[go: up one dir, main page]

JP2004345466A - Body front frame structure - Google Patents

Body front frame structure Download PDF

Info

Publication number
JP2004345466A
JP2004345466A JP2003143786A JP2003143786A JP2004345466A JP 2004345466 A JP2004345466 A JP 2004345466A JP 2003143786 A JP2003143786 A JP 2003143786A JP 2003143786 A JP2003143786 A JP 2003143786A JP 2004345466 A JP2004345466 A JP 2004345466A
Authority
JP
Japan
Prior art keywords
vehicle body
outer shell
vehicle
rigidity
adjusting member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003143786A
Other languages
Japanese (ja)
Inventor
Katsushi Saito
勝士 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003143786A priority Critical patent/JP2004345466A/en
Publication of JP2004345466A publication Critical patent/JP2004345466A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Body Structure For Vehicles (AREA)

Abstract

【課題】衝突荷重の入力により骨格メンバの軸圧潰を効果的に誘起させつつ、衝突エネルギーの吸収効率を高めることができる車体前部骨格構造の提供を図る。
【解決手段】車体前後方向に延在して車体前部の車体骨格を成す骨格メンバ2を、剛性が車体前後方向に亘って略均一となり、かつ、車幅方向内側の剛性を外側よりも大きくした閉断面構造の外殻部材20と、この外殻部材20の内部に配設し、剛性が車体前方から車体後方に向けて不連続に漸増する剛性調整部材21と、で構成したことにより、衝突荷重の入力時に剛性調整部材21によって骨格メンバ2を効率よく軸圧潰させるとともに、外殻部材20自体に複数の脆弱部分を設けていないことにより大きな圧潰反力を確保して衝突エネルギーを効率よく吸収することができる。
【選択図】 図4
An object of the present invention is to provide a vehicle body front skeleton structure capable of effectively inducing axial crushing of a skeleton member by input of a collision load and improving the efficiency of absorbing collision energy.
A skeletal member (2) that extends in the front-rear direction of a vehicle body and forms a vehicle body skeleton at a front part of a vehicle body has a substantially uniform rigidity in the vehicle front-rear direction, and has a greater rigidity in the vehicle width direction inside than in the outside. The outer shell member 20 having a closed cross-sectional structure, and a rigidity adjusting member 21 disposed inside the outer shell member 20 and having a rigidity that gradually increases from the front of the vehicle body toward the rear of the vehicle body. When a collision load is input, the skeletal member 2 is efficiently crushed by the stiffness adjusting member 21, and a large crush reaction force is secured by not providing a plurality of fragile portions on the outer shell member 20 itself, so that collision energy is efficiently increased. Can be absorbed.
[Selection diagram] Fig. 4

