[go: up one dir, main page]

JP2004331643A - Cell preparation - Google Patents

Cell preparation Download PDF

Info

Publication number
JP2004331643A
JP2004331643A JP2003375451A JP2003375451A JP2004331643A JP 2004331643 A JP2004331643 A JP 2004331643A JP 2003375451 A JP2003375451 A JP 2003375451A JP 2003375451 A JP2003375451 A JP 2003375451A JP 2004331643 A JP2004331643 A JP 2004331643A
Authority
JP
Japan
Prior art keywords
cell
cells
cell preparation
preparation according
pva
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003375451A
Other languages
Japanese (ja)
Inventor
Kazutomo Inoue
一知 井上
Genshun Ko
元駿 顧
Shoichiro Sumi
昭一郎 角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Creative Co Ltd
Original Assignee
Creative Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Creative Co Ltd filed Critical Creative Co Ltd
Priority to JP2003375451A priority Critical patent/JP2004331643A/en
Publication of JP2004331643A publication Critical patent/JP2004331643A/en
Pending legal-status Critical Current

Links

Landscapes

  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicinal Preparation (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cell preparation capable of preserving cells secreting physiologically active factors such as a hormone, a protein, useful for patients in a polyvinyl alcohol stably for a long period, and a method for producing the same, and a method for preventing and treating endocrinic and metabolic diseases, hemophilia, bone diseases, cancers, or the like, by administering the cell preparation. <P>SOLUTION: This cell preparation is provided by containing the cells in the polyvinyl alcohol blended with a cell preserving agent. Preferably, it is characterized in that the surfaces of the cells are covered with an extracellular matrix. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、ヒト又は動物用の医薬品組成物として有用な細胞製剤に関する。より詳しくは、生体にとって有用なホルモン又はタンパク質等の生物学的活性因子を産生・分泌する細胞或いは有害な物質を解毒する作用を有する細胞を、安定かつ長期に保持する製剤であって、患者に投与することによって、内分泌・代謝疾患、血友病、骨疾患又は癌等の予防・治療に効果を発揮する細胞製剤に関する。   The present invention relates to a cell preparation useful as a pharmaceutical composition for humans or animals. More specifically, it is a preparation that stably and long-term retains cells that produce and secrete biologically active factors such as hormones or proteins useful for living bodies, or cells that have the effect of detoxifying harmful substances. The present invention relates to a cell preparation that exerts an effect on prevention / treatment of endocrine / metabolic diseases, hemophilia, bone diseases, cancer, etc. by administration.

バイオ人工臓器とは、生細胞や生体組織等を含有し、患者に必要な代謝機能、具体的にはその代謝機能を司るホルモンやタンパク質等の生物学的活性因子を患者に供給することによって、患者の疾病を予防又は治療することを目的とする装置である。免疫抑制剤による副作用やドナーの需要と供給等の問題を有する生体臓器移植と比べ、バイオ人工臓器は、免疫隔離膜によって細胞を生体の防御機構から保護できるため、免疫抑制剤を必要とせず、同種移植のみならず異種移植も可能であるという点で優れている。   A bioartificial organ contains living cells, living tissues, etc., and provides the patient with metabolic functions necessary for the patient, specifically, biologically active factors such as hormones and proteins that control the metabolic function. A device intended to prevent or treat a patient's disease. Compared to living organ transplantation that has problems such as side effects and donor demand and supply due to immunosuppressive agents, bioartificial organs can protect cells from the defense mechanism of the living body by immune isolation membranes, so no immunosuppressive agents are needed, It is excellent in that not only allogeneic transplantation but also xenotransplantation is possible.

バイオ人工臓器は、その中に含有する細胞等の種類を変えることにより、あらゆる疾患の治療に対応できる。例えばバイオ人工膵島は、インスリン分泌細胞、例えば膵島細胞をその中に有し、膵島細胞から分泌されるインスリンホルモンを患者に供給して血糖値の是正を図るために用いられる。血液凝固因子生産型バイオ人工臓器は、その内部に血液凝固因子を生産する肝細胞を有しており、VIII因子やXI因子の不足により血液の凝固障害を有する血友病の治療に用いられている。また、成長ホルモン生産型バイオ人工臓器は、その内部に成長ホルモン(hGH)分泌細胞を有しており、成長ホルモンの分泌不足が原因で起こる下垂体小人症等の治療に用いられている。また、副甲状腺ホルモンおよびエリスロポエチンをそれぞれ分泌する細胞をバイオ人工臓器に含有させることにより、上皮小体機能低下症及び貧血のような他の疾病も治療することができる。   Bioartificial organs can be used to treat all diseases by changing the types of cells and the like contained therein. For example, a bioartificial islet has insulin-secreting cells, for example, islet cells therein, and is used to supply the insulin hormone secreted from the islet cells to the patient to correct the blood glucose level. The blood coagulation factor-producing bioartificial organ has hepatocytes that produce blood coagulation factors in its interior, and is used for the treatment of hemophilia that has blood coagulation disorders due to the lack of factor VIII or factor XI. Yes. Growth hormone-producing bioartificial organs have growth hormone (hGH) -secreting cells inside and are used for the treatment of pituitary dwarfism caused by insufficient secretion of growth hormone. In addition, by incorporating cells that secrete parathyroid hormone and erythropoietin into the bioartificial organ, other diseases such as hypoparathyroidism and anemia can be treated.

バイオ人工臓器には様々な形状がある。その例として、細胞を高分子重合体で包み込んだマイクロカプセル型又はマクロカプセル型等が挙げられる。これらは、高分子重合体が有する強固な架橋構造によって、その中に含有される細胞を生体の防御機構から護り、更に高分子重合体が有する分子透過能を利用して、細胞から分泌されるホルモン等を生体に供給することを特徴としている。   There are various shapes of bioartificial organs. Examples thereof include a microcapsule type or a macrocapsule type in which cells are encapsulated with a polymer. These are protected from the defense mechanism of the living body by the strong cross-linked structure of the polymer and are secreted from the cell by utilizing the molecular permeability of the polymer. It is characterized by supplying hormones to the living body.

マクロカプセル型人工臓器等に用いられる高分子重合体として、近年、ポリビニルアルコール(以降PVAと略す)が着目されている。PVAは、従来より食品業界や医療業界において用いられ、具体的には手術用縫合糸や食品と接触する容器等に応用されてきた。また、PVAを人工関節軟骨材料として用いる技術(例えば非特許文献1参照)がこれまでに開示されており、臨床面での安全性についても評価されている(例えば非特許文献2参照)。   In recent years, polyvinyl alcohol (hereinafter abbreviated as PVA) has attracted attention as a polymer used in macrocapsule-type artificial organs and the like. PVA has been conventionally used in the food industry and the medical industry, and specifically applied to surgical sutures, containers that come into contact with food, and the like. Moreover, the technique (for example, refer nonpatent literature 1) which uses PVA as an artificial joint cartilage material has been disclosed until now, and clinical safety is also evaluated (for example, refer nonpatent literature 2).

PVAは、化学的又は物理的処理を施すことによりゲル化し、あらゆる形状に成形が可能である。化学的処理としては、PVAを含む水溶液にグルタルアルデヒド(架橋剤)及び塩酸(触媒)を添加する方法(例えば非特許文献3参照)、又はPVAを含む水溶液をガラスプレート等に塗布し、これをNa2SO4/KOH水溶液に浸漬する方法(例えば非特許文献4参照)等が、また物理的処理としては、PVAを含む水溶液を約−80℃で急冷しゲル化する方法等が通常用いられる。しかしながら、PVAをマクロカプセル型人工臓器等の高分子重合体として用いる場合には、これらの化学的又は物理的処理の必要性が問題となる。 PVA is gelled by chemical or physical treatment and can be formed into any shape. As a chemical treatment, a method of adding glutaraldehyde (crosslinking agent) and hydrochloric acid (catalyst) to an aqueous solution containing PVA (see, for example, Non-Patent Document 3), or an aqueous solution containing PVA is applied to a glass plate or the like, and this is applied. A method of immersing in an aqueous solution of Na 2 SO 4 / KOH (see, for example, Non-Patent Document 4) or the like, and a physical treatment such as a method of rapidly cooling an aqueous solution containing PVA at about −80 ° C. to gel is used. . However, when PVA is used as a polymer such as a macrocapsule-type artificial organ, the necessity for these chemical or physical treatments becomes a problem.

具体的には、PVAを化学的処理によりゲル化して袋状のPVAゲル膜を作製し、その袋内に細胞を入れてバイオ人工臓器を作製するという方法がある。しかしながらこの方法では、袋のシーリング処理やPVAゲル膜に残存した架橋剤等により細胞がダメージを受けたり、袋内の細胞が凝集することにより細胞が壊死する等、生存細胞数の減少又は生物活性の低下によるホルモン分泌量の低下が否めない。   Specifically, there is a method in which PVA is gelled by chemical treatment to produce a bag-like PVA gel film, and cells are placed in the bag to produce a bioartificial organ. However, this method reduces the number of viable cells or biological activity, such as the cells are damaged by the sealing treatment of the bag or the cross-linking agent remaining on the PVA gel film, or the cells in the bag are aggregated to cause necrosis. There is no denying the decrease in the amount of hormone secretion due to the decrease in the level of hormone.

物理的処理は薬剤を使用することがなく、またPVAゲル中に細胞を分散させて包含することができるため、凝集等による細胞の壊死の危惧がない点で好ましいが、−80℃で急冷する際に細胞が破壊される恐れがある。   The physical treatment is preferable in that there is no risk of cell necrosis due to aggregation or the like because it does not use a drug and can be dispersed and included in the PVA gel, but it is rapidly cooled at −80 ° C. In some cases, cells may be destroyed.

バイオ人工臓器内に含有された細胞は、患者に必要な代謝機能を発揮する生物学的活性因子を安定に供給できる状態にあることが望ましい。従ってPVAは、その特性からマクロカプセル型バイオ人工臓器等に適した高分子重合体ではあるものの、その応用技術は未確立であった。よって本発明の如く、PVAが有する特性を利用し、かつPVAゲル内で細胞を安定に保持できるバイオ人工臓器はこれまでに全く知られていない。
小林ら(Kobayashi M., et al.)、ポリビニルアルコールハイドロゲル製人工関節軟骨の予備研究(Preliminary study of polyvinyl alcohol-hydrogel (PVA-H) artificial meniscus)、バイオマテリアルズ(Biomaterials)、2003年、第24巻、p639-647 小林ら(Kobayashi M., et al.)、ポリビニルアルコールハイドロゲル製人工関節軟骨の予備研究(Preliminary study of polyvinyl alcohol-hydrogel (PVA-H) artificial meniscus)、バイオマテリアルズ(Biomaterials)、2003年、第24巻、p639-647 CCデメルリスら(C.C.Demerlis et.al)、ポリビニルアルコールの口腔内毒性に関する調査(Review of the oral toxicity of PVA)、フードアンドケミカルトキシコロジー(Food and Chemical Toxicology)、2003年、第41巻、p319-326 クリスティーナBら(Krystyna Burczak et. al)、マイクロカプセル型PVAハイドロゲル人工膵の生体内長期安定性と生物学的互換性(Long-term in vivo performance and biocompatibility of PVA hydrogelmacrocapsules for hybrid-type artificial pancreas)、バイオマテリアルズ(Biomaterials)、1996年、第17巻、p2351-2356 タイ−ホーン ヤンら(Tai-Horn Young et. al)生体内PVA人工膵の評価とモデリング(Assessment and modeling of PVA bioartificial pancreas in vivo)、バイオマテリアルズ(Biomaterials)、2002年、第23巻、p3495-3501
It is desirable that the cells contained in the bioartificial organ be in a state in which a biologically active factor that exhibits a necessary metabolic function for the patient can be stably supplied. Therefore, although PVA is a high molecular polymer suitable for macrocapsule-type bioartificial organs due to its characteristics, its application technology has not been established yet. Thus, as in the present invention, a bioartificial organ that utilizes the characteristics of PVA and can stably hold cells in the PVA gel has never been known.
Kobayashi et al. (Kobayashi M., et al.), Preliminary study of polyvinyl alcohol-hydrogel (PVA-H) artificial meniscus, Biomaterials, 2003, Volume 24, p639-647 Kobayashi et al. (Kobayashi M., et al.), Preliminary study of polyvinyl alcohol-hydrogel (PVA-H) artificial meniscus, Biomaterials, 2003, Volume 24, p639-647 CC Demerlis et al., Review of the oral toxicity of PVA, Food and Chemical Toxicology, 2003, Vol. 41, p319-326 Krystyna Burczak et. Al. Long-term in vivo performance and biocompatibility of PVA hydrogel macrocapsules for hybrid-type artificial pancreas , Biomaterials, 1996, Vol. 17, p2351-2356 Tai-Horn Young et. Al. Assessment and modeling of PVA bioartificial pancreas in vivo, Biomaterials, 2002, Vol. 23, p3495 -3501

本発明は、ヒト又は動物用の医薬品組成物として有用な細胞製剤を提供することを目的とする。より詳しくは、患者にとって有用なホルモン又はタンパク質等の生物学的活性因子を分泌する細胞を、バイオ人工臓器に用いられる高分子重合体として適切な材料であるPVA中で安定かつ長期に保持できる細胞製剤及び該細胞製剤の製造方法を提供することを目的とする。更には、該細胞製剤を患者に投与するにより、内分泌・代謝疾患、血友病、骨疾患又は癌等の予防・治療方法を提供することを目的とする。   An object of the present invention is to provide a cell preparation useful as a pharmaceutical composition for humans or animals. More specifically, cells that secrete biologically active factors such as hormones or proteins useful for patients can be stably and long-term retained in PVA, which is a suitable material as a polymer used in bioartificial organs. It is an object to provide a preparation and a method for producing the cell preparation. It is another object of the present invention to provide a method for preventing / treating endocrine / metabolic diseases, hemophilia, bone diseases or cancer by administering the cell preparation to a patient.

