[go: up one dir, main page]

JP2004350383A - Polymer switch - Google Patents

Polymer switch Download PDF

Info

Publication number
JP2004350383A
JP2004350383A JP2003143486A JP2003143486A JP2004350383A JP 2004350383 A JP2004350383 A JP 2004350383A JP 2003143486 A JP2003143486 A JP 2003143486A JP 2003143486 A JP2003143486 A JP 2003143486A JP 2004350383 A JP2004350383 A JP 2004350383A
Authority
JP
Japan
Prior art keywords
polymer
polymer switch
heating
switch element
heating element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003143486A
Other languages
Japanese (ja)
Inventor
Kenshichiro Mishima
健七郎 三島
Yasuhiro Shimojima
康弘 下嶋
Yasuo Wakahata
康男 若畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Otowa Electric Co Ltd
Original Assignee
Otowa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otowa Electric Co Ltd filed Critical Otowa Electric Co Ltd
Priority to JP2003143486A priority Critical patent/JP2004350383A/en
Publication of JP2004350383A publication Critical patent/JP2004350383A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Thermistors And Varistors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a switch of smaller size, and improved economy and reliability, which is assembled in a power supply circuit of an electric equipment of a low-voltage contract consumer. <P>SOLUTION: A polymer switch element 20 of which a resistance varies reversibly according to changes in temperature, is laminated with a heating body 30 for heating the polymer switch element 20 so that it switches from a conductive state to a non-conductive state. A polymer switch 10 is integrated with the element 20 and the body 30. The polymer switch element 20 of a normal temperature is a low resistance body in conductive state to switch on normally, but energizes the heating body 30 as required for self-heating when abnormality occurs, so that the polymer switch element 20 switches off. If an overcurrent rushes in the polymer switch element 20 at a normal time, the overcurrent heats the polymer switch element 20 itself to suppress the overcurrent. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、温度変化で抵抗値が可逆的に変動して電気回路の過電流抑制や回路開閉等のスイッチ動作をするポリマースイッチ素子を使用したスイッチ装置に関する。
【0002】
【従来の技術】
低圧電力契約需要家の電源回路には、電源の入切制御をする開閉素子に特定の操作、制御、保護等の機能を有する機能素子を組み合わせたスイッチ装置が組み込まれる。この種スイッチ装置における開閉素子は、開閉動作を繰り返す交流用半導体スイッチング素子であるトライアックや保護リレーのリレー接点、遮断動作だけする温度ヒューズ、電流ヒューズ等が一般的である。また、開閉素子に組み付けられる機能素子は、開閉素子の動作を安定させるための制御機能素子や、開閉素子を過電圧や過電流から保護する保護機能素子等であって、これら個々の開閉素子と機能素子を組合せ接続したスイッチ装置が低圧電力契約需要家の電源回路に設置されて、低圧電力契約需要家の電気設備の安全な運営と管理が行われる。
【0003】
【発明が解決しようとする課題】
上記のようなスイッチ装置は、個々の開閉素子や保護機能素子等が安定した動作を約束するが、スイッチ装置を構成する個々の開閉素子や保護機能素子等の回路構成部品の多くが大形で割高となる傾向にあって、低圧電力契約需要家の小型低圧電源回路に設置するには設置スペースの確保が難しいと共に、スイッチ装置自体が割高となっていた。
【0004】
本発明はかかる問題点に鑑みてなされたもので、その目的とするところは低圧電力契約需要家の電源回路に好適となる小形で経済的なポリマースイッチ装置を提供することにある。
【0005】
【課題を解決するための手段】
本発明の上記目的を達成する技術的手段は、正の抵抗温度係数をもつポリマースイッチ素子と、通電により発熱して前記ポリマースイッチ素子を非導通状態になるよう加熱する発熱体とを一体に積層したことを特徴とする。
【0006】
ここで、ポリマースイッチ素子は、高分子材料たとえばポリオレフィン、ポリアミドまたはポリイミドに導電性微粉子たとえばカーボン、銀や金、ニッケルなどの金属、若しくはシリコンやチタン、タングステンなどの炭化物または硼化物の微粒子を分散させた複合材料で構成され、常温下では抵抗が極めて低くなって良導電体となり、スイッチ動作としてはオンの状態となる。このポリマースイッチ素子が加熱されて、その温度が閾値温度たとえば約80〜90℃を越えると抵抗が著しく高くなって電流をほとんど流さない非導通状態となり、スイッチ動作としてはオフとなる。そして、ポリマースイッチ素子の温度が閾値以下となって常温にまで戻ると、温度上昇時と逆の特性で抵抗が低下して非導通状態から導通状態に復帰する。ポリマースイッチ素子の常温からの温度上昇は、それ自体に流れる電流通電による自己発熱で、或いは、外部からの強制加熱で行われ、高温から常温までの温度降下は自然放熱等で行われる。このようなポリマースイッチ素子に、このポリマースイッチ素子を加熱するための発熱体を一体に積層して単品製品のスイッチ装置が構成される。発熱体は通電により発熱するセラミック発熱体やカーボン発熱体等で、これをポリマースイッチ素子に積層することで、オン・オフのスイッチ動作をする開閉素子とこれの開閉を制御する制御機能素子が一体化された小形で安価、高性能なポリマースイッチ装置の製品が実現される。
【0007】
また、本発明は、板状にした上記ポリマースイッチ素子と、このポリマースイッチ素子の一方の主面側に絶縁状態で一体に積層された発熱体と、同ポリマースイッチ素子の他方の主面側にポリマースイッチ素子と直列接続状態で一体に積層された板状の電圧依存性非線形電圧素子を有する耐雷素子とを具備したことを特徴とする。
【0008】
この発明の場合、オン・オフのスイッチ動作をする開閉素子とこれの開閉を制御する制御機能素子と、耐雷素子による耐雷保護装置が一体化された小形で多機能なポリマースイッチ装置となる。ポリマースイッチ素子と耐雷素子を直列接続すると、スイッチ装置に流れる電流でポリマースイッチ素子が自己発熱してその抵抗値が上昇し、それによってこの装置に流れる電流が制限される。これにより耐雷素子が過電流から保護され、また、耐雷素子が雷サージ電圧を抑制することでポリマースイッチ素子が過電圧から保護されて、保護機能の高い高信頼性のポリマースイッチ装置が実現される。
【0009】
また、本発明は、上記耐雷素子の板状電圧依存性非線形電圧素子を、その一方の面側に共通電極を形成し、他方の面側に前記共通電極と対向する複数の電極を互いに絶縁距離で離隔させて形成した複数素子一体形とし、この耐雷素子の前記互いに離隔した複数の電極の各々に板状ポリマースイッチ素子の複数を直列接続して一体に積層し、この複数の板状ポリマースイッチ素子上に跨るように共通の発熱体を一体に積層したことを特徴とする。
【0010】
この発明のポリマースイッチ装置は、複数の耐雷素子と複数のポリマースイッチ素子を一体化し、かつ、複数のポリマースイッチ素子に共通の発熱体を積層したもので、このような複数素子一体形のポリマースイッチ装置は単相三線交流電路等の電源回路に小形のスイッチ装置、耐雷保護装置として組み込まれる。
【0011】
また、本発明は、上記発熱体は、外部からの制御信号でオンオフ制御されてオン時に発熱体に通電する発熱制御手段を直列に有することを特徴とする。この発明における発熱制御手段をオンオフ制御する外部からの制御信号は、特定の電気設備の異常を検出して自動的に発信される信号や、電気設備の稼動状況を管理して必要時に発信される信号等で、この制御信号で発熱制御手段がオン動作すると発熱体の通電が開始されて、所定の短時間経過後にポリマースイッチ素子が実質的に非導通状態となって電気設備の電源回路が遮断され、制御信号で発熱制御手段をオフ動作させるとポリマースイッチ素子が導通状態に復帰して電源回路の遮断が解除される。
【0012】
【発明の実施の形態】
以下、第1〜第3の実施形態について図1〜図5を参照して順に詳述する。
【0013】
図1(A)(B)に示される第1の実施形態のポリマースイッチ装置10は、板状のポリマースイッチ素子20と板状の発熱体30を積層して一体化したものである。ポリマースイッチ素子20は、板状のポリマー本体21の両面に一対の対向する電極22、23を形成して構成される。ポリマー本体21は、板厚方向の抵抗値が温度変化で可逆的に変動する温度抵抗素子で、常温時には導通状態の低抵抗体となり、80〜90℃程度の高温時には非導通状態の高抵抗体となる正の抵抗温度係数をもつポリマー本体21は、両面の電極22、23間を流れる電流による自己発熱か、発熱体30による外部からの加熱のいずれかによって温度変化し、それに応じて導通状態が変化する。板状の発熱体30は、ポリマー本体21の片面の電極23上に絶縁状態で積層されて、ポリマースイッチ素子20と熱的結合されて一体化される。発熱体30はセラミック発熱体やカーボン発熱体等で、板厚方向と直交する長さ方向の両端に引出端子31、32を有する。両引出端子31、32間の電圧印加で発熱体30に長さ方向に電流を流すと、発熱体30が発熱してポリマースイッチ素子20を直接に効率良く加熱する。
【0014】
なお、図1ではポリマー本体21の一方の電極23と発熱体30の一方の引出端子31を接続してポリマースイッチ装置10を3端子構造にしているが、電極23と引出端子31を非接続にした4端子構造であってもよい。
【0015】
ポリマー本体21の常温時の抵抗値は0.01Ω程度とゼロに近くて良導電体となり、常温から80〜90℃程度までに温度上昇すると抵抗が数百kΩ程度と上昇して非導通の高抵抗体となり、温度が高温から常温に戻るとそれに応じて抵抗も低下する。つまり、板状ポリマー本体21の両面の電極22、23に定格電圧を印加した状態でポリマー本体21が常温にあるとき、ポリマー本体21が導通するスイッチオンの動作を継続して両電極22、23間に定格電流が流れる。このポリマー本体21を例えば発熱体30で非導通となる高温まで加熱すると、ポリマー本体21が高抵抗体となってスイッチオフの動作に切換わる。
