【0001】
【発明の属する技術分野】本発明は水底に設置されて魚類の産卵藻場に利用される産卵用海草藻付着基盤装置の一部である葉状体の構造に関する。
【0002】
従来これらの装置は種々に提案されているが、それらの葉状体は一般に浮力が小さいのでフラフラするだけで水底からの直立状態が不安定であり、天然海草や珪藻類が付着すると全体が重くなり、直立状態を保てなくなるので、折り重なり、魚類が産卵しにくい状態であった。
また生物親和性が高い炭素繊維が表面に使われておらず設置後、水中の生物が付着するのに6ヶ月〜1年以上を要した。また、設置海域の条件で海草珪藻類の付着に大きな差異があった。
【0003】
本発明者らは長年種々の研究の結果、自然海藻に近い表面状態を早期に形成する葉状体を比較的廉価に製造する方法を発明した。
すでに環境対策1)2)生物飼育3)4)海洋学5)の分野で研究発表されているのは、炭素または、炭素繊維が水中に存在すると生物親和性で次の効果のある事である。
(1) 活性汚泥の付着
(2) さまざまな水中生物の産卵床となる
(3) 浮遊物の濁り除去
(4) 透明度の向上
(5) 水中生物の隠れ家、稚魚の餌場
(6) 海底土砂の流失防止
しかし、いずれも、高価な炭素繊維の長繊維(フイラメントヤ−ン)を使った研究でその使用方法については経済的にみて実用的ではない。炭素繊維の同一品種の材料の市中価格は次の通りで、本発明は炭素繊維の短繊維のみを材料として使うのである。短繊維は長繊維の2等品、格外品を原料としているので安価である。
炭素繊維 長繊維 15,000〜25,000円/kg
炭素繊維 短繊維 2,000〜6,000円/kg
この炭素繊維の短繊維を海藻付着基盤藻礁または従来の葉状態表面に出来るだけ均一に接着させる事により、その炭素繊維と上記生物親和効果により自然海藻と同じ効果が期待される。
【非特許文献1】「カ−ボンフアィバ−方式浄化実験」
琵琶湖、淀川水質浄化共同実験センタ−成果発表会 出倉ら 3名
【非特許文献2】「炭素繊維への微生物固着現象を利用した水質浄化」
第11回複合材料セミナ− 小島 昭
【非特許文献3】「水処理 生物飼育における炭素繊維の活用実施例」
第16回複合材料セミナ− 梅津 剛
【非特許文献4】「炭素繊維を用いた養魚、水陸性小生物の飼育について」
平成12年度前橋工大公開講座 梅津 剛
【非特許文献5】「炭素含有ポリエチレンを用いた人工藻場の機能」
東海大レポ−ト 林大ら 5名
【0004】
【発明が解決しようとする課題】
したがって、本発明は、より自然海藻に近い表面をもち挙動をして、魚類の産卵を促進産卵用海藻付着基盤装置を提供することを目的としている
【0005】
【課題を解決するための手段】
本発明によれば。水底に設置されて魚類の産卵藻場に利用される産卵用海藻付着基盤装置において、細長く薄肉の複数の葉状体自身を比重が、0.01〜0.9で、厚さが0.1〜30mm 幅3〜50cmで浮力をもたせたものが出来る。その表面に長さ0.1〜3mm、太さ0.1〜5デニ−ルの炭素繊維の短繊維をコ−ティングまたは、植毛する。
【0006】
炭素繊維の短繊維のコ−ティングは,予め用意した炭素繊維の短繊維を水溶性アクリルバインダ−に混合し、良く攪拌し、繊維を分散させる。
この時使用する攪拌機はプロペラ型は不適切である。理由はプロペラにより炭素繊維が切断して細分化してしまい繊維としての特徴が無くなってしまうからである。
適切な攪拌機はケ−ジ型で低速回転のものであり、繊維を損傷させないものである。
コ−ティング工程は丸棒ドクタ−付ボックス型が適切である。乾燥は熱風式が良い。
【0007】
炭素繊維の植毛は2種類の方法がある。
【表1】
機械式方法は静電気式より古くから用いられていた。機構的に分類すると上記のようになるが、実際に発明者らが用いたのは機械式加工方法の振動式と静電気式加工方法の連続式(自動式)である。
【0008】
振動式は予め炭素繊維の短繊維の表面に付加した油分、その他の固形分を300℃以上の熱処理により除去し、分繊を良くした後に、振動板の上から均一に落下させ、接着剤のついた基布の上へ接着させ乾燥させる。
【0009】
静電気連続式は上記と同じ処理をした炭素繊維の短繊維5を接地極1と高電圧極2の中間の柵に接着剤を塗った基材3を通して、その上かまたは下にある短繊維を吸引し接着層に接着させて乾燥させる。高圧電気は交流高圧を整流管で半波整流する方式かまたは高周波発生機を用いる。
【0010】
接着剤はエマルジョン型としてポリ酢酸ビニ−ル、ポリ塩化ビニ−ル、ポリアクリル酸エステル、合成ゴム、天然ゴム、エポキン等を用い安全性が高い。また溶剤型として合成ゴム、天然ゴム、ポリウレタン、エポキシン等を用いる。
【0011】
【発明の実施の形態】
以下図面を参照して本発明の一実施形態を説明する。
図1において、本発明の海草付着基盤の断面を示す。
基布1は独立発泡体プラスチック(例えば東レ株式会社の商標「ペフ」)でその片面又は両面に炭素繊維の短繊維を接着剤に均一に混合したもの2をコ−ティングした。このシ−トを薄肉の葉状体にするためにテ−プ状にスリットして海草付着基盤とする。
図2においては基布3が合成繊維のスパンボンド不織布(例えば東レ株式会社の商標「アクスタ−」や日本不織布株式会社の商標「スピリトップ」)でその片面又は両面に炭素繊維の短繊維を接着剤に均一に混合したもの2をコ−ティングした。このシ−トを薄肉の葉状体にするためにテ−プ状にスリットして海藻付着基盤とする。
図3において、本発明の海藻付着基盤の断面を示す。
基布1は独立発泡プラスチック(例えば東レ株式会社の商標「ペフ」)でその片面又は両面に接着剤4を塗布し、その上に炭素繊維の短繊維5を連続式電気植毛した。このシ−トを薄肉の葉状体にするためにテ−プ状にスリットし海草付着基盤とする。