Description

【0001】
【発明の属する技術分野】
本発明は、車両の車体前部骨格構造に関する。
【0002】
【従来の技術】
車体前部の骨格構造は車体前後方向に延在する骨格メンバを備え、この骨格メンバが車両衝突時に変形することにより前方からの衝突エネルギーを吸収し、乗員の居住空間であるキャビン部への影響を低減するようになっている。
【0003】
骨格メンバは、衝突荷重の入力により軸方向に圧潰することにより効率よくエネルギーを吸収できるのであるが、従来ではその骨格メンバに、軸方向に沿って複数のビード部分を所定間隔で形成して、軸圧潰を促進できるようにしてある(例えば、特許文献1参照。)。
【0004】
【特許文献1】
特開2001−158377号公報(第4頁、第1図)
【0005】
【発明が解決しようとする課題】
しかしながら、かかる従来の車体前部骨格構造では、骨格メンバの軸方向に複数のビード部分を形成することにより骨格メンバの軸圧潰を安定化できるのであるが、このビード部分によって骨格メンバが有する圧潰反力が低下するため、ビード部分を複数形成した場合は衝突エネルギーの吸収効率が低下し、骨格メンバで吸収しきれなかったエネルギーによってキャビン部への影響が増加する可能性がある。
【0006】
そこで本発明は、衝突荷重の入力により骨格メンバの軸圧潰を効果的に誘起させつつ、衝突エネルギーの吸収効率を高めることができる車体前部骨格構造を提供するものである。
【0007】
【課題を解決するための手段】
本発明の車体前部骨格構造にあっては、車体前後方向に延在して車体前部の車体骨格を成す骨格メンバを、剛性が車体前後方向に亘って略均一となり、かつ、車幅方向内側の剛性を外側よりも大きくした閉断面構造の外殻部材と、この外殻部材の内部に配設し、剛性が車体前方から車体後方に向けて不連続に漸増する剛性調整部材と、で構成したことを特徴としている。
【0008】
【発明の効果】
本発明の車体前部骨格構造にあっては、前面衝突や斜め前方衝突により骨格メンバに衝突荷重が入力した場合、この骨格メンバを外殻部材とその内部に配設した剛性調整部材とで構成してあって、前者の外殻部材の剛性バランス、つまり、閉断面構造とした外殻部材の剛性を車体前後方向に亘って略均一とするとともに、車幅方向内側の剛性を外側よりも大きくしたことと、後者の剛性調整部材の剛性バランス、つまり、この剛性調整部材の剛性を車体前方から車体後方に向けて不連続に漸増させたこととによって、前記骨格メンバを入力荷重によって内側への曲げ変形を抑制して軸圧潰させることができるとともに、外殻部材自体に複数の脆弱部分を設けていないことにより、大きな圧潰反力を確保して衝突エネルギーを効率よく吸収することができる。
【0009】
【発明の実施の形態】
以下、本発明の実施形態を図面と共に詳述する。
【0010】
図1〜図9は本発明の車体前部骨格構造の第1実施形態を示し、図1は本発明の車体前部骨格構造を適用した自動車の外観斜視図、図2は車体前部の骨格構造を示す斜視図、図3は車体前部の骨格構造を略示的に示す平面図、図4は車体前部右側のフロントサイドメンバの前方領域を示す拡大斜視図、図5は車体前部に直進方向および斜め方向の衝突荷重が入力される状態を略示的に示すイメージ図、図6は直進方向の衝突荷重入力によるフロントサイドメンバの前方領域の変形態様を剛性調整部材が有る場合と無い場合とを比較して(a),(b)に略示的に示す平面図、図7は直進方向の衝突荷重入力時のエネルギー吸収特性図、図8は斜め前方の衝突荷重入力によるフロントサイドメンバの前方領域の変形態様を剛性調整部材が有る場合と無い場合とを比較して(a)〜(d)に略示的に示す平面図、図9は斜め前方の衝突荷重入力時のエネルギー吸収特性図である。
【0011】
第1実施形態の車体前部骨格構造は、図1に示す車両1のフロントコンパートメントF・Cの骨格構造を構成する図2,図3に示す骨格メンバとしてのフロントサイドメンバ2に適用してある。
【0012】
フロントサイドメンバ2は、図2,図3に示すようにフロントコンパートメントF・Cの左右両側部に1対設けられ、それぞれを車体前後方向に略平行に配置してあり、1対のフロントサイドメンバ2の前端部に跨ってフロントバンパーの骨格を成すバンパーレインフォース3を結合してある。
【0013】
また、それぞれのフロントサイドメンバ2の後方にはダッシュパネル4からフロアパネル5の下面側に回り込むエクステンションサイドメンバ6を連設してあり、それぞれのエクステンションサイドメンバ6の車幅方向外方には略平行にサイドシル7が配置され、これらエクステンションサイドメンバ6とサイドシル7のそれぞれの前端部をアウトリガー8で連結してある。
【0014】
更に、各フロントサイドメンバ2の上方かつ車幅方向外方には略平行にフードリッジメンバ9を設けてあり、これらフードリッジメンバ9の車体後方の基端部をサイドシル7の前端部から立ち上がるフロントピラー10に結合してある。
【0015】
また、フードリッジメンバ9とフロントサイドメンバ2の車体後端部間には、ストラットタワー11を設けてある。
【0016】
フロントサイドメンバ2は、前端から所定距離だけ後方に離れた中間部分に補強部分Aを設けて、この補強部分Aにエンジンやトランスミッションを合体したパワーユニットP(図5参照)をマウントするためのマウントブラケット12を設けてあり、この補強部分Aよりも前方が前方領域2F(図3参照)となる一方、補強部分Aよりも後方が後方領域2Rとなり、前方領域2Fは前方からの衝突荷重F1,F2によって変形して、衝突エネルギーを吸収できるようになっている。
【0017】
ここで、この第1実施形態では前記フロントサイドメンバ2の前方領域2Fを、図4に示すように剛性が車体前後方向に亘って略均一となり、かつ、車幅方向内側の剛性を外側よりも大きくした閉断面構造の外殻部材20と、この外殻部材20の内部に配設し、剛性が車体前方から車体後方に向けて不連続に漸増する剛性調整部材21と、で構成してある。
【0018】
前記外殻部材20は、フロントサイドメンバ2の全長に亘って、平板帯状のアウタープレート2aの内側部分に断面コ字状のインナープレート2bの両側フランジ部をスポット溶接などで接合して、断面矩形状の閉断面構造として構成してある。
【0019】
また、前記補強部分Aは、インナープレート2bに補強板を接合し、またはインナープレート2bの肉厚を部分的に厚肉化する等によって形成することができる。
【0020】
前記剛性調整部材21は、図4に示すように、車体前方から後方に向かって車幅方向の幅が漸増する平面略三角形状に形成した上・下面21a,21bと、これら上・下面21a,21bの車幅方向内側を繋ぐ傾斜面21cと、によって断面略コ字状に形成し、前記上・下面21a,21bの外側部分21dを、断面矩形状に形成した外殻部材20の外側壁としてのアウタープレート2aに、レーザ溶接などにより接合してある。
【0021】
この場合、前記外側部分21dの接合位置は、外殻部材20が軸圧潰した際に蛇腹状に変形する圧潰ビードと干渉しない位置が選択される。
【0022】
前記剛性調整部材21の車体前後方向の不連続な剛性部分は、この剛性調整部材21の上・下面21a,21bに車体前後方向に所定間隔をもって形成した複数の第1脆弱部分としてのスリット22により構成してある。
【0023】
前記スリット22は、上・下面21a,21bに車幅方向に形成してあり、各スリット22は上・下面21a,21bの幅変化に伴って、車体前方から車体後方に行くに従って徐々に長くなっており、各スリット22はフロントサイドメンバ2の圧潰モードピッチの1/2の間隔で形成してある。
【0024】
また、前記剛性調整部材21の内側部分となる傾斜面21cの車体後方端部21eを、外殻部材20の内側壁としてのインナープレート2bの内壁2cにプラグ溶接などにより接合してある。
【0025】
この場合、剛性調整部材21の車体後方端部21eは、フロントサイドメンバ2の補強部分Aに接合している。
【0026】
更に、この実施形態では前記外殻部材20の前端部、詳細にはインナープレート2bの内壁2cの前端部に、軸方向の衝突荷重の入力時にフロントサイドメンバ2の軸圧潰を誘発する第2脆弱部分としてのビード部23を設けてある。この場合、前記ビード部23は軸圧潰モードの谷部に沿う上下方向に形成してある。
【0027】
以上の構成によりこの第1実施形態の車体前部骨格構造によれば、図5に示すように前面衝突により衝突荷重F1が直進方向からフロントサイドメンバ2の前端部に作用した場合、外殻部材20の前端部に設けたビード部23によりフロントサイドメンバ2の前端部から軸圧潰が始まる。
【0028】
すると、剛性調整部材21にも衝突荷重F1が入力し、この衝突荷重F1の入力により剛性調整部材21はスリット22が潰れて上・下面21a,21bが軸方向に短縮するように変形し、これに伴って剛性調整部材21の外側部分12dを接合した外殻部材20は、各スリット22の潰れに誘起されて図6(a)に示すように軸圧潰する。
【0029】
尚、前記剛性調整部材21を設けていない場合は、フロントサイドメンバ2が潰れていく過程でこのフロントサイドメンバ2全体に入力荷重F1が加わるため、フロントサイドメンバ2が変形する起点は特定されずに後端側にも発生し易くなり、このようにフロントサイドメンバ2の後端側に変形が発生すると、図6(b)に示すようにその後端側の折れを助長し、十分に衝突エネルギーを吸収できなくなる。
【0030】
これに対して、本実施形態では外殻部材20の車幅方向内側の剛性を外側よりも大きくしてあることと、この外殻部材20の内側に剛性調整部材21を設けたことにより、フロントサイドメンバ2を入力荷重F1によって内側への曲げ変形を抑制して軸圧潰させることができるとともに、外殻部材20自体に複数の脆弱部分を設けていないことにより、大きな圧潰反力を確保して衝突エネルギーを効率よく吸収することができる。
【0031】
従って、図7のエネルギー吸収特性に示すように、同図中破線に示す剛性調整部材が無い場合に比較して、同図中実線に示す剛性調整部材21を設けた本実施形態の場合は、フロントサイドメンバ2による衝突エネルギーの吸収量を拡大することができる。
【0032】
次に、図5および図8(a)に示すように、斜め前方衝突により衝突荷重F2が斜め前方外方からフロントサイドメンバ2の前端部に作用した場合、この場合にあっても剛性調整部材21を設けたことにより、フロントサイドメンバ2の前方領域2Fの潰れていく過程の軸中心の傾き変化角度θ1は、図8(c)に示すように剛性調整部材21を設けていない場合の変化角度θ2と比較して、小さく(θ1<θ2)なる。
【0033】
このため、図8(b)に示すように剛性調整部材21を設けた場合は、図8(d)の剛性調整部材21を設けていない場合に比較して、安定した圧潰モードを発生させることができる。
【0034】
つまり、この斜め前方衝突の場合にあっても、剛性調整部材21を設けていない場合は、フロントサイドメンバ2が潰れていく過程でフロントサイドメンバ2が変形する起点は特定されずに後端側にも発生し易くなり、図8(d)に示すようにその後端側の内側への折れを助長し、十分に衝突エネルギーを吸収できなくなる。
【0035】
これに対して、本実施形態では剛性調整部材21を設けたことにより、フロントサイドメンバ2を入力荷重F2によって軸圧潰させることができるとともに、外殻部材20自体に複数の脆弱部分を設けていないことにより、大きな圧潰反力を確保して衝突エネルギーを効率よく吸収することができる。
【0036】
従って、図9のエネルギー吸収特性に示すように、同図中破線に示す剛性調整部材が無い場合に比較して、同図中実線に示す剛性調整部材21を設けた本実施形態の場合は、フロントサイドメンバ2による衝突エネルギーの吸収量を同等以上とすることができるとともに、潰れストロークを増加させることができる。
【0037】