【0016】
また、ポリマー本体21の両電極22、23間に定格電流を超える過電流が流れると、ポリマー本体21が自己発熱して抵抗値が増加し、この抵抗値増加で過電流が抑制され、さらに抵抗値が増加するとポリマー本体21が非導通の高抵抗体となって過電流を遮断する。このようにポリマー本体21は発熱体30と過電流のいずれかで温度上昇するため、ポリマースイッチ素子20が電源回路等の過電流保護機能と開閉制御機能を発揮して、ポリマースイッチ装置10を多機能なものにする。
【0017】
また、ポリマースイッチ装置10は、例えば低圧電力契約需要家の各種電気設備の電源回路に設置されて、電源回路の開閉制御機能や過電流保護機能を備えたスイッチ装置として使用される。このポリマースイッチ装置10は開閉機能と過電流抑制機能を有するポリマースイッチ素子20と、これの開閉を制御する発熱体30を積層して一体とした小形構造ゆえに、電源回路のスイッチ装置の大幅な小形化とコストダウンを可能にし、而も、過電流抑制機能も兼備してスイッチ装置の信頼性を上げる。
【0018】
次に、図2に示す第2の実施形態のポリマースイッチ装置101を説明すると、同図のポリマースイッチ装置101は一対のポリマースイッチ素子201a、201bと共通の1つの発熱体301を積層して一体とした構造である。一対の各ポリマースイッチ素子201a、201bは図1のポリマースイッチ素子20と同様な構造で、板状のポリマー本体211a、211bの両面に電極221a、231a、221b、231bを形成して構成される。一対のポリマースイッチ素子201a、201bが共通の板状発熱体301の片面に絶縁状態で積層されて一体に固定される。板状発熱体301は長さ方向の両端に引出端子33、34を有し、一方の引出端子33が一方のポリマースイッチ素子201aの電極231aに接続され、他方の引出端子34が他方のポリマースイッチ素子201bの電極231bに接続される。
【0019】
また、共通の発熱体301は中央が二分され、二分された発熱体中央の2点から一対の引出端子35、36が引き出されて、引出端子35、36間にオン・オフのスイッチング動作をする発熱制御手段40が接続される。発熱制御手段40は半導体スイッチやリレー接点等で、外部の制御回路41からの制御信号でオン・オフ制御され、オン動作時に引出端子35、36を接続して二つの発熱体301を通電可能な状態にし、オフ動作するとこれら発熱体301間をオフにして通電不可な状態にする。
【0020】
なお、図2のポリマースイッチ装置101の場合は、1枚の板状発熱体301を一対の板状ポリマースイッチ素子201a、201bでサンドイッチ式に挟持させて一体化してもよい。
【0021】
図3は図2のポリマースイッチ装置101を低圧電力契約需要家の単相三線交流電路における電源回路に設置したときの回路図で、単相三線用変圧器61のライン相L,Lにポリマースイッチ装置101のポリマースイッチ素子201a、201bが直列に介挿される。なお、図3における62は電力計、63は引込口ブレーカで電気設備の負荷に電力を供給する。
【0022】
図3のポリマースイッチ装置101を設置した電源回路において、平常時は発熱制御手段40がオフ状態に保持されてポリマースイッチ素子201a、201bが導通状態にあって電気設備への正常な電力供給が行われる。電気設備に異常が発生する等して電源回路を遮断したい事態が生じた場合、制御回路41から発熱制御手段40をオンさせる制御信号が発信されて発熱制御手段40がオン動作する。すると、発熱体301に変圧器61のライン相L、Lを通じて電流が流れて発熱を開始し、短時間経過後に発熱体301で各ポリマースイッチ素子201a、201bが高温に加熱されて非導通状態となり、電源回路を遮断状態にする。電気設備の異常が無くなる等して電源回路の遮断を解除する場合は、制御回路41からオフ指令信号が発信されて発熱制御手段40がオン状態からオフ状態に切り換えられて、発熱体301への通電が停止する。この停止で発熱体301が温度降下を開始して各ポリマースイッチ素子201a、201bの抵抗値が下がり、短時間経過後に導通状態に復帰して電源回路の遮断が解除される。
【0023】
また、図3の電源回路が正常なときに変圧器61に過電流が突入すると、この過電流で各ポリマースイッチ素子201a、201bが自己発熱をして抵抗値が上がり、過電流を抑制して電気設備等を過電流から保護する。
【0024】
図4は、図2のスイッチ装置に耐雷保護機能を追加した第3の実施形態のポリマースイッチ装置102を示す。この図4の図2と同一、又は、相当部分には同一符号が付してある。
【0025】
図4のポリマースイッチ装置102は、図2のポリマースイッチ装置に板状耐雷素子50を積層して一体化した構造である。板状耐雷素子50は、1枚の板状の電圧依存性非線形電圧素子51の一方の面側に共通電極52が形成され、また他方の面側に複数例えば2つの電極53、54を互いに絶縁距離で離隔させて形成された構造である。一対の電極53、54は共通電極52と対向して、一方の電極53と共通電極52の間で第1の耐雷素子部50aが構成され、他方の電極54と共通電極52の間で第2の耐雷素子部50bが構成される。2つの耐雷素子部50a、50bが電圧素子51で一体化されて2素子一体形の板状耐雷素子50が形成され、この板状耐雷素子50の一対の各電極53、54が一対のポリマースイッチ素子201a、201bに積層されて、各電極53、54がポリマースイッチ素子201a、201bの一方の電極を兼用する。
【0026】
図4のポリマースイッチ装置102を低圧電力契約需要家の単相三線交流電路における電源回路に設置したときの回路図が図5に示される。単相三線用変圧器61のライン相L,Lにポリマースイッチ装置102のポリマースイッチ素子201a、201bが直列に介挿され、耐雷素子50の共通電極52が接地相Nに接続され、一対の耐雷素子部50a、50bがライン相L,Lと接地相Nの間に接続される。また、共通電極52と大地の間に放電ギャップGが必要に応じて接続される。放電ギャップGは、耐雷素子50の続流防止と雷サージ電流による破壊防止の保護機能を有する。
【0027】
図5の電源回路においても、平常時は発熱制御手段40がオフ状態に保持されてポリマースイッチ素子201a、201bが導通状態にあり、このとき一対の耐雷素子部50a,50bと放電ギャップGで形成される耐雷保護回路が雷サージ電圧を抑制して電気設備を雷撃から保護する。また、耐雷素子部50a、50bが雷サージの過電圧を抑制することで、一対のポリマースイッチ素子201a、201bを過電圧から保護する。さらに、耐雷素子50に耐雷電流容量を超えた続流が発生して自己発熱で温度上昇すると、発熱した耐雷素子50と一体のポリマースイッチ素子201a、201bが温度上昇してその抵抗値が上がり、ポリマースイッチ素子201a、201bに流れる電流が抑制されて耐雷保護回路が過電流から保護される。
【0028】
なお、以上の第3の実施形態の耐雷素子は2素子一体形であるが、1つの板状電圧依存性非線形電圧素子の片面に1つの共通電極を形成し、他の片面に3つの電極を離隔させて形成して3つの耐雷素子部を一体化させた3素子一体形にして、その3つの耐雷素子部の全て、或いは、選択された1つか2つにだけポリマースイッチ素子を一体に積層することも可能である。
【0029】
【発明の効果】
以上説明したように、本発明は以下の効果を有する。
【0030】
ポリマースイッチ素子に独立した発熱体を一体に設けることで電源回路の入切制御機能を有し、而も、過電流保護を兼ね備えた多機能なスイッチ装置が提供できる。また、ポリマースイッチ素子と発熱体を一体に積層することで、多機能なスイッチ装置の小形化とコストダウンが図れる。
【0031】
また、ポリマースイッチ素子に耐雷素子を一体化することで、ポリマースイッチ素子が耐雷素子を過電流から保護し、耐雷素子がポリマースイッチ素子を過電圧から保護すると共に、雷サージから電気設備類を保護する耐雷保護機能をも備えた多機能で小形、経済性に優れたスイッチ装置が提供でき、而も、このスイッチ装置は耐雷素子とポリマースイッチ素子の相互の保護機能でもって信頼性に優れる。
【図面の簡単な説明】
【図1】(A)は第1の実施形態を示すポリマースイッチ装置の断面図である。
(B)は等価回路図である。
【図2】第2の実施形態を示すポリマースイッチ装置の断面図である。
【図3】図2のポリマースイッチ装置を使用した電源回路図である。
【図4】第3の実施形態を示すポリマースイッチ装置の断面図である。
【図5】図4のポリマースイッチ装置を使用した電源回路図である。
【符号の説明】
10 ポリマースイッチ装置
101 ポリマースイッチ装置
102 ポリマースイッチ装置
20 ポリマースイッチ素子
201a ポリマースイッチ素子
201b ポリマースイッチ素子
22、23 電極
30 発熱体
31〜36 引出端子
40 発熱制御手段
41 発熱制御回路
50 耐雷素子
50a 耐雷素子部
50b 耐雷素子部
51 電圧依存性非線形電圧素子
52 共通電極
53,54 電極
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a switch device using a polymer switch element that performs a switching operation such as suppression of overcurrent of an electric circuit and opening and closing of a circuit by reversibly changing a resistance value due to a temperature change.
[0002]
[Prior art]
In a power supply circuit of a low-voltage power contract consumer, a switch device that combines a switching element for controlling power on / off and a functional element having a function of a specific operation, control, protection, or the like is incorporated. The switching element in this type of switch device is generally a triac, which is an alternating-current semiconductor switching element that repeats opening and closing operations, a relay contact of a protection relay, a temperature fuse, a current fuse, and the like that perform only a breaking operation. In addition, the functional elements assembled to the switching element include a control function element for stabilizing the operation of the switching element and a protection function element for protecting the switching element from overvoltage and overcurrent. A switch device in which the elements are connected in combination is installed in the power supply circuit of the low-voltage power contract customer, and the safe operation and management of the electric equipment of the low-voltage power customer is performed.
[0003]
