[go: up one dir, main page]

JP2004358399A - Method of removing volatile organic compound in air and removing apparatus used for the same - Google Patents

Method of removing volatile organic compound in air and removing apparatus used for the same Download PDF

Info

Publication number
JP2004358399A
JP2004358399A JP2003161333A JP2003161333A JP2004358399A JP 2004358399 A JP2004358399 A JP 2004358399A JP 2003161333 A JP2003161333 A JP 2003161333A JP 2003161333 A JP2003161333 A JP 2003161333A JP 2004358399 A JP2004358399 A JP 2004358399A
Authority
JP
Japan
Prior art keywords
air
volatile organic
activated carbon
light
carbon material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003161333A
Other languages
Japanese (ja)
Other versions
JP4251919B2 (en
Inventor
Norimichi Kawashima
徳道 川島
Yoshiichi Tokuoka
由一 徳岡
Takuo Murakami
拓郎 村上
Yoshihiro Niikura
嘉浩 新倉
Shiyuuichiro Yamaguchi
秀一朗 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toin Gakuen
Original Assignee
Toin Gakuen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toin Gakuen filed Critical Toin Gakuen
Priority to JP2003161333A priority Critical patent/JP4251919B2/en
Publication of JP2004358399A publication Critical patent/JP2004358399A/en
Application granted granted Critical
Publication of JP4251919B2 publication Critical patent/JP4251919B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Treating Waste Gases (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Fire-Extinguishing Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of efficiently removing a volatile organic compound (VOC) in air without using a photocatalyst such as existing TiO<SB>2</SB>and without accompanying the re-pollution of air in the desorption in the case of using activated carbon. <P>SOLUTION: In the method of removing the volatile organic compound in air, the volatile organic compound contained in air is removed by irradiating the air containing the volatile organic compound with light while bringing the air into contact with a porous carbon material. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【産業上の利用分野】
本発明は、空気中の揮発性有機化合物(以下VOCという)を効率よく除去する方法及びそれに用いる装置に関するものである。
【0002】
【従来の技術】
近年、「シックハウス症候群」という人体異常現象が社会的な問題となっている。この「シックハウス症候群」とは、住宅の建材、内装材などから放散されるVOCにより、目や喉の痛み、頭痛などの症状が引き起こされる疾患であり、その原因となる住宅から離れるとこれらの症状が軽減されるという特徴を有している。
【0003】
この「シックハウス症候群」という用語は、米国で1980年代に発生した「シックビルディングシンドローム」から派生した造語であるが、この「シックビルディングシンドローム」は、近年、建材、内装材などに化学物質が多用されるようになって発生源が増大したことや、オイルショック以降の省エネルギー政策に基づく大型ビルディングにおける気密性の向上、換気性の抑制が原因となっていると考えられる。
【0004】
ところで、「シックハウス症候群」の原因となるVOCとしては、脂肪族又は芳香族の炭化水素、塩素化炭化水素、ケトン類、アルデヒド類などがあり、この中には発ガン性物質も含まれている。そして、その発生源も多種多様であり、前記した建材のほかに、開放型燃焼器具の燃料やヘアスプレー、塗料の溶剤なども含まれている。
【0005】
このような状況下、空気中のVOCを除去する方法や装置について、多くの研究がなされ、これまでVOCを吸着する第1吸着剤と、VOCを分解する光触媒とを有し、さらに光分解により生じた二次有毒ガスを吸着するための第2吸着剤を備えた化学物質除去装置(特許文献1参照)、VOCを光触媒に接触させ、かつ光触媒を活性化する光照射を行う処理装置(特許文献2参照)、紫外線照射室、光触媒充填層及び活性炭充填層を備え、紫外線照射と光触媒作用により空気中のVOCを分解したのち、副生ガスを活性炭に吸着させて汚染空気を浄化する装置(特許文献3参照)、酸素の存在下、フッ素系有機化合物と光触媒とを含む水層に光照射する方法(特許文献4参照)などが提案されている。
しかしながら、このような光触媒を用いるものは、コスト高になるのを免れず、実用化の点で必ずしも満足しうるものとはいえない。
【0006】
また、ガス吸着剤を用いる方法は、その吸着容量に達するとそれ以上VOCを除去しなくなるという欠点があるし、光触媒を用いる方法は、コスト高になるのを免れないので、建物全体にわたって施工するのがむずかしいという欠点がある。
【0007】
そのほか、プラズマ処理した活性炭を用いてトルエンガスや四塩化炭素を吸着除去する方法(特許文献5参照)のように活性炭を用いて空気中のVOCを吸着除去する方法も知られているが、この方法では吸着後の温度条件の変化によって、いったん吸着したVOCが脱離し、これが再び室内空気を汚染するという欠点がある。
【0008】
一方、多孔質炭素材料、例えば活性炭は種々の気体や液体の吸着剤として広く用いられ、有害物質の除去にも利用されている。この多孔質炭素材料は、一般的には、多環芳香族分子の積層集合体と非晶質炭化水素からなり、孔径の異なる多種多様の細孔をもち、その表面と吸着質分子との接触における相互作用エネルギーに基づく吸着力により、有害物質を吸着し、空気中から有害物質を除去する能力を有しているが、これ自体光触媒能力を有することは知られていない。
【0009】
【特許文献1】
特開2001−232154号公報(特許請求の範囲その他)
【特許文献2】
特開2001−232136号公報(特許請求の範囲その他)
【特許文献3】
特開2003−135576号公報(特許請求の範囲その他)
【特許文献4】
特開2000−40805号公報(特許請求の範囲その他)
【特許文献5】
特開平7−187636号公報(特許請求の範囲その他)
【0010】
【発明が解決しようとする課題】
本発明は、既存のTiOのような光触媒を用いることなく、また活性炭を用いた場合の脱着による空気の再汚染を伴うことなしに、空気中のVOCを効率よく除去する方法を提供することを目的としてなされたものである。
【0011】
【課題を解決するための手段】
本発明者らは、空気中のVOCを効率よく除去し得る方法を開発するために鋭意研究を重ねた結果、VOCを含む空気を、多孔質炭素材料、例えば活性炭に接触させ、光を照射させると、活性炭に吸着したVOCが容易に光分解して無害化することを見出し、この知見に基づいて本発明をなすに至った。
【0012】
すなわち、本発明は、揮発性有機化合物(VOC)を含む空気を多孔質炭素材料に接触させながら、光照射することを特徴とする空気中の揮発性有機化合物除去方法、及びガス取入口及びガス排出口を備えた透明ガラス管、その中に充填された多孔質炭素材料、該透明ガラス管の少なくとも一部に光照射するための光源から構成され、かつ上記ガス取入口が透明ガラス管内に空気を供給するための気体供給機構に連結されていることを特徴とする空気中の揮発性有機化合物除去装置を提供するものである。
【0013】
【発明の実施の形態】
本発明方法においては、VOCを含む空気を多孔質炭素材料と接触させて、VOCを多孔質炭素材料に吸着させ、これに光を照射してVOCを光分解して、無害の化合物に変換し、多孔質炭素材料から分解生成物を脱離させることにより、VOCを除去する。
【0014】