【0038】
ところで、この第1実施形態の車体前部骨格構造は前記作用効果に加えて、上・下面21a,21bを車体前方から後方に向かって車幅方向の幅が漸増する平面略三角形状に形成し、これら上・下面21a,21bの外側部分21dを、断面矩形状に形成した外殻部材20のアウタープレート2aに接合したので、前面衝突時に車幅方向の剛性バランスを崩すことなくフロントサイドメンバ2を軸圧潰し、また、斜め前方衝突時に外殻部材20に接合した剛性調整部材21がこの外殻部材20の圧潰モードをコントロールすることができ、安定した高効率の衝突エネルギー吸収効果を得ることができる。
【0039】
また、前記剛性調整部材21の車体前後方向の不連続な剛性部分は、この剛性調整部材21の上・下面21a,21bに車体前後方向に所定間隔をもって形成した複数の第1脆弱部分としてのスリット22により構成したので、外殻部材20の前端部が変形したときに、外殻部材20の変形モードに加えて剛性調整部材21のスリット22を形成した上・下面21a,21bの内側を繋ぐ傾斜面21cが容易に変形し、その後、この変形に誘起されて外殻部材20のアウタープレート2aの変形を促進することができる。従って、外殻部材20の折れを発生することなく安定した高効率の衝突エネルギー吸収効果を得ることができる。
【0040】
更に、第1脆弱部分として車幅方向に延びる前記スリット22としたことにより、剛性調整部材21の傾斜面21cの変形を確実に発生させることができ、ひいては、外殻部材20の圧潰モードを効率よく発生させることができる。尚、第1脆弱部分としてはスリット22に限ることなく、他の部分よりも剛性が低下する部分、例えば凹凸ビードとして構成することができる。
【0041】
更にまた、剛性調整部材21の傾斜面21cの車体後方端部21eを、外殻部材20のインナープレート2bの内壁2cに接合したので、衝突時に外殻部材20を前端から効率よく安定してエネルギー吸収させることができる。
【0042】
特に、この剛性調整部材21の車体後方端部21eを、フロントサイドメンバ2の補強部分Aに接合したので、剛性調整部材21は衝突荷重F1,F2を確実に受け止めて、外殻部材20を前端から効率よく安定してエネルギー吸収させることができる。
【0043】
更に、外殻部材20の前端部に、軸方向の衝突荷重が入力した際にフロントサイドメンバ2の軸圧潰を誘発する第2脆弱部分としてのビード部23を設けたので、衝突時に外殻部材20を前端から効率よく安定して軸圧潰させることができる。
【0044】
ところで、この第1実施形態では剛性調整部材21を外殻部材20に固定するにあたって、図4に示すように、上・下面21a,21bの外側部材21dをアウタープレート2aに接合したが、これに限ることなく図10に示すように、前記外側部分21dの車体外側縁部を全長に亘って折曲してフランジ部24を形成し、このフランジ部24を前記外殻部材20のアウタープレート2aにスポット溶接などにより接合することができる。
【0045】
このように、フランジ部24を介して剛性調整部材21を外殻部材20に固定することにより、本例のように外殻部材20のインナープレート2b形状を多角形とした場合は、フロントサイドメンバ2の車両内側角部が増加することにより剛性が大きくなり、アウタープレート2aとの剛性バランスに差が生じてフロントサイドメンバ2に横折れが発生し易くなるが、前記フランジ部24がアウタープレート2aの補強部分となって外殻部材20の内・外壁の剛性バランスを均等に近づけることができる。
【0046】
また、前記フランジ24を設けたことにより、剛性調整部材21をアウタープレート2aに固定する場合の位置決めを容易かつ正確に行うことができるとともに、その際の固定にスポット溶接を用いることができるため、剛性調整部材21の固定作業を簡素化することができる。
【0047】
更に、剛性調整部材21と外殻部材20との固定は、図11に示すようにスリット22によって分断したフランジ部24aを設け、その分断したフランジ部24aをスポット溶接によりアウタープレート2aに接合することもできる。
【0048】
この場合にあっても、前記図10に示した剛性調整部材21と同様に安価で作り勝手のよい構造とすることができる。
【0049】
図12〜図14は本発明の第2実施形態を示し、前記第1実施形態と同一構成部分に同一符号を付して重複する説明を省略して述べるものとし、図12は車体前部右側のフロントサイドメンバの前方領域を示す拡大斜視図、図13は剛性調整部材の展開図、図14は剛性調整部材の取付け状態の平面図である。
【0050】
この第2実施形態の車体前部骨格構造が前記第1実施形態と主に異なる点は、図12に示すように剛性調整部材21を、車体前後方向に亘って曲率を略一定とする半円筒形状に形成したことにあり、この場合、上・下面21a,21bに形成した複数のスリット22の長さは、車体前方から車体後方に向かって除々に短くしてある。
【0051】
即ち、この実施形態の剛性調整部材21は、図13に示すように全体的に車体前後方向に長辺となる矩形状の板材25の両側部に、長さが車体前方(図中下方)から車体後方(図中上方)に向かって段階的に短くなるスリット22を櫛歯状に形成しておき、この板材25を半円筒状に幅方向(図中左右方向)に丸めることにより形成する。
【0052】
また、前記スリット22は車体前後方向に一定間隔をもって複数形成してあるが、その間隔はフロントサイドメンバ2の圧潰モードピッチの1/2に設定してある。
【0053】
そして、剛性調整部材21の車体後方端部21eは、図14にも示すように、車体前後方向(図中上下方向)に対して車幅方向に傾斜する傾斜部26aを有する反力支持部材26を介して外殻部材20の補強部分Aに連結してある。
【0054】
更に、この実施形態にあっても外殻部材20には、インナープレート2bの内壁2cの前端部に第2脆弱部分としてのビード部23を設けてある。
【0055】
以上の構成によりこの第2実施形態の車体前部骨格構造によれば、前記第1実施形態と同様にフロントサイドメンバ2は前端部のビード部23から変形が始まり、剛性調整部材21がスリット22から変形して、これに誘発されて外殻部材20に軸圧潰が促進するため、フロントサイドメンバ2に安定した軸圧潰モードを発生させることができる。
【0056】
尚、剛性調整部材21の半円筒の大きさは外殻部材20が変形するときの軸圧潰部分と干渉しないように予め設定してある。
【0057】
また、この実施形態では剛性調整部材21の車体後方端部21eを、傾斜部26aを有する反力支持部材26を介して外殻部材20の補強部分Aに連結したので、傾斜部25aがフロントサイドメンバ2の後端部に発生した変形を受け止める働きをして、フロントサイドメンバ2の圧潰モードの安定化を図ることができ、ひいては、衝突エネルギーの吸収効率を高めることができる。
【0058】
ところで、本発明の車体前部骨格構造は前記第1,第2実施形態を例にとって説明したが、これに限ることなく本発明の要旨を逸脱しない範囲内で他の実施形態を各種採ることができる。
【図面の簡単な説明】
【図1】本発明の車体前部骨格構造を適用した自動車の外観斜視図。
【図2】本発明の第1実施形態における車体前部の骨格構造を示す斜視図。
【図3】本発明の第1実施形態における車体前部の骨格構造を略示的に示す平面図。
【図4】本発明の第1実施形態における車体前部右側のフロントサイドメンバの前方領域を示す拡大斜視図。
【図5】本発明の第1実施形態における車体前部に直進方向および斜め方向の衝突荷重が入力される状態を略示的に示すイメージ図。
【図6】本発明の第1実施形態における直進方向の衝突荷重入力によるフロントサイドメンバの前方領域の変形態様を剛性調整部材が有る場合と無い場合とを比較して(a),(b)に略示的に示す平面図。
【図7】本発明の第1実施形態における直進方向の衝突荷重入力時のエネルギー吸収特性図。
【図8】本発明の第1実施形態における斜め前方の衝突荷重入力によるフロントサイドメンバの前方領域の変形態様を剛性調整部材が有る場合と無い場合とを比較して(a)〜(d)に略示的に示す平面図。
【図9】本発明の第1実施形態における斜め前方の衝突荷重入力時のエネルギー吸収特性図。
【図10】本発明の第1実施形態の1つの変形例である車体前部右側のフロントサイドメンバの前方領域を示す拡大斜視図。
【図11】本発明の第1実施形態の他の変形例である車体前部右側のフロントサイドメンバの前方領域を示す拡大斜視図。
【図12】本発明の第2実施形態にける車体前部右側のフロントサイドメンバの前方領域を示す拡大斜視図。
【図13】本発明の第2実施形態における剛性調整部材の展開図。
【図14】本発明の第2実施形態における剛性調整部材の取付け状態の平面図。
【符号の説明】
1 車両
2 フロントイドメンバ(骨格メンバ)
2F フロントサイドメンバの前方領域
2R フロントサイドメンバの後方領域
20 外殻部材
21 剛性調整部材
22 スリット(第1脆弱部分)
23 ビード部(第2脆弱部分)
24,24a フランジ部
26 反力支持部材
26a 傾斜部
A 補強部分
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a vehicle body front frame structure of a vehicle.
[0002]
[Prior art]
The skeletal structure at the front of the vehicle body has a skeletal member that extends in the front-rear direction of the vehicle body. This skeletal member deforms during a vehicle collision to absorb collision energy from the front and affect the cabin, which is the occupant's living space. Is to be reduced.
[0003]
Although the skeletal member can efficiently absorb energy by crushing in the axial direction by input of a collision load, conventionally, a plurality of bead portions are formed on the skeletal member at predetermined intervals along the axial direction, Axial crushing can be promoted (for example, see Patent Document 1).
[0004]
[Patent Document 1]
JP 2001-158377 A (page 4, FIG. 1)
[0005]
[Problems to be solved by the invention]
However, in such a conventional vehicle body front skeletal structure, the axial crush of the skeletal member can be stabilized by forming a plurality of beads in the axial direction of the skeletal member. Since the force is reduced, when a plurality of bead portions are formed, the absorption efficiency of the collision energy is reduced, and there is a possibility that the energy that cannot be absorbed by the skeleton member may increase the influence on the cabin.
[0006]
Therefore, the present invention provides a vehicle body front skeletal structure capable of effectively inducing axial crushing of a skeletal member by input of a collision load and increasing the efficiency of absorbing collision energy.
[0007]
[Means for Solving the Problems]
In the vehicle body front skeletal structure of the present invention, the skeletal members extending in the vehicle body front-rear direction and forming the vehicle body skeleton of the vehicle front part are provided with substantially uniform rigidity in the vehicle body front-rear direction and in the vehicle width direction. An outer shell member having a closed cross-sectional structure in which the inner rigidity is larger than that of the outer side, and a rigidity adjusting member disposed inside the outer shell member, the rigidity of which gradually increases discontinuously from the front of the vehicle toward the rear of the vehicle. It is characterized by having comprised.
[0008]
【The invention's effect】
In the vehicle body front skeletal structure of the present invention, when a collision load is input to the skeletal member due to a frontal collision or an oblique forward collision, the skeletal member is constituted by an outer shell member and a rigidity adjusting member disposed inside the outer shell member. The rigidity balance of the former outer shell member, that is, the rigidity of the outer shell member having a closed cross-sectional structure is made substantially uniform in the vehicle longitudinal direction, and the inner rigidity in the vehicle width direction is larger than that of the outer side. And the rigidity balance of the latter rigidity adjusting member, that is, the rigidity of this rigidity adjusting member is gradually increased discontinuously from the front of the vehicle toward the rear of the vehicle, so that the skeletal member is inwardly moved by the input load. Axial crush can be suppressed by suppressing bending deformation, and a plurality of fragile parts are not provided in the outer shell member itself, so that a large crush reaction force is secured and collision energy is efficiently absorbed. Door can be.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0010]
