | 한국표준과학연구원 | Ionization mass spectrometry method and mass spectrometry device using same |
| KR101762939B1 (en) | 2016-09-26 | 2017-07-31 | 경북대학교 산학협력단 | Multi channel glass coil scrubber |
| KR101763444B1 (en) * | 2010-02-12 | 2017-07-31 | 고쿠리츠다이가쿠호징 야마나시다이가쿠 | Ionization device and ionization analysis device |
| US9737236B2 (en) | 2014-11-03 | 2017-08-22 | Kookmin University Industry Academy Cooperation Fo | Gas concentration apparatus having carbon foam |
| WO2017149579A1 (en) * | 2016-02-29 | 2017-09-08 | 株式会社日立製作所 | Chemical-substance-sensing system |
| JP2017527822A (en) * | 2014-06-27 | 2017-09-21 | パルス ヘルス エルエルシー | Fluorescence detection assembly |
| CN108169424A (en) * | 2017-12-25 | 2018-06-15 | 浙江巨化检测技术有限公司 | A kind of VOCs detection devices |
| CN108918642A (en) * | 2018-05-15 | 2018-11-30 | 中国科学院合肥物质科学研究院 | Film condensing device and method are extracted in the online atomization of volatile organic matter in a kind of water |
| WO2020116274A1 (en) | 2018-12-03 | 2020-06-11 | 三井金属鉱業株式会社 | Method and device for isolating and analyzing target substance in solution |
| CN111855373A (en) * | 2020-07-26 | 2020-10-30 | 复旦大学 | Apparatus and method for online measurement of trace polar organic compounds in atmospheric concentrated particulates |
| CN112378905A (en) * | 2020-12-02 | 2021-02-19 | 北京大学 | Accurate online monitoring method and system for ammonia content in ambient air |
| CN112697521A (en) * | 2021-01-08 | 2021-04-23 | 杨松 | Low-branch self-circulation sampling pipe for nitrogen oxides in ambient air |
| CN113188859A (en) * | 2021-05-11 | 2021-07-30 | 西安热工研究院有限公司 | Portable dynamic pressure balance constant speed droplet sampling rifle of telescopic |
| CN113899854A (en) * | 2020-06-22 | 2022-01-07 | 研能科技股份有限公司 | Micro Liquid Detector |
| CN115406952A (en) * | 2022-08-16 | 2022-11-29 | 安徽亚格盛电子新材料有限公司 | System and method for determining impurity elements in disilane |
| CN116124964A (en) * | 2022-12-28 | 2023-05-16 | 上海明捷医药科技有限公司 | A sample preparation method for drug compatibility research of nebulizer cup for inhalation solution |
| CN117129618A (en) * | 2022-09-05 | 2023-11-28 | 中国科学院大气物理研究所 | An online measurement and analysis method for atmospheric organic amines |
Citations (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS57108747A (en) * | 1980-12-26 | 1982-07-06 | Seitai Kagaku Kenkyusho:Kk | Measuring method for flowmeter of expiration gaseous carbon dioxide |
| JPH06130015A (en) * | 1992-04-14 | 1994-05-13 | Hitachi Ltd | Ionic gas analyzer |
| JPH06148040A (en) * | 1992-11-06 | 1994-05-27 | Sony Corp | Fluid element |
| JPH0716144U (en) * | 1993-08-30 | 1995-03-17 | 理学電機株式会社 | Thermobalance gas sampling device |
| JPH07140125A (en) * | 1993-11-19 | 1995-06-02 | Anzai Medical Kk | Analyzer for specified gas in exhalation |
| JPH1078383A (en) * | 1996-09-03 | 1998-03-24 | Hitachi Ltd | Gas dust collection system |
| JPH10221223A (en) * | 1997-02-07 | 1998-08-21 | Shimadzu Corp | Method and apparatus for collecting and removing atmospheric substances |
| JPH1183700A (en) * | 1997-07-15 | 1999-03-26 | Nec Corp | Gas sampling device, gas analyzer using the gas sampling device and gas analysis method |
| JP2001124670A (en) * | 1999-10-28 | 2001-05-11 | Riken Keiki Co Ltd | Portable gas measuring device |
| JP2002350421A (en) * | 2001-05-29 | 2002-12-04 | Yamaha Corp | On-vehicle organic pollutant measuring device and organic pollutant measuring method using the device |
| JP2003161679A (en) * | 2001-11-28 | 2003-06-06 | Kimoto Denshi Kogyo Kk | Continuous concentration equipment and concentration measurement equipment for atmospheric trace components |
| JP2003215123A (en) * | 2002-01-21 | 2003-07-30 | Japan Science & Technology Corp | Method for simply determining squamous epithelial cancer generation risk by expiration, and device therefor |
-
2003
- 2003-01-28 JP JP2003018304A patent/JP2004233061A/en active Pending
Patent Citations (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS57108747A (en) * | 1980-12-26 | 1982-07-06 | Seitai Kagaku Kenkyusho:Kk | Measuring method for flowmeter of expiration gaseous carbon dioxide |
| JPH06130015A (en) * | 1992-04-14 | 1994-05-13 | Hitachi Ltd | Ionic gas analyzer |
| JPH06148040A (en) * | 1992-11-06 | 1994-05-27 | Sony Corp | Fluid element |
