[go: up one dir, main page]

JP2004346410A - Method for forming rust preventive film - Google Patents

Method for forming rust preventive film Download PDF

Info

Publication number
JP2004346410A
JP2004346410A JP2003147954A JP2003147954A JP2004346410A JP 2004346410 A JP2004346410 A JP 2004346410A JP 2003147954 A JP2003147954 A JP 2003147954A JP 2003147954 A JP2003147954 A JP 2003147954A JP 2004346410 A JP2004346410 A JP 2004346410A
Authority
JP
Japan
Prior art keywords
metal
film
inorganic anion
rust
metal cation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003147954A
Other languages
Japanese (ja)
Inventor
Yoshiaki Okumura
美明 奥村
Hideto Tanaka
秀人 田中
Makoto Michii
誠 道井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Paint Co Ltd
Original Assignee
Nippon Paint Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Paint Co Ltd filed Critical Nippon Paint Co Ltd
Priority to JP2003147954A priority Critical patent/JP2004346410A/en
Publication of JP2004346410A publication Critical patent/JP2004346410A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Treatment Of Metals (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method by which an excellent rust preventive film can be formed on the surface of a metallic base material without using chemicals, such as hexavalent chromium, having an adverse environmental effect. <P>SOLUTION: In this method for forming the rust preventive film, a metal cation and an inorganic anion are used to form the film on the metallic base material. The absolute value of a product of the valence of the metal cation and that of the inorganic anion before film formation is ≤6, and the absolute value of a product of the valence of the metal cation and that of the inorganic anion after film formation is ≥8. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、金属材料の表面の錆発生を効果的に防止することができる手段、特に防錆皮膜の形成や防錆剤に関するものである。
【0002】
【従来の技術】
金属基材は、錆が発生して、性能を発揮できなくなる。金属基材の防食技術は、古くから種々のものが存在するが、完全な技術は依然として存在せず、検討が行われている。
【0003】
金属を防錆する効果的な方法として従来から数多く提案されている技術は、6価のクロムを用いて金属基材上にクロメート皮膜を形成する方法である。クロメート皮膜の高い防食性は、金属基材上で難溶性の緻密な皮膜を形成することができることに起因するといわれている。このクロメート皮膜の中に3価と6価のクロムが含まれる。しかし、この6価クロムは、非常に有効な防錆皮膜形成剤であるが、毒性が強く、環境および健康上の問題があるので、6価クロムを用いないで防錆する方法が検討されている。
【0004】
例えば、特許文献1(特開平7−188951号公報)は、原子番号57〜71の範囲の希土類金属と有機キレート剤から誘導される有機−希土類金属キレート化合物を含有する水溶液中に金属を浸漬することで腐食を抑制する方法が開示されている。また、特許文献2(特開平9−143752号公報)にはアルミまたはアルミ合金上の防錆処理として、リン酸塩、ジルコニウム塩またはチタン塩、フッ化物を主体とした液で処理する方法が提案されている。更に、特許文献3(特開2000−64090号公報)には、希土類イオンと亜鉛イオンを含む水溶液中で被処理金属を陰極電解する防錆処理法が記載されている。しかしながら、これらの処理方法は、必ずしも十分な耐食性を金属表面に付与しているとはいえず、防錆面で6価クロムを含む処理方法に対抗できるまでには至っていない。
【0005】
【特許文献1】
特開平7−188951号公報
【特許文献2】
特開平9−143752号公報
【特許文献3】
特開2000−64090号公報
【0006】
【発明が解決しようとする課題】
本発明は、6価クロム等の環境に害を与える化学薬品を使用することなく、金属基体表面に優れた防錆皮膜を形成できる方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明は、金属基材を、両者のイオン価数の積の絶対値が6以下である被酸化性の金属カチオン及び無機アニオンを含有する水溶液中に浸漬すると、溶存酸素や空気中の酸素の作用で当該金属カチオンまたは無機アニオンが酸化され、金属基材上にイオン価数の積の絶対値が8以上の極めて難溶で防食性に優れた皮膜が形成されることを見出すことにより成されたものである。
【0008】
すなわち、本発明は、金属カチオン及び無機アニオンを用いて、金属基材上で皮膜を形成する方法であって、皮膜形成前の前記金属カチオンの価数と前記無機アニオンの価数との積の絶対値が6以下であり、皮膜形成後の前記金属カチオンの価数と前記無機アニオンの価数との積の絶対値が8以上であることを特徴とする防錆皮膜の形成方法を提供する。
【0009】
本発明において皮膜形成前の無機アニオンは、亜リン酸イオンおよび/または次亜リン酸イオンであるのが好ましい。また、金属カチオンは、イットリウムまたは原子番号57〜71の希土類金属のカチオンであってよい。
【0010】
前述のように、金属基材上での皮膜形成が、金属カチオンと無機アニオンとを含む水溶液を用いた金属表面処理方法で行うことが好ましい。この方法は、金属カチオンと無機アニオンとからなる無機物を含む塗料を用いて行っても良い。
【0011】
本発明はまた、金属カチオン及び無機アニオンの組合せからなる防錆剤であって、前記金属カチオンの価数と前記無機アニオンの価数との積の絶対値が6以下であり、それが金属基材上に適用したときに前記金属カチオンの価数と前記無機アニオンの価数との積の絶対値が8以上になることを特徴とする金属基材の防錆剤を提供する。
【0012】
防錆剤の無機アニオンは、亜リン酸イオンおよび/または次亜リン酸イオンであってよく、金属カチオンは、イットリウムまたは原子番号57〜71の希土類金属のカチオンでありうる。
【0013】
【発明の実施の形態】
本発明の防錆皮膜の形成方法では、金属カチオン及び無機アニオンを皮膜として金属基材上に適用する。金属基材上への適用方法としては、種々の方法が考えられる。例えば、防錆処理液として金属基材上に塗布する方法、あるいは塗料として金属基材上に塗装する方法等が考えられる。以下、簡単のため処理液として適用する場合について記載する。
【0014】
本発明の防錆皮膜を形成するために用いる防錆処理液には、金属カチオンと無機アニオンを含有する。金属カチオン種としては、皮膜形成前に、無機アニオンの価数との積の絶対値が6以下であることを必要とする。通常、酸化によって、金属カチオンと無機アニオンの価数の積が8以上になる過程で皮膜形成が進行すると考えられるので、例えば、無機アニオンが−3価の場合を想定すると酸化される前の金属カチオンはイオン価数が+2価以上で、酸化された後のイオン価数が+3価以上であれば良く、1価や2価のアルカリ金属やアルカリ土類金属は除かれる。金属カチオンが酸化されずに、無機アニオンが酸化され、その両者の価数の積の絶対値が8以上となる場合も考えられるが、通常の無機アニオンの価数は最大でも−3であるので、やはり1価や2価の、アルカリ金属やアルカリ土類金属は除かれる。金属カチオンとして用いることのできる金属の例としては、鉄(Fe)、アルミニウム(Al)、インジウム(In)、ビスマス(Bi)、イットリウム(Y)、原子番号57〜71の範囲の希土類金属などのカチオンが挙げられる。中でも、金属カチオンとして+3価以上の価数で安定で、中性水溶液中で酸化物生成を起こしにくい、イットリウムあるいは原子番号57〜71の希土類金属カチオンが好ましい。原材料のコスト面から、イットリウム(Y)、ランタン(La)、セリウム(Ce)、プラセオジム(Pr)、ネオジム(Nd)、サマリウム(Sm)のカチオンが特に好ましい。
【0015】
これらの金属カチオンのイオン供給源としては、例えば、それらカチオンを一構成成分として含有する溶解度1ppm以上の無機酸塩または有機酸塩を用いればよい。それらの無機酸塩または有機酸塩の例としては、硫酸塩、亜硫酸塩、アミド硫酸塩、硝酸塩、亜硝酸塩、リン酸塩、亜リン酸塩、次リン酸塩、次亜リン酸塩、亜ヒ酸塩、水酸化物、酸化物などの無機塩;蟻酸塩、酢酸塩、乳酸塩、シュウ酸塩などの有機塩などが挙げられる。これらの金属カチオン種の総濃度は、好ましくは0.0001〜5重量%、更に好ましくは、0.001〜0.5重量%である。カチオン濃度が0.0001重量%より少ないと、本発明の効果である防錆性が得られない。5重量%を越えても、皮膜が不均一になりやすく防錆性が低下しやすくなるという欠点を有する。
【0016】