本発明者らは、上記目的を達成すべく鋭意検討を重ねた結果、予めPVAを細胞保存剤、例えばEuro−Collins液、セルバンカー又はUW液等で処理した後に細胞と混合してゲル化させることによって、PVAゲル中の細胞の死滅率やダメージを低減することができ、PVA中で細胞が安定に保持されることを見出した。より具体的には、粉体のPVAを液状細胞保存剤で溶解してPVA−細胞保存剤混合液を作製後、その混合液中に細胞を分散させて急冷し、PVAをゲル化させることにより、PVA中の細胞の生存率及び生物学的活性因子分泌機能の低下が抑制されること、更には、安定に長期間患者にホルモン又はタンパク質等を供給することができる細胞製剤が得られることを見出した。本発明者らは、これらの知見に基づいて更に検討を重ね、本発明を完成するに至った。   As a result of intensive studies to achieve the above object, the present inventors have previously treated PVA with a cell preservative, for example, a Euro-Collins solution, a cell banker, a UW solution or the like, and then mixed with the cells to gel. Thus, it was found that the death rate and damage of the cells in the PVA gel can be reduced, and the cells are stably held in the PVA. More specifically, by dissolving powdered PVA with a liquid cell preservative to prepare a PVA-cell preservative mixture, cells are dispersed in the mixture and rapidly cooled to gel the PVA. The cell viability in PVA and the decrease in the secretory function of biologically active factors are suppressed, and further, a cell preparation capable of stably supplying hormones or proteins to a patient for a long period of time is obtained. I found it. The present inventors have further studied based on these findings and have completed the present invention.

すなわち、本発明は
(1) 細胞保存剤が配合されたポリビニルアルコール中に、細胞を含有する細胞製剤、
(2) 細胞表面が、更に細胞外マトリックスで覆われていることを特徴とする前記(1)に記載の細胞製剤、
(3) 更にグロースファクターを含有することを特徴とする前記(1)又は(2)に記載の細胞製剤、
(4) 細胞が、膵島細胞、膵内分泌細胞、肝細胞、前葉細胞、成長ホルモン分泌細胞、骨細胞、甲状腺ホルモン分泌細胞及び副甲状腺ホルモン分泌細胞から成る群から選択される1種又は2種以上の細胞であることを特徴とする前記(1)〜(3)のいずれかに記載の細胞製剤、
(5) 細胞が、細胞保存剤で処理されていることを特徴とする前記(1)〜(4)のいずれかに記載の細胞製剤、
(6) 細胞が、形質転換体であることを特徴とする前記(1)〜(5)のいずれかに記載の細胞製剤、
(7) シート状、板状、棒状、チューブ状又はビーズ状の形状を有することを特徴とする前記(1)〜(6)のいずれかに記載の細胞製剤、
That is, the present invention provides (1) a cell preparation containing cells in polyvinyl alcohol containing a cell preservative,
(2) The cell preparation according to (1), wherein the cell surface is further covered with an extracellular matrix,
(3) The cell preparation according to (1) or (2), further comprising a growth factor,
(4) One or more cells selected from the group consisting of islet cells, pancreatic endocrine cells, hepatocytes, anterior lobe cells, growth hormone secreting cells, bone cells, thyroid hormone secreting cells and parathyroid hormone secreting cells The cell preparation according to any one of (1) to (3), wherein
(5) The cell preparation according to any one of (1) to (4), wherein the cell is treated with a cell preservative,
(6) The cell preparation according to any one of (1) to (5), wherein the cell is a transformant,
(7) The cell preparation according to any one of (1) to (6) above, which has a sheet shape, a plate shape, a rod shape, a tube shape, or a bead shape,

(8) 細胞保存液が、Euro−Collins液、セルバンカー又はUW液であることを特徴とする前記(1)〜(7)のいずれかに記載の細胞製剤、
(9) 哺乳動物の皮下、筋肉内又は腹腔内に移植することを特徴とする前記(1)〜(8)に記載の細胞製剤、
(10) 前記(1)〜(9)のいずれかに記載の細胞製剤を用いることを特徴とする内分泌・代謝疾患の予防及び治療方法、
(11) 内分泌・代謝疾患が、糖尿病又は下垂体性小人症であることを特徴とする前記(10)に記載の内分泌・代謝疾患の予防及び治療方法、
(12) 前記(1)〜(9)のいずれかに記載の細胞製剤を用いることを特徴とする血友病の予防及び治療方法、
(13) 前記(1)〜(9)のいずれかに記載の細胞製剤を用いることを特徴とする骨疾患の予防及び治療方法、
(14) 前記(1)〜(9)のいずれかに記載の細胞製剤を用いることを特徴とする癌の予防及び治療方法、
(15) 前記(1)〜(9)のいずれかに記載の細胞製剤を用いることを特徴とする肝不全又は先天性代謝異常の予防及び治療方法、
(16) ポリビニルアルコールに細胞保存剤を配合後、細胞を該ポリビニルアルコールに混合し、得られた細胞含有ポリビニルアルコールをゲル化することを特徴とする細胞製剤の製造方法、
(17) ヒト又は動物用の医薬である前記(1)〜(9)のいずれかに記載の細胞製剤、
に関する。
(8) The cell preparation according to any one of (1) to (7) above, wherein the cell preservation solution is a Euro-Collins solution, a cell banker or a UW solution,
(9) The cell preparation according to (1) to (8) above, which is transplanted subcutaneously, intramuscularly or intraperitoneally in a mammal,
(10) A method for preventing and treating an endocrine / metabolic disease, comprising using the cell preparation according to any one of (1) to (9),
(11) The endocrine / metabolic disease prevention and treatment method according to (10), wherein the endocrine / metabolic disease is diabetes or pituitary dwarfism,
(12) A method for preventing and treating hemophilia, comprising using the cell preparation according to any one of (1) to (9),
(13) A method for preventing and treating a bone disease, comprising using the cell preparation according to any one of (1) to (9),
(14) A method for preventing and treating cancer, comprising using the cell preparation according to any one of (1) to (9),
(15) A method for preventing and treating liver failure or inborn errors of metabolism characterized by using the cell preparation according to any one of (1) to (9) above,
(16) A method for producing a cell preparation, comprising mixing a cell preservative with polyvinyl alcohol, mixing the cells with the polyvinyl alcohol, and gelling the obtained cell-containing polyvinyl alcohol,
(17) The cell preparation according to any one of (1) to (9), which is a pharmaceutical for humans or animals,
About.

本発明により、患者にとって有用なホルモン又はタンパク質等の生物学的活性因子を分泌する細胞を、バイオ人工臓器に用いられる高分子重合体として適切な材料であるPVA中で安定かつ長期に保持できる細胞製剤を提供することができる。更には、本発明を患者に投与するにより、内分泌・代謝疾患、血友病、骨疾患又は癌等の予防及び治療を行うことができる。本発明は、細胞を安定な状態で長期間有することができるため、その移植の頻度を低減することができ、しかも様々な形状に形成できるため、注射等による皮下や筋肉内への移植も可能である。   According to the present invention, cells that secrete biologically active factors such as hormones or proteins useful for patients can be stably and long-term retained in PVA, which is a material suitable as a polymer used in bioartificial organs. A formulation can be provided. Furthermore, by administering the present invention to a patient, it is possible to prevent and treat endocrine / metabolic diseases, hemophilia, bone diseases or cancer. Since the present invention can have cells in a stable state for a long period of time, the frequency of transplantation can be reduced, and since it can be formed into various shapes, it can be implanted subcutaneously or intramuscularly by injection or the like. It is.

本発明は、細胞保存剤を配合したPVAを含有し、そのPVA中に患者にとって有用なホルモンやタンパク質等の生物学的活性因子を産生・分泌する細胞を有していることを特徴とする。
本発明で用いられるPVAは、本発明の目的を阻害しない限りどのようなものでもよいが、例えば目薬の角質保護・保湿剤、腸管癒着防止膜等の医用材料や、食品包装フィルム等の食品接触材料として用いられうる程度の純度を有するものであることが好ましい。また市販物であっても、酢酸ビニルからポリ酢酸ビニルを作り、これを加水分解することにより得られる製造物の凍結乾燥品であってもよい。またPVAを製造する場合、その製造方法並びに凍結乾燥方法は、それ自体公知の技術に従ってよい。PVAの平均重合分子量は、約5,000〜16,600程度で、ケン化度は約85%以上のものが好ましい。
これらのPVAは、細かい粒子状の凍結乾燥品で、生理食塩水やリン酸バッファー等の溶液に容易に懸濁できる形状であることが望ましい。
The present invention is characterized in that it contains PVA mixed with a cell preservative and has cells that produce and secrete biologically active factors such as hormones and proteins useful for patients in the PVA.
The PVA used in the present invention may be any one as long as it does not impair the object of the present invention. For example, medical materials such as keratin protective / humectant for eye drops, intestinal adhesion preventive film, and food contact such as food packaging film It is preferable that the material has a purity that can be used as a material. Moreover, even if it is a commercial item, the freeze-dried product of the product obtained by making polyvinyl acetate from vinyl acetate and hydrolyzing this may be sufficient. Moreover, when manufacturing PVA, the manufacturing method and the freeze-drying method may follow a technique known per se. The average polymerization molecular weight of PVA is preferably about 5,000 to 16,600, and the saponification degree is preferably about 85% or more.
These PVAs are finely particulate lyophilized products and desirably have a shape that can be easily suspended in a solution such as physiological saline or phosphate buffer.

細胞保存剤が配合されたPVAとは、PVA中に細胞保存剤を含有するPVAを意味する。本発明で用いられる細胞保存剤は、特に限定されないが、通常動物細胞等の保存に用いられる液剤であって、例えばEuro-Collins液又はセルバンカー(SERUBANNKA code 630-01601:Wako Pure Chemical Industries, Ltd. Osaka, Japan)やUW液(ビアスパンViaSpan:Bristol-Myers Squibb Company, USA)等の市販の保存液であってよい。これらは市販のものであっても、実験室内で調製された組成物であってもよい。実験室で調製する場合は、蒸留水等に各組成成分を添加・混合し、フィルターろ過等することにより除菌して調製することが好ましい。例えば、Euro-Collins液の組成は、表1の通りである。   PVA in which a cell preservative is blended means PVA containing a cell preservative in PVA. The cell preservative used in the present invention is not particularly limited, and is a liquid agent usually used for preserving animal cells and the like. For example, a Euro-Collins solution or a cell banker (SERUBANNKA code 630-01601: Wako Pure Chemical Industries, Ltd. Osaka, Japan) or UW solution (Biasol-Myers Squibb Company, USA). These may be commercially available or compositions prepared in the laboratory. When preparing in a laboratory, it is preferable to prepare by sterilizing by adding / mixing each composition component to distilled water or the like and performing filter filtration or the like. For example, the composition of Euro-Collins solution is as shown in Table 1.

また、UW液(ビアスパン)の組成は、表2の通りである。
The composition of the UW liquid (via span) is as shown in Table 2.

PVA中に細胞保存剤を含有するPVAは、例えばPVAと細胞保存剤とを混合して作製することができる。また得られる細胞保存剤が配合されたPVAは、無菌的であることが望ましい。PVAと細胞保存剤とを混合する方法は特に限定されないが、例えば、市販の粒子状PVAを蒸留水等に懸濁し、該PVA懸濁液を加熱滅菌(オートクレーブ等)することにより溶解・殺菌処理し、得られた無菌PVA水溶液に無菌的に細胞保存剤を添加・混合する方法等が挙げられる。加熱滅菌処理や、無菌操作は、それ自体公知の手段に従ってよい。
ここで、上記の混合手段及びそれ以外の何らかの手段を用いて作製された細胞保存剤を含有するPVAを、細胞保存剤で処理されたPVAと称することとすると、この細胞保存剤で処理されたPVAも本発明の範囲内であることは言うまでもない。
PVA containing a cell preservative in PVA can be prepared, for example, by mixing PVA and a cell preservative. Moreover, it is desirable that the PVA containing the obtained cell preservative is aseptic. The method of mixing the PVA and the cell preservative is not particularly limited. For example, a commercially available particulate PVA is suspended in distilled water or the like, and the PVA suspension is heated and sterilized (autoclave or the like) to be dissolved and sterilized. And a method of adding and mixing a cell preservative aseptically to the obtained sterile PVA aqueous solution. The heat sterilization treatment or aseptic operation may be performed according to a method known per se.
Here, PVA containing a cell preservative prepared by using the above-mentioned mixing means and any other means is referred to as PVA treated with a cell preservative. It goes without saying that PVA is also within the scope of the present invention.

またPVA懸濁水溶液と細胞保存剤とを混合して得られる混合液(以降、PVA−細胞保存剤溶液と称する)中のPVAの含有量は、PVA−細胞保存剤溶液に対して、通常約2〜5重量%、より好ましくは約2.5〜3.5重量%、特に好ましくは約2.5〜3重量%である。これは、該濃度域においてPVAが最もゲル化し易く、かつ本発明の細胞製剤の細胞を包含するのに好ましい強度のPVAゲルが得られるからである。またPVA−細胞保存剤溶液中の細胞保存剤の濃度は、通常の細胞保存に用いる細胞保存剤の濃度を1倍とすると、通常約0.8〜1倍、より好ましくは約0.9〜1倍、特に好ましくは約0.95〜1倍である。これは、該濃度域の範囲を外れると、細胞が安定に生存できない場合があるからである。従って、本発明においては、通常の細胞保存に用いる濃度の約2〜10倍である濃縮細胞保存液を調整又は購入し、これと上記PVA懸濁水溶液とを適宜(例えば、10倍濃縮細胞保存液:PVA懸濁水溶液=1:9)混合して、約1倍濃度の細胞保存剤を含有するPVA−細胞保存剤溶液を作製するのが好ましい。   In addition, the content of PVA in a mixed solution obtained by mixing a PVA suspension aqueous solution and a cell preservative (hereinafter referred to as PVA-cell preservative solution) is usually approximately about the PVA-cell preservative solution. It is 2 to 5% by weight, more preferably about 2.5 to 3.5% by weight, particularly preferably about 2.5 to 3% by weight. This is because PVA is most easily gelled in the concentration range, and a PVA gel having a strength preferable for including the cells of the cell preparation of the present invention can be obtained. The concentration of the cell preservative in the PVA-cell preservative solution is usually about 0.8 to 1 times, more preferably about 0.9 to 1 when the concentration of the cell preservative used for normal cell preservation is 1 time. 1 time, particularly preferably about 0.95 to 1 time. This is because if the concentration is out of the range, the cells may not survive stably. Therefore, in the present invention, a concentrated cell preservation solution having a concentration of about 2 to 10 times the concentration used for normal cell preservation is prepared or purchased, and this and the above PVA suspension aqueous solution are appropriately used (for example, 10 times concentrated cell preservation Liquid: PVA suspension aqueous solution = 1: 9) It is preferable to mix to prepare a PVA-cell preservative solution containing about 1-fold concentration of the cell preservative.