図4においては独立気泡プラスチックに付着させる炭素繊維の短繊維5を振動式機械植毛した。このシ−トを薄肉の葉状体にするためにテ−プ状にスリットして人工海藻とする。
図5においては合成繊維のスパンボンド不織布(例えば東レ株式会社の商標「アクスタ−」日本不織布株式会社の商標「スピリトップ」)3の表面に予め独立発泡球物体6を付着、乾燥した。その上に図3と同様に炭素繊維の短繊維5を電気植毛したものでこのシ−トを薄肉の葉状体にするためにスリットして海藻付着基盤とする。
図6においては合成繊維のスパンボンド不織布(図3と同じ)の表面に独立発泡球物体6に炭素繊維の短繊維5を付着乾燥した。その上面に図4と同様振動式機械植毛した。
このシ−トを薄肉の葉状体にするためにテ−プ状にスリットして人工海藻とする。
図7においてはダウン式連続電気植毛機械の主要部を示す。パイル(炭素繊維の短繊維)5を上方より電界内に導入し、下方へ飛昇させる方式で、被植毛物8は下方に置かれ、接着剤塗布面8は上を向いていることになる。上方に高圧極9被植毛物側に接地極10が接続されている。ホッパ−にはパイル5が供給される。現在使はれている電気植毛機はこの方式が多い。
図8においては連続電気植毛機械の主要部を示す。パイル(炭素繊維の短繊維)5を下方より上方へ飛昇させる方式で、植毛パイルはコンベア11で電界内に導入される。被植毛物12は上方にあり接着剤塗布面12は下を向いておりパイル導入は高圧極13においておこなわれる。被植毛物側に接地極14が接続されている。
【0012】
上記製造法にて作られた炭素繊維の短繊維が表面に存在する人工海藻を海流中に、従来の海藻付着基盤装置に取付け敷設すると海中の微生物、天然海草の付着が早期に確実に増加した。
実験の結果は次の通りである。実験海域は静岡県沼津市海岸の水深5mの海底で、幅13mm、長さ1mの人工海藻を設置した。2ヶ月後の単位面積cm2当たり付着物を測定した。
【表2】
炭素繊維の有無による付着量の差は明らかである
【0013】
【発明の効果】
本発明は以上説明したように炭素繊維の短繊維を浮力のあるシ−トの表面に付着させて
海底に設置するもので以下の効果を奏する。
(1) 炭素の生物親和性の応用で、海藻付着装置の表面だけに炭素繊維の短繊維を付着させると水中の各種微生物が比較的大量に付着する。
(2) それにより自然海藻のない所でも魚類の産卵しやすい場所を人工的に設置することが出来る。
(3) 炭素繊維の短繊維は長繊維に比べ安価で自然海藻に近いものが比較的廉価に製造できる。
(4) 海底への敷設が容易であり海底土砂の海流も防げる。
【図面の簡単な説明】
【図1】本発明の海藻付着装置の独立発泡体へ炭素繊維の短繊維をコ−ティングした形態を示す。
【図2】本発明の海藻付着装置の合成繊維のスパンボンド不織布へ炭素繊維の短繊維をコ−ティングした形態を示す。
【図3】本発明の海藻付着装置の独立発泡体へ炭素繊維の短繊維を電気植毛した形態を示す。
【図4】本発明の海藻付着装置の独立発泡体へ炭素繊維の短繊維を振動式機構で付着させた形態を示す。
【図5】本発明の海藻付着装置基盤の合成繊維のスパンボンド不織布へ予め独立発泡球物体を付着乾燥し、その上面に炭素繊維の短繊維を電気植毛した形態を示す。
【図6】本発明の海藻付着装置の合成繊維のスパンボンド不織布へ予め独立発泡球物体を付着乾燥し、その上面に炭素繊維の短繊維を振動式機構で付着させた形態を示す。
【図7】本発明の炭素繊維の短繊維を電気植毛する時のダウン式連続電気植毛機の主要部を示す。
【図8】本発明の炭素繊維の短繊維を電気植毛する時のアップ式連続電気植毛機の主要部を示す。
【符号の説明】
1 独立発泡体
2 炭素繊維の短繊維と接着剤を混合した物
3 合成繊維のスパンボンド不織布
4 接着剤
5 炭素繊維の短繊維
6 独立発泡球物体
8 被植毛物
9 高圧極
10 接地極
11 コンベア
12 被植毛物
13 高圧極
14 接地極[0001]
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure of a leaf-like body which is a part of a seaweed algae attachment base device for spawning, which is installed on a water floor and used for a spawning alga field for fish.
[0002]
In the past, these devices have been proposed in various ways, but their foliates are generally low in buoyancy, so that the upright state from the bottom of the water is unstable, and the whole becomes heavy when natural seaweed or diatoms adhere. Since it was not possible to maintain the upright state, it was folded and fish were hard to lay eggs.
In addition, since carbon fibers having high biocompatibility were not used on the surface, it took 6 months to 1 year or more for the organisms in the water to adhere after installation. In addition, there was a great difference in the adhesion of seaweed diatoms depending on the conditions of the installation sea area.