本発明の無機アニオン種としては、酸化されることでイオン価数の値が負で増加(−で価数が増加)する無機アニオンで、例えば、金属カチオンが最高と思われる4価の場合を想定すると酸化前のイオン価数が負で1価以上(ex.−1、−2など)で、酸化された後のイオン価数が負で2価以上になる無機アニオンである。金属カチオンが酸化を受けて価数を増加する場合においては、必ずしも無機アニオンは酸化される必要はなく、例えば、金属カチオンが酸化を受けて、+2価から+3価へ変化する場合は、無機アニオンの価数は−3価で安定なものであれば良い。「無機アニオン」とは、1または2以上の無機原子を含む原子団または単独の無機原子アニオンである。一般に2個以上のアニオンは水溶液中のプロトンの吸脱着(解離平衡)により複数の価数のイオン状態をとるが、ここで言うイオン価数とは、それらの中で最も大きな価数を持つイオン種の価数を意味する。すなわち、例えば、リン酸イオンは水中で解離して、HPO 、HPO42−、PO 3−の3つのイオン状態をとる(pHによって存在比は変化する)が、その中で最大価数を持つイオンがPO 3−であるので−3価と呼ぶ。それらの無機アニオンの具体例としては、リン酸イオン、亜リン酸イオン、次リン酸イオン、次亜リン酸イオン、亜ヒ酸イオンなどが挙げられる。この中でも特に亜リン酸イオンと次亜リン酸イオンが好ましい。なお、亜リン酸と次亜リン酸イオンとを併用する場合、その価数はその構成比により計算で求めることができる。
【0017】
これらアニオンのイオン源としては、亜リン酸や次亜リン酸のような酸の形あるいは溶解度1ppm以上の無機塩の形で用いればよく、例えば、アルカリ金属のような1価の金属塩、アルカリ土類金属のような2価の金属塩、前記の金属カチオンのような3価あるいは4価の金属塩などが挙げられる。
【0018】
これらの無機アニオン種の総濃度は、前記の金属カチオン種の総濃度と同様で、好ましくは0.0001〜5重量%、更に好ましくは、0.001〜0.5重量%である。アニオン濃度が0.0001重量%より少ないと、本発明の効果である防錆性が得られない。5重量%を越えると皮膜が不均一化しやすく、十分な防錆性が得られにくくなる。
【0019】
本発明では、必要に応じて、上記金属カチオンと無機アニオンの溶解濃度を上げるため、錯化成分を含有させてもよい。例えば、+3価のネオジムイオンと−1価の次亜リン酸イオンの塩である次亜リン酸ネオジムは、比較的水への溶解度が高く、配合量によって次亜リン酸イオンとネオジムイオンを広範囲の濃度に設定できるが、同+3価のネオジムイオンと−2価の亜リン酸イオンの塩である亜リン酸ネオジムはかなり溶解度が低く、そのままでは亜リン酸イオンとネオジムイオンを低い濃度でしか供給できず、自由に濃度範囲を制御することは困難である。このような場合、適当な錯化成分を添加することで、亜リン酸イオンとネオジムイオンの溶解濃度を高い濃度範囲まで自由に制御できるようになり、良好な防錆皮膜の形成が可能となる。
【0020】
錯化成分としては、例えば、ジエチレントリアミン等の脂肪族アミン、トリエタノールアミン等のアミノアルコール類、EDTA、アスパラギン酸等のアミノカルボン酸類;酒石酸、リンゴ酸、クエン酸、グルコン酸等のヒドロキシカルボン酸;マロン酸、コハク酸、マレイン酸、ジグリコール酸等の多価カルボン酸などが知られているが、本発明に使用する錯化成分の種類と濃度は、使用する金属カチオンまたは金属塩の種類や濃度を考慮して選択する必要がある。
【0021】
本発明に用いる錯化成分は、酸化される前の金属カチオンと無機アニオンの溶解性を高め、それらイオンが酸化を受けた際には、金属表面に難溶性塩の皮膜が形成されることを妨げないようなものでなければならない。例えば、先ほどの亜リン酸ネオジムを例に取ると、酸化を受ける前の亜リン酸ネオジムの溶解性を上げるには、亜リン酸イオンより強い配位能を持つ錯化成分が有効である。しかしながら、亜リン酸イオンが一旦酸化されてリン酸イオンに変化すると、今度はリン酸ネオジムの難溶性皮膜の析出を妨害しない必要があり、その錯化成分の配位能はリン酸イオンよりも弱いことが必須となる。
【0022】
このように、本発明に用いることのできる錯化成分の配位能には適当な範囲があり、具体的には、金属カチオンとの錯形成の安定度定数Kが、5≦logK≦14の範囲内にある錯化成分が好ましい。より好ましくは、7≦logK≦12の範囲の錯化成分で、例えば、クエン酸(金属カチオンがNd3+の場合、logK=7.7)、ニトリロ三酢酸(金属カチオンがNd3+の場合、logK=11.3)、及びそれらの塩などが好適に用いられる。
【0023】
使用する錯化成分の総使用濃度C(重量%)は、目的とする金属イオンの必要溶解濃度M(重量%)を目安に決定するのが好ましい。
【0024】
本発明の防錆皮膜の形成のための処理液のpHは、亜リン酸や次亜リン酸、硝酸などの酸、または水酸化ナトリウムや水酸化マグネシウムなどのアルカリ成分を添加してpH4〜10、好ましくはpH5〜9に調整するのがよい。pH4より酸性の場合は、金属基材表面が酸で溶解するため皮膜が形成されにくく、pH10を越えると皮膜形成成分である金属カチオンが水酸物として沈殿しやすくなり、十分な金属カチオンの濃度を保つことがむずかしくなる。
【0025】
本発明では、金属基材を上記防錆皮膜形成用の処理液と接触させた後、組成物中の金属カチオンおよび/または無機アニオンを酸化することで、金属基材表面に良好な防錆皮膜を形成することができる。
【0026】
組成物中の金属カチオンおよび/または無機アニオンを酸化する方法については特に限定されないが、例えば、自然の空気酸化を利用する方法、酸化性物質(酸化剤)を利用する方法、外部電源により電気化学的に酸化する方法などが挙げられる。
【0027】
自然の空気酸化を利用する例としては、例えば、空気が存在する通常の環境下で、金属基材を上記防錆皮膜形成用処理液に浸漬する、あるいは処理液を金属基材上に塗布することで基材表面に防錆皮膜が形成される。この場合、環境中の酸素あるいはそれが処理液に溶解した溶存酸素によって処理液中の前記イオンの酸化が起こり、基材表面に皮膜が形成される。
【0028】
自然の空気酸化を利用する方法では、酸化反応がゆっくりと起こるため、良好な防錆皮膜を形成するのに金属基材と上記組成物を比較的長時間、例えばアルミ合金基材の場合10℃以上で5分間以上接触しておく必要がある。一方、金属基材と上記防錆皮膜形成用処理液の接触時に酸化を促進するよう、処理液中に酸化性物質を配合しておくと金属基材上に良好な防錆皮膜が短時間に形成できるようになる。
【0029】
酸化を促進する方法としては、上記以外に外部電源を用いて当該処理液中で金属基材を電解酸化するする方法などがある。
【0030】
酸化を促進するための酸化性物質としては、例えば、硝酸、亜硝酸、バナジン酸、過マンガン酸などのオキソ酸またはその塩などが挙げられる。これらの酸化性物質を添加することで、接触後30秒程度で良好な防錆皮膜が形成できるようになる。これら酸化性物質の総使用濃度は、好ましくは、0.0001〜5重量%、更に好ましくは、0.001〜0.5重量%である。
【0031】
また、外部電源による電解酸化の方法としては、例えば、上記防錆皮膜形成用処理液中でアルミ基材を飽和KClの銀/塩化銀電極に対して、+2V以上で30秒程度陽分極することで良好な防錆皮膜が浸漬金属表面に形成できる。
【0032】
本発明による防錆皮膜の形成方法は、上記水溶液を用いた処理以外に、バインダー成分を含む塗料組成物として金属表面に塗装するという形でも有効に利用でき、被塗装金属の防錆性を効果的に向上できる。これは、金属基材に、前記金属カチオンと無機アニオンとからなる無機物を含有した塗料を塗装することで、例えば、塗料が水性タイプの場合は塗装時および塗装後に当該塗料水溶液と金属が接触することで、また塗料が油性タイプの場合は、塗膜形成後に環境から水および酸素が侵入し、塗膜欠陥部あるいは塗膜下で前記処理液と類似した溶液環境が出現することで、塗装金属面に防錆皮膜が形成され、被塗装金属の防錆性が向上するものと考えられる。
【0033】
バインダー成分としては、一般の塗料用樹脂と必要に応じて配合される架橋剤が好適に利用でき、例えば、アクリル樹脂、ポリエステル樹脂、アルキッド樹脂、エポキシ樹脂、ウレタン樹脂などの油性(有機溶剤)タイプまたは水溶性、水分散(エマルション)型の水性タイプのものが利用できる。
【0034】
塗料中の前記金属カチオンと前記無機アニオンの配合濃度は、塗料固形分に対して、各々0.001〜50重量%が好ましい。0.001重量%未満であれば防錆皮膜の形成が起こりにくい場合があり、50重量%を超えると塗膜の耐水性が極端に低下する場合がある。より好ましくは、0.01〜20重量%である。
防錆塗料のpHは4〜10が好ましく、5〜9がより好ましい。
【0035】
【発明の効果】
本発明によれば、6価クロム等の環境に害を与える化学薬品を使用することなく、金属基材表面に優れた防錆皮膜を形成することができる防錆皮膜形成方法を提供することができる。
【0036】
【実施例】
本発明を実施例により更に詳細に説明する。本発明はこれら実施例に限定されるものと解してはならない。
【0037】
実施例1〜26および比較例1〜17
被処理金属として、アルミニウム板(JIS−H−4000:A2024P)および鋼板(JIS−G−3141:SPCC・SD)を用い、日本ペイント社製のサーフクリーナー53で脱脂、水洗した後、乾燥機を用いて80℃で風乾した。続いて、アルミニウム板については表面酸化皮膜を除去または破壊する目的で一旦35℃の5%NaCl水溶液中に30分間浸漬した後、また鋼板についてはそのまま、表1〜3に示す本発明の防錆皮膜形成用処理液(それぞれ5%NaClとなるような塩化ナトリウムを添加)に35℃で1時間浸漬した後の金属表面の腐食抵抗値を電気化学インピーダンス法にて評価した。
【0038】
なお、5%NaCl水溶液中でのアルミニウム板(A4024P)および鋼板の腐食抵抗値はそれぞれ2100Ω・cmと380Ω・cmであり、アルミニウム板で5000Ω・cm以上、鋼板で1000Ω・cm以上の腐食抵抗値があれば、優れた防錆皮膜が形成できていると判断する。
【0039】
表1〜3の水溶液は、金属カチオン源として塩化物(塩)を、無機アニオン源としてその酸を(クロム酸のみNa塩を利用)、また錯化剤としてクエン酸またはEDTAをそれぞれ用い、各々が表中の濃度になるように配合した後、HClまたはNaOHでpHを6.0に調整し、更に溶液が5%NaClとなるよう塩化ナトリウムを添加・撹拌して調整した。比較例9と17は、クロメート皮膜形成時の例を示す。その他の比較例は、カチオンか、アニオンかのいずれか一方のみが本発明の範囲のイオンである例を示す。
【0040】
本皮膜形成用処理液に浸漬したアルミニウムまたは鋼の表面に形成された防錆皮膜の腐食抵抗値を比較液中でのそれと合わせて表1〜3に示す。
【0041】
【表1】

