[go: up one dir, main page]

JP2004344002A - Method for culturing cell with porous membrane - Google Patents

Method for culturing cell with porous membrane Download PDF

Info

Publication number
JP2004344002A
JP2004344002A JP2003090430A JP2003090430A JP2004344002A JP 2004344002 A JP2004344002 A JP 2004344002A JP 2003090430 A JP2003090430 A JP 2003090430A JP 2003090430 A JP2003090430 A JP 2003090430A JP 2004344002 A JP2004344002 A JP 2004344002A
Authority
JP
Japan
Prior art keywords
cells
cell
culture
porous membrane
cell culture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003090430A
Other languages
Japanese (ja)
Inventor
Yasuyuki Ishizuka
保行 石塚
Hisami Sato
久美 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Cell Biotechnologies Inc
Original Assignee
Applied Cell Biotechnologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Cell Biotechnologies Inc filed Critical Applied Cell Biotechnologies Inc
Priority to JP2003090430A priority Critical patent/JP2004344002A/en
Priority to PCT/JP2003/004345 priority patent/WO2003089628A1/en
Priority to AU2003236263A priority patent/AU2003236263A1/en
Priority to TW92108761A priority patent/TW200306349A/en
Publication of JP2004344002A publication Critical patent/JP2004344002A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0068General culture methods using substrates

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for culturing a cell, which enables a high density culture and the like. <P>SOLUTION: This method for culturing the cell comprises culturing the cell 2 in a porous membrane 1, such as a membrane filter, immersed in a culture medium. By the method, an environment close to a biological environment in which the cell can three-dimensionally be proliferated is formed. By a vacuum suction from the cell proliferation side 101 of the porous membrane 1 to the opposite side 102 or by pressurization from the cell proliferation side 101, waste matters 3 can be removed to continuously culture the cell 2 (21) in a high density. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、細胞培養技術に関する。詳しくは、特に再生医療等の分野で有用な、多孔膜を細胞増殖の足場等に用いる細胞培養技術に関する。
【0002】
【従来の技術】
細胞培養技術は、培養器具の所定の培養箇所に移入された細胞が、該細胞の走化性(化学走性)に基づいて、その周辺領域に細胞を徐々に移住させて増殖させていく性質を利用する技術である。
【0003】
細胞の増殖は、細胞の遊走(運動性)に大きく依存しているので、移入された最初の細胞が、培養箇所に確実に密着し、固定されないと、細胞の遊走(運動性)がうまく引き出されず、活発な細胞増殖が行われない。従って、細胞の足場(Scaffold)を確保することは、細胞培養技術の重要な課題の1つとされている。
【0004】
当初、細胞培養は、ガラス製のシャーレ、ディッシュ、フラスコ等の器具を用いて行われるのが一般的であったが、その後プラスチック製の培養器具が開発され、更には、細胞がより付着し易くするために、器具表面に対して、親水処理が施されたり、細胞外マトリクスのコラーゲンやフィブロネクチンまたポリリジン等によって被覆処理されたりしたことによって、細胞培養効率が向上し、培養できる細胞の種類も増加させることができた。
【0005】
このように、従来の細胞培養技術では、培養箇所表面に対する移入細胞の接着性を高めて足場を確保するという点に専ら改良のポイントが置かれ、この着想に基づいて、種々の培養専用器具が開発されてきた。
【0006】
ここで、特許文献1には、酸素供給の装置などを必要とせずに、細胞の代謝に必要な酸素などの気体を定常的かつ充分に供給することができ、細胞汚染がなく、輸送も簡便である、容器の少なくとも一部が気体透過性プラスチック材料によって形成された細胞培養用容器が開示されている。
【0007】
【特許文献1】
特開平11−028083号報。
【0008】
【発明が解決しようとする課題】
しかしながら、生体内において細胞は、その周囲を細胞と細胞外マトリクスによって取り囲まれており、通常は、細胞の表面全体で栄養補給、老廃物の放出、シグナル伝達等を行っている。
【0009】
つまり、生体内環境では、細胞の増殖の方向性には物理的な障壁がほとんどないが、生体外で行われる従来の細胞培養では、物質の移動が全くできないガラス製やプラスチック製培養器具の硬質の表面上において、細胞培養が行われていたため、細胞の増殖の方向性や細胞の増殖形態に必然的に制限が加わってしまうという技術的課題があった。
【0010】
そこで、本発明は、細胞増殖の際の足場として機能するとともに、物質の移動が可能な「多孔膜」を用いて、簡単に高密度細胞培養を実現できる細胞培養方法を提供することを主な目的とする。
【0011】
【課題を解決するための手段】
上記技術的課題を解決するために、まず、本発明では、培地に浸漬された多孔膜で細胞培養を行うように工夫した細胞培養方法を提供する。
【0012】
本発明において採用可能な多孔膜は、均一な細孔を備え、気体透過性並びに物質透過機能(ろ過機能)を備える膜体を広く包含し、狭く解釈されない。「多孔膜」の代表例としては、一般に、メンブランフィルター(membrane filter)と称される合成高分子膜を挙げることができる。
【0013】
多孔膜を用いる上記細胞培養方法によれば、多孔膜に強固な足場を形成できるので、細胞の遊走る性が促進されて増殖が活発に行われるようになる。また、ガラス製又はプラスチック製器具の表面における細胞培養と比較して、細胞増殖の方向性の制限が緩和され、細胞が重層化し易くなる。即ち、細胞が、生体内環境と同様に、立体的に増殖できるようになる結果、単位面積当たりの細胞密度が増大し、細胞によるコラーゲン等のタンパク質生産量を増加させることができる。そして、多孔膜は気体透過性に加えて物質透過性を備えるので、細胞の高密度培養に適している。
【0014】
次に、本発明では、前記多孔膜を多層化して用いるように工夫した。即ち、多孔膜単体を複数に重ね合わせて用いるように工夫した。特に、適宜の手段を用いて多孔膜間に隙間を形成させた状態で、該多孔膜を積層(多層化)するように更に工夫を加えることによって、多層化された各多孔膜上において培養される細胞の周囲での自由な物質(栄養、老廃物)移動やガスの供給又は交換が行われ易くなるという細胞培養条件を確保できるので、細胞の高密度培養に適する手段となる。
【0015】
この多孔膜を多層化手段によれば、細胞の高密度培養が可能となる。即ち、細胞培養用バイオリアクターを提供できる。また、単位となる多孔膜の使用枚数によって、細胞密度のコントロールが可能となり、タンパク質の産生量も予測計算できるという利点がある。また、多孔膜上の細胞の観察や培地のサンプリングが可能な培養器具の設計も可能となるので、現在主流のホローファイバー式培養法にはない利点も得られる。なお、ホローファイバー式培養法とは、ホローファイバーを束ねたカラムを作製し、その中で細胞を培養する方法であり、細胞はファイバーの表面あるいはひだの間に入り込んで増殖し、培養液は連続的に環流するのが特徴である。
【0016】
続いて、本発明では、前記多孔膜の一方の面に細胞を付着し、その反対面から負圧吸引又は細胞増殖面側から加圧することによって培地流を形成し、前記細胞から産生された老廃物を前記多孔膜の細胞増殖面から除去しながら細胞培養を行うように工夫した細胞培養方法を提供する。
【0017】
なお、この構成の細胞培養方法においては、多孔膜の細孔の直径は、0.1μm〜1.0μmの範囲が特に好ましい。その理由は、0.1μm未満の場合では、負圧吸引又は加圧の際の圧力を高めないと、多孔膜を通過する好適な培地流が形成され難いことから、所定の高圧条件が必要になるところ、この高圧の負荷によって培養細胞に損傷が加わってしまうので適当でないからであり、一方、1.0μmよりも大きいと、産生されたタンパク質が老廃物とともに除去されてしまうからである。細胞から産生されたタンパク質は、同様に産生されるペプチドやプロテオグリカン等と結合して見かけの分子量が大きくなっているので、1.0μm以内の孔径であれば、目詰まりを起こして通過しにくくなる。
【0018】
この細胞培養方法では、多孔膜の上下面に培地を導入して、該多孔膜が有するろ過機能を活用し、細胞から産生される低分子の尿素、尿酸、過酸化脂質等の老廃物を、多孔膜の細胞増殖面から反対面へ、細孔を介して通過させて、細胞増殖面から前記老廃物を除去することが可能となる。この結果、細胞の寿命が延びるので、連続培養が容易になる。なお、多孔膜の孔径等を選択することによって、除去物質をコントロールすることができるという利点がある。
【0019】
本発明に係る細胞培養方法は、細胞増殖を高密度で、かつ連続的に行うことができるので、広範な生化学分野、特に、再生医療技術、即ち細胞、細胞の足場、細胞増殖因子の組み合わせで、生体の内外で組織や臓器を再生(再構築)する技術において有用であるという技術的意義を有する。
【0020】
【実施例】
本発明に係る細胞培養方法の効果を検証するため、以下の実験1〜5を行った。
【0021】<実験1>
細胞の足場の違い(培養用プラスチック製ディッシュメンブランフィルターの比較)によるタンパク質産生量の差を検証するための「実験1」を行った。
【0022】
なお、「実験1」におけるタンパク質定量は、回収した培養上清を96穴マイクロプレートのウエルに入れ、それと等量のCoomassie Protein Assay Reagent Kit(PIERCE)を添加し、Bradford法で行った。スタンダードにはBSAを使用する。得られたタンパク質をSDS−PAGE及び抗コラーゲン抗体を用いたイムノブロッティング解析により、タンパク質の大部分がコラーゲンであることを確認した。
【0023】
(比較例1)
ヒト初代線維芽細胞をφ60mmのプラスチック製培養シャーレに播種し(10%牛胎児血清(以下、「FBS」)含有DMEM:日水製薬株式会社)、37℃のインキュベーター内で培養する。即ち、多孔膜を用いないで細胞培養を行った。コンフルエントに達した時点で、培養上清をアスピレーターにより吸引除去し、細胞培養培地を無血清培地(nonFBS−DMEM)に交換した。一週間ごとに前記培養上清を回収し、タンパク質定量を行った。培地はその都度無血清培地に交換し、何れの場合も抗生物質を添加した。なお、「DMEM」とは、Dulbecco’s Modified Eagle Mediumの略称として一般的である。
【0024】
(実施例1〜4)
メンブランフィルター(以下、「MF」と略称。)を用いた培養は、予めφ10cmディッシュの底面に、MF(直径13mmまたは47mm)を固定し、上記比較例1と同様に、MF上にヒト初代線維芽細胞を播種し(10%ウシ胎児血清(FBS)含有DMEM:日水製薬株式会社)、37℃のインキュベーター内で培養した。播種した前記細胞が、均一にφ10cmディッシュ底面に付着・増殖すれば、MF外のディッシュ底面の細胞がコンフルエント状態であることから、MF上も細胞がコンフルエントと想定することができる。培養後のMFを新しいφ10cmディッシュに移した後、無血清培地に交換した。無血清培地の培地交換は、5日間毎に行った。
【0025】
細胞培養用ディッシュ(培養面積:20.0cm)上で、ヒト初代繊維芽細胞をコンフルエントにまで培養した後、無血清培地に交換し、該無血清培地中のタンパク質量と細胞の付着した直径47mmのMF(培養面積:17.3cm)を入れた無血清培地中のタンパク質量とをそれぞれ測定して比較した。
【0026】
この際のMFの材質は、A〜Dの4種類を用いた。MFの種類をMF−A、MF−B、MF−C、MF−Dと略記する。なお、MF−A(実施例1)は、親水性ポリテトラフルオロエチレン(孔径:0.5μm)、MF−B(実施例2)は、親水性ポリビニリデンジフロライド(孔径:0.45μm)、MF−C(実施例3)は、未親水処理ポリテトラフルオロエチレン(孔径:0μm)、MF−D(実施例4)は、ポリカーボネート(孔径:0.4μm)である。その結果を以下の表1に表す。
【0027】
【表1】