本発明方法で用いる多孔質炭素材料としては、通常の吸着剤として用いられている活性炭、例えば木、竹、石炭、草炭、堅果の殻など自然産物の炭化により得られる活性炭や、ファーネスブラック、チャンネルブラック、サーマルブラック、アセチレンブラックなどのカーボンブラックや、サランやポリ塩化ビニリデン樹脂の炭化により得られる合成活性炭などを挙げることができる。そのほか、石炭を原料とし球形活性炭製造法(公資研法)、流動法(北関試法)などにより製造した粒状活性炭なども好適に用いられる。この中でも、特にヤシ殻炭、無煙炭及び木炭の中から選ばれた活性炭が好ましい。
【0015】
これらの多孔質炭素材料は、孔径10〜1000Å、好ましくは100〜500Åの範囲の細孔を有し、BET表面積800〜1200m/g、好ましくは1000〜1100m/gをもつものがよい。この多孔質炭素材料は、通常粒度4〜30メッシュ、好ましくは6〜12メッシュの範囲の粉粒体として用いられるが、所望ならば繊維状、ハニカム状、シート状などに成形して用いることもできる。
【0016】
また、本発明における照射光としては、波長400〜700nmの範囲の可視光が用いられる。この光源としては、キセノンランプ、ハロゲンランプ、メタルハライドランプなどが用いられる。
【0017】
次に添付図面に従って本発明装置を説明する。
図1は本発明装置を説明するための縦断面図であり、筐体1内に多孔質炭素材料2を充填したカラム3と、その周囲に配置された光源4,…によって構成されている。処理されるべきVOCを含む空気は、供給ポンプ5により、カラムの空気取入口6からカラム内に導入され、多孔質炭素材料2と接触しながら、カラムを通過して空気排出口7から排出される。そして、カラム内を通過している間に、光源4,…から照射される光によりVOCは分解され、無害化された副生成物となる。この図においては、カラムの前に供給ポンプ5が連結されているが、所望ならばカラムの後に吸込ポンプを連結して、空気を流入させることもできる。この際の流入速度は、カラム寸法により変わるが、一般にSV5〜50min−1の範囲が用いられる。
このようにして、50〜100分の処理で空気中のVOCをほとんど除去することができる。
【0018】
【実施例】
次に、実施例により本発明をさらに詳細に説明する。
【0019】
実施例1
デシケーター中にトルエンガス250ppmを含む空気と、粒状活性炭素(関東化学社製)2.58gを充填し、トルエンガスの初濃度を測定したのち、波長400〜700nmの可視光を照射し、気体検知管[ガステック(GASTEC)社製,No.122]を用いてトルエン濃度の経時的変化を測定した。その結果を図2にグラフAとして示す。
【0020】
比較例1
粒状活性炭素を用いないで、他は実施例と同様にして操作し、トルエン濃度の経時的変化を測定した。その結果を図2にグラフBとして示す。
【0021】
比較例2
光照射を行わないで、他は実施例と同様にして操作し、トルエン濃度の経時的変化を測定した。
その結果を図2にグラフCとして示す。
【0022】
これらの結果から分るように、光照射のみでは、トルエンガス濃度の減少は認められない。また、活性炭のみを用いた場合には、時間経過とともにトルエン濃度の減少が認められたが、その減少割合は、活性炭と光照射を併用した場合に比べ、著しく小さい。
【0023】
実施例2
トルエン2000ppmを含む空気を調製し、試料ガスとした。デシケーターに粒状活性炭素(関東化学社製)2.58gを添加し、試料ガスを充填したのち、光照射を行った。120分静置後、ガスタイトシリンジでデシケーター中の気相を採取し、ガスクロマトグラフィー(GC353B、GLサイエンス社製)で分析し、経過時間0分のガスも同様に分析を行った。
【0024】
ガスクロマトグラフィーで、光照射前後におけるデシケーターの気相を分析した結果を図3に示す。保持時間13分付近に見られる大きなピークはトルエンのピークである。図中、(I)は活性炭と光照射を併用した場合、(II)は活性炭単独の場合、(III)は未処理の場合である。
この図から明らかなように、試料ガス充填時の活性炭−光照射系及び活性炭単独系では、未処理系には見られない新規なピーク(a)、(b)が確認された。
【0025】
【発明の効果】
本発明によると、光触媒を用いずに多孔質炭素材料と光照射の併用により効率よく空気中のVOCを除去することができる。
【図面の簡単な説明】
【図1】本発明装置の1例の説明縦断面図。
【図2】実施例1及び比較例におけるトルエン濃度の経時的変化を示すグラフ。
【図3】実施例2における各試料のガスクロマトグラム。
【符号の説明】
1 筐体
2 多孔質炭素材料
3 カラム
4 光源
5 供給ポンプ
6 空気取入口
7 空気排出口
[0001]
[Industrial applications]
The present invention relates to a method for efficiently removing volatile organic compounds (hereinafter referred to as VOCs) from air and an apparatus used therefor.
[0002]
[Prior art]
In recent years, an abnormal human body phenomenon called “sick house syndrome” has become a social problem. This "sick house syndrome" is a disease in which VOCs emitted from house building materials and interior materials cause symptoms such as pain in the eyes, throat, and headaches. Is reduced.
[0003]
The term "sick house syndrome" is a coined word derived from the "sick building syndrome" that originated in the 1980s in the United States. It is thought that this is due to the increase in the number of sources and the improvement of airtightness and suppression of ventilation in large buildings based on energy conservation policies after the oil crisis.
[0004]
By the way, VOCs that cause "sick house syndrome" include aliphatic or aromatic hydrocarbons, chlorinated hydrocarbons, ketones, aldehydes, and the like, which also include carcinogens. . There are various sources, including fuel for open-type combustion appliances, hair spray, and solvent for paints, in addition to the building materials described above.
[0005]
Under such circumstances, many studies have been made on a method and an apparatus for removing VOCs in the air. Until now, the method has a first adsorbent that adsorbs VOCs, a photocatalyst that decomposes VOCs, and further has a photodecomposition. A chemical substance removing device provided with a second adsorbent for adsorbing the generated secondary toxic gas (see Patent Document 1), a processing device for bringing VOC into contact with a photocatalyst and performing light irradiation for activating the photocatalyst (Patent Reference 2), an ultraviolet irradiation chamber, a photocatalyst packed layer and an activated carbon packed layer, and after decomposing VOCs in the air by ultraviolet irradiation and photocatalysis, adsorb by-product gas on activated carbon to purify contaminated air ( A method of irradiating a water layer containing a fluorine-containing organic compound and a photocatalyst with light in the presence of oxygen (see Patent Document 3) has been proposed.
However, the use of such a photocatalyst is unavoidable in that the cost is high, and is not always satisfactory in terms of practical use.
[0006]
Further, the method using a gas adsorbent has a drawback that VOCs cannot be removed any more when the adsorption capacity is reached, and the method using a photocatalyst is unavoidable to increase the cost. There is a disadvantage that it is difficult.