Figure 2004346410
【0042】
【表2】
Figure 2004346410
【0043】
【表3】
Figure 2004346410
【0044】
実施例27〜28および比較例18〜20
製造例1(バインダー樹脂および樹脂ワニスの製造)
撹拌機、温度制御装置、デカンターを備えた容器に、大豆油脂肪酸30重量部、トリメチロールプロパン17重量部、ネオペンチルグリコール13重量部、無水トリメリット酸7重量部、イソフタル酸32重量部、キシレン1重量部およびジブチルスズオキサイド0.02重量部を仕込み、撹拌しながら加熱した。反応進行に伴って生成する水をキシレンと共沸させて除去し、酸価30、水酸基価60になるまで加熱を継続し、反応を終了させた。得られたバインダー樹脂を不揮発分70重量%となるようにブチルセロソルブで希釈してアルキド樹脂ワニスを得た。この樹脂ワニスは、ガードナー粘度Z2であり、SP値=10.37であった。この樹脂ワニスをトリエチルアミンで理論上100%中和し、脱イオン水にて不揮発分40重量%になるように調整して水溶性アルキド樹脂ワニスを得た。
【0045】
製造例2(塗料配合用の金属カチオンと無機アニオンの供給源(無機塩)の製造)
硝酸ネオジム(Nd)の200mmol/l水溶液と亜リン酸の300mmol/lの水溶液を作成し、それらを1:1の体積比で混合後、撹拌しながらNaOHで液のpHを6.0に調整し、その懸濁液を30分間撹拌した後、再度pHを6.0に調整して1時間撹拌する。その後、懸濁液から沈殿物を濾紙を使って濾別し、イオン交換水にて洗浄濾液の電導度が100μS/cm以下になるまで濾紙上の沈殿物を繰返し洗浄し、80℃の温風乾燥機中で乾燥した後、乳鉢で粉砕して亜リン酸ネオジム(Nd)の粉末を得た。
【0046】
実施例17〜18および比較例18〜20の実験方法
製造例1の水溶性アルキド樹脂ワニスに、表4に示す組成比率になるよう、製造例2の亜リン酸ネオジム(Nd)または他の防錆顔料と二酸化チタンをラボミキサーを用いて分散し、更に硬化剤を配合して実施例27〜28および比較例18〜20の水性塗料を調製した。比較例18は上記製造例2で得た亜リン酸ネオジムをもちいない例を示し、比較例19は亜リン酸ネオジムに代えて亜リン酸亜鉛を用いる例であり、比較例20は亜リン酸ネオジムに代えてクロム酸ストロンチウムを用いる例である。
【0047】
こうして得られた実施例27〜28および比較例18〜20の塗料をNK#2カップで50秒になるまで水で希釈し、リン酸亜鉛処理(日本ペイント社製;サーフダインSD6350処理)を施したアルミニウムA2024板上に乾燥塗膜厚が25〜30μmになるようスプレーして、160℃で20分間焼き付けた。この塗膜板について、耐湿性試験(50℃、95%RH、100時間)、塩水噴霧試験(240H)、複合サイクル腐食試験60サイクル(サイクルモード:SST(0.5%NaCl)、35℃、2H→DRY(20−30%RH)、60℃、4H→WET(95%RH)、50℃、2H)を行い、クロスカット部における塗膜ふくれを評価した。結果を表4に合わせて示す。なお、評価結果は次の基準によった。
【0048】
・耐湿性
「◎」…ブリスターほとんど無し
「○」…ASTMレイティングでブリスターが粗(F)
「△」…ASTMレイティングでブリスターが中間(M)
「×」…ASTMレイティングでブリスターが密(DまたはMD)
【0049】
・塗膜ふくれ
「◎」…片側最大ふくれ幅1mm以内
「○」…片側最大ふくれ幅2mm以内
「△」…片側最大ふくれ幅3mm以内
「×」…片側最大ふくれ幅3mmオーバー
【0050】
【表4】
Figure 2004346410
【0051】
実施例29および比較例21〜22
この例では、カチオン電着塗料に上記製造例2の亜リン酸ネオジムを配合した例とその比較例を示す。
【0052】
製造例3(カチオン性バインダー樹脂の製造)
カチオン性エポキシ樹脂の合成撹拌機、冷却器、窒素注入管、温度計および滴下ロートを取り付けたフラスコにビスフェノールA型エポキシ樹脂(エポキシ当量188)752.0部、メタノール77.0部、メチルイソブチルケトン200.3部およびジラウリル酸ジブチルスズ0.3部を仕込み、室温で撹拌し均一溶液とし、2、4−/2、6−トリレンジイソシアネート80/20(重量比)混合物174.2部を50分間かけて滴下すると発熱により系内の温度が70℃に達した。IRスペクトルはイソシアネートに基づく2280cm−1の吸収の消失およびウレタンのカルボニル基に基づく1730cm−1の吸収を示した。
【0053】
N、N−ジメチルベンジルアミン2.7部を加えた後、系内を120℃まで昇温し、副生するメタノールをデカンターを用いて留去させながらエポキシ当量が463に達するまで反応を行った。IRスペクトルはウレタンのカルボニル基に基づく1730cm−1の吸収の消失およびオキサゾリドン環のカルボニル基に基づく1750cm−1の吸収の出現を示した。
【0054】
p−ノニルフェノール220.0部およびメチルイソブチルケトン83.3部を加え125℃の温度を保持しながら、エポキシ当量が1146に達するまで反応を行った。系内の温度が110℃になるまで冷却し、アミノエチルエタノールアミンのケチミン(79重量%のメチルイソブチルケトン溶液)47.2部、ジエタノールアミン42.0部、N−メチルエタノールアミン30.0部およびメチルイソブチルケトン17.3部を加えた後、昇温し、120℃で2時間反応させた。このようにして不揮発分80重量%のカチオン性エポキシ樹脂を得た。
【0055】
製造例4(硬化剤の製造)
合成撹拌機、冷却器、窒素導入管、温度計および滴下ロートを取り付けたフラスコに、ヘキサメチレンジイソシアネートのイソシアヌレート型三量体(コロネートHX、日本ポリウレタン社)199部、メチルイソブチルケトン32部、およびジブチルスズジラウレート0.2部を秤取し、50℃まで昇温した。外部から冷却して温度を50℃に保ちながらメチルエチルケトオキシム87部を2時間かけて滴下した。滴下終了後70℃に昇温し、この温度を保ちながらIR分析によりNCO基が消失するまで反応させ、脂肪族ブロックポリイソシアネート硬化剤を得た。
【0056】
製造例5(顔料分散ペーストの製造)
エポキシ当量450のビスフェノール型エポキシ樹脂に2−エチルヘキノールハーフブロック化イソホロンジイソシアネートを反応させ、1−(2−ヒドロキシエチルチオ)−2−プロパノールおよびジメチロールプロピオン酸で3級スルホニウム化した顔料分散用樹脂ワニス125.0部(スルホニウム化率70.6%、樹脂固形分60%)、イオン交換水400.0部、カーボンブラック3.0部、カオリン250部、二酸化チタン187部、製造例2で得た亜リン酸ネオジム(Nd)60部をサンドグライドミルに入れ、粒度が10μm以下になるまで分散して顔料分散ペーストを得た。
【0057】
カチオン電着塗料の製造と実験方法
製造例3で得たカチオン性エポキシ樹脂75部と製造例4で得た脂肪族ブロックポリイソシアネート硬化剤25部を均一に混合し、その後エチレングリコールモノ−2−エチルヘキシールエーテルを固形分に対して3%になるように添加した。これに氷酢酸を加えて中和率43.0%になるように中和し、さらにイオン交換水を加えてゆっくり希釈した。そして固形分が36.0%になるように減圧下でメチルイソブチルケトンを除去し、メインエマルションを調製した。
【0058】
次に、メインエマルション200.0部、製造例5で得た顔料分散ペースト460.0部、イオン交換水2252.0部、固形分に対し1%のジブチルスズオキサイドを混合し、固形分20.0%のカチオン電着塗料(実施例29)を調製した。
【0059】
なお、実施例29と同様にして、表5に示す顔料組成でそれぞれカチオン電着塗料(比較例21、22)を調製した。
【0060】
得られたカチオン電着塗料を、リン酸亜鉛処理(日本ペイント社製;サーフダインSD6350処理)を施したアルミニウムA2024板上に乾燥膜厚が15±2μmとなるように電着塗装し、その後160℃で20分間焼付けを行い、硬化塗膜を得た。
【0061】
得られた塗膜板について、塩水噴霧試験(960H)、複合サイクル腐食試験90サイクル(サイクルモード;SST(0.5%NaCl)、35℃、2H→DRY(20−30%RH)、60℃、4H→WET(95%RH)、50℃、2H)を行い、クロスカット部における塗膜ふくれを評価した。結果を表5に合わせて示す。なお、評価結果は先ほどと同様次の基準によった。
【0062】
・塗膜ふくれ
「◎」…片側最大ふくれ幅1mm以内
「○」…片側最大ふくれ幅2mm以内
「△」…片側最大ふくれ幅3mm以内
「×」…片側最大ふくれ幅3mmオーバー
【0063】
【表5】
Figure 2004346410
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a means for effectively preventing the generation of rust on the surface of a metal material, particularly to a formation of a rust preventive film and a rust preventive.
[0002]
[Prior art]
Rust is generated on the metal base material, and the performance cannot be exhibited. There have been various anticorrosion techniques for metal base materials since ancient times, but a complete technique has not yet existed and is being studied.
[0003]
Many techniques that have been conventionally proposed as an effective method for preventing metal rust are methods of forming a chromate film on a metal substrate using hexavalent chromium. It is said that the high corrosion resistance of the chromate film is due to the fact that a hardly soluble dense film can be formed on a metal substrate. This chromate film contains trivalent and hexavalent chromium. However, although hexavalent chromium is a very effective rust-preventive film-forming agent, it is highly toxic and has environmental and health problems. Therefore, methods for preventing rust without using hexavalent chromium have been studied. I have.
[0004]
For example, Patent Document 1 (Japanese Patent Application Laid-Open No. Hei 7-188951) discloses that a metal is immersed in an aqueous solution containing a rare earth metal having an atomic number of 57 to 71 and an organic-rare earth metal chelate compound derived from an organic chelating agent. Thus, a method for suppressing corrosion is disclosed. Further, Patent Document 2 (Japanese Patent Application Laid-Open No. 9-143752) proposes a method of treating the aluminum or aluminum alloy with a liquid mainly composed of a phosphate, a zirconium salt or a titanium salt, and a fluoride as a rust preventive treatment. Have been. Further, Patent Document 3 (Japanese Patent Application Laid-Open No. 2000-64090) describes a rust prevention treatment method in which a metal to be treated is subjected to cathodic electrolysis in an aqueous solution containing rare earth ions and zinc ions. However, these treatment methods do not necessarily impart sufficient corrosion resistance to the metal surface, and have not been able to compete with treatment methods containing hexavalent chromium on the rustproof surface.
[0005]
[Patent Document 1]
JP-A-7-188951
[Patent Document 2]
JP-A-9-143752
[Patent Document 3]
JP-A-2000-64090
[0006]
[Problems to be solved by the invention]
An object of the present invention is to provide a method capable of forming an excellent rust-preventive film on the surface of a metal substrate without using an environmentally harmful chemical such as hexavalent chromium.
[0007]
[Means for Solving the Problems]
The present invention, when immersing a metal substrate in an aqueous solution containing an oxidizable metal cation and an inorganic anion having an absolute value of the product of the ionic valences of 6 or less, the dissolved oxygen and oxygen in the air The metal cation or the inorganic anion is oxidized by the action, and a very poorly soluble film having an absolute value of the product of the ionic valence of 8 or more and excellent in anticorrosion property is formed on the metal substrate. It is a thing.
[0008]
That is, the present invention is a method of forming a film on a metal substrate using a metal cation and an inorganic anion, wherein the product of the valence of the metal cation and the valence of the inorganic anion before the film is formed. An absolute value is 6 or less, and the absolute value of the product of the valence of the metal cation and the valency of the inorganic anion after film formation is 8 or more. .
[0009]
In the present invention, the inorganic anion before forming the film is preferably a phosphite ion and / or a hypophosphite ion. Further, the metal cation may be a cation of yttrium or a rare earth metal having an atomic number of 57 to 71.
[0010]
As described above, it is preferable that the film is formed on the metal substrate by a metal surface treatment method using an aqueous solution containing a metal cation and an inorganic anion. This method may be performed using a paint containing an inorganic substance composed of a metal cation and an inorganic anion.
[0011]
The present invention also relates to a rust inhibitor comprising a combination of a metal cation and an inorganic anion, wherein the product of the valence of the metal cation and the valency of the inorganic anion has an absolute value of 6 or less; The present invention provides a rust preventive for a metal substrate, wherein an absolute value of a product of a valence of the metal cation and a valence of the inorganic anion is 8 or more when applied on a material.
[0012]
The inorganic anion of the rust inhibitor may be phosphite and / or hypophosphite, and the metal cation may be yttrium or a cation of a rare earth metal having an atomic number of 57-71.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