[Problems to be solved by the invention]
The switch device as described above promises stable operation of the individual switching elements and protection function elements, but many of the circuit components such as the individual switching elements and protection function elements that constitute the switch device are large. Because of the tendency to be expensive, it is difficult to secure an installation space for installing in a small low-voltage power supply circuit of a low-voltage power contract customer, and the switch device itself has been expensive.
[0004]
The present invention has been made in view of such a problem, and an object of the present invention is to provide a small and economical polymer switch device suitable for a power supply circuit of a low-voltage power contract customer.
[0005]
[Means for Solving the Problems]
Technical means for achieving the above object of the present invention is to integrally laminate a polymer switch element having a positive temperature coefficient of resistance and a heating element that generates heat by energization and heats the polymer switch element to be in a non-conductive state. It is characterized by having done.
[0006]
Here, the polymer switch element is obtained by dispersing conductive fine particles such as carbon, silver, gold, nickel or the like, or carbide or boride fine particles such as silicon, titanium, or tungsten in a polymer material such as polyolefin, polyamide or polyimide. At room temperature, the resistance becomes extremely low, the conductor becomes a good conductor, and the switch operation is turned on. When the polymer switching element is heated and its temperature exceeds a threshold temperature, for example, about 80 to 90 ° C., the resistance becomes extremely high, and a non-conducting state where almost no current flows, and the switching operation is turned off. Then, when the temperature of the polymer switching element becomes equal to or lower than the threshold value and returns to the normal temperature, the resistance decreases with the opposite characteristic to that at the time of temperature rise, and the non-conductive state returns to the conductive state. The temperature rise of the polymer switching element from room temperature is performed by self-heating by applying a current flowing through the polymer switching element itself or by forced heating from the outside, and the temperature drop from high temperature to room temperature is performed by natural heat radiation or the like. A heating element for heating the polymer switch element is integrally laminated on such a polymer switch element to constitute a single-piece switch device. The heating element is a ceramic heating element or carbon heating element that generates heat when energized. By stacking this on a polymer switch element, an open / close switch that operates on and off and a control function element that controls the opening and closing of the switch are integrated. A compact, inexpensive, high-performance polymer switch device is realized.
[0007]
In addition, the present invention provides a polymer switch element having a plate shape, a heating element integrally laminated in an insulated state on one main surface side of the polymer switch element, and a heating element laminated on the other main surface side of the polymer switch element. And a lightning protection element having a plate-shaped voltage-dependent nonlinear voltage element laminated integrally with the polymer switch element in series connection.
[0008]
In the case of the present invention, there is provided a small and multifunctional polymer switch device in which an on / off switching device that performs an on / off switch operation, a control function device for controlling the opening and closing thereof, and a lightning protection device including a lightning protection device are integrated. When the polymer switch element and the lightning proof element are connected in series, the current flowing through the switch device causes the polymer switch element to self-heat and its resistance increases, thereby limiting the current flowing through the device. As a result, the lightning proof element is protected from overcurrent, and the lightning proof element suppresses the lightning surge voltage, so that the polymer switching element is protected from overvoltage, thereby realizing a highly reliable polymer switching device having a high protection function.
[0009]
Further, the present invention provides a plate-shaped voltage-dependent nonlinear voltage element of the lightning-resistant element, wherein a common electrode is formed on one surface side, and a plurality of electrodes facing the common electrode are insulated from each other on the other surface side. A plurality of plate-shaped polymer switch elements are connected in series to each of the plurality of electrodes separated from each other of the lightning-resistant element, and are integrally laminated. It is characterized in that a common heating element is integrally laminated so as to straddle the element.
[0010]
The polymer switch device of the present invention is obtained by integrating a plurality of lightning protection elements and a plurality of polymer switch elements, and laminating a heating element common to the plurality of polymer switch elements. The device is incorporated in a power supply circuit such as a single-phase three-wire AC circuit as a small switch device and a lightning protection device.