[0007]
In addition, a method of adsorbing and removing VOCs in air using activated carbon, such as a method of adsorbing and removing toluene gas and carbon tetrachloride using plasma-treated activated carbon (see Patent Document 5), is also known. The method has a drawback in that once adsorbed VOCs are desorbed due to a change in temperature conditions after adsorption, and this contaminates indoor air again.
[0008]
On the other hand, porous carbon materials, for example, activated carbon, are widely used as adsorbents for various gases and liquids, and are also used for removing harmful substances. This porous carbon material is generally composed of a stack of polycyclic aromatic molecules and an amorphous hydrocarbon, has a wide variety of pores having different pore sizes, and has a contact between the surface and the adsorbate molecules. Has the ability to adsorb harmful substances and remove harmful substances from the air by means of the adsorption power based on the interaction energy in the above, but is not known to itself have photocatalytic ability.
[0009]
[Patent Document 1]
JP 2001-232154 A (Claims and others)
[Patent Document 2]
JP 2001-232136 A (Claims and others)
[Patent Document 3]
JP 2003-135576 A (Claims and others)
[Patent Document 4]
Japanese Patent Application Laid-Open No. 2000-40805 (Claims and others)
[Patent Document 5]
JP-A-7-187636 (Claims and others)
[0010]
[Problems to be solved by the invention]
The present invention provides a method for efficiently removing VOCs in the air without using a photocatalyst such as the existing TiO 2 and without recontaminating the air by desorption when using activated carbon. It was made for the purpose of.
[0011]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to develop a method capable of efficiently removing VOCs in the air. As a result, the air containing the VOCs is brought into contact with a porous carbon material, for example, activated carbon, and irradiated with light. The present inventors have found that VOCs adsorbed on activated carbon are easily photodegraded and made harmless, and based on this finding, the present invention has been accomplished.
[0012]
That is, the present invention provides a method for removing volatile organic compounds in air, which comprises irradiating light while bringing air containing volatile organic compounds (VOC) into contact with the porous carbon material, and a gas inlet and gas. A transparent glass tube provided with an outlet, a porous carbon material filled therein, a light source for irradiating at least a part of the transparent glass tube with light, and the gas inlet is provided with air inside the transparent glass tube. And a device for removing volatile organic compounds in air, which is connected to a gas supply mechanism for supplying air.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
In the method of the present invention, air containing VOC is brought into contact with the porous carbon material to adsorb the VOC to the porous carbon material, and is irradiated with light to photodecompose the VOC to convert it into a harmless compound. VOC is removed by removing decomposition products from the porous carbon material.
[0014]
Examples of the porous carbon material used in the method of the present invention include activated carbon used as a general adsorbent, for example, activated carbon obtained by carbonizing natural products such as wood, bamboo, coal, peat, nut shells, furnace black, and channel. Examples include carbon black such as black, thermal black, and acetylene black, and synthetic activated carbon obtained by carbonizing Saran or polyvinylidene chloride resin. In addition, granular activated carbon produced from a coal as a raw material by a spherical activated carbon production method (public research institute method), a flow method (Kitaseki test method), or the like is also suitably used. Among them, activated carbon selected from coconut shell charcoal, anthracite charcoal and charcoal is particularly preferable.
[0015]
These porous carbon material, pore size 10~1000A, preferably has pores in the range of 100 Å to 500 Å, BET surface area 800~1200m 2 / g, preferably from those having 1000~1100m 2 / g. This porous carbon material is usually used as a powder having a particle size of 4 to 30 mesh, preferably 6 to 12 mesh. If desired, the porous carbon material may be formed into a fibrous, honeycomb, sheet or the like. it can.