Figure 2004344002
【0028】
前掲した「表1」からもわかるように、MF上で細胞培養を行うと、産生されるタンパク質(コラーゲン)量が増加し、単位面積当りのタンパク質産生量も増加することから単位面積当りの細胞密度が大きくなる。とくに、多孔膜としてMF−A、MF−Bを使用した場合は、ディッシュ使用の場合と比較して、産生タンパク質量が歴然に増大し、より高密度で細胞が培養できることがわかった。即ち、親水性の多孔膜である親水性ポリテトラフルオロエチレン、親水性ポリビニリデンジフロライドは、多孔膜の材料として、特に好適である。
【0029】<実験2>
細胞の足場(培養用プラスチックとメンブレンフィルター)による細胞寿命の差(培養可能期間の増加)を検証する「実験2」を行った。
【0030】
ヒト初代線維芽細胞を培養用プラスチック器具(ファルコン製ディッシュ)で培養した場合を「比較例2」とし、メンブランフィルター上で培養した場合を「実施例5」とした。それぞれの場合で、細胞が底面から剥がれて浮遊するまでの時間を比較した。この際、細胞はコンフルエント後に無血清培養し、培養上清の30%を残して1週間毎に培地を交換した。実験2の結果を表2に示す。
【0031】
【表2】
Figure 2004344002
【0032】
前掲する表2に示されているように、MFを用いて細胞培養を行うことで、細胞は、MFを足場として活発に増殖し、ディッシュを用いた細胞培養(比較例2)よりも細胞寿命が長くなることがわかった。即ち、MFを用いた細胞培養は、細胞の連続培養に適していることがわかった。
【0033】
ここで、実験2の結果を一般的な初代培養細胞の寿命から考えた場合、4ヶ月を超えることは異常とも考えられる。しかし、生体内の皮膚繊維芽細胞は、5〜6年の周期で新陳代謝を行っていることを考えると、本実施例5における培養条件は、生体内環境に近似したものであると考えることができる。
【0034】
また、この結果は、細胞がコンフルエント状態で細胞増殖を停止したのではなく、重層化で細胞増殖が継続しているからであると考えた方が、矛盾が無い。そして、シート状に繋がった細胞が、MFから剥がれることがないため、個々の細胞死が起っているが、生体内と同じように細胞死が起きた空間を埋めるように、新しい細胞が次々に増殖していると考えられる。
【0035】
このMFを多層化して配置することで、細胞の高密度培養が可能となると考えられる。高密度培養を行うためのシステムは、動物細胞培養用バイオリアクター(リアクター)と称されており、動物細胞はその増殖形態から2つに分類されることから、一般に前記リアクターも大きく2つに分けられる。
【0036】
まず、細胞は、培地中で浮遊して増殖できる浮遊細胞と足場に付着しないと増殖できない付着細胞がある。リアクターに工夫が必要であったのは、前記付着細胞を扱う場合であり、付着面積を増やした水平円筒回転式(ローラーボトル)や微小球形粒子(マイクロキャリアー)表面に細胞を付着させ、その粒子をリアクター内に懸濁させる方法(攪拌懸濁法、エアリフト式、セルリフト式等)が開発された。更に、高密度化でホローファイバー式とセラミックマトリックス式が考案された。
【0037】
しかしながら、細胞密度は飛躍的に伸びたが、細胞培養のスケールアップ、細胞環境のモニタリングのためのサンプリングができないなどの問題も生じていた。このモニタリングは、細胞の生産物の品質を管理する上で、細胞環境を均一にする際に必須の方法である。
【0038】<実験3>
MF上で培養された細胞の形態を検証する「実験3」を行った。
【0039】
ヒト初代線維芽細胞を、MF上で1〜2ヶ月培養した後、細胞を染色して実体顕微鏡で観察した。その結果、細胞が重層化し部分的に立体構造を取ることが観察された。前記顕微鏡による写真を添付した図1に示す。なお、図1に示す写真で、トリパンブルー染色の濃い部分は、細胞密度が高い部分を示している。
【0040】
通常のプラスチック培養器具を用いた細胞培養方法では、器具表面が多孔質ではなく硬質であるので、このような立体構造を有する細胞は形成され得ないので、このような立体的な細胞の増殖は、MFを足場とした場合の一つの大きな特徴と考えられる。なお、MFを多層化することで、単位面積当たりの細胞数も増加し、タンパク質の高生産量が維持される(後述の実験4で検証)。写真で色の濃い部分は、細胞密度が高いことを示している。
【0041】
なお、上記実施例は、多孔膜としてメンブランフィルター(MF)を採用したが、これに限定するものではなく、本発明に係る細胞培養方法では、少なくとも、均一な細孔を有する膜体であって、細胞培養に適している多孔膜であれば採用でき、更に多層化が可能なものが好適に採用できる。
【0042】
ここで、図2に基づいて、本発明に係る細胞培養方法の好適な発展形態について説明する。図2は、前記発展形態の概念を簡易に表す図である。
【0043】
図2中、符号1で示された多孔膜の一方の面101に細胞2を付着させ、その反対面102から負圧吸引することによって、多孔膜1を通過する培地流Fを形成し、前記細胞2から産生された老廃物3を、多孔膜1の細胞増殖面101から除去しながら細胞培養を行うように工夫することができる。
【0044】
また、多孔膜1の細胞増殖面101側から加圧することによって、細胞2から産生された老廃物3を、細胞増殖面101から反対面102へ培地流Fにのせて流出させ、除去する方法も採用することができる。
【0045】
負圧吸引又は加圧の方法は、培地4に流れ(培地流F)を、本発明の目的に添う程度に形成できる方法、即ち、細胞2に損傷を与えることなく、老廃物3のみを反対面102側に除去できる方法であれば採用でき、また、これらの方法は、MFを多層化した場合においても適用でき、多層化されたMFに培地流Fを形成することができる。
【0046】
なお、図2において符号21は、移入された細胞2が、多孔膜1上で、立体的に増殖していくことを模式的に表している。
【0047】<実験4>
多孔膜を多層化した場合の細胞培養の効果を検証する「実験4」を行った。
【0048】
まず、MFを多層化し易くするため、直径47mmの円形薄膜状のMFを挟持して固定するためのボス部位を複数箇所備えるフレームを作製した。この実験4で使用したフレームは、該フレーム自体を重ねたときに、フレーム同士が互いに固定されるように工夫した。フレームを積み重ねることによって、各フレームに挟持されて固定されているMFを、各MF間に隙間(空間)を確保した状態で積層(多層化)することができた。
【0049】
更に、重ねたMFと該MFを固定する前記フレームを収容する円筒形容器を準備し、この円筒形容器はガス透過性の高い材質(ポリメチルペンテンやポリカーボネート)のものを選んだ。さらに、この円筒形容器の蓋についても、ガス透過性の前記材質を選定した。
【0050】
(実験4に関連する比較例3及び実施例6〜9)
まず、MF上に細胞を接着させるために、直径60mmのディッシュに直径47mmのMF(MF−A又はMF−B)を白色ワセリンで固定し、ヒト初代線維芽細胞を播種し(10%FBS含有DMEM培地)、37℃のインキュベーターで培養した。MFには予め直径1mmの穴を十字に1cm間隔で9個作っておき、この穴にまで細胞が増殖したら、MF上の細胞はコンフルエントとした。この細胞が接着したMFを新しい直径60mmのディッシュにワセリンで直接固定したものを「比較例3」とした。
【0051】
また、上記したフレームにMFを1枚ずつ固定して、上記の円筒形容器に入れた。MF1枚のものを「実施例6」とし、MF2枚のものを「実施例7」、MF5枚のものを「実施例8」、MF6枚のものを「実施例9」とした。比較例3並びに実施例6〜9を各々10%FBS含有DMEM培地で培養し、1週間後に洗浄して無血清培地に交換した。その後10日目に培養上清中の蛋白質量を測定した。測定結果を以下の「表3」に示す。
【0052】
【表3】
Figure 2004344002
【0053】
まず、前掲した「表3」の比較例3と実施例6の結果の比較から、フレームを使用したことによってMFと容器底面間に隙間(空間)が生まれ、タンパク質の生産性が上がることが明らかになった。この理由は、前記隙間が形成されたことによって、細胞の周囲での自由な物質(栄養、老廃物)移動やガスの供給又は交換が行われ易くなったためと考えられる。
【0054】
次に、実施例6〜9に示したように、MFを固定したフレームを重ね、MFを多層化した場合でも、比較例3に比べてタンパク質の高い生産性が維持されていることがわかる。即ち、MFを多層化した構成も有効であることが明らかである。
【0055】
なお、MFが1枚の場合(実施例6)とMFが2枚の場合(実施例7)に比べて、MFが5枚の場合(実施例8)やMFが6枚の場合(実施例9)では、約35%程度のタンパク質生産量の差が見られる。これは、MF1枚の生産量からMF6枚の生産量を35%程度の誤差で推定できる。これは、スケールアップやタンパク質総生産量の予測計算が可能であることを示している。
【0056】
以上のように、本発明では、MFを細胞の足場とすることによって細胞培養を高密度で効率よく行うことが可能となる。さらに、MFとMFを密着させて多層化するのではなく、MFとMFの間に隙間を形成して多層化することによって、従来最も効率的と考えられていたホローファイバー式培養法の欠点を改善できる。即ち、細胞が付着したMFの枚数に基づいてタンパク質産生量を容易に予測計算でき、スケールアップが簡単となる。MF上の細胞を観察することや培地をサンプリングできるような培養器具も容易に設計できる。
【0057】<実験5>
MFを収容するための容器(円筒形容器)の好適な材質を検討することを目的として、以下の「実験5」を実施した。
【0058】
多層化したMFを収容する円筒形容器として3種類の材質のものを準備した。それぞれの容器の中で細胞を培養し、培養上清中のタンパク質量を測定し、細胞によるタンパク質生産におけるガス交換性(気体透過性)の有効性を検討した。容器の材質は、ポリプロピレン(実施例10)、ポリカーボネート(実施例11)、ポリメチルペンテン(実施例12)を用いた。更に、培養上清中のタンパク質量が最大であった材質の円筒形容器の上部にガス交換性(気体透過性)のあるフィルターを取り付け、更にガス交換性を高めた実施例も準備した(実施例13)。なお、この円筒形容器は、蓋を回して閉める形状の機密性の高いもので、水を入れて逆さにしても水漏れはないものである。
【0059】
実験5の方法を具体的に説明すると、MF上に細胞を接着させるために、直径60mmのディッシュに直径47mmのMF(既述したMF−A又はMF−B)を白色ワセリンで固定して、ヒト初代線維芽細胞を播種し(10%FBS含有DMEM培地)、37℃のインキュベーターで培養した。MFには予め直径1mmの穴を十字に1cm間隔で9個作っておき、この穴にまで細胞が増殖したら、MF上の細胞はコンフルエントとした。この細胞が付着し増殖したMFをフレームにセットして、実施例10〜12の円筒形容器に収容し、更に1.5gのマイクロキャリアーに細胞を付着させたものも入れた。1週間培養後、十分に血清培地を除去、洗浄して無血清培地に交換した。それから14日間培養後、培養上清中の蛋白質量を測定した。測定結果を次の「表4」に示す。
【0060】
【表4】
Figure 2004344002
【0061】
前掲した「表4」の実施例10〜12では、いずれも培養上清中のタンパク質濃度は高かったが、特に実施例11のポリメチルペンテン製の円筒形容器で最大であった(39.2μg/ml)。なお、別途行った材質試験の結果においてもポリメチルペンテンのガス透過性が最大であった。即ち、細胞によるタンパク質生産性は、容器のガス透過性に密接に関連している。
【0062】
また、実施例12と実施例13を比較すると、ポリメチルペンテン製の容器であれば、更にガス透過性のフィルターを付けても、タンパク質濃度にあまり変化はなかった。この結果からポリメチルペンテンのようにガス透過性の高い材質で円筒形容器を形成すれば、ガス透過性のフィルターを用いる等してガス透過性を高める必要はないことがわかった。
【0063】
以上の実験5から、多層化したMFをガス透過性の高いポリメチルペンテン製の容器に収容して細胞培養を行うことによって、高密度の細胞培養を実施でき、高いタンパク質生産性を確保できる。
【0064】
【発明の効果】
本発明に係る細胞培養方法によれば、細胞は、多孔膜に強固な足場を形成できるので、細胞の遊性が促進されて増殖が活発に行われ、細胞増殖の方向性の制限も緩和され、細胞の重層化できるので、細胞の高密度培養が可能となる。
【0065】
また、細胞の高密度培養が可能となる結果、細胞によるコラーゲン等のタンパク質生産量を増加させることができるので、再生医療技術、特に、採取された自己細胞を増殖させることによって得られる自己組織を用いた再生医療の基本技術なり得る細胞培養方法である。
【0066】
記多孔膜を多層化して用いるように工夫することによって、更に高密度の細胞培養が可能となり、単位となる多孔膜の使用枚数によって、細胞密度のコントロールやタンパク質産生量の計算が可能となるので、非常に便利である。また、多孔膜上の細胞の観察や培地のサンプリングが可能な培養器具の設計も可能となるという利点もある。
【0067】
多孔膜の一方の面に細胞を付着し、その反対面から負圧吸引又は細胞増殖面側から加圧することによって、多孔膜を通過する培地流を形成し、前記細胞から産生された老廃物を除去するように工夫すれば、細胞から産生される低分子の尿素、尿酸、過酸化脂質等の老廃物を、多孔膜の細胞増殖面から効率よく、かつ確実に除去することが可能となる。この結果、細胞の寿命が延び、連続培養を確実行うことができるようになる。更には、多孔膜の孔径等を選択することによって、除去物質をコントロールすることができる。
【0068】
細胞の自己分泌物、オートクラインによって産生した生理活性物質を、多孔膜によって濃縮し、低分子の老廃物を、多孔膜を通して除去できるようにすれば、生理活性物質の供給をウシ胎児血清(FBS)に依存せずに、自己分泌物で代替でき、無タンパク質の培養液を添加することで、細胞の増殖、維持を行うことができる。
【図面の簡単な説明】
【図1】実験3における培養細胞の実体顕微鏡の拡大写真
【図2】本発明に係る細胞培養方法の好適な発展形態の概念を簡易に表す図
【符号の説明】
1 多孔膜
2 細胞
3 老廃物
F 培地流[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to cell culture technology. More particularly, the present invention relates to a cell culture technique using a porous membrane as a scaffold for cell growth, which is particularly useful in the field of regenerative medicine and the like.
[0002]
[Prior art]
Cell culture technology is a property in which cells transferred to a predetermined culture site of a culture instrument gradually migrate and proliferate cells in a peripheral region based on the chemotaxis (chemotaxis) of the cells. It is a technology that utilizes
[0003]