In the method for forming a rust-preventive film of the present invention, a metal cation and an inorganic anion are applied as a film on a metal substrate. Various methods are conceivable as a method of application on a metal substrate. For example, a method of applying a rust prevention treatment liquid on a metal substrate, or a method of applying a coating on a metal substrate as a paint can be considered. Hereinafter, for simplicity, a case where the composition is applied as a treatment liquid will be described.
[0014]
The rust preventive solution used for forming the rust preventive film of the present invention contains a metal cation and an inorganic anion. The metal cation species needs to have an absolute value of 6 or less of the product of the inorganic anion and the valence before forming the film. Normally, it is considered that the film formation proceeds in a process in which the product of the valency of the metal cation and the valency of the inorganic anion becomes 8 or more by oxidation. For example, assuming that the inorganic anion has a valence of −3, the metal before being oxidized The cations need only have an ionic valence of +2 or more and have an ionic valence of +3 or more after being oxidized, and exclude monovalent or divalent alkali metals and alkaline earth metals. It is conceivable that the metal cation is not oxidized and the inorganic anion is oxidized, and the absolute value of the product of the valences of the two is 8 or more. Also, monovalent and divalent alkali metals and alkaline earth metals are excluded. Examples of metals that can be used as metal cations include iron (Fe), aluminum (Al), indium (In), bismuth (Bi), yttrium (Y), rare earth metals in the atomic number range of 57 to 71, and the like. Cations. Among them, yttrium or a rare earth metal cation having an atomic number of 57 to 71, which is stable as a metal cation with a valence of +3 or more and hardly generates an oxide in a neutral aqueous solution, is preferable. From the viewpoint of cost of raw materials, cations of yttrium (Y), lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), and samarium (Sm) are particularly preferable.
[0015]
As an ion supply source of these metal cations, for example, an inorganic acid salt or an organic acid salt having a solubility of 1 ppm or more containing the cation as one component may be used. Examples of such inorganic or organic acid salts include sulfates, sulfites, amidosulfates, nitrates, nitrites, phosphates, phosphites, hypophosphates, hypophosphites, Inorganic salts such as arsenate, hydroxide and oxide; and organic salts such as formate, acetate, lactate and oxalate. The total concentration of these metal cation species is preferably from 0.0001 to 5% by weight, more preferably from 0.001 to 0.5% by weight. If the cation concentration is less than 0.0001% by weight, the rust-preventive effect of the present invention cannot be obtained. If it exceeds 5% by weight, the coating tends to be non-uniform and the rust prevention tends to be reduced.
[0016]
The inorganic anion species of the present invention is an inorganic anion in which the value of the ionic valence is negatively increased by oxidization (the valency is increased by-). Assuming that the inorganic anion has a negative ion valence before oxidation and is monovalent or more (ex.-1, -2, etc.), and a negative ion valence after oxidation is bivalent or more. When the metal cation undergoes oxidation to increase its valence, the inorganic anion does not necessarily need to be oxidized. For example, when the metal cation undergoes oxidation and changes from +2 to +3, the inorganic anion may be used. The valence of -3 may be -3 and stable. An “inorganic anion” is an atomic group containing one or more inorganic atoms or a single inorganic atomic anion. Generally, two or more anions take on an ion state having a plurality of valences due to adsorption and desorption (dissociation equilibrium) of protons in an aqueous solution. The term "ion valency" as used herein means an ion having the largest valence among them. It means the valence of the species. That is, for example, phosphate ions dissociate in water,2PO4 , HPO42-, PO4 3-(The abundance ratio changes depending on the pH). Among them, the ion having the highest valence is PO4 3-Therefore, it is called -3 valence. Specific examples of such inorganic anions include phosphate ion, phosphite ion, hypophosphate ion, hypophosphite ion, arsenite ion and the like. Of these, phosphite ions and hypophosphite ions are particularly preferred. When phosphorous acid and hypophosphite ion are used in combination, the valency can be calculated by the composition ratio.
[0017]
The ion source of these anions may be used in the form of an acid such as phosphorous acid or hypophosphorous acid or in the form of an inorganic salt having a solubility of 1 ppm or more. Examples thereof include divalent metal salts such as earth metals, and trivalent or tetravalent metal salts such as the above-mentioned metal cations.
[0018]
The total concentration of these inorganic anion species is the same as the total concentration of the metal cation species, and is preferably 0.0001 to 5% by weight, more preferably 0.001 to 0.5% by weight. If the anion concentration is less than 0.0001% by weight, the rust-preventive effect of the present invention cannot be obtained. If it exceeds 5% by weight, the film tends to be non-uniform, and it is difficult to obtain sufficient rust prevention.
[0019]
In the present invention, if necessary, a complexing component may be contained in order to increase the dissolution concentration of the metal cation and the inorganic anion. For example, neodymium hypophosphite, which is a salt of +3 valent neodymium ion and -1 valent hypophosphite ion, has a relatively high solubility in water, and a wide range of hypophosphite ion and neodymium ion depending on the blending amount. However, the solubility of neodymium phosphite, which is the salt of +3 valent neodymium ion and -2 valent phosphite ion, is considerably low, and as it is, only low concentrations of phosphite ion and neodymium ion can be obtained. It cannot be supplied, and it is difficult to freely control the concentration range. In such a case, by adding an appropriate complexing component, the dissolution concentration of phosphite ion and neodymium ion can be freely controlled up to a high concentration range, and a good rust prevention film can be formed. .
[0020]
Examples of the complexing component include aliphatic amines such as diethylenetriamine, amino alcohols such as triethanolamine, aminocarboxylic acids such as EDTA and aspartic acid; hydroxycarboxylic acids such as tartaric acid, malic acid, citric acid and gluconic acid; Although polycarboxylic acids such as malonic acid, succinic acid, maleic acid, and diglycolic acid are known, the type and concentration of the complexing component used in the present invention depends on the type of metal cation or metal salt used. It is necessary to select in consideration of the concentration.
[0021]
The complexing component used in the present invention enhances the solubility of the metal cation and the inorganic anion before being oxidized, and when these ions are oxidized, a film of a poorly soluble salt is formed on the metal surface. It must not interfere. For example, taking neodymium phosphite as an example, a complexing component having a stronger coordination ability than phosphite ions is effective in increasing the solubility of neodymium phosphite before undergoing oxidation. However, once the phosphite ion is oxidized and changed to a phosphate ion, it is necessary not to hinder the deposition of the poorly soluble film of neodymium phosphate, and the coordination ability of the complexing component is higher than that of the phosphate ion. Weakness is essential.
[0022]
Thus, the coordination ability of the complexing component that can be used in the present invention has an appropriate range. Specifically, the stability constant K of complex formation with the metal cation is 5 ≦ log K ≦ 14. Complexing components that fall within the range are preferred. More preferably, the complexing component in the range of 7 ≦ logK ≦ 12, for example, citric acid (where the metal cation is Nd3+In the case of log K = 7.7), nitrilotriacetic acid (metal cation is Nd3+In the case of log K = 11.3), and salts thereof are preferably used.
[0023]
The total use concentration C (% by weight) of the complexing component to be used is preferably determined based on the required dissolution concentration M (% by weight) of the target metal ion.
[0024]