1 to 9 show a first embodiment of a vehicle body front skeleton structure of the present invention, FIG. 1 is an external perspective view of an automobile to which the vehicle body front skeleton structure of the present invention is applied, and FIG. 2 is a vehicle body front skeleton. FIG. 3 is a plan view schematically showing a skeletal structure of a vehicle body front part, FIG. 4 is an enlarged perspective view showing a front region of a front side member on a vehicle body front right side, and FIG. 5 is a vehicle body front part. FIG. 6 is a schematic view schematically showing a state in which a collision load in a straight-ahead direction and an oblique direction is input to the front side member. FIG. 7 (a) and 7 (b) are schematic plan views schematically showing a comparison with the case, FIG. 7 is an energy absorption characteristic diagram when a collision load is input in a straight traveling direction, and FIG. 8 is a front side obtained by inputting an obliquely forward collision load. In the case where the rigidity adjusting member is provided, By comparing the trunk if no (a) a plan view showing approximately the express ~ (d), FIG. 9 is an energy absorption characteristic diagram during the frontal oblique impact collision load input.
[0011]
The vehicle body front frame structure of the first embodiment is applied to a front side member 2 as a frame member shown in FIGS. 2 and 3 which constitutes a frame structure of the front compartments FC of the vehicle 1 shown in FIG. .
[0012]
As shown in FIGS. 2 and 3, a pair of front side members 2 are provided on both left and right sides of the front compartments FC, and are disposed substantially parallel to the front-rear direction of the vehicle body. A bumper reinforce 3, which forms the framework of the front bumper, is connected to the front end of the vehicle.
[0013]
An extension side member 6 which extends from the dash panel 4 to the lower surface side of the floor panel 5 is connected to the rear of each front side member 2. Side sills 7 are arranged in parallel, and the front ends of the extension side members 6 and the side sills 7 are connected by outriggers 8.
[0014]
Further, a hood ridge member 9 is provided substantially in parallel above each front side member 2 and outside in the vehicle width direction. A front end of the hood ridge member 9 which rises from a front end of the side sill 7 at a rear end of the vehicle body. It is connected to a pillar 10.
[0015]
A strut tower 11 is provided between the hood ridge member 9 and the rear end of the front side member 2 in the vehicle body.
[0016]
The front side member 2 is provided with a reinforcing portion A at an intermediate portion away from the front end by a predetermined distance, and a mounting bracket for mounting a power unit P (see FIG. 5) in which an engine and a transmission are combined with the reinforcing portion A. The front region 2F (see FIG. 3) is located forward of the reinforcing portion A, and the rear region 2R is located behind the reinforcing portion A. The front region 2F includes collision loads F1 and F2 from the front. Deformed to absorb collision energy.
[0017]
Here, in the first embodiment, as shown in FIG. 4, the front region 2F of the front side member 2 has a substantially uniform rigidity in the front-rear direction of the vehicle body, and the rigidity on the inner side in the vehicle width direction is higher than that on the outer side. An outer shell member 20 having a larger closed cross-sectional structure and a rigidity adjusting member 21 disposed inside the outer shell member 20 and having a stiffness that increases gradually discontinuously from the front of the vehicle toward the rear of the vehicle. .
[0018]
The outer shell member 20 is formed by joining, by spot welding or the like, both side flange portions of an inner plate 2b having a U-shaped cross section to the inner portion of a flat outer plate 2a over the entire length of the front side member 2, thereby forming a rectangular cross section. It is configured as a closed cross-section structure.
[0019]
The reinforcing portion A can be formed by joining a reinforcing plate to the inner plate 2b, or partially increasing the thickness of the inner plate 2b.
[0020]
As shown in FIG. 4, the rigidity adjusting member 21 has upper and lower surfaces 21 a and 21 b formed in a substantially triangular plane whose width in the vehicle width direction gradually increases from the front to the rear of the vehicle body, and the upper and lower surfaces 21 a and 21 b. An inclined surface 21c connecting the inside of the vehicle 21b in the vehicle width direction forms an approximately U-shaped cross section, and the outer portions 21d of the upper and lower surfaces 21a and 21b serve as outer walls of the outer shell member 20 formed in a rectangular cross section. To the outer plate 2a by laser welding or the like.
[0021]
In this case, the joining position of the outer portion 21d is selected so as not to interfere with the crushed bead deformed in a bellows shape when the outer shell member 20 is axially crushed.
[0022]
A discontinuous rigid portion of the rigidity adjusting member 21 in the longitudinal direction of the vehicle body is formed by a plurality of first fragile portions 22 formed on the upper and lower surfaces 21a and 21b of the rigidity adjusting member 21 at predetermined intervals in the longitudinal direction of the vehicle body. It is composed.
[0023]
The slits 22 are formed on the upper and lower surfaces 21a and 21b in the vehicle width direction, and each slit 22 gradually becomes longer from the front of the vehicle body to the rear of the vehicle body as the width of the upper and lower surfaces 21a and 21b changes. Each slit 22 is formed at an interval of 1 / of the crush mode pitch of the front side member 2.
[0024]
Further, a rear end portion 21e of the vehicle body of the inclined surface 21c serving as an inner portion of the rigidity adjusting member 21 is joined to an inner wall 2c of the inner plate 2b as an inner wall of the outer shell member 20 by plug welding or the like.
[0025]
In this case, the rear end portion 21 e of the rigidity adjusting member 21 is joined to the reinforcing portion A of the front side member 2.
[0026]
Further, in this embodiment, a second fragile member that induces axial crush of the front side member 2 when an axial collision load is input is provided at the front end of the outer shell member 20, specifically, at the front end of the inner wall 2c of the inner plate 2b. A bead portion 23 is provided as a part. In this case, the bead portion 23 is formed in a vertical direction along a valley in the axial crush mode.
[0027]
According to the vehicle body front skeletal structure of the first embodiment having the above configuration, when the collision load F1 acts on the front end of the front side member 2 from the straight traveling direction due to a frontal collision as shown in FIG. The axial crushing starts from the front end of the front side member 2 by the bead portion 23 provided at the front end of the front side member 20.
[0028]