[0003]
As a result of various studies over the years, the present inventors have invented a relatively inexpensive method for producing a foliate body that early forms a surface state close to natural seaweed.
What has already been announced in the fields of environmental measures 1) 2) breeding of living organisms 3) 4) oceanography 5) The existence of carbon or carbon fiber in water has the following effects on biocompatibility. .
(1) Adhesion of activated sludge (2) Spawning bed for various aquatic organisms (3) Removal of turbidity of suspended matter (4) Improvement of transparency (5) Underwater shelter, fry feeding ground (6) Submarine sediment However, none of them is economically practical because of the research using expensive carbon fiber filaments (filament yarn). The market prices of materials of the same type of carbon fiber are as follows, and the present invention uses only short fibers of carbon fiber as the material. Short fibers are inexpensive because they are made from second-class or extra-grade long fibers.
Carbon fiber long fiber 15,000-25,000 yen / kg
Carbon fiber short fiber 2,000-6,000 yen / kg
By bonding the carbon fiber short fibers to the seaweed-attached base algal reef or the conventional leaf state surface as uniformly as possible, the same effect as natural seaweed is expected due to the carbon fiber and the biocompatible effect.
[Non-Patent Document 1] "Carbon Fiber Purification Experiment"
Lake Biwa, Yodogawa Water Purification Joint Experiment Center-Result presentation meeting Dekura et al. [Non-patent document 2] "Water purification using microbial adhesion to carbon fiber"
The 11th Composite Material Seminar-Akira Kojima [Non-Patent Document 3] "Example of utilization of carbon fiber in water treatment and breeding of organisms"
16th Composite Seminar-Takeshi Umezu [Non-Patent Document 4] "Regarding fish farming and aquatic small organisms using carbon fiber"
2000 Maebashi Institute of Technology Open Lecture Go Umezu [Non-Patent Document 5] "Functions of artificial seaweed beds using carbon-containing polyethylene"
Tokai University report Hayashi University and others 5 people [0004]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to provide a seaweed attachment base device for spawning, which has a surface more similar to natural seaweed and promotes spawning of fish.