本発明の細胞製剤には、更に、細胞の保護を目的としてジメチルスルフォキシド(DMSO)や血清アルブミン等が、雑菌の混入を阻止する目的で抗生物質等が、また細胞の活性維持のためにニコチンアミド等のビタミン類等が含まれていてもよい。更に本発明は、通常製剤に添加されることが薬事法上許容されている他の添加成分、例えば徐放性付与剤、等張化剤、pH調整剤等が補填されていてもよい。これら他の添加成分の、細胞製剤への添加方法は特に限定されないが、上記PVA−細胞保存剤溶液を作製する際に、該溶液中に無菌的に混合されるのが好ましい。これらの含有量は、本発明に含まれる細胞の増殖・生存及び/又は生物学的活性因子の分泌等を阻害しない範囲であって、本発明の目的を損なわない範囲であることが好ましい。
細胞保存剤で処理されたPVAは、上述した様に無菌的に製造されることから、本発明の細胞製剤は雑菌等による汚染の確率が低く、室温(約15〜35℃)で長期間保存が可能である。
The cell preparation of the present invention further includes dimethyl sulfoxide (DMSO), serum albumin, etc. for the purpose of protecting cells, antibiotics, etc. for the purpose of preventing contamination by bacteria, and for maintaining cell activity. Vitamins such as nicotinamide may be included. Furthermore, the present invention may be supplemented with other additive components that are normally allowed to be added to pharmaceutical preparations, such as sustained release imparting agents, tonicity agents, pH adjusting agents and the like. The method for adding these other additive components to the cell preparation is not particularly limited, but when the PVA-cell preservative solution is prepared, it is preferably mixed aseptically into the solution. These contents are preferably in a range that does not inhibit the growth / survival of cells and / or secretion of biologically active factors included in the present invention and that do not impair the object of the present invention.
Since PVA treated with a cell preservative is aseptically produced as described above, the cell preparation of the present invention has a low probability of contamination by various bacteria and is stored at room temperature (about 15 to 35 ° C.) for a long time. Is possible.

本発明に用いられる細胞として、膵島細胞、膵内分泌細胞、肝細胞、前葉細胞、成長ホルモン分泌細胞、骨細胞、甲状腺ホルモン分泌細胞又は副甲状腺ホルモン分泌細胞等を挙げることができる。これらの細胞は、ヒト、ブタ、ラット又はマウス等の哺乳動物由来であって、患者にとって有用なホルモン又はタンパク質等の生物学的活性因子を産生・分泌する細胞であることが好ましい。細胞の種類の選択は、投与される患者の疾患の種類よって決定されるのが好ましい。例えば、糖尿病患者等にはインスリンを産生する膵島細胞又は膵内分泌細胞等を、血友病患者等には血管凝固因子等を産生する肝細胞等を、下垂体性小人症等の患者には成長ホルモンを産生する前葉細胞や成長ホルモン分泌細胞等を、また骨折等の骨疾患患者には骨形成タンパク質(Bone Morphogenetic Protein:BMP)を産生する骨細胞等を用いるのがよい。癌患者等には、遺伝子組換えにより腫瘍成長抑制物質を大量に産生しうる形質転換細胞等を用いることもできる。また肝不全、腎不全又は先天性代謝異常等により体内に有毒な代謝産物が蓄積する疾患の患者に対しては、有毒な代謝産物を選択的に代謝・解毒する作用を有する細胞を用いることもできる。患者が複数の疾患を有する等、複数の生物学的活性因子を必要とする場合には、上記細胞を2種以上組み合わせてもよい。本発明はこれらの細胞を含有することにより、上記患者等に有用な生物学的活性因子を供給することができる。従って、本発明の細胞製剤を用いることにより、生物学的活性因子を供給することや有害な代謝産物を解毒することにより治療が可能な様々な疾患の発症を予防したり、治療することができる。   Examples of the cells used in the present invention include islet cells, pancreatic endocrine cells, hepatocytes, anterior lobe cells, growth hormone secreting cells, bone cells, thyroid hormone secreting cells, or parathyroid hormone secreting cells. These cells are preferably cells that are derived from mammals such as humans, pigs, rats, or mice, and that produce and secrete biologically active factors such as hormones or proteins useful for patients. The choice of cell type is preferably determined by the type of disease in the patient being administered. For example, pancreatic islet cells or pancreatic endocrine cells that produce insulin for diabetic patients, hepatocytes that produce vascular coagulation factors, etc. for patients with hemophilia, etc. for patients with pituitary dwarfism, etc. It is preferable to use anterior lobe cells that produce growth hormone, growth hormone-secreting cells, and the like, and bone cells that produce bone morphogenetic protein (BMP) for bone disease patients such as fractures. For cancer patients and the like, transformed cells that can produce a large amount of a tumor growth inhibitor by genetic recombination can also be used. In addition, for patients with diseases in which toxic metabolites accumulate in the body due to liver failure, renal failure or inborn errors of metabolism, cells that have the ability to selectively metabolize and detoxify toxic metabolites may be used. it can. When a patient needs a plurality of biologically active factors such as having a plurality of diseases, two or more of the above cells may be combined. By containing these cells, the present invention can supply biologically active factors useful for the above patients and the like. Therefore, by using the cell preparation of the present invention, it is possible to prevent or treat the onset of various diseases that can be treated by supplying biologically active factors or detoxifying harmful metabolites. .

本発明に用いられる上記の細胞は、実験室用に確立された細胞又は生体の組織から分離した細胞等のいずれであってもよいが、分化した非分裂細胞であることが好ましい。何故なら未分化な分裂細胞よりも、分化した非分裂細胞の方が、より目的とするホルモンやタンパク質等を産生・分泌しうるからである。
生体組織からの細胞の分離方法は特に限定されず、公知の技術に従ってよい。例えば、適切な手段で摘出した組織を、Dispase又はEDTA等で処理し、ついでトリプシン処理して単一の細胞まで分離する方法等が挙げられる。
The cells used in the present invention may be any of cells established for laboratories or cells separated from living tissue, but are preferably differentiated non-dividing cells. This is because differentiated non-dividing cells can produce and secrete the target hormones and proteins more than undifferentiated dividing cells.
The method for separating cells from living tissue is not particularly limited, and may be in accordance with a known technique. For example, a method of treating a tissue extracted by an appropriate means with Dispase or EDTA and then treating with trypsin to separate it into a single cell can be mentioned.

例えば本発明に用いられる細胞が膵島細胞である場合、この細胞の生体組織からの分離は、公知のコラゲナーゼ処理による分離方法、例えば J. Adam Van Der Vliet et al., Transplantation, 45(2), p493-495(1988)等に従ってよい。
本発明に用いられる細胞が膵内分泌細胞である場合、例えば特開2001−231548号公報に記載の方法等に従ってよい。
上記のように生体組織から分離された細胞は、病原性ウイルス等の病原体が除去されていることが望ましい。
For example, when the cells used in the present invention are islet cells, the separation of the cells from the living tissue can be performed by a known collagenase treatment separation method such as J. Adam Van Der Vliet et al., Transplantation, 45 (2), p493-495 (1988) etc.
When the cells used in the present invention are pancreatic endocrine cells, for example, the method described in JP-A-2001-231548 may be followed.
As described above, it is desirable that the pathogen such as pathogenic virus is removed from the cells separated from the living tissue.

実験室用に既に確立された細胞又は生体組織から得られた単一細胞は、適切な培地でコンフルエントになるまで培養され、継代培養を2〜3回繰り返してから、本発明の細胞として用いられるのが好ましい。例えば本発明に用いる細胞が、膵島細胞又は膵内分泌細胞(以降膵内分泌細胞等と略す)である場合は、これらの細胞を、例えば10%ウシ胎仔血清(以降、FBSと略す)及びニコチンアミドを補填したCMRL−1066培地(Sigma, St. Louis, MO, USA)で継代培養するのが好ましい。継代培養された細胞は、トリプシン処理及びコラゲナーゼ処理等の公知の手段に従って、再度単一細胞として分離され、本発明の細胞として用いることができる。   Cells already established for laboratories or single cells obtained from living tissues are cultured until they become confluent in an appropriate medium, and subculture is repeated 2-3 times before being used as the cells of the present invention. It is preferred that For example, when the cells used in the present invention are islet cells or pancreatic endocrine cells (hereinafter abbreviated as pancreatic endocrine cells and the like), these cells are treated with, for example, 10% fetal calf serum (hereinafter abbreviated as FBS) and nicotinamide. Subculture is preferably performed in supplemented CMRL-1066 medium (Sigma, St. Louis, MO, USA). The subcultured cells are separated again as single cells according to known means such as trypsin treatment and collagenase treatment, and can be used as the cells of the present invention.

また本発明に用いられる細胞は、投与される患者に必要なホルモン又はタンパク質等の生物学的活性因子ペプチドをコードする遺伝子が導入された形質転換細胞であってもよい。該形質転換細胞を用いることにより、目的とする生物学的活性因子ペプチドを効率的かつ大量に産生することができる。生物学的活性因子ペプチドをコードする遺伝子としては、既にその塩基配列が公開されており、アメリカンタイプカルチャーコレクション(American Type Culture Collection:ATCC)等の寄託機関や一般の市販源から容易に入手が可能な遺伝子、又は既知の塩基配列からオリゴヌクレオチドプローブを作製し、該プローブを用いて、例えばPCR増幅法、DNA合成法の公知の手段を用いて合成される遺伝子等が挙げられる。例えば、腫瘍成長抑制タンパク質をコードする遺伝子を有する形質転換細胞を用いることにより、本発明の細胞製剤を癌の予防及び治療剤として使用することができる。   The cell used in the present invention may be a transformed cell into which a gene encoding a biologically active factor peptide such as a hormone or protein necessary for a patient to be administered is introduced. By using the transformed cells, the desired biologically active factor peptide can be produced efficiently and in large quantities. The base sequence of a gene encoding a biologically active factor peptide has already been made public and can be easily obtained from depository agencies such as the American Type Culture Collection (ATCC) and general commercial sources. An oligonucleotide probe is prepared from a known gene or a known base sequence, and a gene synthesized using a known means such as a PCR amplification method or a DNA synthesis method using the probe is exemplified. For example, the cell preparation of the present invention can be used as an agent for preventing and treating cancer by using a transformed cell having a gene encoding a tumor growth inhibitory protein.

上記の生物学的活性因子ペプチドをコードする遺伝子が導入される宿主細胞は特に限定されず、通常遺伝子組換え技術分野において用いられる公知の宿主細胞を使用してよい。例えば宿主細胞としては、上記の膵島細胞、膵内分泌細胞、肝細胞、前葉細胞、成長ホルモン分泌細胞、骨細胞等の他に、サル細胞COS−7、Vero、チャイニーズハムスター細胞CHO(以下、CHO細胞と略記)、dhfr遺伝子欠損チャイニーズハムスター細胞CHO(以下、CHO(dhfr)細胞と略記)、マウス細胞BALB/3T3、マウスL細胞、マウスAtT−20、マウスC127細胞、マウスミエローマ細胞、ラットGH3、ヒト細胞HeLa、ヒトFL細胞等が挙げられる。 The host cell into which the gene encoding the biologically active factor peptide is introduced is not particularly limited, and a known host cell that is usually used in the field of gene recombination technology may be used. For example, as host cells, in addition to the above-mentioned pancreatic islet cells, pancreatic endocrine cells, hepatocytes, anterior lobe cells, growth hormone secreting cells, bone cells, monkey cells COS-7, Vero, Chinese hamster cells CHO (hereinafter referred to as CHO cells). Abbreviation), dhfr gene-deficient Chinese hamster cell CHO (hereinafter abbreviated as CHO (dhfr ) cell), mouse cell BALB / 3T3, mouse L cell, mouse AtT-20, mouse C127 cell, mouse myeloma cell, rat GH3, Examples include human cells HeLa and human FL cells.

本発明で用いられる細胞への上記の遺伝子の導入方法は、特に限定されず公知の手段に従ってよい。例えば、プラスミドやウイルス等の組換え発現ベクター又はリポソーム、マイクロカプセル等の人工ベクターに含有させて細胞に導入する等の公知の方法が挙げられる。組換え発現ベクターを用いる場合には、コンピテント細胞法[J. Mol. Biol., 53, p154 (1970)]、DEAEデキストラン法[Science, 215, p166 (1982)]、インビトロパッケージング法[Proc. Natl. Acad. Sci., USA, 72, p581 (1975)]、ウイルスベクター法[Cell, 37, p1053 (1984)]、マイクロインジェクション法[Exp. Cell. Res., 153, p347 (1984)]、エレクトロポレーション法[Cytotechnology, 3, p133 (1990)]、リン酸カルシウム法[Science, 221, p551(1983)]、リポフェクション法[Proc. Natl. Acad. Sci., USA, 84, p7413 (1987)]、プロトプラスト法[特開昭63−2483942号公報、Gene, 17, p107, (1982)、Molecular & General Genetics, 168,p 111 (1979)]に記載の方法等を挙げることができる。   The method for introducing the gene into the cells used in the present invention is not particularly limited, and may be in accordance with known means. For example, a known method such as introduction into a cell after inclusion in a recombinant expression vector such as a plasmid or virus or an artificial vector such as a liposome or microcapsule can be mentioned. When a recombinant expression vector is used, a competent cell method [J. Mol. Biol., 53, p154 (1970)], a DEAE dextran method [Science, 215, p166 (1982)], an in vitro packaging method [Proc Natl. Acad. Sci., USA, 72, p581 (1975)], viral vector method [Cell, 37, p1053 (1984)], microinjection method [Exp. Cell. Res., 153, p347 (1984)] Electroporation method [Cytotechnology, 3, p133 (1990)], calcium phosphate method [Science, 221, p551 (1983)], lipofection method [Proc. Natl. Acad. Sci., USA, 84, p7413 (1987)] And the protoplast method [Japanese Unexamined Patent Publication No. 63-2483942, Gene, 17, p107, (1982), Molecular & General Genetics, 168, p111 (1979)].