Then, the collision load F1 is also input to the rigidity adjusting member 21, and the rigidity adjusting member 21 is deformed by the input of the collision load F1 such that the slit 22 is crushed and the upper and lower surfaces 21a and 21b are shortened in the axial direction. Accordingly, the outer shell member 20 joined to the outer portion 12d of the rigidity adjusting member 21 is induced by the collapse of each slit 22, and is axially crushed as shown in FIG.
[0029]
If the stiffness adjusting member 21 is not provided, the input load F1 is applied to the entire front side member 2 in the process of crushing the front side member 2, so that the starting point of the deformation of the front side member 2 is not specified. When the rear end of the front side member 2 is deformed as described above, the rear end of the front side member 2 is easily broken, as shown in FIG. Can not be absorbed.
[0030]
On the other hand, in the present embodiment, the rigidity of the outer shell member 20 on the inner side in the vehicle width direction is made larger than that on the outer side, and the rigidity adjusting member 21 is provided inside the outer shell member 20, so that the The side member 2 can be crushed in the axial direction by suppressing the inward bending deformation by the input load F1, and a large crush reaction force is secured by not providing a plurality of fragile portions on the outer shell member 20 itself. The collision energy can be efficiently absorbed.
[0031]
Therefore, as shown in the energy absorption characteristics of FIG. 7, in the case of the present embodiment in which the rigidity adjusting member 21 shown by the solid line in FIG. The amount of collision energy absorbed by the front side member 2 can be increased.
[0032]
Next, as shown in FIG. 5 and FIG. 8A, when the collision load F2 acts on the front end of the front side member 2 from obliquely outward due to the oblique forward collision, even in this case, the rigidity adjusting member is used. As a result, the inclination change angle θ1 of the axial center in the process of collapsing the front region 2F of the front side member 2 changes when the rigidity adjusting member 21 is not provided as shown in FIG. It becomes smaller (θ1 <θ2) than the angle θ2.
[0033]
For this reason, when the rigidity adjusting member 21 is provided as shown in FIG. 8B, a more stable crush mode is generated as compared with the case where the rigidity adjusting member 21 of FIG. 8D is not provided. Can be.
[0034]
In other words, even in the case of the oblique forward collision, when the rigidity adjusting member 21 is not provided, the starting point of the deformation of the front side member 2 in the process of collapsing the front side member 2 is not specified, and the rear end side is not specified. As shown in FIG. 8 (d), the rear end side is inwardly bent, and the collision energy cannot be sufficiently absorbed.
[0035]
On the other hand, in the present embodiment, by providing the rigidity adjusting member 21, the front side member 2 can be axially crushed by the input load F2, and the outer shell member 20 itself does not have a plurality of fragile portions. Thereby, it is possible to secure a large crush reaction force and efficiently absorb the collision energy.
[0036]
Therefore, as shown in the energy absorption characteristics of FIG. 9, in the case of the present embodiment in which the rigidity adjusting member 21 shown by the solid line in FIG. The amount of collision energy absorbed by the front side member 2 can be made equal to or more than that, and the crush stroke can be increased.
[0037]
.
[0038]
By the way, the vehicle body front skeleton structure of the first embodiment has the upper and lower surfaces 21a and 21b formed in a substantially triangular planar shape whose width in the vehicle width direction gradually increases from the front to the rear of the vehicle body in addition to the above-described effects. Since the outer portions 21d of the upper and lower surfaces 21a and 21b are joined to the outer plate 2a of the outer shell member 20 having a rectangular cross section, the front side member 2 can be mounted without losing the rigidity balance in the vehicle width direction at the time of a frontal collision. The stiffness adjusting member 21 joined to the outer shell member 20 at the time of an oblique forward collision can control the crush mode of the outer shell member 20 to obtain a stable and highly efficient collision energy absorbing effect. Can be.
[0039]
Further, the rigidity portions of the rigidity adjusting member 21 that are discontinuous in the vehicle longitudinal direction are formed as a plurality of first fragile portions formed on the upper and lower surfaces 21a and 21b of the rigidity adjusting member 21 at predetermined intervals in the vehicle longitudinal direction. 22, when the front end of the outer shell member 20 is deformed, in addition to the deformation mode of the outer shell member 20, the inclination connecting the inner sides of the upper and lower surfaces 21 a and 21 b in which the slit 22 of the rigidity adjusting member 21 is formed. The surface 21c is easily deformed, and thereafter, the deformation can induce the deformation of the outer plate 2a of the outer shell member 20. Therefore, a stable and highly efficient collision energy absorbing effect can be obtained without causing the outer shell member 20 to break.
[0040]
Further, by forming the slit 22 extending in the vehicle width direction as the first fragile portion, the deformation of the inclined surface 21c of the rigidity adjusting member 21 can be surely generated, and the crush mode of the outer shell member 20 can be efficiently performed. Can be generated well. The first fragile portion is not limited to the slit 22, and may be configured as a portion having lower rigidity than other portions, for example, an uneven bead.
[0041]
Furthermore, since the vehicle body rear end 21e of the inclined surface 21c of the rigidity adjusting member 21 is joined to the inner wall 2c of the inner plate 2b of the outer shell member 20, the outer shell member 20 can be efficiently and stably moved from the front end during a collision. Can be absorbed.
[0042]
In particular, since the vehicle body rear end 21e of the rigidity adjusting member 21 is joined to the reinforcing portion A of the front side member 2, the rigidity adjusting member 21 reliably receives the collision loads F1 and F2, and moves the outer shell member 20 to the front end. Energy can be absorbed efficiently and stably.
[0043]
Further, a bead portion 23 is provided at the front end of the outer shell member 20 as a second weak portion that induces axial crush of the front side member 2 when an axial collision load is input. The shaft 20 can be efficiently and stably crushed from the front end.
[0044]
In the first embodiment, when the rigidity adjusting member 21 is fixed to the outer shell member 20, the outer members 21d of the upper and lower surfaces 21a and 21b are joined to the outer plate 2a as shown in FIG. As shown in FIG. 10 without limitation, the outer edge of the vehicle body of the outer portion 21d is bent over the entire length to form a flange portion 24, and this flange portion 24 is formed on the outer plate 2a of the outer shell member 20. It can be joined by spot welding or the like.
[0045]