[Means for Solving the Problems]
According to the invention. In the spawning seaweed attachment base device installed on the bottom of the water and used for a spawning seaweed bed for fish, the specific gravity of the plurality of elongated and thin foliates themselves is 0.01 to 0.9, and the thickness is 0.1 to 0.1. A buoyancy having a width of 30 mm and a width of 3 to 50 cm can be obtained. Short fibers of carbon fibers having a length of 0.1 to 3 mm and a thickness of 0.1 to 5 denier are coated or planted on the surface.
[0006]
For coating of carbon fiber short fibers, carbon fiber short fibers prepared in advance are mixed with a water-soluble acrylic binder, mixed well, and dispersed.
At this time, the agitator used is not suitable for the propeller type. The reason is that the carbon fiber is cut by the propeller to be finely divided, and the characteristic as the fiber is lost.
Suitable agitators are cage-type, low-speed rotating, and do not damage the fibers.
For the coating process, a box type with a round bar doctor is appropriate. Hot air drying is good for drying.
[0007]
There are two types of carbon fiber implantation.
[Table 1]
Mechanical methods have been used for a long time than electrostatic methods. Although mechanically classified as described above, the inventors actually used a vibration-type mechanical processing method and a continuous (automatic) electrostatic processing method.
[0008]
The vibration type removes oil and other solids previously added to the surface of the short fiber of carbon fiber by heat treatment at 300 ° C or higher, improves the fiber separation, and then drops uniformly from the top of the diaphragm to remove the adhesive. Adhere on the base cloth and let dry.
[0009]
In the static electricity continuous type, a short fiber 5 of carbon fiber treated in the same manner as described above is passed through a base material 3 coated with an adhesive on a middle fence between the ground electrode 1 and the high voltage electrode 2, and the short fiber above or below is cut off. Suction, adhere to the adhesive layer and dry. For the high voltage electricity, a method of half-wave rectifying AC high voltage with a rectifier tube or a high frequency generator is used.
[0010]
The adhesive used is of an emulsion type, and is highly safe, using polyvinyl acetate, polyvinyl chloride, polyacrylate, synthetic rubber, natural rubber, Epokin and the like. As the solvent type, synthetic rubber, natural rubber, polyurethane, epoxyne or the like is used.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described below with reference to the drawings.
FIG. 1 shows a cross section of the seaweed-attached base of the present invention.
The base fabric 1 was coated with a closed-cell foam plastic (for example, trade name "PEFF" of Toray Industries, Inc.) 2 on one or both sides of which a short fiber of carbon fiber was uniformly mixed with an adhesive. The sheet is slit into a tape shape in order to form a thin-walled leaf-like body, thereby forming a seaweed-attached base.
In FIG. 2, the base fabric 3 is a spunbond nonwoven fabric of synthetic fiber (for example, trademark “Axter” of Toray Industries, Inc. or “Spirittop” of Japan Nonwoven Fabric Co., Ltd.), and short fibers of carbon fiber are bonded to one or both surfaces thereof. The mixture 2 uniformly mixed with the agent was coated. This sheet is slit into a tape shape to form a thin-walled leaf-like body, which is used as a seaweed-attached base.
FIG. 3 shows a cross section of the seaweed attachment base of the present invention.
The base fabric 1 was made of an independent foamed plastic (for example, trade name "PEFF" of Toray Industries, Inc.), and an adhesive 4 was applied to one or both surfaces thereof, and carbon fibers short fibers 5 were continuously electroplanted thereon. This sheet is slit into a tape shape in order to form a thin-walled leaf-like body, which is used as a seaweed-attached base.
In FIG. 4, the short fibers 5 of carbon fibers to be attached to the closed-cell plastic were planted by vibratory mechanical flocking. This sheet is slit into a tape shape in order to form a thin leaf-like body, thereby forming an artificial seaweed.
In FIG. 5, an independent foamed spherical body 6 was previously attached to the surface of a synthetic fiber spun-bonded nonwoven fabric (for example, trademark “Axter” of Toray Industries, Inc. and trademark of “Spily Top” of Japan Nonwovens Inc.) 3 and dried. Further, carbon fiber short fibers 5 are electro-flocked thereon as in FIG. 3 and the sheet is slit to form a thin-walled leaf-like body to form a seaweed-attached base.