The pH of the treatment solution for forming the rust preventive film of the present invention is adjusted to pH 4 to 10 by adding an acid such as phosphorous acid, hypophosphorous acid, or nitric acid, or an alkali component such as sodium hydroxide or magnesium hydroxide. The pH is preferably adjusted to 5 to 9. When the pH is more than 4, the film is hardly formed because the surface of the metal substrate is dissolved by the acid, and when the pH exceeds 10, the metal cation which is a film forming component is easily precipitated as a hydroxide, and the concentration of the metal cation is sufficient. Is difficult to keep.
[0025]
In the present invention, after a metal substrate is brought into contact with the above-mentioned treatment solution for forming a rust-preventive film, a metal cation and / or an inorganic anion in the composition is oxidized, whereby a good rust-preventive film is formed on the surface of the metal substrate. Can be formed.
[0026]
The method for oxidizing metal cations and / or inorganic anions in the composition is not particularly limited, and examples thereof include a method using natural air oxidation, a method using an oxidizing substance (oxidizing agent), and an electrochemical method using an external power supply. And the like.
[0027]
Examples of using natural air oxidation include, for example, immersing a metal substrate in the treatment solution for forming a rust-preventive film, or applying the treatment solution onto the metal substrate under a normal environment where air is present. As a result, a rust-preventive film is formed on the substrate surface. In this case, oxidation of the ions in the processing solution occurs due to oxygen in the environment or dissolved oxygen dissolved in the processing solution, and a film is formed on the substrate surface.
[0028]
In the method using natural air oxidation, since the oxidation reaction occurs slowly, a metal substrate and the above-described composition are formed for a relatively long time to form a good rust prevention film, for example, at 10 ° C. for an aluminum alloy substrate. It is necessary to keep contact for 5 minutes or more. On the other hand, if an oxidizing substance is blended in the treatment liquid so as to promote oxidation at the time of contact between the metal substrate and the treatment liquid for forming a rust-preventive film, a good rust-preventive film can be formed on the metal substrate in a short time. Can be formed.
[0029]
As a method of promoting oxidation, there is a method other than the above, in which an external power supply is used to electrolytically oxidize a metal substrate in the treatment liquid.
[0030]
Examples of the oxidizing substance for promoting oxidation include oxo acids such as nitric acid, nitrous acid, vanadic acid, and permanganic acid, and salts thereof. By adding these oxidizing substances, a good rust preventive film can be formed in about 30 seconds after the contact. The total use concentration of these oxidizing substances is preferably 0.0001 to 5% by weight, more preferably 0.001 to 0.5% by weight.
[0031]
As a method of electrolytic oxidation using an external power supply, for example, in the treatment solution for forming a rust-preventive film, an aluminum substrate is positively polarized at +2 V or more for about 30 seconds with respect to a saturated KCl silver / silver chloride electrode. A good rust-preventive film can be formed on the surface of the immersed metal.
[0032]
The method for forming a rust-preventive film according to the present invention can be effectively used in the form of coating on a metal surface as a coating composition containing a binder component, in addition to the treatment using the above-described aqueous solution. Can be improved. This is to apply a coating containing an inorganic substance composed of the metal cation and the inorganic anion to a metal substrate. For example, when the coating is an aqueous type, the coating aqueous solution and the metal come into contact with each other at the time of coating and after coating. In addition, when the paint is of an oil type, water and oxygen enter from the environment after the coating film is formed, and a solution environment similar to the treatment liquid appears at a defective portion of the coating film or under the coating film. It is considered that a rust preventive film is formed on the surface, and the rust preventive property of the metal to be coated is improved.
[0033]
As the binder component, a general coating resin and a cross-linking agent blended as necessary can be suitably used, and for example, an oily (organic solvent) type such as an acrylic resin, a polyester resin, an alkyd resin, an epoxy resin, and a urethane resin. Alternatively, a water-soluble, water-dispersed (emulsion) aqueous type can be used.
[0034]
The compounding concentration of the metal cation and the inorganic anion in the paint is preferably 0.001 to 50% by weight based on the solid content of the paint. If the amount is less than 0.001% by weight, formation of a rust-preventive film may be difficult to occur, and if it exceeds 50% by weight, the water resistance of the coating film may be extremely reduced. More preferably, it is 0.01 to 20% by weight.
The pH of the rust preventive paint is preferably from 4 to 10, more preferably from 5 to 9.
[0035]
【The invention's effect】
According to the present invention, it is possible to provide a method for forming a rust-preventive film capable of forming an excellent rust-preventive film on the surface of a metal substrate without using an environmentally harmful chemical such as hexavalent chromium. it can.
[0036]
【Example】
The present invention will be described in more detail by way of examples. The present invention should not be construed as being limited to these embodiments.
[0037]
Examples 1-26 and Comparative Examples 1-17
After using aluminum plate (JIS-H-4000: A2024P) and steel plate (JIS-G-3141: SPCC / SD) as a metal to be treated, degrease and wash with a surf cleaner 53 manufactured by Nippon Paint Co., Ltd. And air dried at 80 ° C. Subsequently, the aluminum plate was once immersed in a 5% NaCl aqueous solution at 35 ° C. for 30 minutes for the purpose of removing or destroying the surface oxide film. The corrosion resistance value of the metal surface after being immersed in a treatment solution for film formation (each containing sodium chloride to give 5% NaCl) at 35 ° C. for 1 hour was evaluated by an electrochemical impedance method.
[0038]
The corrosion resistance of the aluminum plate (A4024P) and the steel plate in a 5% NaCl aqueous solution was 2100 Ω · cm, respectively.2And 380Ωcm2And 5000Ω · cm on an aluminum plate2Above, 1000Ω · cm with steel plate2If there is the above corrosion resistance value, it is determined that an excellent rust prevention film has been formed.
[0039]
The aqueous solutions in Tables 1 to 3 use chloride (salt) as a metal cation source, an acid as an inorganic anion source (using only Na salt of chromic acid), and citric acid or EDTA as a complexing agent, respectively. Was adjusted to have the concentration shown in the table, the pH was adjusted to 6.0 with HCl or NaOH, and sodium chloride was added and stirred to adjust the solution to 5% NaCl. Comparative Examples 9 and 17 show examples when a chromate film is formed. Other comparative examples show examples in which only one of a cation and an anion is an ion within the scope of the present invention.
[0040]
Tables 1 to 3 show the corrosion resistance of the rust-preventive film formed on the surface of aluminum or steel immersed in the present film-forming treatment liquid, together with those in the comparative liquid.
[0041]
[Table 1]
Figure 2004346410
[0042]
[Table 2]
Figure 2004346410
[0043]
[Table 3]
Figure 2004346410
[0044]
Examples 27 to 28 and Comparative Examples 18 to 20
Production Example 1 (production of binder resin and resin varnish)
In a container equipped with a stirrer, a temperature controller and a decanter, 30 parts by weight of soybean oil fatty acid, 17 parts by weight of trimethylolpropane, 13 parts by weight of neopentyl glycol, 7 parts by weight of trimellitic anhydride, 32 parts by weight of isophthalic acid, xylene 1 part by weight and 0.02 part by weight of dibutyltin oxide were charged and heated with stirring. Water generated with the progress of the reaction was removed by azeotropic distillation with xylene, and heating was continued until the acid value reached 30 and the hydroxyl value reached 60, thereby terminating the reaction. The obtained binder resin was diluted with butyl cellosolve so as to have a nonvolatile content of 70% by weight to obtain an alkyd resin varnish. This resin varnish had a Gardner viscosity of Z2 and an SP value of 10.37. This resin varnish was theoretically neutralized to 100% with triethylamine and adjusted to a non-volatile content of 40% by weight with deionized water to obtain a water-soluble alkyd resin varnish.