By fixing the rigidity adjusting member 21 to the outer shell member 20 via the flange portion 24 as described above, when the shape of the inner plate 2b of the outer shell member 20 is polygonal as in this example, the front side member 2, the rigidity is increased due to the increase in the inner corners of the vehicle, and a difference in rigidity balance with the outer plate 2a occurs, so that the front side member 2 is likely to be laterally bent. And the rigidity balance of the inner and outer walls of the outer shell member 20 can be evenly approximated.
[0046]
In addition, by providing the flange 24, it is possible to easily and accurately perform positioning when fixing the rigidity adjusting member 21 to the outer plate 2a, and it is possible to use spot welding for fixing at that time. The fixing work of the rigidity adjusting member 21 can be simplified.
[0047]
Further, as shown in FIG. 11, the rigidity adjusting member 21 and the outer shell member 20 are fixed by providing a flange portion 24a divided by the slit 22, and joining the divided flange portion 24a to the outer plate 2a by spot welding. Can also.
[0048]
Even in this case, a low-cost and easy-to-manufacture structure can be provided similarly to the rigidity adjusting member 21 shown in FIG.
[0049]
12 to 14 show a second embodiment of the present invention, in which the same components as those in the first embodiment are denoted by the same reference numerals, and redundant description will be omitted. 13 is an enlarged perspective view showing a front area of the front side member, FIG. 13 is a developed view of a rigidity adjusting member, and FIG. 14 is a plan view of the rigidity adjusting member in an attached state.
[0050]
The main difference between the first embodiment and the vehicle body skeleton structure of the second embodiment is that, as shown in FIG. 12, the rigidity adjusting member 21 is a semi-cylinder having a substantially constant curvature in the vehicle longitudinal direction. In this case, the length of the plurality of slits 22 formed in the upper and lower surfaces 21a and 21b is gradually reduced from the front of the vehicle body to the rear of the vehicle body.
[0051]
That is, as shown in FIG. 13, the rigidity adjusting member 21 of this embodiment has a length on both sides of a rectangular plate member 25 having a longer side in the longitudinal direction of the vehicle as a whole. A slit 22 gradually shortening toward the rear of the vehicle body (upward in the drawing) is formed in a comb-like shape, and the plate material 25 is formed by rolling the plate material 25 into a semi-cylindrical shape in the width direction (the left-right direction in the drawing).
[0052]
A plurality of the slits 22 are formed at regular intervals in the vehicle longitudinal direction, and the interval is set to 1 / of the crush mode pitch of the front side member 2.
[0053]
As shown in FIG. 14, the rear end portion 21e of the rigidity adjusting member 21 has a reaction force supporting member 26 having an inclined portion 26a inclined in the vehicle width direction with respect to the vehicle longitudinal direction (vertical direction in the figure). Is connected to the reinforced portion A of the outer shell member 20 via the
[0054]
Further, even in this embodiment, the outer shell member 20 is provided with a bead portion 23 as a second fragile portion at the front end of the inner wall 2c of the inner plate 2b.
[0055]
With the above structure, according to the vehicle body front skeleton structure of the second embodiment, similarly to the first embodiment, the front side member 2 starts to deform from the bead portion 23 at the front end, and the rigidity adjusting member 21 , And the axial crushing of the outer shell member 20 is promoted by the induction, so that a stable axial crushing mode can be generated in the front side member 2.
[0056]
The size of the semi-cylinder of the rigidity adjusting member 21 is set in advance so as not to interfere with the axially crushed portion when the outer shell member 20 is deformed.
[0057]
Further, in this embodiment, the rear end 21e of the vehicle body of the rigidity adjusting member 21 is connected to the reinforcing portion A of the outer shell member 20 via the reaction force support member 26 having the inclined portion 26a. By acting to receive the deformation generated at the rear end of the member 2, the crush mode of the front side member 2 can be stabilized, and the efficiency of absorbing the collision energy can be enhanced.
[0058]
By the way, the vehicle body front skeletal structure of the present invention has been described by taking the first and second embodiments as examples, but various other embodiments may be adopted without departing from the scope of the present invention. it can.
[Brief description of the drawings]
FIG. 1 is an external perspective view of an automobile to which a vehicle body front frame structure according to the present invention is applied.
FIG. 2 is a perspective view showing a skeleton structure of a front portion of the vehicle body in the first embodiment of the present invention.
FIG. 3 is a plan view schematically showing a skeletal structure of a front portion of the vehicle body in the first embodiment of the present invention.
FIG. 4 is an enlarged perspective view showing a front area of a front side member on the right front side of the vehicle body in the first embodiment of the present invention.
FIG. 5 is an image diagram schematically illustrating a state in which a collision load in a straight traveling direction and an oblique direction is input to a front portion of the vehicle body in the first embodiment of the present invention.
FIGS. 6A and 6B show a deformation state of a front area of a front side member due to a collision load input in a straight traveling direction according to the first embodiment of the present invention, with and without a rigidity adjusting member; FIGS. FIG.
FIG. 7 is an energy absorption characteristic diagram when a collision load is input in a straight traveling direction in the first embodiment of the present invention.
FIGS. 8A to 8D show the deformation of the front region of the front side member due to the input of a diagonally forward collision load in the first embodiment of the present invention, with and without the rigidity adjusting member. FIG.
FIG. 9 is an energy absorption characteristic diagram when an obliquely forward collision load is input in the first embodiment of the present invention.
FIG. 10 is an enlarged perspective view showing a front region of a front right side front member which is a modification of the first embodiment of the present invention.
FIG. 11 is an enlarged perspective view showing a front area of a front right side front member which is another modification of the first embodiment of the present invention.
FIG. 12 is an enlarged perspective view illustrating a front region of a front side member on a vehicle body front right side according to a second embodiment of the present invention.
FIG. 13 is a development view of a rigidity adjusting member according to the second embodiment of the present invention.
FIG. 14 is a plan view of a rigid adjustment member according to a second embodiment of the present invention in an attached state.
[Explanation of symbols]
1 vehicle 2 front id member (frame member)
2F Front area of front side member 2R Rear area of front side member 20 Outer shell member 21 Rigidity adjustment member 22 Slit (first fragile part)
23 Bead part (second vulnerable part)
24, 24a Flange portion 26 Reaction force support member 26a Inclined portion A Reinforced portion