In FIG. 6, a short fiber 5 of carbon fiber was adhered to a closed-cell spherical body 6 on the surface of a synthetic fiber spun-bonded nonwoven fabric (same as in FIG. 3) and dried. Vibrating mechanical flocking was carried out on the upper surface in the same manner as in FIG.
This sheet is slit into a tape shape to form an artificial seaweed in order to make a thin leaf-like body.
FIG. 7 shows a main part of the down type continuous electric flocking machine. A pile (short fiber of carbon fiber) 5 is introduced into the electric field from above, and is caused to fly downward, so that the planted material 8 is placed below, and the adhesive applied surface 8 faces upward. The ground electrode 10 is connected to the high voltage electrode 9 on the side of the plant to be implanted. The pile 5 is supplied to the hopper. This type of electric flocking machine currently in use is common.
FIG. 8 shows a main part of the continuous electric flocking machine. The flocking pile is introduced into the electric field by the conveyor 11 by a method in which the pile (carbon fiber short fiber) 5 is lifted upward from below. The planted material 12 is on the upper side and the adhesive applied surface 12 is on the lower side, and the pile is introduced at the high voltage electrode 13. The ground electrode 14 is connected to the planted material side.
[0012]
When artificial seaweed with carbon fiber short fibers present on the surface produced by the above manufacturing method is present in the ocean current, and installed and laid on a conventional seaweed adhesion base device, the adhesion of microorganisms in the sea and natural seaweed has increased reliably at an early stage. .
The results of the experiment are as follows. The experimental sea area was a seabed at a depth of 5 m on the shore of Numazu City, Shizuoka Prefecture, and artificial seaweed having a width of 13 mm and a length of 1 m was installed. Deposits per unit area cm 2 after 2 months were measured.
[Table 2]
The difference in the amount of adhesion between the presence and absence of carbon fiber is apparent.
【The invention's effect】
As described above, the present invention attaches short fibers of carbon fibers to the surface of a buoyant sheet and installs them on the seabed, and has the following effects.
(1) When short fibers of carbon fibers are attached only to the surface of a seaweed attachment device by application of biocompatibility of carbon, various microorganisms in water attach to a relatively large amount.
(2) It is possible to artificially set up a place where fish can lay eggs even in a place where there is no natural seaweed.
(3) Carbon fiber short fibers are inexpensive compared to long fibers, and those close to natural seaweed can be produced at relatively low cost.
(4) It is easy to lay on the seabed and the seabed sediment current can be prevented.
[Brief description of the drawings]
FIG. 1 shows a form in which short fibers of carbon fibers are coated on a closed cell of the seaweed adhesion apparatus of the present invention.
FIG. 2 shows a form in which carbon fiber short fibers are coated on a synthetic fiber spunbonded nonwoven fabric of the seaweed adhesion apparatus of the present invention.
FIG. 3 shows a form in which short fibers of carbon fibers are electro-implanted into the independent foam of the seaweed adhesion device of the present invention.
FIG. 4 shows a form in which short fibers of carbon fibers are adhered to the independent foam of the seaweed adhesion device of the present invention by a vibrating mechanism.
FIG. 5 shows a form in which an independent foamed spherical body is previously attached to a spunbonded nonwoven fabric of synthetic fibers based on a seaweed attachment device base of the present invention and dried, and short fibers of carbon fibers are electro-planted on the upper surface thereof.
FIG. 6 shows a form in which an independent foamed spherical object is previously attached to a synthetic fiber spunbonded nonwoven fabric of the seaweed attachment device of the present invention and dried, and short carbon fiber is attached to the upper surface thereof by a vibration mechanism.
FIG. 7 shows a main part of a down-type continuous electric flocking machine for performing electric flocking of short carbon fiber fibers according to the present invention.
FIG. 8 shows a main part of an up-type continuous electric flocking machine for electro-implanting carbon fiber short fibers according to the present invention.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 independent foam 2 mixture of carbon fiber short fiber and adhesive 3 synthetic fiber spunbonded nonwoven fabric 4 adhesive 5 carbon fiber short fiber 6 independent foam ball object 8 planted object 9 high voltage pole 10 ground pole 11 conveyor 12 Flocked object 13 High voltage electrode 14 Ground electrode