[0011]
Further, the present invention is characterized in that the heating element is provided in series with a heating control means which is controlled to be turned on / off by an external control signal and energizes the heating element when turned on. The control signal from the outside for turning on and off the heat generation control means in the present invention is automatically transmitted when an abnormality of a specific electric equipment is detected, or transmitted when necessary by managing the operation status of the electric equipment. When the heat generation control means is turned on by this control signal, the power supply to the heating element is started, and after a predetermined short period of time, the polymer switch element becomes substantially non-conductive and the power supply circuit of the electric equipment is cut off. Then, when the heat generation control means is turned off by the control signal, the polymer switch element returns to the conductive state, and the interruption of the power supply circuit is released.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, first to third embodiments will be sequentially described in detail with reference to FIGS. 1 to 5.
[0013]
The polymer switch device 10 of the first embodiment shown in FIGS. 1A and 1B is obtained by laminating a plate-shaped polymer switch element 20 and a plate-shaped heating element 30 and integrating them. The polymer switch element 20 is formed by forming a pair of opposed electrodes 22 and 23 on both sides of a plate-shaped polymer main body 21. The polymer body 21 is a temperature resistance element in which the resistance value in the thickness direction reversibly fluctuates due to a temperature change. The polymer body 21 is a low-resistance element in a conductive state at room temperature, and a high-resistance element in a non-conductive state at a high temperature of about 80 to 90 ° C. The polymer body 21 having a positive temperature coefficient of resistance changes its temperature by either self-heating due to current flowing between the electrodes 22 and 23 on both sides or external heating by the heating element 30, and accordingly, the conducting state Changes. The plate-shaped heating element 30 is laminated on the electrode 23 on one side of the polymer body 21 in an insulated state, and is thermally coupled to the polymer switch element 20 to be integrated. The heating element 30 is a ceramic heating element, a carbon heating element, or the like, and has lead terminals 31 and 32 at both ends in a length direction orthogonal to the thickness direction. When a current is applied to the heating element 30 in the length direction by applying a voltage between the two lead terminals 31 and 32, the heating element 30 generates heat and directly heats the polymer switching element 20 efficiently.
[0014]
In FIG. 1, the polymer switch device 10 has a three-terminal structure by connecting one electrode 23 of the polymer main body 21 and one lead terminal 31 of the heating element 30, but the electrode 23 and the lead terminal 31 are not connected. A four-terminal structure may be used.
[0015]
The resistance value of the polymer body 21 at room temperature is about 0.01Ω, which is close to zero, and becomes a good conductor. When the temperature rises from room temperature to about 80 to 90 ° C., the resistance rises to about several hundred kΩ, and the non-conductive state becomes high. It becomes a resistor, and when the temperature returns from a high temperature to a normal temperature, the resistance decreases accordingly. That is, when the rated temperature is applied to the electrodes 22 and 23 on both surfaces of the plate-shaped polymer main body 21 and the polymer main body 21 is at room temperature, the switch-on operation in which the polymer main body 21 conducts is continued and the two electrodes 22 and 23 continue. The rated current flows between them. When the polymer main body 21 is heated to a high temperature at which the heating element 30 becomes non-conductive, for example, the polymer main body 21 becomes a high-resistance body and switches to the switch-off operation.
[0016]
When an overcurrent exceeding the rated current flows between the two electrodes 22 and 23 of the polymer main body 21, the polymer main body 21 generates heat and the resistance value increases. This increase in the resistance value suppresses the overcurrent and further reduces the resistance. When the value increases, the polymer main body 21 becomes a non-conductive high-resistance body, and blocks overcurrent. As described above, the temperature of the polymer main body 21 is increased by either the heating element 30 or the overcurrent. Therefore, the polymer switching element 20 exerts an overcurrent protection function such as a power supply circuit and an opening / closing control function, so that the polymer switching device 10 is frequently used. Make it functional.
[0017]
The polymer switch device 10 is installed in, for example, a power supply circuit of various electric facilities of a low-voltage power contract customer, and is used as a switch device having an opening / closing control function of the power supply circuit and an overcurrent protection function. Since the polymer switch device 10 has a small structure in which a polymer switch element 20 having an opening / closing function and an overcurrent suppressing function and a heating element 30 for controlling the opening / closing of the polymer switch element 20 are integrated into a single body, the switch device of the power circuit is significantly small. In addition, the reliability of the switch device is improved by combining the function with the overcurrent suppression function.