また、その遺伝子を宿主細胞に導入するためのベクター等も特に限定されず導入された細胞内で所望の遺伝子を発現させ、生物学的活性因子ペプチドを有効に産生する事ができる発現ベクターであればよい。例えば、λファージ等のバクテリオファージ、アデノウイルス、アデノ随伴ウイルス(AAV)、レトロウイルス、ポックスウイルス、ヘルペスウイルス、単純ヘルペスウイルス、レンチウイルス(HIV)、センダイウイルス、エプスタイン−バーウイルス(EBV)、ワクシニアウイルス、ポリオウイルス、シンビスウイルス、SV40等の動物ウイルス等の他、pA1−11、pXT1、pRc/CMV、pRc/RSV、pcDNAI/Neo等が挙げられる。   In addition, a vector for introducing the gene into a host cell is not particularly limited, and any expression vector that can express a desired gene in the introduced cell and effectively produce a biologically active factor peptide can be used. That's fine. For example, bacteriophage such as λ phage, adenovirus, adeno-associated virus (AAV), retrovirus, pox virus, herpes virus, herpes simplex virus, lentivirus (HIV), Sendai virus, Epstein-Barr virus (EBV), vaccinia In addition to animal viruses such as viruses, polioviruses, synbisviruses, and SV40, pA1-11, pXT1, pRc / CMV, pRc / RSV, pcDNAI / Neo and the like can be mentioned.

本発明に用いられる細胞は、以下の手法によりPVA中に包含されるのが好ましい。
上記で作製したPVA−細胞保存剤溶液中に、細胞を添加・混合する。添加・混合される細胞は、予め細胞保存剤で処理されていることが好ましい。具体的には、細胞を細胞保存剤中に予め懸濁し、遠心により細胞を回収した後、PVA−細胞保存剤溶液と混合するのが好ましい。本発明の細胞製剤中に含有される細胞の数は、該細胞製剤を投与される患者の疾患の種類及び疾患の程度等によって異なるため一概には言えず、医師の判断によって決定されるのが好ましいが、例えばPVA−細胞保存剤溶液中、好ましくは約1×10〜5×10cells/mlである。細胞数をこの範囲に設定することにより、細胞がPVAゲル内で均等に分散され、細胞凝集等による細胞への酸素及び栄養分の供給が阻害されることなく、細胞が長期間安定に生存することができる。
The cells used in the present invention are preferably included in PVA by the following method.
Cells are added and mixed in the PVA-cell preservative solution prepared above. The cells to be added / mixed are preferably treated with a cell preservative in advance. Specifically, it is preferable to suspend cells in a cell preservative in advance, collect the cells by centrifugation, and then mix with the PVA-cell preservative solution. Since the number of cells contained in the cell preparation of the present invention varies depending on the type of disease and the degree of disease of the patient to whom the cell preparation is administered, it cannot be said unconditionally and is determined by the judgment of a doctor. Preferably, for example, in a PVA-cell preservative solution, it is preferably about 1 × 10 7 to 5 × 10 7 cells / ml. By setting the number of cells within this range, the cells are evenly dispersed in the PVA gel, and the cells can survive stably for a long period of time without inhibiting the supply of oxygen and nutrients to the cells due to cell aggregation and the like. Can do.

また本発明に用いられる細胞が、その生物学的活性因子を最適に供給できる状態で安定に保持されるために、本発明の細胞製剤は、更にヒアルロン酸、コンドロイチン硫酸、デルマタン酸等のムコ多糖、エラスチン、コラーゲン及びフィブリン等から選ばれる1種以上を含む細胞外マトリックス、及び/又は肝細胞増殖因子(HGF)、血管内皮細胞増殖因子(VEGF)、ヒト塩基性線維芽細胞増殖因子(bFGF)、線維芽細胞成長因子(FGF)、血小板由来成長因子(PDGF)、インスリン様成長因子(IGF)又は成長ホルモン(GH)等のグロースファクター等を含有していてもよい。これらのグロースファクターは、1種又は2種以上含有されていてもよい。細胞外マトリックス及び/又はグロースファクター等を本発明に含有させる方法としては、例えば、上記PVA−細胞保存剤溶液と細胞とを混合する前に、細胞外マトリックス及びグロースファクターを含有する細胞培養培地等に細胞を浸漬し、細胞表面に細胞外マトリックス等の膜を形成させるか、或いはPVA−細胞保存剤溶液に予め細胞外マトリックス及び/又はグロースファクターを含有させる方法等が挙げられる。本発明の細胞製剤における上記細胞外マトリックス及び/又はグロースファクター等の含有量は特に限定されないが、本発明に用いられる細胞の保持、生物学的活性因子の分泌機能を阻害しない範囲であって、細胞の生存期間及び生物学的活性因子の分泌期間を延長する効果を付加しうる範囲であることが望ましい。   In addition, since the cells used in the present invention are stably maintained in a state where the biologically active factor can be optimally supplied, the cell preparation of the present invention further includes mucopolysaccharides such as hyaluronic acid, chondroitin sulfate, and dermatanic acid. , An extracellular matrix containing one or more selected from elastin, collagen, fibrin and the like, and / or hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF), human basic fibroblast growth factor (bFGF) Further, it may contain a growth factor such as fibroblast growth factor (FGF), platelet-derived growth factor (PDGF), insulin-like growth factor (IGF), or growth hormone (GH). These growth factors may be contained alone or in combination of two or more. Examples of the method of incorporating an extracellular matrix and / or growth factor into the present invention include, for example, a cell culture medium containing an extracellular matrix and growth factor before mixing the PVA-cell preservative solution and cells. Examples of the method include immersing cells in a cell to form a membrane such as an extracellular matrix on the cell surface, or preliminarily containing an extracellular matrix and / or growth factor in a PVA-cell preservative solution. The content of the extracellular matrix and / or growth factor in the cell preparation of the present invention is not particularly limited, but is within a range that does not inhibit the retention of cells used in the present invention and the secretion function of biologically active factors, It is desirable to be within a range that can add an effect of extending the survival period of the cell and the secretion period of the biologically active factor.

PVA−細胞保存剤溶液と細胞とを混合後、得られた細胞混合液(以降、細胞含有PVA−細胞保存剤溶液と称す)を冷却し、PVAをゲル化することにより本発明の細胞製剤を作製することができる。冷却は、例えば約−20〜−80℃の超低温庫等で約半日〜3日間静置したり、約−80℃の超低温庫に約18〜30時間保存することにより行うのがよい。
本発明は、PVAに予め細胞保存剤が配合されているため、上記温度で急冷しても、細胞の死滅やダメージを抑制することができる。しかもPVAゲル中に細胞を分散して含有することができ、細胞の凝集等を防止することができる。
PVAがゲル化することにより、本発明は様々な形状、例えばシート状、板状、盤状、棒状、チューブ状又はビーズ状等に形成され得る。例えば、上記細胞含有PVA−細胞保存剤溶液をガラスプレート上に塗抹し、このガラスプレートごと冷却することにより、薄膜シート状の細胞製剤を作製することができる。ガラスプレート単位面積当りの細胞含有PVA−細胞保存剤溶液塗抹量を適宜変化させることにより、所望の厚みを有する細胞製剤を作製することができるが、通常は、約100〜300μl/mm2である。
After mixing the PVA-cell preservative solution and the cells, the obtained cell mixture (hereinafter referred to as cell-containing PVA-cell preservative solution) is cooled, and the PVA is gelled to produce the cell preparation of the present invention. Can be produced. The cooling is preferably performed by standing in an ultra-low temperature chamber of about -20 to -80 ° C for about half a day to 3 days, or by storing in an ultra-low temperature chamber of about -80 ° C for about 18 to 30 hours.
In the present invention, since a cell preservative is preliminarily blended with PVA, cell death and damage can be suppressed even when quenched at the above temperature. Moreover, the cells can be dispersed and contained in the PVA gel, and aggregation of the cells can be prevented.
By the gelation of PVA, the present invention can be formed into various shapes such as a sheet shape, a plate shape, a disk shape, a rod shape, a tube shape or a bead shape. For example, the cell-containing PVA-cell preservative solution is smeared on a glass plate, and the whole glass plate is cooled to prepare a cell preparation in the form of a thin film sheet. A cell preparation having a desired thickness can be prepared by appropriately changing the amount of the cell-containing PVA-cell preservative solution smear per unit area of the glass plate, but it is usually about 100 to 300 μl / mm 2 . .

本発明の細胞製剤は、その補強又は/及び操作性の簡便化のために、補強材と組み合わせて用いてもよい。例えば、細胞製剤を薄膜シート状にする場合には、その補強及び操作性の簡便化のために、上記細胞含有PVA−細胞保存剤溶液を樹脂製メッシュシート等に固定してゲル化するのがよい。具体的には、図1において、例えばPET(ポリエチレンテフタレート)樹脂製メッシュシート(4)をガラスプレート(5)上に設置し、このメッシュシート(4)上に細胞含有PVA−細胞保存剤溶液を塗布する。別のメッシュシート(6)を上から被せ、更にその上から別のガラスプレート(7)を被せ、細胞含有PVA−細胞保存剤溶液とメッシュシート(4)及び(6)を、ガラスプレート(5)及び(7)とで挟む。そのまま約−20〜−80℃で冷却することによりシート状ゲルに成形することができる。また上記メッシュシートは、予めPVA−細胞保存剤溶液に浸漬しておくことが好ましい。   The cell preparation of the present invention may be used in combination with a reinforcing material in order to reinforce or / and simplify operability. For example, when a cell preparation is formed into a thin film sheet, the cell-containing PVA-cell preservative solution is fixed to a resin mesh sheet or the like for gelation in order to reinforce and simplify operability. Good. Specifically, in FIG. 1, for example, a PET (polyethylene terephthalate) resin mesh sheet (4) is placed on a glass plate (5), and a cell-containing PVA-cell preservative solution is placed on the mesh sheet (4). Apply. Another mesh sheet (6) is covered from above, and another glass plate (7) is further covered thereon, and the cell-containing PVA-cell preservative solution and the mesh sheets (4) and (6) are applied to the glass plate (5 ) And (7). It can be formed into a sheet-like gel by cooling at about -20 to -80 ° C. The mesh sheet is preferably preliminarily immersed in a PVA-cell preservative solution.

上記の補強材、例えばメッシュシートは、生体にとって安全な素材、つまり生体内において非分解性であって生体適合性に優れた素材、例えばPET等であることが好ましい。これは、生体内において本発明の細胞製剤中のメッシュシートが分解すると、該細胞製剤が生体組織に癒着し、本発明の効果を長期に奏することが困難となるばかりでなく、生体にとっても有害となりうる場合があるからである。もちろん、生体内で分解しても生体に有害でない補強材も、本発明に使用されうることは言うまでもない。   The reinforcing material such as a mesh sheet is preferably a material that is safe for a living body, that is, a material that is non-degradable and excellent in biocompatibility in a living body, such as PET. This is because when the mesh sheet in the cell preparation of the present invention is decomposed in the living body, the cell preparation adheres to the living tissue, and it is difficult not only to exert the effects of the present invention for a long time, but also to the living body. This is because there are cases where it can be. Of course, it is needless to say that a reinforcing material that is not harmful to the living body even if decomposed in the living body can be used in the present invention.

冷凍状態の細胞製剤は、冷凍状態にある細胞を活性化した後に生体に投与されるのが好ましい。冷凍細胞製剤中の細胞の活性化は、細胞を解凍し、適切な培地で再培養することにより行うことができる。具体的には、約37℃の細胞培養培地、例えばCMRL−1966等に冷凍状態の細胞製剤をすばやく浸漬して解凍した後、更に新たな細胞培養培地で、例えば約24時間培養することによって行う。該細胞製剤にDMSOが含まれる場合には、解凍された細胞製剤を新たな細胞保存液、例えばUW液等を用いて洗浄した後、更にUW液中で、例えば約4℃、約24時間浸漬することによって、ゲル中のDMSOを除去するのが好ましい。言うまでもないが、上記のように解凍され、DMSOが除去された細胞製剤も本発明の細胞製剤である。   The cell preparation in the frozen state is preferably administered to the living body after activating the cells in the frozen state. Activation of the cells in the frozen cell preparation can be performed by thawing the cells and re-culturing in an appropriate medium. Specifically, a frozen cell preparation is quickly immersed in a cell culture medium at about 37 ° C., such as CMRL-1966, and then thawed, and then further cultured in a new cell culture medium for about 24 hours, for example. . When the cell preparation contains DMSO, the thawed cell preparation is washed with a new cell preservation solution, such as UW solution, and then immersed in the UW solution, for example, at about 4 ° C. for about 24 hours. By doing so, it is preferable to remove DMSO in the gel. Needless to say, a cell preparation obtained by thawing and removing DMSO as described above is also a cell preparation of the present invention.