Since cell growth is highly dependent on cell migration (motility), the first cells transferred will be firmly attached to the culture site and if not fixed, cell migration (motility) will be successfully extracted. No active cell growth occurs. Therefore, securing a cell scaffold is one of the important issues in cell culture technology.
[0004]
Initially, cell culture was generally performed using instruments such as glass dishes, dishes, flasks, etc., but then plastic culture instruments were developed, and further, cells were more easily attached. The surface of the instrument has been subjected to a hydrophilic treatment or coated with extracellular matrix such as collagen, fibronectin or polylysine to improve cell culture efficiency and increase the types of cells that can be cultured. I was able to.
[0005]
As described above, in the conventional cell culture technology, the point of improvement is placed exclusively on increasing the adhesiveness of the transferred cells to the surface of the culture site to secure a scaffold, and based on this idea, various culture-dedicated instruments are used. Has been developed.
[0006]
Here, Patent Document 1 discloses that a gas such as oxygen necessary for cell metabolism can be constantly and sufficiently supplied without requiring an oxygen supply device or the like, and there is no cell contamination and transportation is easy. A cell culture container in which at least a part of the container is formed of a gas-permeable plastic material is disclosed.
[0007]
[Patent Document 1]
JP-A-11-028083.
[0008]
[Problems to be solved by the invention]
However, in a living body, cells are surrounded by cells and extracellular matrix, and usually supply nutrients, release waste products, transmit signals, and the like on the entire surface of the cells.
[0009]
In other words, in the in vivo environment, there is almost no physical barrier to the direction of cell growth, but in conventional cell culture performed in vitro, the rigidity of glass or plastic culture instruments that cannot transfer substances at all. There has been a technical problem that cell culture has been carried out on the surface, and thus the direction of cell growth and the form of cell growth are necessarily restricted.
[0010]
Therefore, the present invention mainly provides a cell culture method that functions as a scaffold for cell growth and that can easily realize high-density cell culture using a “porous membrane” capable of transferring a substance. Aim.
[0011]
[Means for Solving the Problems]
In order to solve the above technical problems, first, the present invention provides a cell culture method devised to perform cell culture using a porous membrane immersed in a medium.
[0012]
The porous membrane that can be employed in the present invention broadly includes a membrane body having uniform pores and having gas permeability and substance permeation function (filtration function), and is not narrowly interpreted. A typical example of the “porous membrane” is a synthetic polymer membrane generally called a membrane filter.
[0013]
According to the above-described cell culture method using a porous membrane, a strong scaffold can be formed on the porous membrane, so that the migratory properties of the cells are promoted and the cells are actively proliferated. In addition, as compared with cell culture on the surface of a glass or plastic instrument, restrictions on the direction of cell growth are alleviated, and cells are more likely to be stratified. That is, the cells can grow three-dimensionally in a manner similar to the in-vivo environment. As a result, the cell density per unit area increases, and the amount of protein such as collagen produced by the cells can be increased. The porous membrane is suitable for high-density cell culture because it has substance permeability in addition to gas permeability.
[0014]
Next, in the present invention, a device was devised to use the porous film in a multilayered form. That is, a device was devised to use a plurality of porous membranes in a superposed state. In particular, in a state in which gaps are formed between the porous membranes by using appropriate means, by further devising so that the porous membranes are laminated (multi-layered), the cells are cultured on each of the multi-layered porous membranes. Cell culture conditions such that the free movement of substances (nutrition and waste products) around the cells and the supply or exchange of gas can be easily performed, this is a means suitable for high-density cell culture.
[0015]
According to the multi-layer means of this porous membrane, high-density culture of cells becomes possible. That is, a bioreactor for cell culture can be provided. Further, there is an advantage that the cell density can be controlled by the number of porous membranes used as a unit, and the amount of protein production can be estimated and calculated. In addition, since it is possible to design a culture instrument capable of observing cells on a porous membrane and sampling a culture medium, an advantage not obtained by the currently mainstream hollow fiber culture method can be obtained. The hollow fiber type culture method is a method in which hollow fibers are bundled into a column and cells are cultured in the column.The cells enter the surface of the fiber or between the folds and proliferate, and the culture solution is continuous. The feature is that it recirculates freely.
[0016]
Subsequently, in the present invention, cells are attached to one surface of the porous membrane, and a negative medium is suctioned from the opposite surface or a medium flow is formed by pressurizing from the cell growth surface side, and waste cells produced from the cells are removed. Provided is a cell culture method devised so as to perform cell culture while removing a substance from a cell growth surface of the porous membrane.
[0017]
In addition, in the cell culture method having this configuration, the diameter of the pores of the porous membrane is particularly preferably in the range of 0.1 μm to 1.0 μm. The reason is that, in the case of less than 0.1 μm, it is difficult to form a suitable medium flow passing through the porous membrane unless the pressure at the time of negative pressure suction or pressurization is increased, so that a predetermined high pressure condition is required. This is because the high-pressure load causes damage to cultured cells, which is not appropriate. On the other hand, if it is larger than 1.0 μm, the produced protein is removed together with waste products. Proteins produced from cells bind to similarly produced peptides and proteoglycans, etc., and have an increased apparent molecular weight, so if the pore size is within 1.0 μm, clogging will occur and it will be difficult to pass .
[0018]