| JPH0716144U (en) * | 1993-08-30 | 1995-03-17 | 理学電機株式会社 | Thermobalance gas sampling device |
| JPH07140125A (en) * | 1993-11-19 | 1995-06-02 | Anzai Medical Kk | Analyzer for specified gas in exhalation |
| JPH1078383A (en) * | 1996-09-03 | 1998-03-24 | Hitachi Ltd | Gas dust collection system |
| JPH10221223A (en) * | 1997-02-07 | 1998-08-21 | Shimadzu Corp | Method and apparatus for collecting and removing atmospheric substances |
| JPH1183700A (en) * | 1997-07-15 | 1999-03-26 | Nec Corp | Gas sampling device, gas analyzer using the gas sampling device and gas analysis method |
| JP2001124670A (en) * | 1999-10-28 | 2001-05-11 | Riken Keiki Co Ltd | Portable gas measuring device |
| JP2002350421A (en) * | 2001-05-29 | 2002-12-04 | Yamaha Corp | On-vehicle organic pollutant measuring device and organic pollutant measuring method using the device |
| JP2003161679A (en) * | 2001-11-28 | 2003-06-06 | Kimoto Denshi Kogyo Kk | Continuous concentration equipment and concentration measurement equipment for atmospheric trace components |
| JP2003215123A (en) * | 2002-01-21 | 2003-07-30 | Japan Science & Technology Corp | Method for simply determining squamous epithelial cancer generation risk by expiration, and device therefor |
Non-Patent Citations (1)
| Title |
|---|
| PORUTHOOR K.SIMON,PURNENDU K.DASGUPTA, AND ZBYNEK VECERA: "Wet Effluent Denuder Coupled Liquid/Ion Chromatography Systems", ANALYTICAL CHEMISTRY, vol. 63, JPN6008058091, 1991, pages 1237 - 1242, ISSN: 0001180334 * |
Cited By (30)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2007114012A (en) * | 2005-10-19 | 2007-05-10 | Riken Keiki Co Ltd | Furnace gas measuring instrument |
| JP2007222738A (en) * | 2006-02-22 | 2007-09-06 | Suzuki Giken:Kk | Dry air supply device |
| JP2008122211A (en) * | 2006-11-11 | 2008-05-29 | National Cancer Center-Japan | Simple determination method and apparatus for exhalation of squamous cell carcinoma risk group and tube for separating and separating 13C acetaldehyde for the same |
| JP2009257839A (en) * | 2008-04-14 | 2009-11-05 | Kajima Corp | Rapid analyzing system of voc and analyzing method of voc |
| KR101763444B1 (en) * | 2010-02-12 | 2017-07-31 | 고쿠리츠다이가쿠호징 야마나시다이가쿠 | Ionization device and ionization analysis device |
| CN102636368A (en) * | 2012-04-18 | 2012-08-15 | 华东理工大学 | Multiphase online sampling device and multiphase online sampling method suitable for high-temperature hydrocarbon gas (smoke) |
| CN105203355A (en) * | 2014-06-24 | 2015-12-30 | 上海宝钢化工有限公司 | Coke oven gas sampling device and method |
| JP2017527822A (en) * | 2014-06-27 | 2017-09-21 | パルス ヘルス エルエルシー | Fluorescence detection assembly |
| US9737236B2 (en) | 2014-11-03 | 2017-08-22 | Kookmin University Industry Academy Cooperation Fo | Gas concentration apparatus having carbon foam |
| KR101620281B1 (en) * | 2015-11-02 | 2016-05-13 | 국민대학교산학협력단 | Gas Concentrating Equipment having Carbon Foam and method of operating the same |
| WO2017090895A1 (en) * | 2015-11-25 | 2017-06-01 | 한국표준과학연구원 | Ionization mass spectrometry method and mass spectrometry device using same |
| CN108604529A (en) * | 2015-11-25 | 2018-09-28 | 韩国标准科学研究院 | Ion-mass spectroscopy and utilize its mass spectrograph |
| KR101768127B1 (en) * | 2015-11-25 | 2017-08-16 | 한국표준과학연구원 | Mass spectrometry of ionization assisted |
| US10629421B2 (en) | 2015-11-25 | 2020-04-21 | Korea Research Institute Of Standards And Science | Ionization mass spectrometry method and mass spectrometry device using same |
| WO2017149579A1 (en) * | 2016-02-29 | 2017-09-08 | 株式会社日立製作所 | Chemical-substance-sensing system |
| KR101762939B1 (en) | 2016-09-26 | 2017-07-31 | 경북대학교 산학협력단 | Multi channel glass coil scrubber |
| CN108169424A (en) * | 2017-12-25 | 2018-06-15 | 浙江巨化检测技术有限公司 | A kind of VOCs detection devices |
| CN108918642A (en) * | 2018-05-15 | 2018-11-30 | 中国科学院合肥物质科学研究院 | Film condensing device and method are extracted in the online atomization of volatile organic matter in a kind of water |
| WO2020116274A1 (en) | 2018-12-03 | 2020-06-11 | 三井金属鉱業株式会社 | Method and device for isolating and analyzing target substance in solution |
| KR20210031757A (en) | 2018-12-03 | 2021-03-22 | 미쓰이금속광업주식회사 | Method and apparatus for separating or analyzing a desired component in a solution |