[0018]
Next, the polymer switch device 101 according to the second embodiment shown in FIG. 2 will be described. The polymer switch device 101 shown in FIG. 2 is formed by stacking a pair of polymer switch elements 201a and 201b and a single heating element 301 in common. The structure is as follows. Each of the pair of polymer switch elements 201a and 201b has a structure similar to that of the polymer switch element 20 in FIG. 1, and is configured by forming electrodes 221a, 231a, 221b and 231b on both surfaces of plate-shaped polymer bodies 211a and 211b. A pair of polymer switch elements 201a and 201b are laminated on one surface of a common plate-shaped heating element 301 in an insulated state and fixed integrally. The plate-shaped heating element 301 has lead terminals 33 and 34 at both ends in the longitudinal direction, one lead terminal 33 is connected to the electrode 231a of one polymer switch element 201a, and the other lead terminal 34 is connected to the other polymer switch. It is connected to the electrode 231b of the element 201b.
[0019]
In addition, the center of the common heating element 301 is divided into two parts, and a pair of extraction terminals 35 and 36 are extracted from two points at the center of the divided heating element, and an on / off switching operation is performed between the extraction terminals 35 and 36. Heat generation control means 40 is connected. The heat generation control means 40 is turned on / off by a control signal from an external control circuit 41 by a semiconductor switch, a relay contact, or the like, and can connect the extraction terminals 35 and 36 to turn on the two heat generating elements 301 during the ON operation. When the power is turned off, the heating elements 301 are turned off to turn off the power.
[0020]
In the case of the polymer switch device 101 in FIG. 2, one sheet heating element 301 may be sandwiched between a pair of sheet polymer switching elements 201 a and 201 b to be integrated.
[0021]
FIG. 3 is a circuit diagram when the polymer switch device 101 of FIG. 2 is installed in a power supply circuit in a single-phase three-wire AC circuit of a low-voltage power contract customer. The polymer switches are connected to the line phases L and L of the single-phase three-wire transformer 61. The polymer switching elements 201a, 201b of the device 101 are inserted in series. In FIG. 3, reference numeral 62 denotes a wattmeter, and 63 denotes an inlet breaker for supplying power to the load of the electric equipment.
[0022]
In the power supply circuit in which the polymer switch device 101 shown in FIG. 3 is installed, the heat generation control means 40 is normally kept in the off state, and the polymer switch elements 201a and 201b are in a conductive state, so that normal power supply to the electric equipment is performed. Is When a situation arises in which it is desired to shut off the power supply circuit due to an abnormality in the electrical equipment or the like, a control signal for turning on the heat generation control means 40 is transmitted from the control circuit 41, and the heat generation control means 40 is turned on. Then, a current flows through the heating element 301 through the line phases L, L of the transformer 61 to start heating. After a short time, the polymer switching elements 201a, 201b are heated to a high temperature by the heating element 301 and become non-conductive. Then, the power supply circuit is turned off. When the interruption of the power supply circuit is released, for example, when the abnormality of the electrical equipment is eliminated, the off command signal is transmitted from the control circuit 41, and the heat generation control means 40 is switched from the on state to the off state. Power supply stops. With this stop, the heating element 301 starts to drop in temperature, and the resistance value of each of the polymer switching elements 201a and 201b decreases. After a short time, the heating element 301 returns to the conductive state, and the cutoff of the power supply circuit is released.
[0023]
Further, when an overcurrent enters the transformer 61 when the power supply circuit of FIG. 3 is normal, the polymer switching elements 201a and 201b self-heat due to the overcurrent to increase the resistance value, thereby suppressing the overcurrent. Protect electrical equipment from overcurrent.
[0024]
FIG. 4 shows a polymer switch device 102 according to a third embodiment in which a lightning protection function is added to the switch device of FIG. 4 which are the same as or correspond to those in FIG. 2 are denoted by the same reference numerals.
[0025]