In this cell culture method, a medium is introduced into the upper and lower surfaces of the porous membrane, and the wastewater such as low-molecular-weight urea, uric acid, and lipid peroxide produced from the cells is utilized by utilizing the filtration function of the porous membrane. The waste can be removed from the cell growth surface by passing through the pores from the cell growth surface to the opposite surface of the porous membrane. As a result, the life span of the cells is extended, so that continuous culture is facilitated. Note that there is an advantage that the removal substance can be controlled by selecting the pore size and the like of the porous membrane.
[0019]
Since the cell culture method according to the present invention can perform cell growth at a high density and continuously, it can be used in a wide range of biochemical fields, in particular, regenerative medicine techniques, that is, cells, cell scaffolds, and combinations of cell growth factors. Therefore, it has a technical significance that it is useful in a technique for regenerating (reconstructing) tissues and organs inside and outside a living body.
[0020]
【Example】
In order to verify the effects of the cell culture method according to the present invention, the following experiments 1 to 5 were performed.
<Experiment 1>
"Experiment 1" was performed to verify the difference in protein production due to the difference in cell scaffolding (comparison of plastic dish membrane filters for culture).
[0022]
The protein quantification in “Experiment 1” was performed by the Bradford method by placing the collected culture supernatant in a well of a 96-well microplate, adding an equal amount of Coomassie Protein Assay Reagent Kit (PIERCE) thereto. Use BSA as standard. The obtained protein was confirmed by SDS-PAGE and immunoblotting analysis using an anti-collagen antibody that most of the protein was collagen.
[0023]
(Comparative Example 1)
Human primary fibroblasts are seeded on a plastic culture dish of φ60 mm (DMEM containing 10% fetal bovine serum (hereinafter, “FBS”): Nissui Pharmaceutical Co., Ltd.) and cultured in a 37 ° C. incubator. That is, cell culture was performed without using a porous membrane. When the cells reached confluence, the culture supernatant was removed by suction using an aspirator, and the cell culture medium was replaced with a serum-free medium (nonFBS-DMEM). The culture supernatant was collected every week, and the protein was quantified. The medium was replaced with a serum-free medium each time, and in each case an antibiotic was added. Note that “DMEM” is a general abbreviation for Dulbecco's Modified Eagle Medium.
[0024]
(Examples 1 to 4)
Culture using a membrane filter (hereinafter abbreviated as “MF”) is performed by fixing MF (13 mm or 47 mm in diameter) on the bottom surface of a φ10 cm dish in advance and, similarly to Comparative Example 1, priming human primary fibers on MF. The blast cells were inoculated (DMEM containing 10% fetal bovine serum (FBS): Nissui Pharmaceutical Co., Ltd.) and cultured in a 37 ° C. incubator. If the seeded cells uniformly adhere to and proliferate on the bottom of the dish of φ10 cm, the cells on the bottom of the dish outside the MF are in a confluent state, so that the cells on the MF can be assumed to be confluent. The MF after the culture was transferred to a new φ10 cm dish, and then replaced with a serum-free medium. The medium was replaced with a serum-free medium every 5 days.
[0025]
After culturing human primary fibroblasts to confluence on a cell culture dish (culture area: 20.0 cm 2 ), the medium is replaced with a serum-free medium, and the amount of protein in the serum-free medium and the diameter of the adhered cells The amount of protein in a serum-free medium containing 47 mm MF (culture area: 17.3 cm 2 ) was measured and compared.
[0026]
At this time, four types of materials MF of A to D were used. The types of MF are abbreviated as MF-A, MF-B, MF-C, and MF-D. MF-A (Example 1) is hydrophilic polytetrafluoroethylene (pore size: 0.5 μm), and MF-B (Example 2) is hydrophilic polyvinylidene difluoride (pore size: 0.45 μm). , MF-C (Example 3) is non-hydrophilic treated polytetrafluoroethylene (pore size: 0 μm), and MF-D (Example 4) is polycarbonate (pore size: 0.4 μm). The results are shown in Table 1 below.
[0027]
[Table 1]
Figure 2004344002
[0028]
As can be seen from Table 1 above, when cell culture is performed on MF, the amount of protein (collagen) produced increases, and the amount of protein produced per unit area also increases. Density increases. In particular, it was found that when MF-A and MF-B were used as the porous membrane, the amount of produced protein was significantly increased and cells could be cultured at a higher density than in the case of using a dish. That is, hydrophilic polytetrafluoroethylene and hydrophilic polyvinylidene difluoride, which are hydrophilic porous films, are particularly suitable as materials for the porous film.
<Experiment 2>
"Experiment 2" was performed to verify the difference in cell life (increase in cultivable period) due to cell scaffolds (plastic culture and membrane filters).
[0030]
The case where primary human fibroblasts were cultured on a plastic device for culture (a dish made by Falcon) was designated as "Comparative Example 2", and the case where cultured on a membrane filter was designated as "Example 5". In each case, the time required for the cells to detach from the bottom surface and float was compared. At this time, the cells were serum-free cultured after confluence, and the medium was replaced every week except for 30% of the culture supernatant. Table 2 shows the results of Experiment 2.
[0031]
[Table 2]
Figure 2004344002
[0032]
As shown in Table 2 above, by performing cell culture using MF, cells proliferated more actively using MF as a scaffold, and had a longer cell life than cell culture using a dish (Comparative Example 2). Turned out to be longer. That is, it was found that cell culture using MF was suitable for continuous cell culture.
[0033]
Here, when the result of Experiment 2 is considered from the life expectancy of general primary cultured cells, it is considered that exceeding 4 months is abnormal. However, considering that dermal fibroblasts in vivo undergo metabolism in a cycle of 5 to 6 years, it can be considered that the culture conditions in Example 5 are similar to the in vivo environment. it can.
[0034]
In addition, it is more consistent to consider that this result is not due to the fact that the cells did not stop cell growth in a confluent state, but rather to continue cell growth due to stratification. And, since cells connected in a sheet form do not come off from the MF, individual cell death has occurred, but new cells are being added one after another so as to fill the space where cell death has occurred in the same way as in a living body. It is thought that it has multiplied.
[0035]
It is considered that high-density culture of cells can be achieved by arranging the MFs in a multilayer structure. A system for performing high-density culture is called a bioreactor (reactor) for animal cell culture, and animal cells are classified into two groups based on their growth form. Can be