[0045]
Production Example 2 (Production of metal cation and inorganic anion source (inorganic salt) for paint formulation)
Prepare a 200 mmol / l aqueous solution of neodymium nitrate (Nd) and a 300 mmol / l aqueous solution of phosphorous acid, mix them at a volume ratio of 1: 1 and adjust the pH of the solution to 6.0 with NaOH while stirring. Then, after the suspension is stirred for 30 minutes, the pH is adjusted again to 6.0 and the mixture is stirred for 1 hour. Thereafter, the precipitate is separated from the suspension by filtration using a filter paper, and the precipitate on the filter paper is repeatedly washed with ion-exchanged water until the conductivity of the washed filtrate becomes 100 μS / cm or less. After drying in a dryer, the powder was ground in a mortar to obtain a powder of neodymium phosphite (Nd).
[0046]
Experimental methods of Examples 17-18 and Comparative Examples 18-20
In the water-soluble alkyd resin varnish of Production Example 1, neodymium phosphite (Nd) or another rust-preventive pigment of Production Example 2 and titanium dioxide were dispersed using a laboratory mixer so as to have a composition ratio shown in Table 4. Further, a water-based paint of Examples 27 to 28 and Comparative Examples 18 to 20 was prepared by further blending a curing agent. Comparative Example 18 shows an example in which the neodymium phosphite obtained in Production Example 2 was not used, Comparative Example 19 was an example in which zinc phosphite was used in place of neodymium phosphite, and Comparative Example 20 was an example in which zinc phosphite was used. This is an example in which strontium chromate is used instead of neodymium.
[0047]
The paints of Examples 27 to 28 and Comparative Examples 18 to 20 thus obtained were diluted with NK # 2 cup with water until the time became 50 seconds, and subjected to a zinc phosphate treatment (Nippon Paint Co., Ltd .; Surfdyne SD6350 treatment). It was sprayed on the aluminum A2024 plate so as to have a dry film thickness of 25 to 30 μm and baked at 160 ° C. for 20 minutes. About this coated plate, a moisture resistance test (50 ° C., 95% RH, 100 hours), a salt spray test (240 H), a combined cycle corrosion test 60 cycles (cycle mode: SST (0.5% NaCl), 35 ° C., 2H → DRY (20-30% RH), 60 ° C., 4H → WET (95% RH), 50 ° C., 2H), and the blistering of the coating film at the cross cut portion was evaluated. The results are shown in Table 4. The evaluation results were based on the following criteria.
[0048]
・ Moisture resistance
"◎" ... almost no blister
"○": Blister coarse by ASTM rating (F)
"△": Blister in the middle of ASTM rating (M)
"X": Blister dense by ASTM rating (D or MD)
[0049]
・ Coating blister
"◎" ... Maximum blister width on one side is within 1mm
"○": Maximum blister width within 2 mm on one side
"△": Maximum blister width within 3 mm on one side
"×": Maximum blister width over 3 mm on one side
[0050]
[Table 4]
Figure 2004346410
[0051]
Example 29 and Comparative Examples 21 to 22
In this example, an example in which the neodymium phosphite of Production Example 2 is blended with the cationic electrodeposition paint and a comparative example thereof are shown.
[0052]
Production Example 3 (Production of cationic binder resin)
Synthesis of cationic epoxy resin In a flask equipped with a stirrer, condenser, nitrogen injection tube, thermometer and dropping funnel, 752.0 parts of bisphenol A type epoxy resin (epoxy equivalent: 188), 77.0 parts of methanol, methyl isobutyl ketone 200.3 parts and 0.3 parts of dibutyltin dilaurate are charged and stirred at room temperature to obtain a homogeneous solution, and 174.2 parts of a 2,4- / 2,6-tolylene diisocyanate 80/20 (weight ratio) mixture is added for 50 minutes. When the mixture was dropped, the temperature in the system reached 70 ° C. due to heat generation. IR spectrum is 2280 cm based on isocyanate-11730 cm based on disappearance of absorption of urea and urethane carbonyl group-1Showed an absorption.
[0053]
After adding 2.7 parts of N, N-dimethylbenzylamine, the temperature of the system was raised to 120 ° C., and the reaction was performed until the epoxy equivalent reached 463 while distilling off by-produced methanol using a decanter. . The IR spectrum was 1730 cm based on the urethane carbonyl group.-11750cm based on disappearance of absorption of oxazolidone ring and carbonyl group-1Showed the appearance of absorption.
[0054]
220.0 parts of p-nonylphenol and 83.3 parts of methyl isobutyl ketone were added, and the reaction was carried out while maintaining the temperature at 125 ° C. until the epoxy equivalent reached 1146. The temperature in the system was cooled to 110 ° C., and 47.2 parts of ketimine of aminoethylethanolamine (79% by weight of methyl isobutyl ketone solution), 42.0 parts of diethanolamine, 30.0 parts of N-methylethanolamine and After adding 17.3 parts of methyl isobutyl ketone, the temperature was raised and the reaction was carried out at 120 ° C. for 2 hours. Thus, a cationic epoxy resin having a nonvolatile content of 80% by weight was obtained.
[0055]
Production Example 4 (Production of curing agent)
In a flask equipped with a synthetic stirrer, a condenser, a nitrogen inlet tube, a thermometer, and a dropping funnel, 199 parts of an isocyanurate-type trimer of hexamethylene diisocyanate (Coronate HX, Nippon Polyurethane), 32 parts of methyl isobutyl ketone, and 0.2 parts of dibutyltin dilaurate was weighed and heated to 50 ° C. 87 parts of methyl ethyl ketoxime was added dropwise over 2 hours while cooling from the outside and keeping the temperature at 50 ° C. After completion of the dropwise addition, the temperature was raised to 70 ° C., and the reaction was continued until the NCO group disappeared by IR analysis while maintaining this temperature to obtain an aliphatic blocked polyisocyanate curing agent.
[0056]
Production Example 5 (Production of pigment dispersion paste)
A bisphenol-type epoxy resin having an epoxy equivalent of 450 is reacted with 2-ethylhexynol half-blocked isophorone diisocyanate to form a tertiary sulfonium pigment dispersion with 1- (2-hydroxyethylthio) -2-propanol and dimethylolpropionic acid. 125.0 parts of resin varnish (sulfonium conversion rate: 70.6%, resin solid content: 60%), 400.0 parts of ion-exchanged water, 3.0 parts of carbon black, 250 parts of kaolin, 187 parts of titanium dioxide, Production Example 2 60 parts of the obtained neodymium phosphite (Nd) was placed in a sand glide mill and dispersed until the particle size became 10 μm or less to obtain a pigment dispersion paste.
[0057]
Production and experimental method of cationic electrodeposition paint
75 parts of the cationic epoxy resin obtained in Production Example 3 and 25 parts of the aliphatic blocked polyisocyanate curing agent obtained in Production Example 4 are uniformly mixed, and then ethylene glycol mono-2-ethylhexyl ether is added to the solid content. To 3%. Glacial acetic acid was added thereto to neutralize the mixture to a neutralization ratio of 43.0%, and the mixture was diluted slowly with ion-exchanged water. Then, methyl isobutyl ketone was removed under reduced pressure so that the solid content became 36.0%, to prepare a main emulsion.
[0058]
Next, 200.0 parts of the main emulsion, 460.0 parts of the pigment-dispersed paste obtained in Production Example 5, 2252.0 parts of ion-exchanged water, and 1% of dibutyltin oxide based on the solid content were mixed to obtain a solid content of 20.0%. % Of a cationic electrodeposition paint (Example 29) was prepared.
[0059]
In the same manner as in Example 29, cationic electrodeposition paints (Comparative Examples 21 and 22) were prepared with the pigment compositions shown in Table 5, respectively.
[0060]
The obtained cationic electrodeposition paint is electrodeposited on an aluminum A2024 plate which has been subjected to a zinc phosphate treatment (manufactured by Nippon Paint Co., Ltd .; Surfdyne SD6350 treatment) so as to have a dry film thickness of 15 ± 2 μm. Baking was performed at 20 ° C. for 20 minutes to obtain a cured coating film.
[0061]
About the obtained coated plate, salt spray test (960H), combined cycle corrosion test 90 cycles (cycle mode; SST (0.5% NaCl), 35 ° C, 2H → DRY (20-30% RH), 60 ° C 4H → WET (95% RH), 50 ° C., 2H), and the blistering of the coating film at the cross cut portion was evaluated. The results are shown in Table 5. In addition, the evaluation result was based on the following criteria similarly to the above.
[0062]
・ Coating blister
"◎" ... Maximum blister width on one side is within 1mm
"○": Maximum blister width within 2 mm on one side
"△": Maximum blister width within 3 mm on one side
"×": Maximum blister width over 3 mm on one side
[0063]
[Table 5]
Figure 2004346410