[0016]
In addition, as the irradiation light in the present invention, visible light having a wavelength of 400 to 700 nm is used. As this light source, a xenon lamp, a halogen lamp, a metal halide lamp, or the like is used.
[0017]
Next, the device of the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a longitudinal sectional view for explaining the apparatus of the present invention, and is constituted by a column 3 in which a casing 1 is filled with a porous carbon material 2, and light sources 4,. The air containing the VOC to be treated is introduced into the column by the supply pump 5 from the air inlet 6 of the column, and is discharged from the air outlet 7 through the column while contacting the porous carbon material 2. You. The VOC is decomposed by light emitted from the light sources 4 while passing through the column, and becomes a harmless by-product. In this figure, the supply pump 5 is connected before the column, but if desired, a suction pump can be connected after the column to allow air to flow. The inflow speed at this time varies depending on the column size, but is generally in the range of SV5 to 50 min- 1 .
In this manner, VOCs in the air can be almost removed by the treatment for 50 to 100 minutes.
[0018]
【Example】
Next, the present invention will be described in more detail with reference to examples.
[0019]
Example 1
A desiccator is filled with air containing 250 ppm of toluene gas and 2.58 g of granular activated carbon (manufactured by Kanto Chemical Co., Ltd.), and after measuring the initial concentration of toluene gas, irradiates visible light with a wavelength of 400 to 700 nm to detect gas. Tube [manufactured by GASTEC, No. 122], the change over time in the toluene concentration was measured. The result is shown as a graph A in FIG.
[0020]
Comparative Example 1
The operation was performed in the same manner as in the example except that granular activated carbon was not used, and the change over time in the toluene concentration was measured. The result is shown as a graph B in FIG.
[0021]
Comparative Example 2
The operation was performed in the same manner as in the example except that the light irradiation was not performed, and the time-dependent change in the toluene concentration was measured.
The result is shown as a graph C in FIG.
[0022]
As can be seen from these results, no decrease in the concentration of toluene gas was observed only by light irradiation. When only activated carbon was used, a decrease in the toluene concentration was observed over time, but the rate of decrease was significantly smaller than when activated carbon and light irradiation were used in combination.
[0023]
Example 2
Air containing 2000 ppm of toluene was prepared and used as a sample gas. 2.58 g of granular activated carbon (manufactured by Kanto Chemical Co., Ltd.) was added to a desiccator, and after filling with a sample gas, light irradiation was performed. After standing for 120 minutes, the gas phase in the desiccator was collected with a gas-tight syringe, and analyzed by gas chromatography (GC353B, manufactured by GL Science), and the gas with an elapsed time of 0 minutes was similarly analyzed.
[0024]
FIG. 3 shows the results of analyzing the gas phase of the desiccator before and after light irradiation by gas chromatography. The large peak seen at a retention time of around 13 minutes is the toluene peak. In the figure, (I) shows a case where activated carbon and light irradiation are used in combination, (II) shows a case where activated carbon is used alone, and (III) shows a case where no treatment is performed.
As apparent from this figure, in the activated carbon-light irradiation system and the activated carbon alone system at the time of filling the sample gas, new peaks (a) and (b) not observed in the untreated system were confirmed.
[0025]
【The invention's effect】
According to the present invention, VOCs in the air can be efficiently removed by using a porous carbon material together with light irradiation without using a photocatalyst.
[Brief description of the drawings]
FIG. 1 is an explanatory longitudinal sectional view of an example of the device of the present invention.
FIG. 2 is a graph showing the change over time in the concentration of toluene in Example 1 and Comparative Example.
FIG. 3 is a gas chromatogram of each sample in Example 2.
[Explanation of symbols]
Reference Signs List 1 housing 2 porous carbon material 3 column 4 light source 5 supply pump 6 air inlet 7 air outlet