[0036]
First, there are floating cells that can be grown by floating in a medium and adherent cells that cannot grow without attaching to a scaffold. In order to handle the above-mentioned adherent cells, it was necessary to devise a reactor. The cells were adhered to the surface of a horizontal cylindrical rotating type (roller bottle) or micro-spherical particles (microcarrier) with an increased adherent area. (Suspension suspension method, air lift method, cell lift method, etc.) has been developed. Further, hollow fiber type and ceramic matrix type have been devised for higher density.
[0037]
However, although the cell density has increased dramatically, there have also been problems such as the scale-up of cell culture and the inability to perform sampling for monitoring the cell environment. This monitoring is an indispensable method for controlling the quality of a cell product, in order to make the cell environment uniform.
<Experiment 3>
"Experiment 3" was performed to verify the morphology of the cells cultured on the MF.
[0039]
After primary human fibroblasts were cultured on MF for 1 to 2 months, the cells were stained and observed with a stereoscopic microscope. As a result, it was observed that the cells stratified and partially took a three-dimensional structure. A photograph taken by the microscope is shown in FIG. In the photograph shown in FIG. 1, a dark portion of trypan blue staining indicates a portion having a high cell density.
[0040]
In a cell culture method using a normal plastic culture device, since the surface of the device is not porous but hard, cells having such a three-dimensional structure cannot be formed. , MF as a scaffold. Note that, by forming the MF into a multilayer, the number of cells per unit area also increases, and a high protein production is maintained (verified in Experiment 4 described later). The darker areas in the photograph indicate higher cell density.
[0041]
In the above example, the membrane filter (MF) was used as the porous membrane. However, the present invention is not limited to this. In the cell culture method according to the present invention, at least a membrane having uniform pores is used. Any porous membrane suitable for cell culture can be used, and those capable of further multilayering can be suitably used.
[0042]
Here, a preferred embodiment of the cell culture method according to the present invention will be described with reference to FIG. FIG. 2 is a diagram simply showing the concept of the developed form.
[0043]
In FIG. 2, cells 2 are adhered to one surface 101 of the porous membrane indicated by reference numeral 1 and negative pressure suction is performed from the opposite surface 102, thereby forming a medium flow F passing through the porous membrane 1; It is possible to devise cell culture while removing waste products 3 produced from the cells 2 from the cell growth surface 101 of the porous membrane 1.
[0044]
Further, a method of removing waste products 3 produced from the cells 2 by applying pressure from the cell growth surface 101 side of the porous membrane 1 to the medium growth flow F from the cell growth surface 101 to the opposite surface 102 to remove the waste products 3. Can be adopted.
[0045]
The method of negative pressure suction or pressurization is a method capable of forming a flow (medium flow F) in the culture medium 4 to the extent that it meets the purpose of the present invention, that is, the method of reversing only the waste 3 without damaging the cells 2. Any method can be adopted as long as it can be removed on the surface 102 side, and these methods can be applied even when the MF is multilayered, and the medium flow F can be formed in the multilayered MF.
[0046]
In FIG. 2, reference numeral 21 schematically represents that the transferred cells 2 grow three-dimensionally on the porous membrane 1.
<Experiment 4>
"Experiment 4" was performed to verify the effect of cell culture when the porous membrane was multilayered.
[0048]
First, a frame having a plurality of boss portions for sandwiching and fixing a circular thin-film MF having a diameter of 47 mm to facilitate multi-layering of the MF was manufactured. The frames used in Experiment 4 were devised so that the frames were fixed to each other when the frames themselves were stacked. By stacking the frames, the MFs sandwiched and fixed by each frame could be stacked (multi-layered) with a gap (space) secured between the MFs.
[0049]
Further, a cylindrical container for housing the stacked MF and the frame for fixing the MF was prepared, and the cylindrical container was made of a material having high gas permeability (polymethylpentene or polycarbonate). Further, the gas permeable material described above was also selected for the lid of this cylindrical container.
[0050]
(Comparative Example 3 and Examples 6 to 9 Related to Experiment 4)
First, in order to adhere cells to the MF, MF (MF-A or MF-B) having a diameter of 47 mm was fixed to a dish having a diameter of 60 mm with white petrolatum, and human primary fibroblasts were seeded (containing 10% FBS). (DMEM medium) and a 37 ° C. incubator. In the MF, nine holes each having a diameter of 1 mm were previously formed in a cross at intervals of 1 cm, and when the cells proliferated to the holes, the cells on the MF were confluent. "Comparative Example 3" was obtained by directly fixing the MF to which the cells adhered to a new dish having a diameter of 60 mm with petrolatum.
[0051]
In addition, MFs were fixed one by one to the above-mentioned frame and placed in the above-mentioned cylindrical container. One MF was referred to as "Example 6", two MFs were referred to as "Example 7," five MFs were referred to as "Example 8," and six MFs were referred to as "Example 9." Comparative Example 3 and Examples 6 to 9 were each cultured in a DMEM medium containing 10% FBS, washed one week later, and replaced with a serum-free medium. On the 10th day thereafter, the amount of protein in the culture supernatant was measured. The measurement results are shown in Table 3 below.
[0052]
[Table 3]
Figure 2004344002
[0053]
First, from the comparison of the results of Comparative Example 3 and Example 6 in Table 3 above, it is clear that the use of the frame creates a gap (space) between the MF and the bottom of the container, and increases the protein productivity. Became. It is considered that the reason for this is that the formation of the gap facilitated the free movement of substances (nutrition and wastes) and the supply or exchange of gas around the cells.
[0054]
Next, as shown in Examples 6 to 9, it can be seen that higher productivity of the protein is maintained as compared with Comparative Example 3 even when the MF-fixed frames are stacked and the MF is multilayered. That is, it is clear that a configuration in which the MF is multilayered is also effective.
[0055]