Claims (8)

金属カチオン及び無機アニオンを用いて、金属基材上で皮膜を形成する方法であって、皮膜形成前の前記金属カチオンの価数と前記無機アニオンの価数との積の絶対値が6以下であり、皮膜形成後の前記金属カチオンの価数と前記無機アニオンの価数との積の絶対値が8以上であることを特徴とする防錆皮膜の形成方法。A method for forming a film on a metal substrate using a metal cation and an inorganic anion, wherein the absolute value of the product of the valence of the metal cation and the valence of the inorganic anion before the film is formed is 6 or less. A method for forming a rust-preventive film, wherein the absolute value of the product of the valence of the metal cation and the valence of the inorganic anion after the film is formed is 8 or more. 皮膜形成前の前記無機アニオンは、亜リン酸イオンおよび/または次亜リン酸イオンである請求項1記載の防錆皮膜の形成方法。The method for forming a rust-preventive film according to claim 1, wherein the inorganic anion before forming the film is a phosphite ion and / or a hypophosphite ion. 前記金属カチオンは、イットリウムまたは原子番号57〜71の希土類金属のカチオンである請求項1記載の防錆皮膜形成方法。The method for forming a rust preventive film according to claim 1, wherein the metal cation is a cation of yttrium or a rare earth metal having an atomic number of 57 to 71. 前記金属基材上での皮膜形成が、前記金属カチオンと無機アニオンとを含む水溶液を用いた金属表面処理方法によって行われることを特徴とする請求項1〜3のいずれか1つに記載の防錆皮膜の形成方法。The film formation on the said metal base material is performed by the metal surface treatment method using the aqueous solution containing the said metal cation and an inorganic anion, The prevention according to any one of Claims 1-3 characterized by the above-mentioned. Rust film formation method. 前記金属基材上での皮膜形成が、前記金属カチオンと無機アニオンとからなる無機物を含む塗料を用いた塗装によって行われることを特徴とする請求項1〜3のいずれか1つに記載の防錆皮膜の形成方法。The coating according to any one of claims 1 to 3, wherein the film formation on the metal substrate is performed by painting with a paint containing an inorganic substance composed of the metal cation and the inorganic anion. Rust film formation method. 金属カチオン及び無機アニオンの組合せからなる防錆剤であって、前記金属カチオンの価数と前記無機アニオンの価数との積の絶対値が6以下であり、それが金属基材上に適用したときに前記金属カチオンの価数と前記無機アニオンの価数との積の絶対値が8以上になることを特徴とする金属基材の防錆剤。A rust inhibitor comprising a combination of a metal cation and an inorganic anion, wherein the absolute value of the product of the valence of the metal cation and the valence of the inorganic anion is 6 or less, which is applied on a metal substrate. An antirust agent for a metal substrate, wherein the absolute value of the product of the valence of the metal cation and the valence of the inorganic anion is sometimes 8 or more. 前記無機アニオンは、亜リン酸イオンおよび/または次亜リン酸イオンである請求項6記載の防錆剤。The rust inhibitor according to claim 6, wherein the inorganic anion is a phosphite ion and / or a hypophosphite ion. 前記金属カチオンは、イットリウムまたは原子番号57〜71の希土類金属のカチオンである請求項6記載の防錆剤。The rust inhibitor according to claim 6, wherein the metal cation is a cation of yttrium or a rare earth metal having an atomic number of 57 to 71.
JP2003147954A 2003-05-26 2003-05-26 Method for forming rust preventive film Pending JP2004346410A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003147954A JP2004346410A (en) 2003-05-26 2003-05-26 Method for forming rust preventive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003147954A JP2004346410A (en) 2003-05-26 2003-05-26 Method for forming rust preventive film