Claims (9)

車体前後方向に延在して車体前部の車体骨格を成す骨格メンバを、
剛性が車体前後方向に亘って略均一となり、かつ、車幅方向内側の剛性を外側よりも大きくした閉断面構造の外殻部材と、
この外殻部材の内部に配設し、剛性が車体前方から車体後方に向けて不連続に漸増する剛性調整部材と、
で構成したことを特徴とする車体前部骨格構造。
A skeleton member that extends in the front-rear direction of the vehicle body and forms a vehicle body skeleton at the front of the vehicle body,
An outer shell member having a closed cross-sectional structure in which the rigidity is substantially uniform in the vehicle longitudinal direction, and the rigidity in the vehicle width direction inside is larger than that in the outside;
A rigidity adjusting member disposed inside the outer shell member, the rigidity of which gradually increases discontinuously from the front of the vehicle toward the rear of the vehicle;
A vehicle body front skeleton structure characterized by comprising:
外殻部材を断面矩形状に形成する一方、剛性調整部材はその上・下面を車体前方から後方に向かって車幅方向の幅が漸増する略三角形状に形成し、この剛性調整部材の外側部分を外殻部材の外側壁に接合したことを特徴とする請求項1に記載の車体前部骨格構造。While the outer shell member is formed in a rectangular cross section, the rigidity adjusting member has upper and lower surfaces formed in a substantially triangular shape whose width in the vehicle width direction gradually increases from the front to the rear of the vehicle body, and an outer portion of the rigidity adjusting member. The vehicle body front skeletal structure according to claim 1, wherein the outer shell member is joined to an outer wall of the outer shell member. 剛性調整部材の車体前後方向の不連続な剛性部分は、この剛性調整部材の上・下面に車体前後方向に所定間隔をもって形成した複数の第1脆弱部分であることを特徴とする請求項1または2に記載の車体前部骨格構造。2. The rigid portion which is discontinuous in the longitudinal direction of the vehicle body of the rigidity adjusting member is a plurality of first fragile portions formed on upper and lower surfaces of the rigidity adjusting member at predetermined intervals in the longitudinal direction of the vehicle body. 3. The vehicle body front skeleton structure according to 2. 第1脆弱部分は、車幅方向に延びるスリットであることを特徴とする請求項3に記載の車体前部骨格構造。The vehicle body front frame structure according to claim 3, wherein the first fragile portion is a slit extending in a vehicle width direction. 剛性調整部材の内側部分の車体後方端部を、外殻部材の内側壁に接合したことを特徴とする請求項1〜4のいずれか1つに記載の車体前部骨格構造。The vehicle body front skeletal structure according to any one of claims 1 to 4, wherein a rear end of the vehicle body in an inner portion of the rigidity adjusting member is joined to an inner wall of the outer shell member. 外殻部材の前記剛性調整部材の車体後方端部に対応する部位に補強部分を設け、この補強部分に剛性調整部材の車体後方端部を接合したことを特徴とする請求項1〜5のいずれか1つに記載の車体前部骨格構造。6. The vehicle body according to claim 1, wherein a reinforcing portion is provided at a portion of the outer shell member corresponding to the vehicle body rear end of the rigidity adjusting member, and the vehicle body rear end of the rigidity adjusting member is joined to the reinforcing portion. The vehicle body front skeleton structure according to any one of the first to third aspects. 剛性調整部材は、車体前後方向に亘って曲率を略一定とする半円筒形状を成し、かつ、その上・下面に形成した複数の第1脆弱部分の車幅方向長さは、車体前方から車体後方に向かって徐々に短くしたことを特徴とする請求項1または3〜6のいずれか1つに記載の車体前部骨格構造。The rigidity adjusting member has a semi-cylindrical shape having a substantially constant curvature in the longitudinal direction of the vehicle body, and a plurality of first fragile portions formed on upper and lower surfaces thereof have a length in a vehicle width direction from the front of the vehicle body. The vehicle body front frame structure according to any one of claims 1 to 3, wherein the length is gradually reduced toward a rear side of the vehicle body. 剛性調整部材の車体後方端部は、車体前後方向に対して車幅方向に傾斜する傾斜部を有する反力支持部材を介して外殻部材の補強部分に連結したことを特徴とする請求項6または7に記載の車体前部骨格構造。The vehicle body rear end portion of the rigidity adjusting member is connected to a reinforcing portion of the outer shell member via a reaction force support member having an inclined portion inclined in the vehicle width direction with respect to the vehicle longitudinal direction. Or a vehicle body front frame structure according to 7. 外殻部材の前端部に、軸方向の過大荷重の入力時に骨格メンバの軸圧潰を誘発する第2脆弱部分を設けたことを特徴とする請求項1〜8のいずれか1つに記載の車体前部骨格構造。The vehicle body according to any one of claims 1 to 8, wherein a second fragile portion that induces axial crush of the skeleton member when an excessively large load in the axial direction is input is provided at a front end of the outer shell member. Front skeletal structure.
JP2003143786A 2003-05-21 2003-05-21 Body front frame structure Pending JP2004345466A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003143786A JP2004345466A (en) 2003-05-21 2003-05-21 Body front frame structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003143786A JP2004345466A (en) 2003-05-21 2003-05-21 Body front frame structure