Claims (5)

揮発性有機化合物を含む空気を多孔質炭素材料に接触させながら、光照射することを特徴とする空気中の揮発性有機化合物除去方法。A method for removing volatile organic compounds in air, comprising irradiating light while bringing air containing volatile organic compounds into contact with the porous carbon material. 波長400〜700nmの光を照射する請求項1記載の方法。The method according to claim 1, wherein light having a wavelength of 400 to 700 nm is irradiated. ガス取入口及びガス排出口を備えた透明ガラス管、その中に充填された多孔質炭素材料、該透明ガラス管の少なくとも一部に光照射するための光源から構成され、かつ上記ガス取入口が透明ガラス管内に空気を供給するための気体供給機構に連結されていることを特徴とする空気中の揮発性有機化合物除去装置。A transparent glass tube having a gas inlet and a gas outlet, a porous carbon material filled therein, and a light source for irradiating at least a part of the transparent glass tube with light; An apparatus for removing volatile organic compounds in air, which is connected to a gas supply mechanism for supplying air into a transparent glass tube. 多孔質炭素材料が、ヤシ殻炭、無煙炭及び木炭の中から選ばれた少なくとも1種の活性炭である請求項3記載の装置。The apparatus according to claim 3, wherein the porous carbon material is at least one activated carbon selected from coconut shell charcoal, anthracite charcoal and charcoal. 活性炭が粒度4〜30メッシュの範囲のものである請求項4記載の装置。The apparatus according to claim 4, wherein the activated carbon has a particle size of 4 to 30 mesh.
JP2003161333A 2003-06-05 2003-06-05 Method for removing volatile organic compounds in air Expired - Fee Related JP4251919B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003161333A JP4251919B2 (en) 2003-06-05 2003-06-05 Method for removing volatile organic compounds in air