The polymer switch device 102 of FIG. 4 has a structure in which the plate-like lightning proof element 50 is laminated and integrated with the polymer switch device of FIG. In the plate-like lightning protection element 50, a common electrode 52 is formed on one surface side of one plate-like voltage-dependent nonlinear voltage element 51, and a plurality of, for example, two electrodes 53, 54 are insulated from each other on the other surface side. It is a structure formed at a distance. The pair of electrodes 53 and 54 are opposed to the common electrode 52, and a first lightning protection element portion 50a is formed between one electrode 53 and the common electrode 52, and a second lightning protection element portion 50a is formed between the other electrode 54 and the common electrode 52. Is formed. The two lightning protection element portions 50a and 50b are integrated by a voltage element 51 to form a two-element integrated lightning protection element 50. A pair of electrodes 53 and 54 of the lightning protection element 50 are connected to a pair of polymer switches. The electrodes 53 and 54 are stacked on the elements 201a and 201b, and also serve as one electrode of the polymer switching elements 201a and 201b.
[0026]
FIG. 5 is a circuit diagram when the polymer switch device 102 of FIG. 4 is installed in a power supply circuit in a single-phase three-wire AC circuit of a low-voltage power contract customer. The polymer switch elements 201a and 201b of the polymer switch device 102 are inserted in series with the line phases L and L of the single-phase three-wire transformer 61, the common electrode 52 of the lightning protection element 50 is connected to the ground phase N, and a pair of lightning protection Element units 50a, 50b are connected between line phases L, L and ground phase N. Further, a discharge gap G is connected between the common electrode 52 and the ground as required. The discharge gap G has a protection function of preventing the lightning-resistant element 50 from continuing and preventing destruction by a lightning surge current.
[0027]
In the power supply circuit of FIG. 5 as well, the heating control means 40 is normally kept in the off state and the polymer switch elements 201a and 201b are in the conductive state. At this time, the polymer switch elements 201a and 201b are formed by the pair of lightning protection element sections 50a and 50b and the discharge gap G. The protection circuit protects electrical equipment from lightning by suppressing lightning surge voltage. Further, the lightning-resistant element portions 50a and 50b suppress the overvoltage of the lightning surge, thereby protecting the pair of polymer switch elements 201a and 201b from the overvoltage. Further, when a temperature rise occurs due to self-heating due to the occurrence of a continuation current exceeding the lightning resistance current capacity in the lightning protection element 50, the temperature of the polymer switch elements 201a and 201b integrated with the heated lightning protection element 50 increases, and the resistance value increases. The current flowing through the polymer switch elements 201a and 201b is suppressed, and the lightning protection circuit is protected from overcurrent.
[0028]
Although the lightning-resistant element of the third embodiment is a two-element integrated type, one common electrode is formed on one surface of one plate-shaped voltage-dependent nonlinear voltage element, and three electrodes are formed on the other surface. Three lightning proof element parts are integrated to form a three-element integrated type, and polymer switch elements are integrally laminated on all three lightning proof element parts or only one or two selected. It is also possible.
[0029]
【The invention's effect】
As described above, the present invention has the following effects.
[0030]
By providing an independent heating element integrally with the polymer switch element, it is possible to provide a multifunctional switch device having an on / off control function of the power supply circuit and also having overcurrent protection. Further, by stacking the polymer switch element and the heating element integrally, it is possible to reduce the size and cost of the multifunctional switch device.
[0031]
In addition, by integrating the lightning protection element with the polymer switching element, the polymer switching element protects the lightning protection element from overcurrent, the lightning protection element protects the polymer switching element from overvoltage, and protects electrical equipment from lightning surge. A multifunctional, compact, and economical switch device having a lightning protection function can be provided, and the switch device has excellent reliability due to the mutual protection function of the lightning protection element and the polymer switch element.
[Brief description of the drawings]
FIG. 1A is a cross-sectional view of a polymer switch device according to a first embodiment.
(B) is an equivalent circuit diagram.
FIG. 2 is a cross-sectional view of a polymer switch device according to a second embodiment.
FIG. 3 is a power supply circuit diagram using the polymer switch device of FIG. 2;
FIG. 4 is a sectional view of a polymer switch device according to a third embodiment.
FIG. 5 is a power supply circuit diagram using the polymer switch device of FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Polymer switch device 101 Polymer switch device 102 Polymer switch device 20 Polymer switch element 201a Polymer switch element 201b Polymer switch element 22, 23 Electrode 30 Heating element 31-36 Outgoing terminal 40 Heat generation control means 41 Heat generation control circuit 50 Lightning protection element 50a Lightning protection element Portion 50b Lightning protection device portion 51 Voltage-dependent nonlinear voltage device 52 Common electrodes 53, 54 Electrodes