Publications (1)

Publication Number Publication Date
JP2004345466A true JP2004345466A (en) 2004-12-09

Family

ID=33531457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003143786A Pending JP2004345466A (en) 2003-05-21 2003-05-21 Body front frame structure

Country Status (1)

Country Link
JP (1) JP2004345466A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006182317A (en) * 2004-12-28 2006-07-13 Mitsubishi Motors Corp Body front structure
JP2007055344A (en) * 2005-08-23 2007-03-08 Toyota Motor Corp Vehicle body structure
JP2010505694A (en) * 2006-10-12 2010-02-25 マグナ オートモーティヴ サーヴィシーズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Energy absorber especially for non-axial loads
JP2011063191A (en) * 2009-09-18 2011-03-31 Kobe Steel Ltd Crash box
CN102490789A (en) * 2011-12-20 2012-06-13 东风汽车公司 Car front longitudinal beam structure capable of improving collision performance
CN102985313A (en) * 2009-10-23 2013-03-20 丰田自动车株式会社 Vehicle body structure
JP2015077610A (en) * 2013-10-16 2015-04-23 トヨタ自動車株式会社 Laser bonding structure and laser bonding method
EP2894066A1 (en) * 2014-01-09 2015-07-15 Ford Otomotiv Sanayi Anonim Sirketi Vehicle with bumper mounted on crash box
JP2016533939A (en) * 2013-10-09 2016-11-04 オートテック エンジニアリング エー.アイ.イー. Shock absorber system for vehicle
CN106515629A (en) * 2015-09-14 2017-03-22 丰田自动车株式会社 Vehicle body framework structure
CN110884566A (en) * 2018-09-07 2020-03-17 丰田自动车株式会社 Cross member and manufacturing method therefor
JP2023077041A (en) * 2021-11-24 2023-06-05 株式会社Subaru Vehicle body structure
JP2023077040A (en) * 2021-11-24 2023-06-05 株式会社Subaru Vehicle body structure
WO2024147196A1 (en) * 2023-01-06 2024-07-11 日産自動車株式会社 Automobile

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006182317A (en) * 2004-12-28 2006-07-13 Mitsubishi Motors Corp Body front structure
JP2007055344A (en) * 2005-08-23 2007-03-08 Toyota Motor Corp Vehicle body structure
JP2010505694A (en) * 2006-10-12 2010-02-25 マグナ オートモーティヴ サーヴィシーズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Energy absorber especially for non-axial loads
JP2011063191A (en) * 2009-09-18 2011-03-31 Kobe Steel Ltd Crash box
CN102985313A (en) * 2009-10-23 2013-03-20 丰田自动车株式会社 Vehicle body structure
JP5218649B2 (en) * 2009-10-23 2013-06-26 トヨタ自動車株式会社 Body structure
US8523273B2 (en) 2009-10-23 2013-09-03 Toyota Jidosha Kabushiki Kaisha Vehicle body structure
CN102985313B (en) * 2009-10-23 2014-05-21 丰田自动车株式会社 Body structure
CN102490789A (en) * 2011-12-20 2012-06-13 东风汽车公司 Car front longitudinal beam structure capable of improving collision performance
CN102490789B (en) * 2011-12-20 2014-03-12 东风汽车公司 Car front longitudinal beam structure capable of improving collision performance
JP2016533939A (en) * 2013-10-09 2016-11-04 オートテック エンジニアリング エー.アイ.イー. Shock absorber system for vehicle
US9951836B2 (en) 2013-10-09 2018-04-24 Autotech Engineering A.I.E. Shock absorber system for a vehicle
JP2015077610A (en) * 2013-10-16 2015-04-23 トヨタ自動車株式会社 Laser bonding structure and laser bonding method
EP2894066A1 (en) * 2014-01-09 2015-07-15 Ford Otomotiv Sanayi Anonim Sirketi Vehicle with bumper mounted on crash box
CN106515629A (en) * 2015-09-14 2017-03-22 丰田自动车株式会社 Vehicle body framework structure
JP2017056760A (en) * 2015-09-14 2017-03-23 トヨタ自動車株式会社 Vehicle body skeleton structure
US9908492B2 (en) 2015-09-14 2018-03-06 Toyota Jidosha Kabushiki Kaisha Vehicle body framework structure
CN110884566A (en) * 2018-09-07 2020-03-17 丰田自动车株式会社 Cross member and manufacturing method therefor
JP2020040444A (en) * 2018-09-07 2020-03-19 トヨタ自動車株式会社 Cross member of vehicle body and method of manufacturing cross member
JP7056481B2 (en) 2018-09-07 2022-04-19 トヨタ自動車株式会社 How to manufacture cross members and cross members of the car body
CN110884566B (en) * 2018-09-07 2022-09-20 丰田自动车株式会社 Cross member and manufacturing method for cross member
US11485414B2 (en) 2018-09-07 2022-11-01 Toyota Jidosha Kabushiki Kaisha Crossmember and manufacturing method for crossmember
JP2023077041A (en) * 2021-11-24 2023-06-05 株式会社Subaru Vehicle body structure
JP2023077040A (en) * 2021-11-24 2023-06-05 株式会社Subaru Vehicle body structure
WO2024147196A1 (en) * 2023-01-06 2024-07-11 日産自動車株式会社 Automobile

Similar Documents

Publication Publication Date Title
JP4059187B2 (en) Vehicle hood structure
JP3070399B2 (en) Strength member structure of vehicle body
JP2003226266A (en) Body front structure
JP2004345466A (en) Body front frame structure
JP4346313B2 (en) Auto body front structure
JP2016150719A (en) Front part body structure of vehicle
JP6160278B2 (en) Vehicle front structure
JP7354757B2 (en) Vehicle front body structure
JP2005096629A (en) Vehicle hood structure
JP6044794B2 (en) Front body structure of the vehicle
JP2004123027A (en) Body front structure
JP7318478B2 (en) Vehicle front body structure
JP5486251B2 (en) Vehicle shock absorber and vehicle bumper device
JP2004075021A (en) Body frame structure
JP7567520B2 (en) Vehicle rear body structure
JP2009137523A (en) Front body structure of automobile
JP2003095135A (en) Car body front structure
JP2002160664A (en) Body front structure
JP5803819B2 (en) Vehicle front structure
JP2003054452A (en) Car body front structure
JP3632654B2 (en) Body front structure
CN118545164A (en) Vehicle lower structure
JP5702161B2 (en) Front body structure of automobile
JP3613229B2 (en) Body front structure
JP6187427B2 (en) Rear body structure of the vehicle