上記の方法により得られる細胞製剤の生体への投与形態は、投与される患者の疾患の種類、疾患部位、疾患の程度によって異なるため一概に言えず、医師の判断によって決定されるが、好ましい投与形態を以下に述べる。
本発明の細胞製剤を投与する対象は、ヒトをはじめ、イヌ、ネコ、サル、ウサギ及びマウス等のヒト以外の哺乳動物である。
本発明は、上述した通り、生体内の投与部位に適した形状に成形されて投与することができる。また本発明は、疾患を有する組織に直接接触する状態で投与部位に移植されてもよいが、比較的軽微な侵襲で投与できる皮下又は筋肉内に移植することもできる。例えば、チューブ状の該細胞製剤を細断し、移植針等を用いて皮下に移植したり、注射器等に該細胞製剤を充填し、筋肉内や皮下に注入することもできる。しかも該部位からの細胞製剤の回収も容易である。皮下や筋肉内等に該細胞製剤を移植する際、移植部位の血管分布密度が疎であり、細胞が増殖・生存するための酸素及び栄養分の供給が困難と考えられる場合には、公知の適切な血管新生誘導剤等を複合させて移植することもできる。血管新生誘導剤は、細胞製剤中に予め含有させておいてもよいし、細胞製剤とは別の形態で投与されてもよい。
Since the administration form of the cell preparation obtained by the above method to the living body differs depending on the type of disease, disease site, and degree of disease of the patient to be administered, it cannot be generally stated, and is determined by the judgment of a doctor, but preferable administration The form is described below.
Subjects to which the cell preparation of the present invention is administered include mammals other than humans such as humans, dogs, cats, monkeys, rabbits and mice.
As described above, the present invention can be administered after being shaped into a shape suitable for an administration site in a living body. In addition, the present invention may be transplanted to the administration site in direct contact with the diseased tissue, but can also be implanted subcutaneously or intramuscularly that can be administered with a relatively slight invasiveness. For example, the tubular cell preparation can be shredded and transplanted subcutaneously using a transplant needle or the like, or the cell preparation can be filled into a syringe or the like and injected intramuscularly or subcutaneously. Moreover, it is easy to recover the cell preparation from the site. When transplanting the cell preparation subcutaneously or intramuscularly, if the blood vessel distribution density at the transplant site is sparse and it is considered difficult to supply oxygen and nutrients for cell growth and survival, a known appropriate It can also be transplanted in combination with various angiogenesis-inducing agents. The angiogenesis inducer may be previously contained in the cell preparation, or may be administered in a form different from the cell preparation.

本発明の細胞製剤から患者に供給されるホルモンやタンパク質等の生物学的活性因子の量は、用いられる細胞の生物学的活性因子の分泌能及び移植期間中の細胞生存率の推移等を考慮して、医師の判断により適宜設定することができる。例えば、患者の疾患が糖尿病である場合、用いられる細胞、例えば膵内分泌細胞等のインスリン分泌能をin vitroにて予め測定しておき、そのインスリン分泌能、細胞数、投与期間及び細胞の生存率の推移等から、本発明の細胞製剤のインスリン供給量を決定することができる。本発明の細胞製剤は、含有する細胞を安定に長期間保持できることから、時間経過に伴う生物学的活性因子の分泌能の低下率が低い。従って本発明を用いれば、患者に必要とされる生物学的活性因子を長期間安定して患者に供給することができ、細胞製剤の移植の頻度も少なくすることができる。   The amount of a biologically active factor such as a hormone or protein supplied to the patient from the cell preparation of the present invention takes into consideration the secretory ability of the biologically active factor of the cell used and the transition of the cell viability during the transplantation period. And it can set suitably by a doctor's judgment. For example, when the patient's disease is diabetes, the insulin secretion ability of cells to be used, such as pancreatic endocrine cells, is measured beforehand in vitro, and the insulin secretion ability, the number of cells, the administration period, and the cell survival rate The amount of insulin supply of the cell preparation of the present invention can be determined from the transition of the above. Since the cell preparation of the present invention can stably hold contained cells for a long period of time, the rate of decrease in the ability to secrete biologically active factors over time is low. Therefore, if this invention is used, the biologically active factor required for a patient can be stably supplied to a patient for a long period of time, and the frequency of transplantation of a cell preparation can also be reduced.

本発明の細胞製剤に用いられる細胞の生物学的活性因子の分泌能は、それぞれの生物学的活性因子の測定に適した公知の定量方法に従ってよい。例えば、細胞が膵内分泌細胞等である場合のインスリンの定量方法については、以下の実施例で詳細に説明する。   The secretory ability of the biologically active factor of the cell used in the cell preparation of the present invention may be in accordance with a known quantitative method suitable for measuring each biologically active factor. For example, the method for quantifying insulin when the cells are pancreatic endocrine cells and the like will be described in detail in the following examples.

以下に、実施例等を示して本発明を具体的に説明するが、言うまでもなく、本発明はこれらに限定されるものではない。尚、「%」は、いずれも「質量%」を表す。   Hereinafter, the present invention will be specifically described with reference to examples and the like. Needless to say, the present invention is not limited to these examples. Note that “%” represents “% by mass”.

(製造例1)膵島細胞を含有するシート状細胞製剤の製造
(1)膵島細胞の調製
8〜10週令、体重300〜350gのWisterラット(Shimazu animal Co. Ltd. Kyoto, Japan)から、以下の方法により膵島細胞を分離した。
まず摘出したラット膵臓の膵管内に、I型コラゲナーゼ(Sigma, St. Louis, MO, USA, 350U/mg)及びXI型コラゲナーゼ(Sigma, St. Louis, MO, USA, 2,200U/mg)をそれぞれ800U/ml及び1500U/mlの濃度で含有するハンクス液10mlを注入し、37℃、15〜20分間の酵素処理を施した。冷却ハンクス液を添加し、酵素反応を停止した。ピペットを用いて膵臓組織を分散し、遠心により組織ペレットを回収した後、ハンクス液で組織ペレットを2回洗浄した。尚、遠心は1,000rpm、1分間とした。組織懸濁液を800μmサイズのメッシュシートを用いてろ過した。ろ過液を50mlコニカルチューブに回収し、遠心(1500rpm、3分間)して組織ペレットを得た。該ペレットを27%デキストラン(Sigma, St. Louis, MO, USA, MW 70.000)を含むハンクス液に懸濁し、不連続密度勾配遠心処理した。この時、最下層を27%デキストラン(密度1.094g/ml)、上層を23%デキストラン(密度1.081g/ml)及び11%(密度1.041g/ml)デキストランの2層とした。不連続密度勾配遠心は、400rpmで4分間、更に1,700rpmで10分間行った。遠心後、最上2層の界面より膵島細胞含有画分をパスツールピぺットを用いて採取した。得られた膵島細胞をCMRL−1066培地を用いて2回洗浄した(1,000rpm、3分間)。
(Production Example 1) Production of sheet-like cell preparation containing islet cells (1) Preparation of islet cells From Wister rats (Shimazu animal Co. Ltd. Kyoto, Japan) weighing 8 to 10 weeks and weighing 300 to 350 g, The islet cells were isolated by the method described above.
First, type I collagenase (Sigma, St. Louis, MO, USA, 350 U / mg) and type XI collagenase (Sigma, St. Louis, MO, USA, 2,200 U / mg) were respectively contained in the pancreatic duct of the isolated rat pancreas. 10 ml of Hank's solution containing 800 U / ml and 1500 U / ml concentrations were injected and subjected to enzyme treatment at 37 ° C. for 15-20 minutes. A cooling Hanks solution was added to stop the enzyme reaction. The pancreatic tissue was dispersed using a pipette, the tissue pellet was collected by centrifugation, and then the tissue pellet was washed twice with Hanks' solution. The centrifugation was performed at 1,000 rpm for 1 minute. The tissue suspension was filtered using an 800 μm size mesh sheet. The filtrate was collected in a 50 ml conical tube and centrifuged (1500 rpm, 3 minutes) to obtain a tissue pellet. The pellet was suspended in Hank's solution containing 27% dextran (Sigma, St. Louis, MO, USA, MW 70.000) and subjected to discontinuous density gradient centrifugation. At this time, the lowermost layer was composed of two layers of 27% dextran (density 1.094 g / ml) and the upper layer of 23% dextran (density 1.081 g / ml) and 11% (density 1.041 g / ml) dextran. The discontinuous density gradient centrifugation was performed at 400 rpm for 4 minutes and further at 1,700 rpm for 10 minutes. After centrifugation, the islet cell-containing fraction was collected from the interface of the uppermost two layers using a Pasteur pipette. The obtained islet cells were washed twice with CMRL-1066 medium (1,000 rpm, 3 minutes).

(2)PVA−Euro−collins溶液の作製
PVA3g(グンセー社製:PVA-180H, Lot37435)を75mlの蒸留水に懸濁後、オートクレーブ(121℃、15分)による加熱溶解滅菌処理を2回施した。得られた無菌PVA水溶液に、10倍濃度Euro−collins溶液(以降、EC溶液と略す)10ml、DMSO5ml、FBS10ml及び0.122gニコチンアミドを無菌的に混合・攪拌し、無菌3%PVA−EC溶液100mlを得た。上記10倍濃度EC溶液は、蒸留水100mlに、表1に示す成分を添加・混合した後、0.22μmのろ過除菌を行い作製した。作製後は室温で保存した。
(2) Preparation of PVA-Euro-collins solution 3 g of PVA (Gunsei PVA-180H, Lot37435) was suspended in 75 ml of distilled water, and then heat-dissolved and sterilized by autoclave (121 ° C, 15 minutes) twice. did. The obtained sterile PVA aqueous solution was aseptically mixed and stirred with 10 ml of 10-fold concentrated Euro-collins solution (hereinafter abbreviated as EC solution), DMSO 5 ml, FBS 10 ml and 0.122 g nicotinamide, and a sterile 3% PVA-EC solution 100 ml was obtained. The above 10-fold concentrated EC solution was prepared by adding and mixing the components shown in Table 1 to 100 ml of distilled water, followed by 0.22 μm sterilization by filtration. After production, it was stored at room temperature.

(3)細胞の混合
(1)で得られた膵島細胞を、更に10%FBS及び1.22g/Lニコチンアミドを含むCMRL−1066培地を用いて、炭酸ガスインキュベーター(5%CO、37℃)で24時間培養した。1,000個の膵島細胞を含む培養液を1.5ml容遠心チューブ内に入れ、800rpmで1分間遠心した。得られた細胞ペレットにセルバンカー(SERUBANNKA code 630-01601:Wako Pure Chemical Industries, Ltd. Osaka, Japan)0.1mlを添加し、細胞を懸濁した後5分間放置した。再度遠心して細胞を回収した。回収した細胞を、(2)で作製した無菌3%PVA−EC溶液100μl中に懸濁し、膵島細胞含有PVA−EC溶液を得た。
(3) Mixing of cells The islet cells obtained in (1) were further mixed with a carbon dioxide incubator (5% CO 2 , 37 ° C.) using a CMRL-1066 medium containing 10% FBS and 1.22 g / L nicotinamide. ) For 24 hours. A culture solution containing 1,000 islet cells was placed in a 1.5 ml centrifuge tube and centrifuged at 800 rpm for 1 minute. To the obtained cell pellet, 0.1 ml of a cell banker (SERUBANNKA code 630-01601: Wako Pure Chemical Industries, Ltd. Osaka, Japan) was added, and the cells were suspended and allowed to stand for 5 minutes. The cells were collected by centrifugation again. The collected cells were suspended in 100 μl of the sterile 3% PVA-EC solution prepared in (2) to obtain an islet cell-containing PVA-EC solution.

(4)シートの形成
10mm×10mm角のPET製メッシュシート(グンセー社製:TNO60SS)2枚を予め無菌3%PVA水溶液に5分間浸漬し、この内の一枚(4)をガラスプレート(5)上に設置した。上記(3)で得られた膵島細胞含有PVA−EC溶液を上記メッシュシート(4)上に均一に塗布し、もう一枚のメッシュシート(6)を上から被せ、メッシュシート(4)−膵島細胞含有PVA−EC溶液−メッシュシート(6)の3層構成シートとした。更に上から別のガラスプレート(7)を被せ、圧力を加えて約1mm厚の3層構成シートとなるよう調整し、これを2枚のガラスプレートで挟んだ状態のままで−80℃、24時間保存してPVAをゲル化した(図1)。
(4) Formation of sheet Two 10 mm × 10 mm square PET mesh sheets (GUNSE: TNO60SS) were previously immersed in a sterile 3% PVA aqueous solution for 5 minutes, and one of these (4) was placed on a glass plate (5 ) Installed on top. The pancreatic islet cell-containing PVA-EC solution obtained in (3) above is uniformly applied on the mesh sheet (4), and another mesh sheet (6) is covered from above, mesh sheet (4) -islet A three-layered sheet of cell-containing PVA-EC solution-mesh sheet (6) was obtained. Further, another glass plate (7) is covered from above, and pressure is applied to adjust it to a three-layer sheet having a thickness of about 1 mm, and this is sandwiched between two glass plates at −80 ° C., 24 The PVA was gelled by storage for a period of time (FIG. 1).

(5)シート状膵島細胞製剤の解凍及び細胞の活性化
上記(4)で得られた凍結シート状膵島細胞製剤を、37℃のCMRL−1066培地中で速やかに解凍した。解凍されたシート状膵島細胞製剤を、5mlのUW液(ビアスパンViaSpan:Bristol-Myers Squibb Company, USA)中に5分間浸漬した。この操作を3回繰り返し、該シート内に含有されるDMSOを除去した。該シートを更に5mlのUW液中で、4℃、24時間浸漬した。浸漬後の該製剤をCMRL−1066培地で2回洗浄後、更にCMRL−1066培地中で24時間(37℃、5%CO2)培養し、細胞が活性化されたシート状膵島細胞製剤(製造例1)を得た。得られた製造例1を、以降の試験例に用いた。尚、上記(2)で10倍濃度EC溶液10ml、DMSO5ml、FBS10ml及び0.122gニコチンアミドを添加しない無菌3%PVA水溶液を作製し、これを用いて製造したシート状膵島細胞製剤を比較例1とした。
(5) Thawing of sheet-like islet cell preparation and cell activation The frozen sheet-like islet cell preparation obtained in (4) above was quickly thawed in a CMRL-1066 medium at 37 ° C. The thawed sheet-like islet cell preparation was immersed in 5 ml of UW solution (Biasol-Myers Squibb Company, USA) for 5 minutes. This operation was repeated three times to remove DMSO contained in the sheet. The sheet was further immersed in 5 ml of UW liquid at 4 ° C. for 24 hours. The soaked preparation was washed twice with CMRL-1066 medium, and further cultured in CMRL-1066 medium for 24 hours (37 ° C., 5% CO 2 ) to produce a cell-like activated islet cell preparation (manufactured) Example 1) was obtained. The obtained Production Example 1 was used in the following test examples. In addition, a 10% concentrated EC solution 10 ml, DMSO 5 ml, FBS 10 ml and 0.122 g nicotinamide were added in the above (2) to prepare a sterile 3% PVA aqueous solution. It was.

(試験例1) 製剤中の細胞の安定性確認
上記製造例1、比較例1又は遊離の膵島細胞(200個)を、CMRL−1066培地中で培養した(5%CO、37℃)。培養1日後の製造例1又は比較例1内の生細胞数及び遊離の膵島細胞数をそれぞれ顕微鏡下にてカウントし、生細胞の回収率(%)を求めた。回収率は培養前の細胞数を100として表した。
図2に結果を示す。製造例1の生細胞の回収率は約82%と、比較例1の回収率(約35%)に比べて非常に高く、その値は遊離細胞の場合よりも高値であった。
(Test Example 1) Stability confirmation of cells in preparation The production example 1, comparative example 1 or free islet cells (200 cells) were cultured in CMRL-1066 medium (5% CO 2 , 37 ° C). The number of viable cells and the number of free islet cells in Production Example 1 or Comparative Example 1 after 1 day of culture were counted under a microscope, respectively, and the recovery rate (%) of viable cells was determined. The recovery rate was expressed with the number of cells before culture as 100.
The results are shown in FIG. The recovery rate of the living cells of Production Example 1 was about 82%, which was very high compared to the recovery rate of Comparative Example 1 (about 35%), which was higher than that of free cells.

(試験例2) 製剤中のインスリン含有量の確認
上記製造例1、比較例1又は遊離の膵島細胞(200個)をCMRL−1066培地中で培養し(5%CO、37℃)、培養1日後のそれぞれのインスリン含有量を調べた。培養1日後の製造例1、比較例1又は遊離の膵島細胞を塩酸−EtOHに回収し、スパーテル等を用いてそれぞれすり潰し、次いでボルテックスで製剤中のゲル及び細胞を塩酸−EtOH中に攪拌・懸濁した(−20℃、24時間)。それぞれの細胞懸濁液中のインスリン濃度を測定した。インスリンは、市販インスリン測定ELISAキット(レビスインスリンキット(シバヤギ))を用いて測定した。
結果を図3に示す。製造例1中のインスリン含有量(約205ng/ml)は、比較例1(約20ng/ml)に比べて著しく高値を示し、その値は遊離細胞とほぼ同程度であった。
Test Example 2 Confirmation of Insulin Content in Formulation The above Production Example 1, Comparative Example 1 or free islet cells (200 cells) were cultured in CMRL-1066 medium (5% CO 2 , 37 ° C.) and cultured. Each insulin content after one day was examined. One day after the cultivation, Production Example 1, Comparative Example 1 or free islet cells were collected in hydrochloric acid-EtOH, ground using a spatula or the like, and then vortexed to stir and suspend the gel and cells in the preparation in hydrochloric acid-EtOH. It became cloudy (−20 ° C., 24 hours). Insulin concentration in each cell suspension was measured. Insulin was measured using a commercially available insulin measurement ELISA kit (Levis Insulin Kit (Shiba Goat)).
The results are shown in FIG. The insulin content (about 205 ng / ml) in Production Example 1 was significantly higher than that of Comparative Example 1 (about 20 ng / ml), which was almost the same as that of free cells.

(試験例3)
製剤のインスリン分泌能及び細胞の状態確認
上記製造例1、比較例1又は遊離の膵島細胞(200個)をCMRL−1066培地中で培養し(5%CO、37℃)、培養1日後、7日後、14日後に、それぞれを回収した。回収後、それぞれについてグルコース反応試験を行った。グルコース反応試験は以下の通りである。まず、上記の回収した製造例1、比較例1又は遊離の膵島細胞を3.3mMのグルコース及び0.1%ウシ血清アルブミン(BSA)を含むCMRL−1066培地中で1時間培養(5%CO、37℃)後、グルコースを含まないCMRL−1066培地で洗浄した。再度この操作を繰り返し、更に3.3mMのグルコースを含むCMRL−1066培地中で1時間培養した後、それぞれの上清中のインスリン濃度を測定した。次いで16.7mMのグルコースを含むCMRL−1066培地で1時間培養し、それぞれ上清中のインスリン濃度を測定した。
(Test Example 3)
Confirmation of insulin secretion ability and cell state of the preparation The above Production Example 1, Comparative Example 1 or free islet cells (200 cells) were cultured in CMRL-1066 medium (5% CO 2 , 37 ° C.), and after 1 day of culture, Each was recovered after 7 days and 14 days. After the collection, a glucose reaction test was performed for each. The glucose response test is as follows. First, the recovered production example 1, comparative example 1 or free islet cells were cultured in CMRL-1066 medium containing 3.3 mM glucose and 0.1% bovine serum albumin (BSA) for 1 hour (5% CO 2 , 37 ° C.) and then washed with glucose-free CMRL-1066 medium. This operation was repeated again and further cultured in CMRL-1066 medium containing 3.3 mM glucose for 1 hour, and then the insulin concentration in each supernatant was measured. Subsequently, it culture | cultivated for 1 hour with the CMRL-1066 culture medium containing 16.7 mM glucose, and measured the insulin concentration in each supernatant liquid.

結果を図4に示す。図4中(a)は培養1日後、(b)は培養7日後、(c)は培養14日後のインスリン分泌量(濃度)をそれぞれ示す。比較例1では、グルコース濃度の上昇に依存したインスリン分泌量の上昇は見られなかった。これに対し、製造例1は培養1日後、7日後、14日後ともに、グルコース濃度の上昇に依存してインスリン分泌量(濃度)が上昇した。しかも遊離細胞では、既に7日後にグルコース濃度に依存したインスリン分泌量の上昇が見られなくなったのに対し、製造例1では14日後においてもその上昇が認められた。
また、製造例1又は比較例1中に含有される細胞を顕微鏡観察した結果、比較例1中の細胞は1日目から既に細胞破壊が生じていた。これに対し製造例1中の細胞は顕著な細胞破壊が認められず、14日後も比較的安定に生存していた(図5)。図5中、(a)は培養1日後、(b)は培養7日後、(c)は培養14日後の細胞観察像をそれぞれ示す。
The results are shown in FIG. In FIG. 4, (a) shows the amount of insulin secretion (concentration) after 1 day of culture, (b) after 7 days of culture, and (c) after 14 days of culture. In Comparative Example 1, an increase in the amount of insulin secretion depending on the increase in the glucose concentration was not observed. In contrast, in Production Example 1, the amount of insulin secretion (concentration) increased depending on the increase in glucose concentration after 1 day, 7 days, and 14 days after culture. Moreover, in the free cells, the increase in insulin secretion depending on the glucose concentration was no longer observed after 7 days, whereas in Production Example 1, the increase was observed even after 14 days.
Moreover, as a result of observing the cells contained in Production Example 1 or Comparative Example 1 under a microscope, the cells in Comparative Example 1 had already undergone cell destruction from the first day. In contrast, the cells in Production Example 1 did not show significant cell destruction, and remained relatively stable after 14 days (FIG. 5). In FIG. 5, (a) shows a cell observation image after 1 day of culture, (b) after 7 days of culture, and (c) after 14 days of culture.

以上の結果より、製造例1中において膵島細胞は安定に生存し、長期間安定にその活性を維持し、グルコース濃度の上昇に反応してインスリンを分泌することが分かった。従って、PVAに予めEC溶液を配合することにより、PVAゲル化の際の急冷による細胞の死滅及び細胞へのダメージが抑制され、その結果、PVA中に含有される膵島細胞の生存率が高く、かつインスリン産生能及びグルコース濃度の上昇に対する反応性を維持できる細胞製剤が製造できることが証明された。   From the above results, it was found that islet cells survived stably in Production Example 1, maintained their activity stably for a long period of time, and secreted insulin in response to an increase in glucose concentration. Therefore, by blending the EC solution in advance with PVA, cell death and cell damage due to rapid cooling during PVA gelation are suppressed, and as a result, the survival rate of islet cells contained in PVA is high, In addition, it was proved that a cell preparation capable of maintaining insulin production ability and responsiveness to an increase in glucose concentration can be produced.

(製造例2)膵島細胞を含有するシート状細胞製剤の製造
(1)膵島細胞の調製
Wisterラットをジエチルエーテルの吸収およびネンブタール1mg/kgの腹腔内投与にて全身麻酔した。開腹したのち、総胆管を同定し、これをベイター(Vater)乳頭部付近で無鉤鉗子によりクランプした。胆嚢管合流部に小切開を置き、カニュレーションチューブを総胆管に挿入、結紮固定し、1200〜1500u/ml相当のXI型コラゲナーゼ(Sigma, St. Louis, MO, USA)を注入し、膵臓を膨化させた。膵を損傷しないように全摘し、フラスコに入れ、37℃の恒温槽の中につけ、18分前後で温消化した。消化後、数回フラスコを震盪して膵を破砕し、0.1%ウシ血清アルブミンを加えたハンクス液で3回洗浄した。ハンクス液中に細胞を浮遊させたのち、850μm径のメッシュフィルターに通し、ろ過した内容物を回収した。
(Production Example 2) Production of sheet-like cell preparation containing islet cells (1) Preparation of islet cells Wister rats were anesthetized by absorption of diethyl ether and intraperitoneal administration of Nembutal 1 mg / kg. After laparotomy, the common bile duct was identified and clamped with a forceps near the Vater papilla. A small incision is placed at the junction of the gallbladder duct, a cannulation tube is inserted into the common bile duct, ligated and fixed, and a type XI collagenase (Sigma, St. Louis, MO, USA) equivalent to 1200 to 1500 u / ml is injected to remove the pancreas Swelled. The whole pancreas was removed so as not to damage the pancreas, placed in a flask, placed in a thermostatic bath at 37 ° C., and digested warmly in about 18 minutes. After digestion, the flask was shaken several times to disrupt the pancreas and washed 3 times with Hank's solution supplemented with 0.1% bovine serum albumin. After the cells were suspended in the Hanks solution, they were passed through a mesh filter having a diameter of 850 μm, and the filtered contents were collected.

膵島分離は、デキストラン(Dextran 70)の比重勾配により行った。すなわち、上清を破棄した膵細胞成分を比重1.094のデキストラン+ハンクス液に均一になるまで攪拌したのち、比重1.094のデキストラン液を静かに流入した。細胞層の上に比重1.081および1.041のデキストラン液を順次静かに入れ、4層にした。400rpmで4分、さらに1700rpmで13分遠心した。1層目と2層目の間に分離された膵島をハンドピックにて回収し、洗浄したのち、ハンドピックにて純化した。4回洗浄後、37℃、5%CO95%空気の環境下のインキュベーター中に一晩培養した。培地は、CMRL1066+10%不活化ウシ胎仔血清+antibiotic-antimycotic solution(Gibco, BRL)+ニコチンアミドを用いた。 Islet isolation was performed with a specific gravity gradient of dextran (Dextran 70). That is, the pancreatic cell component from which the supernatant was discarded was stirred in a dextran + Hank's solution having a specific gravity of 1.094 until uniform, and then a dextran solution having a specific gravity of 1.094 was gently introduced. A dextran solution having a specific gravity of 1.081 and 1.041 was gradually and gently put on the cell layer to form 4 layers. Centrifugation was carried out at 400 rpm for 4 minutes and further at 1700 rpm for 13 minutes. The islets separated between the first layer and the second layer were collected with a hand pick, washed, and then purified with a hand pick. After washing 4 times, the cells were cultured overnight in an incubator under an environment of 37 ° C. and 5% CO 2 95% air. As the medium, CMRL 1066 + 10% inactivated fetal bovine serum + antibiotic-antimycotic solution (Gibco, BRL) + nicotinamide was used.

(2)シート状膵島細胞製剤の調製
上記で得られた膵島細胞の培養液を用い、実施例1における製造例1の(2)、(3)、(4)および(5)と同様にして細胞が活性化されたシート状膵島細胞製剤(製造例2)を得た。
(2) Preparation of sheet-like islet cell preparation Using the culture solution of islet cells obtained above, in the same manner as in (2), (3), (4) and (5) of Production Example 1 in Example 1 A sheet-like islet cell preparation with activated cells (Production Example 2) was obtained.

(試験例4)製剤のインスリン分泌能
上記得た膵島細胞製剤(製造例2、作製後1日目のもの)又は遊離の膵島細胞に、試験例3と同様に、低濃度グルコース(3.3mM)と高濃度グルコース(16.7mM)による刺激を1時間ずつ加え、分泌するインスリン量をELISAで測定した。
結果を図6に示す。この図6から分かるように、本発明にかかる膵島細胞製剤はグルコース刺激に応じてインスリンを分泌し、同時期の遊離の膵島細胞と比べて遜色がなかった。
(Test Example 4) Insulin secretion ability of the preparation As in Test Example 3, low-concentration glucose (3.3 mM) was added to the above-obtained islet cell preparation (Production Example 2, one day after preparation) or free islet cells. ) And high concentration glucose (16.7 mM) were added for 1 hour at a time, and the amount of insulin secreted was measured by ELISA.
The results are shown in FIG. As can be seen from FIG. 6, the islet cell preparation according to the present invention secreted insulin in response to glucose stimulation and was not inferior to that of free islet cells at the same time.

(試験例5)移植試験
(1)糖尿病モデルマウスの作製
8〜10週齢の雄性C57BL/6マウスに、クエン酸緩衝液(pH4.5)に溶解したストレプトゾトシン200mg/kgを腹腔内投与した。投与後1週間で血糖を3回測定し、2回以上血糖350mg/dl以上になったマウスを糖尿病成立したものと判断し、実験に使用した。なお、ストレプトゾトシン投与を行わないマウスを、正常マウス群とした。
(Test Example 5) Transplant Test (1) Preparation of Diabetes Model Mice Streptozotocin 200 mg / kg dissolved in citrate buffer (pH 4.5) was intraperitoneally administered to male C57BL / 6 mice aged 8 to 10 weeks. One week after administration, blood glucose was measured 3 times, and a mouse whose blood glucose was 350 mg / dl or more twice or more was judged to be diabetic and used in the experiment. In addition, the mouse | mouth which does not perform streptozotocin administration was made into the normal mouse group.

(2)移植
膵島細胞製剤の移植は、次のようにして行った。すなわち、糖尿病モデルマウス(糖尿病作成後1週以上のもの)をエーテル麻酔下で正中切開にて開腹し、上記製造例2で得た膵島細胞製剤(製造例2)を腹腔内に留置した後、腹壁を2層に閉鎖した。このマウスを移植マウス群とした。なお、膵島細胞の入っていない製剤(比較例1と同様に調製)を移植したマウスを、糖尿病マウス群とした。
(2) Transplantation The transplantation of the islet cell preparation was performed as follows. Specifically, a diabetic model mouse (one week or more after the creation of diabetes) was opened by midline incision under ether anesthesia, and the islet cell preparation (Production Example 2) obtained in Production Example 2 was placed in the abdominal cavity. The abdominal wall was closed in two layers. This mouse was used as a transplanted mouse group. In addition, the mouse | mouth which transplanted the preparation (prepared similarly to the comparative example 1) which does not contain a pancreatic islet cell was made into the diabetic mouse group.

(3)生存期間の検討
移植した時を0日とし、以後の生存期間を観察した。
結果を図7に示す。この図7から明らかなように、糖尿病マウス群では、過半数が移植後4週以内に死亡し、経過観察期間の8週まで生存したマウスは存在しなかった。一方、膵島細胞製剤を移植した移植マウス群では、高血糖状態が続き死亡した2匹以外はすべて8週以上生存した(8週までの生存率は、0%対81.8%、p<0.001)。
(3) Examination of survival time The transplantation time was 0 day, and the subsequent survival time was observed.
The results are shown in FIG. As is clear from FIG. 7, in the diabetic mouse group, the majority died within 4 weeks after transplantation, and there was no mouse that survived until 8 weeks during the follow-up period. On the other hand, in the group of transplanted mice transplanted with the islet cell preparation, all surviving were 8 weeks or more except for 2 mice that remained hyperglycemic and died (survival rate up to 8 weeks was 0% vs. 81.8%, p <0 .001).

(4)血糖・体重測定
血糖、体重共に、移植前、移植後1日目、3日目、5日目、7日目に測定し、それ以降は毎週1回測定した。各群の血糖変化を図8に示す。移植群では、移植後の血糖は、多数が速やかに300mg/dl未満に低下(13/16)し、正常化したものも過半数に見られたが次第に上昇した(300mg/dl未満に保たれた日数は3日〜7週)。しかし、血糖上昇の程度は軽度で、糖尿病マウス群に比べ血糖は有意に改善し(p<0.0001)、また、移植後8週までの生命予後も明らかに改善した。8週まで観察した9匹のうち6匹に膵島細胞製剤の摘出術を施行したが、そのうちの5匹に血糖の再上昇がみとめられた。
(4) Measurement of blood glucose and body weight Both blood glucose and body weight were measured before transplantation, on the 1st day, 3rd day, 5th day, and 7th day after transplantation, and thereafter once a week. The blood glucose change in each group is shown in FIG. In the transplanted group, post-transplantation blood glucose decreased rapidly to less than 300 mg / dl (13/16), and more than half were normalized but gradually increased (maintained below 300 mg / dl). Number of days is 3-7 weeks). However, the level of blood glucose elevation was mild, and blood glucose was significantly improved compared to the diabetic mice group (p <0.0001), and the life prognosis until 8 weeks after transplantation was also clearly improved. Of the 9 animals observed up to 8 weeks, 6 were subjected to excision of the islet cell preparation, and 5 of them were found to have increased blood glucose again.

各群の平均体重の変化を図9に示す。移植マウス群では、移植後、体重は術後の節食不良が原因と考えられるが減少し、移植後3週までの反復測定分散分析では、糖尿病マウス群との有意差は認められなかった。しかし、移植後3週には増加に転じ、経過中体重が最も低下した1週目に比べ、3週以降は有意な上昇を認めた(p<0.05)。さらに、3週および4週では同時期の糖尿病マウス群の平均体重を有意に上回った。   The change in the average body weight of each group is shown in FIG. In the transplanted mice group, after transplantation, the body weight was considered to be due to poor postprandial diet, but a repeated measurement analysis of variance until 3 weeks after transplantation showed no significant difference from the diabetic mice group. However, it started to increase at 3 weeks after transplantation, and a significant increase was observed after 3 weeks (p <0.05) compared to week 1 when the body weight decreased most during the course. Furthermore, at 3 weeks and 4 weeks, the mean body weight of the group of diabetic mice was significantly exceeded.

(5)腎機能測定
BUN(血中尿素窒素)、クレアチニンは、移植前、移植後は毎週1回測定した。移植後8週で膵島細胞製剤を摘出し、その後1週まで測定を行った。
BUNの変化を図10に示す。膵島細胞製剤移植前に測定した血糖正常マウスBUNの平均±SEは25.53mg/dl±1.804(20−38.9)であった。ストレプトゾトシンを投与し1週間目の糖尿病マウス群のうち、41.3%にBUNの上昇が見られた(24/58、糖尿病マウス群:13/35 対 移植マウス群:11/23、BUN>35mg/dl)。実験に使用した糖尿病マウス群14匹のうち、13匹が経過中BUN高値を示した。
(5) Measurement of renal function BUN (blood urea nitrogen) and creatinine were measured once a week before and after transplantation. At 8 weeks after transplantation, the islet cell preparation was excised and then measured up to 1 week.
The change in BUN is shown in FIG. Mean ± SE of normal blood glucose mouse BUN measured before transplantation of the islet cell preparation was 25.53 mg / dl ± 1.804 (20-38.9). BUN increased in 41.3% of diabetic mice at 1 week after administration of streptozotocin (24/58, diabetic mice: 13/35 vs. transplanted mice: 11/23, BUN> 35 mg). / Dl). Of the 14 diabetic mouse groups used in the experiment, 13 showed high BUN values during the course of the experiment.

一方、移植マウス群16匹の検討では、術前にBUNが上昇した9匹は全て移植後1週で正常化が見られた。平均値では移植後1週で低下したBUN値は正常値とほとんど変わらず経過し、糖尿病マウス群との有意差が認められた(p=0.002)。
さらに、移植後8週で膵島細胞製剤を摘出した6匹のうち、4匹に摘出後1週のBUN値を計測したが、いずれも摘出前に比べ上昇していた。
On the other hand, in the study of 16 transplanted mice, all 9 mice whose BUN increased before surgery were normalized in 1 week after transplantation. As a mean value, the BUN value that decreased one week after transplantation passed almost unchanged from the normal value, and a significant difference from the diabetic mouse group was observed (p = 0.002).
Furthermore, among the 6 animals from which the pancreatic islet cell preparation was removed 8 weeks after transplantation, the BUN value of 1 week after the removal was measured in 4 animals, but all of them were higher than before the removal.

クレアチニンの変化を図11に示す。クレアチニンの正常値は0.351mg/dl±0.032(0.16−0.5)であった。ストレプトゾトシン投与後1週で半数近くの糖尿病群マウスが0.5mg/dlの高値を示し、投与後4週で全てのマウスにクレアチニン値に異常を認めた。また、クレアチニン上昇後、いずれのマウスも数週で死亡し、ストレプトゾトシン投与後10週まで生存できたマウスは存在しなかった。移植マウス群ではクレアチニンの移植後の上昇が6匹に認められたが、いずれも軽度で経過観察期間中生存可能であった。クレアチニン平均値は移植マウス群では、移植後5週のみ0.5mg/dlを上回ったが、他のいずれの期間でも0.4mg/dl台に落ち着いており、糖尿病マウス群に比べ有意に低下していた(p=0.0478)。また、膵島細胞製剤摘出後はBUN同様、全てのマウスに再上昇が認められた。   The change in creatinine is shown in FIG. The normal value of creatinine was 0.351 mg / dl ± 0.032 (0.16-0.5). Nearly half of the mice in the diabetic group showed a high value of 0.5 mg / dl one week after administration of streptozotocin, and all mice showed abnormal creatinine values four weeks after administration. In addition, after the rise of creatinine, none of the mice died within a few weeks, and no mice were able to survive until 10 weeks after streptozotocin administration. In the transplanted mice group, 6 animals showed an increase in creatinine after transplantation, but all were mild and viable during the follow-up period. The average value of creatinine exceeded 0.5 mg / dl in the transplanted mice group only for 5 weeks after transplantation, but remained at the 0.4 mg / dl level in any other period, and was significantly lower than that in the diabetic mice group. (P = 0.0478). In addition, after the removal of the islet cell preparation, all mice were elevated again as in BUN.

(6)尿検査
24時間尿を採取し、尿量、24時間尿糖排泄量、24時間尿アルブミン排泄量、尿ケトン体を測定した。移植マウス群、糖尿病マウス群、正常血糖マウス群ともに代謝ケージ内で24時間、自由飲水、食事環境下で飼育し、24時間尿を回収した。尿糖はFuji DRI−CHEMシステムで測定し、尿量を乗じたものを尿糖排泄量とした。また、24時間尿アルブミン排泄量は、尿アルブミン濃度をELISA(Albuwell M(Exocill))で測定し、24時間尿量を乗ずることで算出した。尿ケトン体はウロテープ(栄研)を使用し、色調を数値化することで評価した。
(6) Urinalysis 24 hours urine was collected and urine volume, 24 hours urinary glucose excretion, 24 hours urine albumin excretion and urine ketone body were measured. The transplanted mouse group, the diabetic mouse group, and the normoglycemic mouse group were reared in a metabolic cage for 24 hours under free drinking and eating conditions, and the 24-hour urine was collected. Urine sugar was measured by Fuji DRI-CHEM system, and the product of urine volume multiplied by urine volume was used as urinary glucose excretion. The 24-hour urinary albumin excretion was calculated by measuring the urinary albumin concentration by ELISA (Albuwell M (Exocill)) and multiplying by the 24-hour urine volume. The urine ketone body was evaluated by using urotape (Eiken) and quantifying the color tone.

24時間尿量の変化を図12に示す。移植マウス群は糖尿病マウス群と比べ有意差はないが、若干の低値を示した。   The change in 24-hour urine volume is shown in FIG. The transplanted mouse group was not significantly different from the diabetic mouse group, but showed a slightly lower value.

尿糖排泄量の変化を図13に示す。糖尿排泄量に関しても、移植マウス群は糖尿病マウス群に比べて低値で、移植後3週まで有意差が認められた(p<0.0452)。   Changes in urinary glucose excretion are shown in FIG. The amount of diabetic excretion was also lower in the transplanted mouse group than in the diabetic mouse group, and a significant difference was observed until 3 weeks after transplantation (p <0.0452).

また、尿ケトン体量の変化を図14に示す。尿ケトン体量は糖尿病マウス群、移植マウス群共に移植前で上昇した。移植マウス群では、移植後1週で正常化し、その後も糖尿病マウス群と比べ有意に低下した(p=0.0294)。   Moreover, the change of the amount of urinary ketone bodies is shown in FIG. The amount of urine ketone body increased before transplantation in both diabetic mice and transplanted mice. In the transplanted mouse group, normalization occurred one week after the transplantation, and after that, it was significantly lower than that in the diabetic mouse group (p = 0.0294).

さらに、尿アルブミン量の変化を図15に示す。尿アルブミン量は、移植マウス群で糖尿病マウス群よりも低値を示したが、有意差は認められなかった。   Furthermore, the change in the amount of urinary albumin is shown in FIG. The amount of urinary albumin was lower in the transplanted mouse group than in the diabetic mouse group, but no significant difference was observed.

(7)1,5−アンヒドロ−D−グルシトール(1,5−AG)測定
糖尿病の程度を検討するため、1,5−AG測定を行った。1,5−AGはグルコースと極めて類似した構造を持つポリオールで、主として食物中より摂取、吸収され、体内に広く豊富に蓄積される。そして腎にて再吸収を受ける。グルコースと競合作用があり、糖尿病時には尿糖のAG再吸収は阻害を受け、尿中AG排泄の増大と、血中AGの減少につながる。したがって、1,5−AGは、グルコースの動態に対し極めて鋭敏に反応するため、リアルタイムの糖尿病の状態を反映するマーカーとなりうる。移植マウス群、糖尿病マウス群、正常血糖マウス群ともに移植前と、移植後毎週1回尾静脈より血液25μlを採取し、動物用1,5−AGキット(日本化薬)で測定した。
(7) 1,5-Anhydro-D-glucitol (1,5-AG) measurement In order to examine the degree of diabetes, 1,5-AG measurement was performed. 1,5-AG is a polyol having a structure very similar to that of glucose, and is mainly ingested and absorbed from food, and is widely accumulated in the body. And it is reabsorbed in the kidney. It has a competitive effect with glucose, and AG reabsorption of urine sugar is inhibited during diabetes, leading to an increase in urinary AG excretion and a decrease in blood AG. Therefore, since 1,5-AG responds extremely sensitively to glucose kinetics, it can be a marker that reflects the state of real-time diabetes. In the transplanted mouse group, diabetic mouse group, and normoglycemic mouse group, 25 μl of blood was collected from the tail vein before transplantation and once weekly after transplantation, and measured with a 1,5-AG kit for animals (Nippon Kayaku).

結果を図16に示す。この図から明らかなように、正常血糖マウス群に比べ、糖尿病マウス群では1,5−AG濃度は明らかに低値であり、糖尿病の状態をよく反映した。移植マウス群の1,5−AG平均値は術前と比べ、1週で上昇した。また、期間中糖尿病マウス群と比較して有意な上昇が認められた(p=0.0203)。   The results are shown in FIG. As is apparent from this figure, the 1,5-AG concentration was clearly lower in the diabetic mouse group than in the normoglycemic mouse group, which well reflected the state of diabetes. The average value of 1,5-AG in the transplanted mice group increased in one week compared with before surgery. In addition, a significant increase was observed compared with the diabetic mouse group during the period (p = 0.0203).

(8)考察
上記移植実験から明らかなように、本発明の膵島細胞製剤は、それを移植することにより、糖尿病状態を改善し、糖尿病による死亡および糖尿病性の腎障害の予防に有効であることが分かる。また、本発明の膵島細胞製剤の移植は、糖尿病の治癒のみでなく、合併症予防の点からも有効である。
(8) Discussion As is clear from the above transplantation experiment, the islet cell preparation of the present invention improves the diabetic state by transplanting it, and is effective in the prevention of death due to diabetes and diabetic renal injury. I understand. Moreover, transplantation of the islet cell preparation of the present invention is effective not only for the cure of diabetes but also for the prevention of complications.

シート状膵島細胞製剤の製造方法を示す模式図である。It is a schematic diagram which shows the manufacturing method of a sheet-like islet cell formulation. 製造例1、比較例1又は遊離膵島細胞の培養1日後の生細胞の回収率を調べた結果を示す図である。It is a figure which shows the result of having investigated the collection | recovery rate of the living cell 1 day after culture | cultivation of the manufacture example 1, the comparative example 1, or a free islet cell. 製造例1、比較例1又は遊離膵島細胞中の培養1日後のインスリン含有量を調べた結果を示す図である。It is a figure which shows the result of having investigated the insulin content after 1 day of culture | cultivation in manufacture example 1, comparative example 1, or a free islet cell. 製造例1、比較例1又は遊離膵島細胞のインスリン分泌能を経時的に調べた結果を示す図である。It is a figure which shows the result of having investigated the insulin secretory ability of manufacture example 1, the comparative example 1, or a free islet cell over time. 製造例1又は比較例1に含有される膵島細胞を経時的に観察した顕微鏡写真を示す図である。It is a figure which shows the microscope picture which observed the pancreatic islet cell contained in the manufacture example 1 or the comparative example 1 over time. 製造例2又は遊離膵島細胞のインスリン分泌能を調べた結果を示す図である。It is a figure which shows the result of having investigated the insulin secretion ability of the manufacture example 2 or the free islet cell. 移植マウス群および糖尿病マウス群の生存期間を示す図である。It is a figure which shows the survival time of a transplant mouse group and a diabetic mouse group. 移植マウス群、糖尿病マウス群および正常血糖マウス群の血糖の変化を示す図である。It is a figure which shows the change of the blood glucose of a transplant mouse group, a diabetic mouse group, and a normoglycemic mouse group. 移植マウス群、糖尿病マウス群および正常血糖マウス群の体重の変化を示す図である。It is a figure which shows the change of the body weight of a transplant mouse group, a diabetic mouse group, and a euglycemic mouse group. 移植マウス群、糖尿病マウス群および正常血糖マウス群のBUN(血中尿素窒素)の変化を示す図である。It is a figure which shows the change of BUN (blood urea nitrogen) of a transplant mouse group, a diabetic mouse group, and a euglycemic mouse group. 移植マウス群、糖尿病マウス群および正常血糖マウス群のクレアチニンの変化を示す図である。It is a figure which shows the change of creatinine of a transplant mouse group, a diabetic mouse group, and a normoglycemic mouse group. 移植マウス群、糖尿病マウス群および正常血糖マウス群の24時間尿量の変化を示す図である。It is a figure which shows the change of 24-hour urine volume of a transplant mouse group, a diabetic mouse group, and a euglycemic mouse group. 移植マウス群、糖尿病マウス群および正常血糖マウス群の24時間尿糖排泄量の変化を示す図である。It is a figure which shows the change of the 24-hour urinary glucose excretion amount of a transplant mouse group, a diabetic mouse group, and a euglycemic mouse group. 移植マウス群、糖尿病マウス群および正常血糖マウス群の尿ケトン体量の変化を示す図である。It is a figure which shows the change of the amount of urine ketone bodies of a transplant mouse group, a diabetic mouse group, and a euglycemic mouse group. 移植マウス群、糖尿病マウス群および正常血糖マウス群の24時間尿アルブミン排泄量の変化を示す図である。It is a figure which shows the change of the 24-hour urinary albumin excretion amount of a transplant mouse group, a diabetic mouse group, and a euglycemic mouse group. 移植マウス群、糖尿病マウス群および正常血糖マウス群の1,5−AG量の変化を示す図である。It is a figure which shows the change of the 1, 5- AG amount of a transplant mouse group, a diabetic mouse group, and a normoglycemic mouse group.

符号の説明Explanation of symbols

1 膵島細胞
2 PVA+EC溶液
3 PVA+ECゲル
4、6 メッシュシート
5、7 ガラスプレート
8 シート状膵島細胞含有製剤
DESCRIPTION OF SYMBOLS 1 Islet cell 2 PVA + EC solution 3 PVA + EC gel 4, 6 Mesh sheet 5, 7 Glass plate 8 Sheet-like islet cell containing preparation

Claims (17)

細胞保存剤が配合されたポリビニルアルコール中に、細胞を含有する細胞製剤。   A cell preparation containing cells in polyvinyl alcohol containing a cell preservative. 細胞表面が、更に細胞外マトリックスで覆われていることを特徴とする請求項1に記載の細胞製剤。   The cell preparation according to claim 1, wherein the cell surface is further covered with an extracellular matrix. 更にグロースファクターを含有することを特徴とする請求項1又は2に記載の細胞製剤。   The cell preparation according to claim 1 or 2, further comprising a growth factor. 細胞が、膵島細胞、膵内分泌細胞、肝細胞、前葉細胞、成長ホルモン分泌細胞、骨細胞、甲状腺ホルモン分泌細胞及び副甲状腺ホルモン分泌細胞から成る群から選択される1種又は2種以上の細胞であることを特徴とする請求項1〜3のいずれかに記載の細胞製剤。   The cell is one or more cells selected from the group consisting of islet cells, pancreatic endocrine cells, hepatocytes, anterior lobe cells, growth hormone secreting cells, bone cells, thyroid hormone secreting cells and parathyroid hormone secreting cells. The cell preparation according to any one of claims 1 to 3, wherein the cell preparation is provided. 細胞が、細胞保存剤で処理されていることを特徴とする請求項1〜4のいずれかに記載の細胞製剤。   The cell preparation according to any one of claims 1 to 4, wherein the cell is treated with a cell preservative. 細胞が、形質転換体であることを特徴とする請求項1〜5のいずれかに記載の細胞製剤。   The cell preparation according to any one of claims 1 to 5, wherein the cell is a transformant. シート状、板状、棒状、チューブ状又はビーズ状の形状を有することを特徴とする請求項1〜6のいずれかに記載の細胞製剤。   The cell preparation according to any one of claims 1 to 6, which has a sheet shape, a plate shape, a rod shape, a tube shape, or a bead shape. 細胞保存液が、Euro−Collins液、セルバンカー又はUW液であることを特徴とする請求項1〜7のいずれかに記載の細胞製剤。   The cell preparation according to any one of claims 1 to 7, wherein the cell preservation solution is a Euro-Collins solution, a cell banker or a UW solution. 哺乳動物の皮下、筋肉内又は腹腔内に移植することを特徴とする請求項1〜8に記載の細胞製剤。   The cell preparation according to claim 1, which is transplanted subcutaneously, intramuscularly or intraperitoneally in a mammal. 請求項1〜9のいずれかに記載の細胞製剤を用いることを特徴とする内分泌・代謝疾患の予防及び治療方法。   A method for preventing and treating endocrine / metabolic diseases, comprising using the cell preparation according to any one of claims 1 to 9. 内分泌・代謝疾患が、糖尿病又は下垂体性小人症であることを特徴とする請求項10に記載の内分泌・代謝疾患の予防及び治療方法。   The method for preventing and treating an endocrine / metabolic disease according to claim 10, wherein the endocrine / metabolic disease is diabetes or pituitary dwarfism. 請求項1〜9のいずれかに記載の細胞製剤を用いることを特徴とする血友病の予防及び治療方法。   A method for preventing and treating hemophilia, comprising using the cell preparation according to any one of claims 1 to 9. 請求項1〜9のいずれかに記載の細胞製剤を用いることを特徴とする骨疾患の予防及び治療方法。   A method for preventing and treating a bone disease, comprising using the cell preparation according to any one of claims 1 to 9. 請求項1〜9のいずれかに記載の細胞製剤を用いることを特徴とする癌の予防及び治療方法。   A method for preventing and treating cancer, which comprises using the cell preparation according to any one of claims 1 to 9. 請求項1〜9のいずれかに記載の細胞製剤を用いることを特徴とする肝不全又は先天性代謝異常の予防及び治療方法。   A method for preventing and treating liver failure or inborn errors of metabolism characterized by using the cell preparation according to any one of claims 1 to 9. ポリビニルアルコールに細胞保存剤を配合後、細胞を該ポリビニルアルコールに混合し、得られた細胞含有ポリビニルアルコールをゲル化することを特徴とする細胞製剤の製造方法。   A method for producing a cell preparation, comprising mixing a cell preservative with polyvinyl alcohol, mixing the cells with the polyvinyl alcohol, and gelling the obtained cell-containing polyvinyl alcohol. ヒト又は動物用の医薬である請求項1〜9のいずれかに記載の細胞製剤。

The cell preparation according to any one of claims 1 to 9, which is a pharmaceutical for humans or animals.

JP2003375451A 2003-04-16 2003-11-05 Cell preparation Pending JP2004331643A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003375451A JP2004331643A (en) 2003-04-16 2003-11-05 Cell preparation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003112103 2003-04-16
JP2003375451A JP2004331643A (en) 2003-04-16 2003-11-05 Cell preparation

Publications (1)

Publication Number Publication Date
JP2004331643A true JP2004331643A (en) 2004-11-25

Family

ID=33513227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003375451A Pending JP2004331643A (en) 2003-04-16 2003-11-05 Cell preparation

Country Status (1)

Country Link
JP (1) JP2004331643A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013526999A (en) * 2010-06-04 2013-06-27 アソシアシオン プール レ トランスフェルト ドゥ テクノロジ デュ マン Functionalized membrane for a chamber for encapsulating cells that produce at least one therapeutically beneficial substance, and a bioartificial organ comprising such a membrane
JP2017196150A (en) * 2016-04-27 2017-11-02 株式会社クラレ Transplant device and artificial bio-organ
WO2018155621A1 (en) 2017-02-23 2018-08-30 日本酢ビ・ポバール株式会社 Cell- or tissue-embedding device
WO2018155622A1 (en) 2017-02-23 2018-08-30 日本酢ビ・ポバール株式会社 Cell- or tissue-embedding device
JP2021191310A (en) * 2020-07-06 2021-12-16 学校法人明治大学 Biological sample preservation container

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013526999A (en) * 2010-06-04 2013-06-27 アソシアシオン プール レ トランスフェルト ドゥ テクノロジ デュ マン Functionalized membrane for a chamber for encapsulating cells that produce at least one therapeutically beneficial substance, and a bioartificial organ comprising such a membrane
JP2017196150A (en) * 2016-04-27 2017-11-02 株式会社クラレ Transplant device and artificial bio-organ
WO2018155621A1 (en) 2017-02-23 2018-08-30 日本酢ビ・ポバール株式会社 Cell- or tissue-embedding device
WO2018155622A1 (en) 2017-02-23 2018-08-30 日本酢ビ・ポバール株式会社 Cell- or tissue-embedding device
KR20190121812A (en) 2017-02-23 2019-10-28 니혼 사꾸비 포바루 가부시키가이샤 Cell or tissue embedding device
KR20190121811A (en) 2017-02-23 2019-10-28 니혼 사꾸비 포바루 가부시키가이샤 Cell or tissue embedding device
JPWO2018155621A1 (en) * 2017-02-23 2019-12-26 日本酢ビ・ポバール株式会社 Cell or tissue embedding device
JP7079939B2 (en) 2017-02-23 2022-06-03 日本酢ビ・ポバール株式会社 Cell or tissue embedding device
US11684693B2 (en) 2017-02-23 2023-06-27 Japan Vam & Poval Co., Ltd. Cell or tissue embedding device
JP2021191310A (en) * 2020-07-06 2021-12-16 学校法人明治大学 Biological sample preservation container
JP7668528B2 (en) 2020-07-06 2025-04-25 株式会社ポル・メド・テック Biological sample storage container

Similar Documents

Publication Publication Date Title
Yao et al. Recent development and biomedical applications of decellularized extracellular matrix biomaterials
JP6812475B2 (en) Use of adipose tissue-derived stromal stem cells in the treatment of fistulas
Tobias et al. Grafting of encapsulated BDNF-producing fibroblasts into the injured spinal cord without immune suppression in adult rats
US20020187182A1 (en) Biocompatible fleece for hemostasis and tissue engineering
US20050180957A1 (en) Method of using fibrin-bound angiogenic factors to stimulate vascularization of transplant site of encapsulated cells
US10251915B2 (en) Co-encapsulation of live cells with oxygen-generating particles
CN107810014B (en) Compositions comprising mesenchymal stem cells and uses thereof
BE1024781B1 (en) STRUCTURAL STEM CELLS FROM ADIPOSIVE FABRICS FOR USE IN THE TREATMENT OF TREATMENT-RESISTANT COMPLEX PERIANAL FISTLES AT MORBUS CROHN
WO2001070022A1 (en) Coating materials for biological tissues, coated biological tissues and method of coating biological tissues
JP2017514876A (en) Therapeutic placenta composition, its production and use
CN101903049A (en) The nephridial tissue of encapsulation
Ding et al. Galectin-1-induced skeletal muscle cell differentiation of mesenchymal stem cells seeded on an acellular dermal matrix improves injured anal sphincter
Langer I articles
RU2425645C1 (en) Method and transplant for treatment of liver failure
JP2004331643A (en) Cell preparation
Burke et al. Phase-changing citrate macromolecule combats oxidative pancreatic islet damage, enables islet engraftment and function in the omentum
EP1614436A1 (en) Cellular preparation
Lahooti et al. Agarose enhances the viability of intraperitoneally implanted microencapsulated L929 fibroblasts
CA2395117A1 (en) Spore-like cells and uses thereof
WO1997039107A2 (en) Methods for increasing the maturation of cells
WO2010068728A2 (en) Engineering functional tissue from cultured cells
TR201902008A2 (en) A NEW GENERATION OF PANCREATIC TISSUE AND PRODUCTION METHOD THAT CAN AVOID AUTOIMMUNE ATTACKS AND INCREASE INSULIN
RU2425646C1 (en) Method and transplant for treatment of liver failure
Yang et al. A proof-of-concept study on an injectable artificial ovary using xenogeneic ECM for fertility restoration
WO1999055382A1 (en) Adenoviral vector encoding anti-apoptotic bcl-2 gene and uses thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080401