Claims (4)

正の抵抗温度係数をもつポリマースイッチ素子と、通電により発熱して前記ポリマースイッチ素子を非導通状態になるよう加熱する発熱体とを一体に積層したことを特徴とするポリマースイッチ装置。A polymer switch device, wherein a polymer switch element having a positive temperature coefficient of resistance and a heating element that generates heat when energized and heats the polymer switch element to be in a non-conductive state are integrally laminated. 正の抵抗温度係数をもつ板状のポリマースイッチ素子と、前記板状ポリマースイッチ素子の一方の主面側に絶縁状態で一体に積層されて、外部からの通電により発熱して前記ポリマースイッチ素子を加熱する発熱体と、前記ポリマースイッチ素子の他方の主面側に同ポリマースイッチ素子と直列接続して一体に積層された板状の電圧依存性非線形電圧素子を有する耐雷素子とを具備したことを特徴とするポリマースイッチ装置。A plate-shaped polymer switch element having a positive temperature coefficient of resistance, and laminated integrally on one main surface side of the plate-shaped polymer switch element in an insulated state. A heating element to be heated; and a lightning proof element having a plate-shaped voltage-dependent nonlinear voltage element connected in series with the polymer switch element and integrally laminated on the other main surface side of the polymer switch element. Characterized polymer switch device. 前記耐雷素子は、前記板状電圧依存性非線形電圧素子の一方の面側に共通電極を形成し、前記一方の面と平行な他方の面側に前記共通電極と対向する複数の電極を互いに絶縁距離で離隔させて形成した複数素子一体形で、この耐雷素子の前記互いに離隔させた複数の電極の各々に複数の板状ポリマースイッチ素子を直列接続して一体に積層し、この複数の板状ポリマースイッチ素子上に跨るように共通の発熱体を一体に積層したことを特徴とする請求項2記載のポリマースイッチ装置。The lightning proof element has a common electrode formed on one surface side of the plate-shaped voltage-dependent nonlinear voltage element, and a plurality of electrodes facing the common electrode are insulated from each other on the other surface side parallel to the one surface. A plurality of plate-shaped polymer switch elements are connected in series to each of the plurality of electrodes separated from each other of the lightning-resistant element, and are integrally laminated. 3. The polymer switch device according to claim 2, wherein a common heating element is integrally laminated so as to straddle the polymer switch element. 前記発熱体は、外部からの制御信号でオンオフ制御されてオン時に発熱体に通電する発熱制御手段を直列に有することを特徴とする請求項1〜3のいずれかに記載のポリマースイッチ装置。The polymer switch device according to any one of claims 1 to 3, wherein the heating element includes a heating control unit that is turned on / off by a control signal from the outside and energizes the heating element when the heating element is turned on.
JP2003143486A 2003-05-21 2003-05-21 Polymer switch Withdrawn JP2004350383A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003143486A JP2004350383A (en) 2003-05-21 2003-05-21 Polymer switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003143486A JP2004350383A (en) 2003-05-21 2003-05-21 Polymer switch