| US11215592B2 (en) | 2018-12-03 | 2022-01-04 | Mitsui Mining & Smelting Co., Ltd. | Method and device for isolating and analyzing target substance in solution |
| CN113899854B (en) * | 2020-06-22 | 2024-04-26 | 研能科技股份有限公司 | Trace Liquid Detector |
| CN113899854A (en) * | 2020-06-22 | 2022-01-07 | 研能科技股份有限公司 | Micro Liquid Detector |
| CN111855373A (en) * | 2020-07-26 | 2020-10-30 | 复旦大学 | Apparatus and method for online measurement of trace polar organic compounds in atmospheric concentrated particulates |
| CN112378905A (en) * | 2020-12-02 | 2021-02-19 | 北京大学 | Accurate online monitoring method and system for ammonia content in ambient air |
| CN112697521A (en) * | 2021-01-08 | 2021-04-23 | 杨松 | Low-branch self-circulation sampling pipe for nitrogen oxides in ambient air |
| CN113188859A (en) * | 2021-05-11 | 2021-07-30 | 西安热工研究院有限公司 | Portable dynamic pressure balance constant speed droplet sampling rifle of telescopic |
| CN115406952A (en) * | 2022-08-16 | 2022-11-29 | 安徽亚格盛电子新材料有限公司 | System and method for determining impurity elements in disilane |
| CN117129618A (en) * | 2022-09-05 | 2023-11-28 | 中国科学院大气物理研究所 | An online measurement and analysis method for atmospheric organic amines |
| CN116124964A (en) * | 2022-12-28 | 2023-05-16 | 上海明捷医药科技有限公司 | A sample preparation method for drug compatibility research of nebulizer cup for inhalation solution |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP2004233061A (en) | Continuously enriched gas sampling device by nebulizer / denuder connection, gas analyzer incorporating the gas sampling device, and analysis method | |
| JP7591031B2 (en) | Triggered sampling system and method - Patents.com | |
| US5328851A (en) | High-throughput liquid-absorption preconcentrator sampling methods | |
| US6503758B1 (en) | Systems and methods for measuring nitrate levels | |
| US20140216134A1 (en) | Gas collection and analysis system with front-end and back-end pre-concentrators and moisture removal | |
| CA2635004C (en) | Controlled humidification calibration checking of continuous emissions monitoring system | |
| RU2521719C1 (en) | Mercury monitor | |
| WO2000014508A1 (en) | Apparatus for and method of collecting gaseous mercury and differentiating between different mercury components | |
| US5173264A (en) | High throughput liquid absorption preconcentrator sampling instrument | |
| Sipin et al. | Recent advances and some remaining challenges in analytical chemistry of the atmosphere | |
| JP2007127585A (en) | Simultaneous collection device for tritium and carbon 14 in atmosphere | |
| JP3893146B2 (en) | Filter for collecting chlorinated organic compounds | |
| KR100298279B1 (en) | Gas collection apparatus, gas analyzing apparatus using the same and gas analyzing method | |
| US20070224087A1 (en) | Airborne material collection and detection method and apparatus | |
| CN112986419A (en) | Method for on-line analysis of aldehyde ketone compounds in atmosphere | |
| US9658144B1 (en) | Systems and methods for chemically testing a sample and sampling probes therefor | |
| JP3087729B2 (en) | Gas sampling device, gas analyzer and gas analysis method using the gas sampling device | |
| JP3216714B2 (en) | Gas sampling device, gas analyzer and gas analysis method using the same | |
| JP3525154B2 (en) | Continuous concentration equipment and concentration measurement equipment for atmospheric trace components | |
| US4279618A (en) | Method and apparatus for analysis of total atmospheric sulfuric acid content | |
| JPH0894502A (en) | Adsorption tube for nitrogen oxide in gas, collection / recovery method using the same, and measurement method and device using the same | |
| Namieśnik et al. | A review of denudation—technique for sampling and measurement of atmospheric trace constituents | |
| Cecchini et al. | High efficiency annular denuder for formaldehyde monitoring | |
| JPH08233706A (en) | Automatic measuring device for acidic and basic gases | |
| Kellner et al. | Portable Continuous Aerosol Concentrator for the Determination of NO in the Air |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051228 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080317 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081114 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090106 |
|
| A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090623 |