JP2004513093A - Compositions and methods for stable injections - Google Patents
Compositions and methods for stable injections Download PDFInfo
- Publication number
- JP2004513093A JP2004513093A JP2002535640A JP2002535640A JP2004513093A JP 2004513093 A JP2004513093 A JP 2004513093A JP 2002535640 A JP2002535640 A JP 2002535640A JP 2002535640 A JP2002535640 A JP 2002535640A JP 2004513093 A JP2004513093 A JP 2004513093A
- Authority
- JP
- Japan
- Prior art keywords
- component
- glass
- composition
- particles
- sugar
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 59
- 238000000034 method Methods 0.000 title claims description 10
- 238000002347 injection Methods 0.000 title description 13
- 239000007924 injection Substances 0.000 title description 13
- 239000011521 glass Substances 0.000 claims abstract description 52
- 235000000346 sugar Nutrition 0.000 claims abstract description 41
- 239000007788 liquid Substances 0.000 claims abstract description 35
- 239000004094 surface-active agent Substances 0.000 claims abstract description 12
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 claims abstract description 8
- 239000010419 fine particle Substances 0.000 claims abstract description 6
- 239000012867 bioactive agent Substances 0.000 claims abstract description 4
- 150000001875 compounds Chemical class 0.000 claims abstract 5
- 239000005365 phosphate glass Substances 0.000 claims abstract 5
- 230000000975 bioactive effect Effects 0.000 claims abstract 3
- 229960005486 vaccine Drugs 0.000 claims description 41
- 229940079593 drug Drugs 0.000 claims description 19
- 239000003814 drug Substances 0.000 claims description 19
- HDTRYLNUVZCQOY-UHFFFAOYSA-N α-D-glucopyranosyl-α-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(O)C(O)C(CO)O1 HDTRYLNUVZCQOY-UHFFFAOYSA-N 0.000 claims description 14
- HDTRYLNUVZCQOY-WSWWMNSNSA-N Trehalose Natural products O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-WSWWMNSNSA-N 0.000 claims description 14
- 239000000126 substance Substances 0.000 claims description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 14
- 229950011087 perflunafene Drugs 0.000 claims description 13
- UWEYRJFJVCLAGH-IJWZVTFUSA-N perfluorodecalin Chemical compound FC1(F)C(F)(F)C(F)(F)C(F)(F)[C@@]2(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)[C@@]21F UWEYRJFJVCLAGH-IJWZVTFUSA-N 0.000 claims description 13
- HDTRYLNUVZCQOY-LIZSDCNHSA-N alpha,alpha-trehalose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-LIZSDCNHSA-N 0.000 claims description 9
- QKENRHXGDUPTEM-UHFFFAOYSA-N perfluorophenanthrene Chemical compound FC1(F)C(F)(F)C(F)(F)C(F)(F)C2(F)C3(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C3(F)C(F)(F)C(F)(F)C21F QKENRHXGDUPTEM-UHFFFAOYSA-N 0.000 claims description 9
- 102000004190 Enzymes Human genes 0.000 claims description 8
- 108090000790 Enzymes Proteins 0.000 claims description 8
- 229930195725 Mannitol Natural products 0.000 claims description 8
- 230000002209 hydrophobic effect Effects 0.000 claims description 7
- 239000000594 mannitol Substances 0.000 claims description 7
- 235000010355 mannitol Nutrition 0.000 claims description 7
- 229960002401 calcium lactate Drugs 0.000 claims description 6
- -1 glucopyranosyl sorbitol Chemical compound 0.000 claims description 6
- 239000000546 pharmaceutical excipient Substances 0.000 claims description 6
- MKJXYGKVIBWPFZ-UHFFFAOYSA-L calcium lactate Chemical compound [Ca+2].CC(O)C([O-])=O.CC(O)C([O-])=O MKJXYGKVIBWPFZ-UHFFFAOYSA-L 0.000 claims description 4
- 239000001527 calcium lactate Substances 0.000 claims description 4
- 235000011086 calcium lactate Nutrition 0.000 claims description 4
- HWDSLHMSWAHPBA-UHFFFAOYSA-N [3,4,5-triacetyloxy-6-[3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxyoxan-2-yl]methyl acetate Chemical compound CC(=O)OC1C(OC(C)=O)C(OC(C)=O)C(COC(=O)C)OC1OC1C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C(COC(C)=O)O1 HWDSLHMSWAHPBA-UHFFFAOYSA-N 0.000 claims description 3
- 230000015572 biosynthetic process Effects 0.000 claims description 3
- 229960004624 perflexane Drugs 0.000 claims description 3
- ZJIJAJXFLBMLCK-UHFFFAOYSA-N perfluorohexane Chemical compound FC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F ZJIJAJXFLBMLCK-UHFFFAOYSA-N 0.000 claims description 3
- SERLAGPUMNYUCK-DCUALPFSSA-N 1-O-alpha-D-glucopyranosyl-D-mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO[C@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O SERLAGPUMNYUCK-DCUALPFSSA-N 0.000 claims description 2
- ZIJKGAXBCRWEOL-SAXBRCJISA-N Sucrose octaacetate Chemical compound CC(=O)O[C@H]1[C@H](OC(C)=O)[C@@H](COC(=O)C)O[C@@]1(COC(C)=O)O[C@@H]1[C@H](OC(C)=O)[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1 ZIJKGAXBCRWEOL-SAXBRCJISA-N 0.000 claims description 2
- 239000001344 [(2S,3S,4R,5R)-4-acetyloxy-2,5-bis(acetyloxymethyl)-2-[(2R,3R,4S,5R,6R)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxyoxolan-3-yl] acetate Substances 0.000 claims description 2
- 239000003795 chemical substances by application Substances 0.000 claims description 2
- 239000000832 lactitol Substances 0.000 claims description 2