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003161333A JP4251919B2 (en) 2003-06-05 2003-06-05 Method for removing volatile organic compounds in air

Publications (2)

Publication Number Publication Date
JP2004358399A true JP2004358399A (en) 2004-12-24
JP4251919B2 JP4251919B2 (en) 2009-04-08

Family

ID=34053812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003161333A Expired - Fee Related JP4251919B2 (en) 2003-06-05 2003-06-05 Method for removing volatile organic compounds in air

Country Status (1)

Country Link
JP (1) JP4251919B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102989434A (en) * 2011-09-19 2013-03-27 成都易生玄科技有限公司 Method for regenerating bamboo and charcoal by light polycondensation and transmission
JP2015533353A (en) * 2012-11-06 2015-11-24 クロノテック・アーゲーKronotec AG Method for reducing the emission of volatile organic compounds from wood materials and wood materials
CN110152045A (en) * 2019-03-29 2019-08-23 江苏中昌绝热技术工程有限公司 A kind of PIR chloride ion removal equipment and its removal process
CN110314528A (en) * 2019-07-14 2019-10-11 北京博雅合众环保科技有限公司 It is a kind of for composite particulate materials of VOCs such as purifying formaldehyde and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104399447A (en) * 2014-11-24 2015-03-11 东北大学 Method for preparing photocatalyst by immersing blast-furnace slags with dilute acid and using filtrate loaded with activated carbon