In addition, when the number of MFs is five (Example 8) or when the number of MFs is six (Example 6), the number of MFs is one (Example 6) and the number of MFs is two (Example 7). In 9), a difference in protein production of about 35% is observed. This means that the production amount of six MFs can be estimated from the production amount of one MF with an error of about 35%. This indicates that scale-up and prediction calculation of total protein production are possible.
[0056]
As described above, in the present invention, cell culture can be performed at high density and efficiently by using MF as a scaffold for cells. Furthermore, by forming a gap between the MF and the MF to form a multi-layer structure instead of forming the MF and the MF in close contact with each other, the disadvantage of the hollow fiber type culture method, which has been considered to be the most efficient, is eliminated. Can be improved. That is, the amount of protein production can be easily predicted and calculated based on the number of MFs to which cells have adhered, and the scale-up is simplified. A culture instrument capable of observing cells on the MF and sampling the medium can be easily designed.
<Experiment 5>
The following “Experiment 5” was carried out for the purpose of examining a suitable material for the container (cylindrical container) for storing the MF.
[0058]
Three types of materials were prepared as cylindrical containers for storing the multilayered MF. The cells were cultured in each container, the amount of protein in the culture supernatant was measured, and the effectiveness of gas exchange (gas permeability) in protein production by the cells was examined. As the material of the container, polypropylene (Example 10), polycarbonate (Example 11), and polymethylpentene (Example 12) were used. Further, an example in which a gas-exchangeable (gas-permeable) filter was attached to the upper portion of a cylindrical container made of a material having the largest amount of protein in the culture supernatant to further enhance gas exchange was also prepared (implementation). Example 13). The cylindrical container has a highly confidential shape in which a lid is turned to close, and does not leak even if water is put into the container and inverted.
[0059]
To specifically explain the method of Experiment 5, in order to adhere cells to the MF, a MF having a diameter of 47 mm (MF-A or MF-B described above) was fixed to a dish having a diameter of 60 mm with white petrolatum, Human primary fibroblasts were inoculated (DMEM medium containing 10% FBS) and cultured in a 37 ° C. incubator. In the MF, nine holes each having a diameter of 1 mm were previously formed in a cross at intervals of 1 cm, and when the cells proliferated to the holes, the cells on the MF were confluent. The MF on which the cells were adhered and proliferated was set on a frame, accommodated in the cylindrical containers of Examples 10 to 12, and further added with 1.5 g of microcarriers to which the cells were adhered. After culturing for one week, the serum medium was sufficiently removed, washed, and replaced with a serum-free medium. After 14 days of culture, the amount of protein in the culture supernatant was measured. The measurement results are shown in Table 4 below.
[0060]
[Table 4]
Figure 2004344002
[0061]
In Examples 10 to 12 of Table 4 described above, the protein concentration in the culture supernatant was high in all cases, but was particularly large in the polymethylpentene cylindrical container of Example 11 (39.2 µg). / Ml). In addition, the gas permeability of polymethylpentene was the highest in the result of the material test separately performed. That is, protein productivity by cells is closely related to the gas permeability of the container.
[0062]
Further, comparing Example 12 and Example 13, the protein concentration was not significantly changed even if a gas permeable filter was attached to the container made of polymethylpentene. From this result, it was found that if the cylindrical container was formed of a material having high gas permeability such as polymethylpentene, it was not necessary to increase the gas permeability by using a gas-permeable filter or the like.
[0063]
From Experiment 5 described above, high-density cell culture can be carried out and high protein productivity can be ensured by storing the multilayered MF in a container made of polymethylpentene having high gas permeability and performing cell culture.
[0064]
【The invention's effect】
According to the cell culture method according to the present invention, cells can form a strong scaffold on the porous membrane, so that cell migration is promoted and proliferation is actively performed, and the restriction on the direction of cell proliferation is also eased. Since cells can be layered, high-density culture of cells becomes possible.
[0065]
In addition, since high-density culture of cells becomes possible, the amount of protein such as collagen produced by the cells can be increased. Therefore, regenerative medicine techniques, in particular, autologous tissues obtained by growing collected autologous cells can be used. This is a cell culture method that can be a basic technology of regenerative medicine used.
[0066]
By devising to use the porous membrane in a multilayered form, it is possible to achieve higher density cell culture, and it is possible to control the cell density and calculate the amount of protein production by the number of porous membranes used as a unit. , Very convenient. There is also an advantage that a culture instrument capable of observing cells on a porous membrane and sampling a medium can be designed.
[0067]
By attaching cells to one surface of the porous membrane and applying negative pressure suction from the opposite surface or pressurizing from the cell growth surface side, a medium flow through the porous membrane is formed, and waste products produced from the cells are removed. By devising the removal, waste products such as low molecular weight urea, uric acid, and lipid peroxide produced from cells can be efficiently and reliably removed from the cell growth surface of the porous membrane. As a result, the life span of the cells is extended, and continuous culture can be reliably performed. Furthermore, the substance to be removed can be controlled by selecting the pore size and the like of the porous membrane.
[0068]
The bioactive substance produced by autocrine, autocrine of cells, is concentrated by a porous membrane, and low molecular waste products can be removed through the porous membrane. ), The cells can be replaced with autocrine secretions, and cells can be grown and maintained by adding a protein-free culture solution.
[Brief description of the drawings]
FIG. 1 is an enlarged photograph of a stereomicroscope of a cultured cell in Experiment 3. FIG. 2 is a diagram simply showing the concept of a preferred development of the cell culture method according to the present invention.
Reference Signs List 1 porous membrane 2 cell 3 waste F medium flow

Claims (3)

培地に浸漬された多孔膜で細胞培養を行うことを特徴とする細胞培養方法。A cell culture method comprising culturing a cell with a porous membrane immersed in a medium. 前記多孔膜が多層化されたことを特徴とする請求項1記載の細胞培養方法。The cell culture method according to claim 1, wherein the porous membrane is multilayered. 前記多孔膜の一方の面に細胞を付着し、その反対面から負圧吸引又は細胞増殖面側から加圧することによって培地流を形成し、前記細胞から産生された老廃物を前記多孔膜の細胞増殖面から除去しながら細胞培養を行うことを特徴とする請求項1又は請求項2に記載の細胞培養方法。Cells are attached to one surface of the porous membrane, and a medium flow is formed by applying negative pressure suction from the opposite surface or pressurizing from the cell growth surface side, and waste cells produced from the cells are removed from the cells of the porous membrane. The cell culture method according to claim 1 or 2, wherein the cell culture is performed while removing the cell culture from the growth surface.
JP2003090430A 2002-04-19 2003-03-28 Method for culturing cell with porous membrane Pending JP2004344002A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003090430A JP2004344002A (en) 2002-04-19 2003-03-28 Method for culturing cell with porous membrane
PCT/JP2003/004345 WO2003089628A1 (en) 2002-04-19 2003-04-04 Cell culture method using porous membrane
AU2003236263A AU2003236263A1 (en) 2002-04-19 2003-04-04 Cell culture method using porous membrane
TW92108761A TW200306349A (en) 2002-04-19 2003-04-15 The cell culture method using a porous membrane

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002117309 2002-04-19
JP2003088754 2003-03-27
JP2003090430A JP2004344002A (en) 2002-04-19 2003-03-28 Method for culturing cell with porous membrane

Publications (1)

Publication Number Publication Date
JP2004344002A true JP2004344002A (en) 2004-12-09

Family

ID=29255101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003090430A Pending JP2004344002A (en) 2002-04-19 2003-03-28 Method for culturing cell with porous membrane

Country Status (4)

Country Link
JP (1) JP2004344002A (en)
AU (1) AU2003236263A1 (en)
TW (1) TW200306349A (en)
WO (1) WO2003089628A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007282514A (en) * 2006-04-12 2007-11-01 Applied Cell Biotechnologies Inc Method for producing collagens and collagens
WO2016121773A1 (en) * 2015-01-26 2016-08-04 宇部興産株式会社 Method, device and kit for mass cultivation of cells using polyimide porous membrane
KR20170093251A (en) * 2015-01-26 2017-08-14 우베 고산 가부시키가이샤 Cell culture method and kit

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03164169A (en) * 1989-08-04 1991-07-16 Mitsubishi Rayon Co Ltd Cell culture method
JPH04183388A (en) * 1990-11-16 1992-06-30 Mitsubishi Rayon Co Ltd Cell culture process
JPH0564576A (en) * 1991-09-06 1993-03-19 Tabai Espec Corp Column type culturing device
JPH06113827A (en) * 1992-09-29 1994-04-26 Gunze Ltd Cultured cell and its production
JPH10179138A (en) * 1996-12-25 1998-07-07 Kazuhiro Nakanishi Membrane surface liquid culture and apparatus for the same
JP4601746B2 (en) * 1999-10-25 2010-12-22 エイブル株式会社 Three-dimensional animal cell culture apparatus and culture method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007282514A (en) * 2006-04-12 2007-11-01 Applied Cell Biotechnologies Inc Method for producing collagens and collagens
WO2016121773A1 (en) * 2015-01-26 2016-08-04 宇部興産株式会社 Method, device and kit for mass cultivation of cells using polyimide porous membrane
KR20170093251A (en) * 2015-01-26 2017-08-14 우베 고산 가부시키가이샤 Cell culture method and kit
KR20170093983A (en) * 2015-01-26 2017-08-16 우베 고산 가부시키가이샤 Method, apparatus and kit for mass cell culture using polyimide porous membrane
JPWO2016121773A1 (en) * 2015-01-26 2017-09-14 宇部興産株式会社 Mass culture method, apparatus and kit for cells using porous polyimide membrane
KR101983486B1 (en) * 2015-01-26 2019-05-28 우베 고산 가부시키가이샤 Method, apparatus and kit for mass cell culture using polyimide porous membrane
US10479974B2 (en) 2015-01-26 2019-11-19 Ube Industries, Ltd. Method, device and kit for mass cultivation of cells using polyimide porous membrane
KR102059248B1 (en) * 2015-01-26 2019-12-24 우베 고산 가부시키가이샤 Cell culture method and kit
US10696943B2 (en) 2015-01-26 2020-06-30 Ube Industries, Ltd. Method, device and kit for mass cultivation of cells using polyimide porous membrane
US10738277B2 (en) 2015-01-26 2020-08-11 Ube Industries, Ltd. Cell culturing method and kit
US10982186B2 (en) 2015-01-26 2021-04-20 Ube Industries, Ltd. Cell culturing method and kit

Also Published As

Publication number Publication date
AU2003236263A1 (en) 2003-11-03
WO2003089628A1 (en) 2003-10-30
TW200306349A (en) 2003-11-16

Similar Documents

Publication Publication Date Title
JP5614471B2 (en) Cell sheet having dimensions, manufacturing method thereof, and cell culture carrier therefor
JP6696206B2 (en) Cell culture device using gas impermeable tube and cell culture method
JP5596035B2 (en) Irradiated membrane for cell growth
US10717961B2 (en) Cell culture system and cell culture method
Wung et al. Hollow fibre membrane bioreactors for tissue engineering applications
US8435751B2 (en) Membrane for cell expansion
JP6733126B2 (en) Method for producing three-dimensional cell aggregate
JP2016093149A (en) Cell culture apparatus, and cell culture method
WO2014034146A1 (en) Cell culture module
JP6958350B2 (en) Method for producing stem cell culture supernatant
US20070207537A1 (en) Bioreactor
JP2014060991A (en) Method of culturing stem cells using inner lumen of porous hollow fiber
EP3077499A1 (en) Fluidic device and perfusion system for in vitro complex living tissue reconstruction
WO2017082024A1 (en) Cell support composite, and method for producing cell support composite
JP4668568B2 (en) Culturing container, culturing apparatus, and cell culturing method
KR20220113974A (en) Modular Perfusion Cartridge Bioreactor System
JP6848273B2 (en) Cell culture device
JP2015223111A (en) Methods and apparatuses for long term perfusion of high density cell culture
CN107208058B (en) Cell culture method using bone marrow-like structure, and polyimide porous membrane for treatment of bone injury site
Calzuola et al. Membrane-based microfluidic systems for medical and biological applications
WO2016140213A1 (en) Cell culture method using hollow fiber module
JP4433742B2 (en) Culture container, culture using the culture container, and method for producing the culture
JP2004344002A (en) Method for culturing cell with porous membrane
JP2004329045A (en) Carrier support for cell culture and high-density cell culture method
JP2019097392A (en) Cell culture container and cell culture apparatus