Publications (1)

Publication Number Publication Date
JP2004350383A true JP2004350383A (en) 2004-12-09

Family

ID=33531266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003143486A Withdrawn JP2004350383A (en) 2003-05-21 2003-05-21 Polymer switch

Country Status (1)

Country Link
JP (1) JP2004350383A (en)

Similar Documents

Publication Publication Date Title
CN114583675B (en) Device for active overvoltage protection
US6211770B1 (en) Metal oxide varistor module
US8933533B2 (en) Solid-state bidirectional switch having a first and a second power-FET
US10014098B2 (en) Surge protection device, comprising at least one surge arrester and one short-circuit switching device which is connected in parallel with the surge arrester, can be thermally tripped and is spring-pretensioned
US7697252B2 (en) Overvoltage device with enhanced surge suppression
CA2301456A1 (en) Circuit protection device
JP7032325B2 (en) Configuration for overload protection of overvoltage protection device
US11373816B2 (en) Circuit breaker
CN110088864A (en) Low voltage protection switch
WO1999036927A1 (en) Circuit breaker with improved arc interruption function
CN103262375A (en) Overvoltage protection discharge device comprising at least one varistor discharge element
US6667461B1 (en) Multiple load protection and control device
JP7264920B2 (en) Multistage protection device for overcurrent and overvoltage protected transfer of electrical energy
JP7110404B2 (en) Multistage protective device for overcurrent and overvoltage protected transmission of electrical energy
US7208851B2 (en) Circuit arrangement for the reliable switching of electrical circuits
US9601243B2 (en) Contact element for varistor
CN103931064B (en) Method and circuit arrangement for breaking an electrical connection between two connection points
US8089735B2 (en) Hybrid power relay with thermal protection
CN109801817B (en) Hybrid circuit arrangement
JP2004350383A (en) Polymer switch
JPH10271667A (en) Current limiter and breaker for wiring
JP3483098B2 (en) Overcurrent protection device
JPH1197215A (en) Varistor and power supply with built-in varistor
WO2003063188A1 (en) Non-energy limiting class 2 transformer with positive temperature protection
KR100713341B1 (en) Circuit protection device with constant voltage holding and overcurrent blocking

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060801