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102989434A (en) * 2011-09-19 2013-03-27 成都易生玄科技有限公司 Method for regenerating bamboo and charcoal by light polycondensation and transmission
JP2015533353A (en) * 2012-11-06 2015-11-24 クロノテック・アーゲーKronotec AG Method for reducing the emission of volatile organic compounds from wood materials and wood materials
US9895824B2 (en) 2012-11-06 2018-02-20 SWISS KRONO Tec AG Process for production of wood based materials from lignocellulose
CN110152045A (en) * 2019-03-29 2019-08-23 江苏中昌绝热技术工程有限公司 A kind of PIR chloride ion removal equipment and its removal process
CN110152045B (en) * 2019-03-29 2021-02-12 江苏中昌绝热技术工程有限公司 PIR chloride ion removing equipment and removing process thereof
CN110314528A (en) * 2019-07-14 2019-10-11 北京博雅合众环保科技有限公司 It is a kind of for composite particulate materials of VOCs such as purifying formaldehyde and preparation method thereof

Also Published As

Publication number Publication date
JP4251919B2 (en) 2009-04-08

Similar Documents

Publication Publication Date Title
Zou et al. Removal of VOCs by photocatalysis process using adsorption enhanced TiO2–SiO2 catalyst
Bandosz et al. Unmodified versus caustics-impregnated carbons for control of hydrogen sulfide emissions from sewage treatment plants
CA2575482C (en) Catalyst for carbon monoxide removal and method of removing carbon monoxide with the catalyst
Swetha et al. Combination of adsorption followed by ozone oxidation with pressure swing adsorption technology for the removal of VOCs from contaminated air streams
WO2004112940A1 (en) Gas processing method and gas processing apparatus utilizing oxidation catalyst and low-temperature plasma
Rezaee et al. Adsorption properties and breakthrough model of formaldehyde on bone char
Wang et al. The study of the photocatalytic degradation kinetics for dichloroethylene in vapor phase
Balayeva et al. Integrated processes involving adsorption, photolysis, and photocatalysis
JP4251919B2 (en) Method for removing volatile organic compounds in air
Mohammadi-Moghadam et al. Application of Glycyrrhiza glabra root as a novel adsorbent in the removal of toluene vapors: Equilibrium, kinetic, and thermodynamic study
JP2002172157A (en) Air purifier
Dehdashti et al. Regeneration of granular activated carbon saturated with gaseous toluene by microwave irradiation.
Wang et al. Photocatalytic decomposition of formaldehyde by combination of ozone and AC network with UV365nm, UV254nm and UV254+ 185nm
CN101940875B (en) A method for rapid photocatalytic decomposition of high-concentration methane mixture using low-pressure mercury lamps
US8758713B2 (en) Method for photooxidation of carbon monoxide in gas phase to carbon dioxide
US7144556B2 (en) Method and apparatus for decomposition of substance contained in gas
CN113522237B (en) Preparation method of benzene series adsorption activated carbon and prepared benzene series adsorption activated carbon
JP2005296859A (en) Harmful substance decomposition method and harmful substance decomposition apparatus
JP2024074737A (en) Method for producing mixed powder of photocatalyst and porous material, mixed powder of photocatalyst and porous material, method for producing porous material bulk material carrying and fixing photocatalyst, and porous material bulk material carrying and fixing photocatalyst
CN108392954A (en) A kind of plastics-production equipment smell processing device
CN1772349A (en) Method and device for eliminating organic pollutant gas in buildings
CN102369025A (en) Sequential Air Purification Renewal System
Cui et al. Plasma catalytic degradation of naphthalene using activated alumina in cycled storage-discharge mode: A study of mass transfer-reaction process in pores
KR102557943B1 (en) Physical and Chemical Deodorization System and Method using Gaseous Chlorine Dioxide Adsorption on Silica Gel and UV Irradiation as well as Adsorption-Desorption on-Shifts Process
JP2002320664A (en) Air purification method and air purification device using photocatalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090108

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090120

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees