【0001】
【発明の属する技術分野】
本発明は、半導体や液晶などの薄膜デバイスの製造工程などに用いるプラズマ処理装置に関するものである。
【0002】
【従来の技術】
従来のプラズマ処理装置について、図5を用いて説明する。図5は従来のプラズマ処理装置の概略構成を示す図である。図5において、50はプラズマを発生させてプラズマ処理をするための反応室であるチャンバー、51はチャンバー50内の上部に取り付けられた上部電極、52はチャンバー50内で上部電極51と対向して取り付けられた下部電極、53は下部電極52上に設置された処理対象物、54はチャンバー50内の上部電極51と下部電極52との間にプラズマを発生させるための高周波電力を供給する高周波電源、55は下部電極52と高周波電源54との間に設置され、プラズマの発生を安定させる高周波整合器、56は下部電極52と高周波整合器55との間に設置され、高周波電源54から下部電極52へ印加された電流と電圧とを計測する電気センサー、57は電気センサー56で計測したデータを取り込み処理するデータ処理装置である。
【0003】
従来のプラズマ処理装置では、チャンバー50内を真空排気する真空ポンプ(図示せず)にてチャンバー50内を真空状態にし、チャンバー50内にガス供給源(図示せず)から所望のガスを供給し、高周波電源54から高周波電力を供給し、高周波整合器55にてインピーダンス整合をし、上部電極51と下部電極52との間に、例えば13.56MHZの高周波電力を印加することにより、チャンバー50内にプラズマを励起し、処理対象物53である半導体や液晶などの薄膜デバイスにエッチングあるいは成膜等の表面処理を行っていた。
【0004】
また、電気センサー56により電流および電圧を計測し、電気センサー56で計測された電流および電圧をプラズマ状態判定用のデータとしてデータ処理装置57に取り込み、電気センサー56で計測した電流および電圧のデータからインピーダンスを検出して前記高周波電力の印加状態の異常判定を行っていた。このように高周波電力の印加状態の異常判定を行うことにより、高周波整合器55に整合異常が発生して、投入された高周波電力が100%の効率で上部電極51と下部電極52とに伝達されない場合に、電流、電圧の監視を行うことにより高周波電力の異常を検出することが可能であり、投入電力異常による加工不良を防止することが可能であった。
【0005】
さらに、1つの処理対象物53毎、例えば1枚のウェハ毎で、電気センサー56によって計測された電流および電圧を分離し、それぞれ時間平均処理などを施した後、品種情報を付加することにより、処理対象物53が処理されることによって生じるプラズマ処理状態やウェハ処理情報の変化をモニタしていた(例えば、特許文献1参照)。そして、異常状態を検出したならば、ブザーやシグナルタワーなどの警報として外部出力することで、プラズマ処理を停止したり、あるいは自動でプラズマ処理装置を停止させたりしていた。
【0006】
しかしながら、近年、シリコンウェハや液晶用ガラス基板などの配線パターンの微細化や大型化が急速に進んでおり、半導体や液晶などの薄膜デバイス製造におけるプラズマ処理、例えばエッチングや成膜に際しては、基板全面にわたって均一なエッチングあるいは成膜をすることが極めて重要な課題となってきている。特に半導体デバイス分野では半導体デバイスの高集積化に伴い、半導体デバイスの微細化は進む一方であり、エッチングあるいは成膜の分野でも高品質で信頼性の高い処理工程を必要とするようになってきており、比較的低温処理が可能で高精度加工が可能なプラズマ処理においても、高精度の加工を行うためにはプラズマ状態を常に安定な状態に維持しておく必要があった。さらに、プラズマエッチング加工の微細化に伴い、プラズマ状態をエッチング加工途中で把握し、より精度良く加工形状をコントロールすることが必要であり、プロセス異常・プロセス変化などのプロセス現象を詳細に把握する必要がでてきた。
【0007】
ここで、従来のプラズマ処理装置における、計測データからプラズマ状態を管理するための情報を抽出する方法について説明する。従来、プラズマ処理装置のチャンバー50内壁の温度は一定温度に制御されているが、その外表面温度は制御されていない。また、高周波電源51から供給される電流は装置外表面を通過して接地されており、プラズマ処理が連続で行われると、この高周波電流が装置外表面をリターン波として流れて装置外表面の温度が上昇し、インピーダンスも上昇する。この装置外表面の温度変化に伴い、電気センサー56で計測される電流、電圧が変化するため、プラズマ状態を管理するには、その計測値の変化幅を考慮して広い管理限界を設定しなければならなかった。
【0008】
しかしながら、上記理由のために管理限界を広く設定することにより、誤った異常検出は発生しないものの、実際には異常が発生していた処理対象物53を異常として検出できないことがあるなど、プロセス異常・プロセス変化などのプロセス現象を正確に把握することが困難であった。
【0009】
【特許文献1】
特開2002−270581号公報
【0010】
【発明が解決しようとする課題】
このように従来のプラズマ処理装置では、プラズマ処理を行う際、高周波電源51からの高周波電流が装置外表面をリターン波として流れた場合には、その作用により装置外表面の温度上昇が発生し、プラズマ状態の変化とは無関係にインピーダンスが上昇する。また、電気センサーによる計測値は装置外表面の温度に依存して変化している。例えば、装置外表面温度が高い場合、電流、電圧計測値も高くなる。したがって、従来のプラズマ処理装置では、装置外表面の温度変化に伴って電気センサーの計測値の変化が存在することに起因して、広い管理限界の設定をしなくてはならず、このために高精度なプロセス状態の判定ができなくなり、結果として、例えば異常状態の処理を正常と誤判定することで、不良品を後工程に流出するおそれがあるといった問題を生じていた。
【0011】
本発明は、このような実情に鑑みてなされたもので、装置外表面の温度が変化した場合でも、高精度にプラズマ状態をモニタして管理することができるプラズマ処理装置を提供することを目的とするものである。
【0012】
【課題を解決するための手段】
本発明は上記課題を解決するもので、プラズマ処理をする反応室と、前記反応室内にプラズマを発生させるエネルギー源である電力を供給する高周波電源と、前記高周波電源から供給される電力を前記反応室内に伝達させる電極と、前記高周波電源と前記電極との間に備えられ前記高周波電源から印加される電流と電圧と位相との少なくとも1つを計測する電気センサーと、前記反応室と絶縁されていない装置外表面に絶縁された状態で取り付けられ前記装置外表面の温度を計測する温度センサーと、前記温度センサーで計測された温度に基づき前記電気センサーの計測値とプラズマの電気伝導度との少なくとも一方を補正してプラズマ状態判定用のデータを算出するデータ演算手段と、前記データ演算手段で算出したデータに基づきプラズマ状態を判定する判定手段とを備えたことを特徴とし、この構成により、装置外表面の温度が変化した場合でも、この温度に基づいて、電気センサーの計測値とプラズマ電気伝導度との少なくとも一方を補正してプラズマ状態判定用のデータを得ることができるので、この判定用データによりプラズマ状態を高精度に判定することが可能となる。
【0013】
【発明の実施の形態】
以下、本発明の実施の形態に係るプラズマ処理装置について図面を参照しつつ詳細に説明する。
【0014】
図1は、本発明の一実施の形態に係るプラズマ処理装置を示す図である。
このプラズマ処理装置は、プラズマを発生させる反応室であるチャンバー1内の上部にとりつけられた上部電極2と、この上部電極2に相対向して設けられ、被処理基板3が設置される下部電極4と、チャンバー1内を真空排気する真空ポンプ(図示せず)と、チャンバー1内に所望のガスを供給するガス供給源(図示せず)と、前記上部電極2と下部電極4との間に高周波電力を供給し、プラズマを発生する高周波電源5とを具備してなる。なお、11は、プラズマ処理装置の外表面(装置外表面という)である。
【0015】
また、下部電極4は高周波整合器6を介して高周波電源5に接続されており、下部電極4と上部電極2との間にRF高周波(例えば13.56MHz)を印加することにより、チャンバー1内にプラズマを励起しエッチングあるいは成膜等の表面処理を行うように構成されている。
【0016】
そしてさらに高周波電源5と下部電極4との間に、プラズマの電気的特性(例えば電流、電圧、位相など)を計測する電気センサー7が取り付けられており、電気センサー7で計測されたデータは、データ演算手段としての機能をも有する例えば電子計算機などのデータ処理装置8に取り込まれて処理される。
【0017】
また、チャンバー1と絶縁されていない装置外表面11に、装置外表面11の温度を計測する3つの温度センサー9a、9b、9cが、チャンバー1と絶縁された状態で取り付けられており、温度センサー9a、9b、9cで計測されたデータはデータ処理装置8に取り込まれて処理される。
【0018】
図2はこのプラズマ処理装置における温度計測手段の取り付け例を示す。この図に示すように、プラズマ処理装置におけるチャンバー1と絶縁されていない装置外表面11に、プラズマ処理装置を組み立てる際に用いられているネジ部12に、表面を絶縁処理した熱電対13を挿入することにより、プラズマ処理装置の外表面の温度計測を行っている。そして、前記熱電対13により各温度センサー9a、9b、9cをそれぞれ構成している。ここで、温度センサー9a、9b、9cは、高周波電源5で印加された高周波電流が絶縁されていない装置外表面11をリターン波として通過することによる温度上昇を的確に捉える必要があるので、温度センサー9a、9b、9cは、絶縁されていない装置外表面11に、絶縁された状態で設置されている。
【0019】
なお、上記の実施の形態では、熱電対13をネジ部12に挿入した場合について述べたが、これに限るものではなく、上述したように温度センサー9a、9b、9cが絶縁されていない装置外表面11に絶縁された状態で設置されていればよいことはもちろんである。
【0020】
図3は同プラズマ処理装置を簡易的に高周波回路に見たてた場合の等価電気回路を示す図である。この図3において、21はチャンバー1の外壁など、チャンバー1と絶縁されていない装置部分を電気回路として示した抵抗、22、23はチャンバー1内のプラズマバルクと電極との間に発生するプラズマシースを電気回路として表したコンデンサ、24はチャンバー1内のプラズマバルクを電気回路として表した抵抗であり、抵抗24はプラズマバルクの電気の伝わりやすさを表すものであるため、電気伝導度と表現することとする。25はプラズマ処理される対象物、例えばウェハを電気回路として表した抵抗、7は電気センサー、27は高周波整合器6を電気回路として表したものである。
【0021】
電気センサー7により計測された電流と電圧は、例えば13.56MHzの交流波形で取り込まれ、電流をI、電圧をVとすると、電流Iと電圧Vとは下記の計算式(数11)で表すことができる。
(数11)
I=I0×sinΦ
V=V0×sinθ
ここでI0は電流の振幅、Φは電流の位相角、V0は電圧の振幅、θは電圧の位相角である。電気伝導度Zは上記の計算式(数11)より下記の計算式(数12)で求めることができる。
(数12)
Z=(V0/I0)×cos(θ−Φ)
上述のようにプラズマ処理装置を図3のように等価電気回路モデルとし、回路方程式を演算することで、電気センサー7で計測された電流I、電圧Vから求めた電気伝導度Zがチャンバー1内のプラズマバルクを電気回路として表した抵抗24と等価となる。
【0022】
プラズマの電気伝導度Zとプラズマ電子密度とは反比例関係にあり、電気センサー7によって計測される電流I、電圧Vから電気伝導度Zをデータ処理装置8によって求め、チャンバー1の側壁などに付着する反応生成物の状態によって電気伝導度Zが変化するため、プラズマの電気伝導度Zを監視することにより、プラズマの状態やウェハの状態の監視を行っている。
【0023】
次に、電気センサー7により計測されるデータを、温度センサー9aにより計測した温度Tの多項式で補正する方法について説明する。
まず、過去に計測されたプラズマ放電継続時のプラズマの電気伝導度平均値Zcと温度Tとを複数サンプルとして得て、図4のようにグラフにプロットする。プロットされた電気伝導度平均値Zcと温度Tとの関係を表すグラフに対し、例えば重回帰分析を用いて、以下に示す(数5)のような近似曲線を求める。
【0024】
【数5】
ここで、Nは1以上の整数、Zcrは温度Tにおける電気伝導度基準値である。
【0025】
この時、Nの値を大きくして電気伝導度基準値Zcrを温度Tの高次式として近似曲線のフィッティングを行ってもよいが、次数を上げ過ぎてオーバーフィッティングしてしまうことに注意しなくてはならない。例えば、電気伝導度基準値Zcrを温度Tの1次式とした場合、近似曲線は以下に示す(数13)のような直線として算出される。
【0026】
(数13)
Zcr=α1T+α0
次に電気センサー7から計測されるデータを温度センサー9aにより計測される温度Taおよび、前記多項式(数13)により、ある一定の温度Tdにおける値に補正する方法について説明する。
【0027】
まず、プラズマ処理時に装置外表面温度Taとプラズマ電気伝導度の平均値Zcとを計測する。次に、計測された装置外表面温度Taを(数13)に代入し、電気伝導度基準値Zcrを算出する。次に、算出された電気伝導度基準値Zcrと計測されたプラズマ電気伝導度の平均値Zcとの差を算出し、その差を装置外表面温度Taでの(数13)によるプラズマ電気伝導度の平均値Zcrに(数14)のように加えることにより補正を行う。
【0028】
(数14)
Zch=Zcr(Td)+(Zc−Zcr(Ta))
ここで、Zchは補正後のプラズマ電気伝導度の平均値である。
【0029】
そして、電気センサー7により計測されたデータを全てある一定の温度を基準として補正を行った判定用データと管理基準値とを比較処理する。管理基準値は事前に実験などでプロセス異常状態をつくり出して、正常状態との境界値として予め求めた値である。
【0030】
そして、前記判定用データと管理基準値とを比較処理した結果、異常状態であればブザーやシグナルタワーなどの警報として外部出力することで、プラズマ処理を停止したり、あるいは自動でプラズマ処理装置を停止させたりする。
【0031】
このように、装置外表面11の温度Tが変化した場合でも、この温度Tに基づいて、プラズマ電気伝導度Zcrを補正して正確なプラズマ状態判定用のデータ(プラズマ電気伝導度の平均値Zch)を得ることができるので、この判定用データによりプラズマ状態を高精度に判定することが可能となる。
【0032】
なお、上記実施の形態では、電気伝導度基準値Zcrを温度Tの1次式とした場合を述べたが、これに限るものではなく、上述したように2次式以上の近似曲線として算出させてもよい。また、上記実施の形態では、プラズマ放電継続時のプラズマの電気伝導度平均値Zcと温度Tとを複数サンプルとして得て、プロットされた電気伝導度平均値Zcと温度Tとの関係を表すグラフに対して、近似曲線を求めた場合を述べたが、単に、プラズマ放電継続時のプラズマの電気伝導度Zと温度Tとを複数サンプルとして得て、プロットされた電気伝導度平均値と温度Tとの関係を表すグラフに対して、近似曲線を求めてもよいことはもちろんである。
【0033】
また、上記実施の形態では、温度センサー9aの検知温度に基づき、プラズマ電気伝導度の平均値Zcrを補正して、プラズマ状態判定用のデータを得た場合を述べたが、これに限るものではなく、データ演算手段としてのデータ処理装置8により、電気センサー7で計測した電気的特性である電流Iと電圧V(または平均電流値Icと平均電圧値Vc)とを、装置外表面11に設けた温度センサー9aで検知した検知温度Tに基づいて、それぞれ検知温度Tの1次以上の多項式
【0034】
【数6】
または
【0035】
【数7】
を用いて補正してもよく、同様に所定の基準温度での補正した電流Iと電圧V(または平均電流値Icと平均電圧値Vc)とを用いることでプラズマ状態を高精度に判定することが可能となる。
【0036】
また、上記実施の形態では、1つの温度センサー9aで検知した温度に基づいて補正したが、これに限るものではなく、複数の温度センサー(例えば温度センサー9a,9b,9c)で検知した装置外表面11の温度に基づいて補正してもよいことはいうまでもない。
【0037】
また、温度センサー9aで検知した温度に基づいて、電流Iまたは電圧Vの一方だけを補正する場合でも、全く補正しない場合と比べると、プラズマ状態を良好に判定することが可能である。
【0038】
【発明の効果】
以上のように、本発明によれば、反応室と絶縁されていない装置外表面に、前記反応室と絶縁された状態で、装置外表面の温度を計測する温度センサーを設け、この温度センサーの計測温度に基づき、前記電気センサーの計測値とプラズマ電気伝導度との少なくとも一方を補正して、プラズマ状態判定用のデータを取得することで、プラズマ処理による装置外表面の温度上昇による、電気センサー計測値の補正を可能とし、高精度にプラズマ状態をモニタすることができて、この要因以外の要因による電気センサー計測値の変化の抽出が可能となる。これにより、プラズマ処理により装置外表面の温度変動が生じた場合でも、プロセス異常・プロセス変化などのプロセス現象を正確かつ高精度に把握することができ、不良品を後工程に流出することを確実に防止できて、信頼性が向上する。
【図面の簡単な説明】
【図1】本発明の実施の形態に係るプラズマ処理装置を示す図である。
【図2】同プラズマ処理装置における温度計測手段の取り付け例を示す図である。
【図3】同プラズマ処理装置の等価回路例を示す図である。
【図4】同プラズマ処理装置における電気伝導度と装置外表面温度との関係を示す図である。
【図5】従来のプラズマ処理装置を示す図である。
【符号の説明】
1 チャンバー(反応室)
2 上部電極
3 被処理基板
4 下部電極
5 高周波電源
7 電気センサー
8 データ処理装置(データ演算手段および判定手段)
9a、9b、9c 温度センサー
11 装置外表面(プラズマ処理装置の外表面)[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a plasma processing apparatus used in a manufacturing process of a thin film device such as a semiconductor and a liquid crystal.
[0002]
[Prior art]
A conventional plasma processing apparatus will be described with reference to FIG. FIG. 5 is a diagram showing a schematic configuration of a conventional plasma processing apparatus. In FIG. 5, reference numeral 50 denotes a chamber which is a reaction chamber for performing plasma processing by generating plasma; 51, an upper electrode attached to an upper part in the chamber 50; 52, which faces the upper electrode 51 in the chamber 50. The attached lower electrode, 53 is a processing object set on the lower electrode 52, and 54 is a high-frequency power supply for supplying high-frequency power for generating plasma between the upper electrode 51 and the lower electrode 52 in the chamber 50. , 55 are provided between the lower electrode 52 and the high-frequency power supply 54 to stabilize the generation of plasma, and 56 is provided between the lower electrode 52 and the high-frequency power supply 55, An electric sensor for measuring a current and a voltage applied to 52; a data processing device 57 for receiving and processing data measured by the electric sensor 56 A.
[0003]
In the conventional plasma processing apparatus, the inside of the chamber 50 is evacuated by a vacuum pump (not shown) that evacuates the chamber 50, and a desired gas is supplied into the chamber 50 from a gas supply source (not shown). A high-frequency power is supplied from a high-frequency power source 54, impedance matching is performed by a high-frequency matching device 55, and a high-frequency power of, for example, 13.56 MHZ is applied between the upper electrode 51 and the lower electrode 52. In this case, plasma is excited to perform a surface treatment such as etching or film formation on a thin film device such as a semiconductor or a liquid crystal, which is an object 53 to be processed.
[0004]
Further, the current and voltage are measured by the electric sensor 56, and the current and voltage measured by the electric sensor 56 are taken into the data processing device 57 as data for plasma state determination, and the data and current data measured by the electric sensor 56 are Abnormality in the applied state of the high-frequency power is determined by detecting the impedance. By performing the abnormality determination of the applied state of the high-frequency power in this way, a matching abnormality occurs in the high-frequency matching device 55, and the input high-frequency power is not transmitted to the upper electrode 51 and the lower electrode 52 with 100% efficiency. In this case, by monitoring the current and the voltage, it was possible to detect an abnormality in the high-frequency power, and it was possible to prevent a processing failure due to an abnormality in the input power.
[0005]
Further, the current and the voltage measured by the electric sensor 56 are separated for each processing object 53, for example, for each wafer, and time averaging processing is performed, and then the type information is added. A change in plasma processing state or wafer processing information caused by processing of the processing target 53 has been monitored (for example, see Patent Document 1). When an abnormal state is detected, the plasma processing is stopped or the plasma processing apparatus is automatically stopped by outputting an external alarm as a buzzer or a signal tower.
[0006]
However, in recent years, wiring patterns such as silicon wafers and glass substrates for liquid crystals have been rapidly miniaturized and increased in size. It has become an extremely important issue to perform uniform etching or film formation over a wide area. In the semiconductor device field, in particular, as semiconductor devices become more highly integrated, the miniaturization of the semiconductor device continues to advance, and in the field of etching or film formation, high quality and highly reliable processing steps are required. In addition, even in plasma processing in which relatively low-temperature processing is possible and high-precision processing is possible, it is necessary to always maintain a stable plasma state in order to perform high-precision processing. Furthermore, with the miniaturization of plasma etching processing, it is necessary to grasp the plasma state during the etching processing and control the processing shape with higher accuracy, and it is necessary to grasp the process phenomena such as process abnormalities and process changes in detail. Came out.
[0007]
Here, a method of extracting information for managing a plasma state from measurement data in a conventional plasma processing apparatus will be described. Conventionally, the temperature of the inner wall of the chamber 50 of the plasma processing apparatus is controlled to a constant temperature, but the outer surface temperature is not controlled. The current supplied from the high-frequency power supply 51 passes through the outer surface of the apparatus and is grounded. When plasma processing is continuously performed, the high-frequency current flows through the outer surface of the apparatus as a return wave, and the temperature of the outer surface of the apparatus increases. Rise, and the impedance also rises. Since the current and voltage measured by the electric sensor 56 change with the temperature change of the outer surface of the apparatus, in order to manage the plasma state, a wide control limit must be set in consideration of the change width of the measured value. I had to.
[0008]
However, if the control limit is set broadly for the above-described reason, erroneous abnormality detection does not occur, but the process target 53 in which the abnormality has actually occurred cannot be detected as an abnormality. -It was difficult to accurately grasp process phenomena such as process changes.
[0009]
[Patent Document 1]
JP-A-2002-270581
[Problems to be solved by the invention]
As described above, in the conventional plasma processing apparatus, when a high-frequency current from the high-frequency power supply 51 flows as a return wave from the high-frequency power source 51 during plasma processing, the temperature of the external surface of the apparatus increases due to the action, The impedance rises independently of the change in plasma state. Further, the value measured by the electric sensor changes depending on the temperature of the outer surface of the device. For example, when the outer surface temperature of the device is high, the measured current and voltage values are also high. Therefore, in the conventional plasma processing apparatus, it is necessary to set a wide control limit due to the change in the measured value of the electric sensor due to the temperature change of the outer surface of the apparatus. It has been impossible to determine the process state with high accuracy, and as a result, there has been a problem that a defective product may flow out to a subsequent process, for example, by erroneously determining that the process in the abnormal state is normal.
[0011]
The present invention has been made in view of such circumstances, and has as its object to provide a plasma processing apparatus capable of monitoring and managing a plasma state with high accuracy even when the temperature of the outer surface of the apparatus changes. It is assumed that.
[0012]
[Means for Solving the Problems]
The present invention solves the above-mentioned problems, and comprises a reaction chamber for performing a plasma treatment, a high-frequency power supply for supplying power that is an energy source for generating plasma in the reaction chamber, and a power supply supplied from the high-frequency power supply for the reaction. An electrode to be transmitted to a room, an electric sensor provided between the high-frequency power supply and the electrode for measuring at least one of a current, a voltage, and a phase applied from the high-frequency power supply, and insulated from the reaction chamber. A temperature sensor attached to the outside surface of the device in an insulated state to measure the temperature of the outside surface of the device, and at least the measured value of the electric sensor and the electrical conductivity of the plasma based on the temperature measured by the temperature sensor. A data calculating means for calculating data for determining a plasma state by correcting one of the data, and a plasma processing means based on the data calculated by the data calculating means. And a determination unit for determining a state. With this configuration, even when the temperature of the outer surface of the device changes, at least one of the measured value of the electric sensor and the plasma electrical conductivity is based on the temperature. Can be corrected to obtain data for determining the plasma state, so that the plasma state can be determined with high accuracy by using the data for determination.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a plasma processing apparatus according to an embodiment of the present invention will be described in detail with reference to the drawings.
[0014]
FIG. 1 is a diagram showing a plasma processing apparatus according to one embodiment of the present invention.
The plasma processing apparatus includes an upper electrode 2 attached to an upper portion of a chamber 1 which is a reaction chamber for generating plasma, and a lower electrode provided opposite to the upper electrode 2 and provided with a substrate 3 to be processed. 4, a vacuum pump (not shown) for evacuating the chamber 1, a gas supply source (not shown) for supplying a desired gas into the chamber 1, and between the upper electrode 2 and the lower electrode 4. And a high-frequency power supply 5 for supplying high-frequency power to the power supply and generating plasma. Reference numeral 11 denotes an outer surface of the plasma processing apparatus (referred to as an outer surface of the apparatus).
[0015]
The lower electrode 4 is connected to a high-frequency power supply 5 via a high-frequency matching device 6. By applying an RF high-frequency (for example, 13.56 MHz) between the lower electrode 4 and the upper electrode 2, the inside of the chamber 1 is reduced. The plasma is excited to perform a surface treatment such as etching or film formation.
[0016]
Further, between the high-frequency power supply 5 and the lower electrode 4, an electric sensor 7 for measuring electric characteristics (for example, current, voltage, phase, etc.) of the plasma is attached, and data measured by the electric sensor 7 is: The data is taken into a data processing device 8 such as an electronic computer, which also has a function as a data calculation unit, and is processed.
[0017]
Further, three temperature sensors 9a, 9b, and 9c for measuring the temperature of the apparatus outer surface 11 are attached to the apparatus outer surface 11 that is not insulated from the chamber 1 while being insulated from the chamber 1. The data measured in 9a, 9b, 9c is taken into the data processing device 8 and processed.
[0018]
FIG. 2 shows an example of mounting a temperature measuring means in this plasma processing apparatus. As shown in this figure, a thermocouple 13 whose surface is insulated is inserted into a screw portion 12 used when assembling the plasma processing apparatus, on an outer surface 11 of the plasma processing apparatus which is not insulated from the chamber 1. Thus, the temperature of the outer surface of the plasma processing apparatus is measured. Each of the temperature sensors 9a, 9b and 9c is constituted by the thermocouple 13. Here, the temperature sensors 9a, 9b, and 9c need to accurately detect the temperature rise caused by the high-frequency current applied by the high-frequency power supply 5 passing through the uninsulated outer surface 11 as a return wave. The sensors 9a, 9b, 9c are installed on the non-insulated outer surface 11 of the apparatus in an insulated state.
[0019]
In the above-described embodiment, the case where the thermocouple 13 is inserted into the screw portion 12 has been described. However, the present invention is not limited to this. Needless to say, it is only necessary to be installed on the surface 11 in an insulated state.
[0020]
FIG. 3 is a diagram showing an equivalent electric circuit when the plasma processing apparatus is simply viewed as a high-frequency circuit. In FIG. 3, reference numeral 21 denotes a resistance indicating an electric circuit of a device portion that is not insulated from the chamber 1, such as an outer wall of the chamber 1, and 22 and 23 denote plasma sheaths generated between a plasma bulk and electrodes in the chamber 1. Is a capacitor expressing the plasma bulk in the chamber 1 as an electric circuit, and the resistance 24 is expressed as electric conductivity because the resistance 24 indicates the easiness of electricity transmission of the plasma bulk. It shall be. Reference numeral 25 denotes a resistor representing an object to be subjected to plasma processing, for example, a wafer as an electric circuit, 7 denotes an electric sensor, and 27 denotes the high-frequency matching device 6 as an electric circuit.
[0021]
The current and the voltage measured by the electric sensor 7 are taken in, for example, an AC waveform of 13.56 MHz. Assuming that the current is I and the voltage is V, the current I and the voltage V are represented by the following formula (Equation 11). be able to.
(Equation 11)
I = I 0 × sinΦ
V = V 0 × sin θ
Where I 0 is the current amplitude, Φ is the current phase angle, V 0 is the voltage amplitude, and θ is the voltage phase angle. The electric conductivity Z can be obtained from the above equation (Equation 11) by the following equation (Equation 12).
(Equation 12)
Z = (V 0 / I 0 ) × cos (θ−Φ)
As described above, the plasma processing apparatus is used as an equivalent electric circuit model as shown in FIG. 3, and the circuit equation is calculated, so that the electric conductivity Z obtained from the current I and the voltage V measured by the electric sensor 7 is stored in the chamber 1. Is equivalent to the resistor 24 that represents the plasma bulk of the above as an electric circuit.
[0022]
The electrical conductivity Z of the plasma is inversely proportional to the plasma electron density, and the electrical conductivity Z is determined by the data processor 8 from the current I and the voltage V measured by the electrical sensor 7 and adheres to the side wall of the chamber 1 or the like. Since the electric conductivity Z changes depending on the state of the reaction product, the state of the plasma and the state of the wafer are monitored by monitoring the electric conductivity Z of the plasma.
[0023]
Next, a method of correcting data measured by the electric sensor 7 with a polynomial of the temperature T measured by the temperature sensor 9a will be described.
First, a plurality of samples of the average electric conductivity Zc and the temperature T of the plasma measured during the plasma discharge, which are measured in the past, are obtained and plotted on a graph as shown in FIG. An approximate curve such as the following (Equation 5) is obtained by using, for example, a multiple regression analysis on the graph showing the relationship between the average electric conductivity Zc and the temperature T plotted.
[0024]
(Equation 5)
Here, N is an integer of 1 or more, and Zcr is an electric conductivity reference value at the temperature T.
[0025]
At this time, the fitting of the approximated curve may be performed by increasing the value of N and setting the electric conductivity reference value Zcr as a higher-order expression of the temperature T. must not. For example, when the electric conductivity reference value Zcr is a linear expression of the temperature T, the approximate curve is calculated as a straight line as shown in (Expression 13) below.
[0026]
(Equation 13)
Zcr = α 1 T + α 0
Next, a method of correcting data measured from the electric sensor 7 to a value at a certain temperature Td by the temperature Ta measured by the temperature sensor 9a and the polynomial (Equation 13) will be described.
[0027]
First, the outer surface temperature Ta of the apparatus and the average value Zc of the plasma electrical conductivity are measured during the plasma processing. Next, the measured outer surface temperature Ta is substituted into (Equation 13) to calculate the electric conductivity reference value Zcr. Next, a difference between the calculated electric conductivity reference value Zcr and the average value Zc of the measured plasma electric conductivity is calculated, and the difference is calculated by the plasma electric conductivity at (Equation 13) at the outer surface temperature Ta of the apparatus. Is corrected by adding to the average value Zcr of Equation (14).
[0028]
(Equation 14)
Zch = Zcr (Td) + (Zc-Zcr (Ta))
Here, Zch is the average value of the corrected plasma electric conductivity.
[0029]
Then, a comparison process is performed between the control data and the determination data obtained by correcting all the data measured by the electric sensor 7 based on a certain temperature. The management reference value is a value that is obtained in advance by creating an abnormal process state by an experiment or the like and as a boundary value from the normal state.
[0030]
Then, as a result of comparing the determination data with the management reference value, if an abnormal state is detected, the plasma processing is stopped by automatically outputting the alarm as a buzzer or a signal tower, or the plasma processing apparatus is automatically activated. Or stop it.
[0031]
As described above, even when the temperature T of the outer surface 11 of the apparatus changes, the plasma electric conductivity Zcr is corrected based on the temperature T and the data for accurate plasma state determination (the average value Zch of the plasma electric conductivity) is obtained. ) Can be obtained, so that the plasma state can be determined with high accuracy based on the determination data.
[0032]
In the above-described embodiment, the case where the electric conductivity reference value Zcr is a linear expression of the temperature T has been described. However, the present invention is not limited to this. You may. In the above embodiment, the average electric conductivity Zc and the temperature T of the plasma during continuous plasma discharge are obtained as a plurality of samples, and the plotted relation between the average electric conductivity Zc and the temperature T is plotted. , The case where an approximate curve was obtained was described, but the electric conductivity Z and the temperature T of the plasma during the plasma discharge were obtained as a plurality of samples, and the averaged electric conductivity and the temperature T were plotted. It is a matter of course that an approximate curve may be obtained for a graph representing the relationship with.
[0033]
Further, in the above embodiment, the case where the average value Zcr of the plasma electrical conductivity is corrected based on the temperature detected by the temperature sensor 9a to obtain the data for determining the plasma state has been described, but the present invention is not limited to this. Instead, the current I and the voltage V (or the average current value Ic and the average voltage value Vc), which are the electrical characteristics measured by the electric sensor 7, are provided on the outer surface 11 of the device by the data processing device 8 as the data calculation means. Based on the detected temperature T detected by the detected temperature sensor 9a, a polynomial of the first order or higher of the detected temperature T is given by
(Equation 6)
Or [0035]
(Equation 7)
Similarly, the plasma state can be determined with high accuracy by using the corrected current I and the voltage V (or the average current value Ic and the average voltage value Vc) at a predetermined reference temperature. Becomes possible.
[0036]
In the above-described embodiment, the correction is performed based on the temperature detected by one temperature sensor 9a. However, the present invention is not limited to this. It goes without saying that the correction may be made based on the temperature of the surface 11.
[0037]
Further, even when only one of the current I and the voltage V is corrected based on the temperature detected by the temperature sensor 9a, it is possible to determine the plasma state better than when no correction is performed at all.
[0038]
【The invention's effect】
As described above, according to the present invention, a temperature sensor that measures the temperature of the outer surface of the apparatus is provided on the outer surface of the apparatus that is not insulated from the reaction chamber, while being insulated from the reaction chamber. Based on the measured temperature, at least one of the measured value of the electric sensor and the plasma electric conductivity is corrected, and the data for plasma state determination is obtained, whereby the temperature of the outer surface of the device due to the plasma processing is increased. The measurement value can be corrected, the plasma state can be monitored with high accuracy, and a change in the electric sensor measurement value due to a factor other than this factor can be extracted. As a result, even when the temperature of the external surface of the apparatus fluctuates due to the plasma processing, process phenomena such as process abnormalities and process changes can be grasped accurately and with high accuracy, and it is ensured that defective products flow to subsequent processes. And reliability is improved.
[Brief description of the drawings]
FIG. 1 is a diagram showing a plasma processing apparatus according to an embodiment of the present invention.
FIG. 2 is a diagram showing an example of attachment of a temperature measuring means in the plasma processing apparatus.
FIG. 3 is a diagram showing an example of an equivalent circuit of the plasma processing apparatus.
FIG. 4 is a diagram showing a relationship between electric conductivity and an outer surface temperature of the plasma processing apparatus.
FIG. 5 is a view showing a conventional plasma processing apparatus.
[Explanation of symbols]
1 chamber (reaction chamber)
2 upper electrode 3 substrate 4 to be processed 4 lower electrode 5 high frequency power supply 7 electric sensor 8 data processing device (data calculation means and determination means)
9a, 9b, 9c Temperature sensor 11 Outer surface of device (Outer surface of plasma processing device)