Publications (1)

Publication Number Publication Date
JP2004346410A true JP2004346410A (en) 2004-12-09

Family

ID=33534336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003147954A Pending JP2004346410A (en) 2003-05-26 2003-05-26 Method for forming rust preventive film

Country Status (1)

Country Link
JP (1) JP2004346410A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007327090A (en) * 2006-06-07 2007-12-20 Nippon Parkerizing Co Ltd Metal surface treatment liquid, surface treatment method, surface treatment material
JP2008538383A (en) * 2005-04-07 2008-10-23 日本ペイント株式会社 Multi-layer coating formation method
WO2011061899A1 (en) * 2009-11-17 2011-05-26 日本パーカライジング株式会社 Base treatment method for copper material, and copper material having base-treating coating film attached thereto
JP2015021850A (en) * 2013-07-19 2015-02-02 日立Geニュークリア・エナジー株式会社 Method and apparatus for inhibiting corrosion of nuclear reactor structure

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008538383A (en) * 2005-04-07 2008-10-23 日本ペイント株式会社 Multi-layer coating formation method
JP2007327090A (en) * 2006-06-07 2007-12-20 Nippon Parkerizing Co Ltd Metal surface treatment liquid, surface treatment method, surface treatment material
WO2011061899A1 (en) * 2009-11-17 2011-05-26 日本パーカライジング株式会社 Base treatment method for copper material, and copper material having base-treating coating film attached thereto
JP2011105989A (en) * 2009-11-17 2011-06-02 Nippon Parkerizing Co Ltd Substrate treatment method for copper material, and copper material with substrate-treated film
JP2015021850A (en) * 2013-07-19 2015-02-02 日立Geニュークリア・エナジー株式会社 Method and apparatus for inhibiting corrosion of nuclear reactor structure

Similar Documents

Publication Publication Date Title
CA3034712C (en) Alkaline composition for treating metal substartes
EP1883679B1 (en) Corrosion-protection agent forming a layer of paint and method for current-free application thereof
DE69403339T2 (en) COMPOSITION AND METHOD FOR TREATING PHOSPHATED METAL SURFACES
EP0187917B1 (en) Process for improving the protection against corrosion of resin layers autophoretically deposited on metal surfaces
TW200831713A (en) Methods for coating a metal substrate and related coated substrates
WO2009081807A1 (en) Manufacturing method for surface-treated metallic substrate and surface-treated metallic substrate obtained by said manufacturing method, and metallic substrate treatment method and metallic substrate treated by said method
CA2587714C (en) Anticorrosive coating compositions
US4600447A (en) After-passivation of phosphated metal surfaces
KR101714292B1 (en) Methods for treating a ferrous metal substrate
EP1666634A1 (en) Corrosion resistant conversion coatings
JP5448440B2 (en) Method for producing metal substrate having multilayer film, metal substrate having multilayer film obtained by the production method, and coated article
TW201715082A (en) Surface treating agent, method for surface treating and surface treated metal material
EP0760871A1 (en) Process for coating phosphatized metal substrates
JP2009179859A (en) Method for forming multilayer coating film
US20100065157A1 (en) Coat-forming corrosion preventative with reduced crack formation and process for its electroless application
CN111621774A (en) Lithium-containing zirconium pretreatment compositions, related methods of treating metal substrates, and related coated metal substrates
JP2001226640A (en) Cationic electrodeposition paint composition
JP2004346410A (en) Method for forming rust preventive film
JP2795710B2 (en) Rust inhibitor composition
JP2002212765A (en) Rust preventive and coating material composition
DE102022106446A1 (en) Film-forming compositions containing molybdate-derived coatings
EP3428314B1 (en) Composition and method for passivating galvanized components
JP2001262069A (en) Coating composition containing gluconic acid derivative salts
JP2001002997A (en) Cationic electrodeposition paint
JPH02310035A (en) Highly corrosion-resistant coated steel material excellent in corrosion resistance and hydrogen embrittlement resistance and preparation thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060411

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20071113

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A02 Decision of refusal

Effective date: 20080311

Free format text: JAPANESE INTERMEDIATE CODE: A02