- VQHSOMBJVWLPSR-JVCRWLNRSA-N lactitol Chemical compound OC[C@H](O)[C@@H](O)[C@@H]([C@H](O)CO)O[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O VQHSOMBJVWLPSR-JVCRWLNRSA-N 0.000 claims description 2
- 235000010448 lactitol Nutrition 0.000 claims description 2
- 229960003451 lactitol Drugs 0.000 claims description 2
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 2
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 2
- 102000004169 proteins and genes Human genes 0.000 claims description 2
- 108090000623 proteins and genes Proteins 0.000 claims description 2
- 229940013883 sucrose octaacetate Drugs 0.000 claims description 2
- 239000011859 microparticle Substances 0.000 claims 5
- 150000007942 carboxylates Chemical class 0.000 claims 4
- 239000002184 metal Substances 0.000 claims 3
- 229910052751 metal Inorganic materials 0.000 claims 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 claims 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 claims 1
- 239000004136 Calcium sodium polyphosphate Substances 0.000 claims 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 claims 1
- 229920002307 Dextran Polymers 0.000 claims 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims 1
- MUPFEKGTMRGPLJ-RMMQSMQOSA-N Raffinose Natural products O(C[C@H]1[C@@H](O)[C@H](O)[C@@H](O)[C@@H](O[C@@]2(CO)[C@H](O)[C@@H](O)[C@@H](CO)O2)O1)[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 MUPFEKGTMRGPLJ-RMMQSMQOSA-N 0.000 claims 1
- UQZIYBXSHAGNOE-USOSMYMVSA-N Stachyose Natural products O(C[C@H]1[C@@H](O)[C@H](O)[C@H](O)[C@@H](O[C@@]2(CO)[C@H](O)[C@@H](O)[C@@H](CO)O2)O1)[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@H](CO[C@@H]2[C@@H](O)[C@@H](O)[C@@H](O)[C@H](CO)O2)O1 UQZIYBXSHAGNOE-USOSMYMVSA-N 0.000 claims 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 claims 1
- 229930006000 Sucrose Natural products 0.000 claims 1
- MUPFEKGTMRGPLJ-UHFFFAOYSA-N UNPD196149 Natural products OC1C(O)C(CO)OC1(CO)OC1C(O)C(O)C(O)C(COC2C(C(O)C(O)C(CO)O2)O)O1 MUPFEKGTMRGPLJ-UHFFFAOYSA-N 0.000 claims 1
- 125000003275 alpha amino acid group Chemical group 0.000 claims 1
- 235000019348 calcium sodium polyphosphate Nutrition 0.000 claims 1
- 239000003153 chemical reaction reagent Substances 0.000 claims 1
- 229940088598 enzyme Drugs 0.000 claims 1
- 229910017053 inorganic salt Inorganic materials 0.000 claims 1
- 239000007791 liquid phase Substances 0.000 claims 1
- 229910001463 metal phosphate Inorganic materials 0.000 claims 1
- 150000002772 monosaccharides Chemical class 0.000 claims 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 claims 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 claims 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 claims 1
- MUPFEKGTMRGPLJ-ZQSKZDJDSA-N raffinose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO[C@@H]2[C@@H]([C@@H](O)[C@@H](O)[C@@H](CO)O2)O)O1 MUPFEKGTMRGPLJ-ZQSKZDJDSA-N 0.000 claims 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 claims 1
- 235000012239 silicon dioxide Nutrition 0.000 claims 1
- 239000000600 sorbitol Substances 0.000 claims 1
- UQZIYBXSHAGNOE-XNSRJBNMSA-N stachyose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO[C@@H]2[C@@H]([C@@H](O)[C@@H](O)[C@@H](CO[C@@H]3[C@@H]([C@@H](O)[C@@H](O)[C@@H](CO)O3)O)O2)O)O1 UQZIYBXSHAGNOE-XNSRJBNMSA-N 0.000 claims 1
- 239000005720 sucrose Substances 0.000 claims 1
- 238000007496 glass forming Methods 0.000 abstract 1
- 239000002245 particle Substances 0.000 description 85
- 239000000725 suspension Substances 0.000 description 48
- 239000000843 powder Substances 0.000 description 37
- 238000009472 formulation Methods 0.000 description 31
- 239000003921 oil Substances 0.000 description 21
- 235000019198 oils Nutrition 0.000 description 18
- 239000000243 solution Substances 0.000 description 16
- 239000012071 phase Substances 0.000 description 15
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 15
- 239000001506 calcium phosphate Substances 0.000 description 14
- 229910000389 calcium phosphate Inorganic materials 0.000 description 14
- 235000011010 calcium phosphates Nutrition 0.000 description 14
- 238000001035 drying Methods 0.000 description 11
- 239000007921 spray Substances 0.000 description 10
- 239000013543 active substance Substances 0.000 description 9
- 230000000694 effects Effects 0.000 description 9
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 8
- 239000002671 adjuvant Substances 0.000 description 8
- 238000002649 immunization Methods 0.000 description 8
- 230000003053 immunization Effects 0.000 description 8
- 239000000047 product Substances 0.000 description 8
- 239000007787 solid Substances 0.000 description 8
- 238000003860 storage Methods 0.000 description 8
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 7
- 239000012669 liquid formulation Substances 0.000 description 7
- 239000004005 microsphere Substances 0.000 description 7
- 239000003981 vehicle Substances 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 6
- 239000000872 buffer Substances 0.000 description 6
- 238000001816 cooling Methods 0.000 description 6
- 230000004044 response Effects 0.000 description 6
- 239000008346 aqueous phase Substances 0.000 description 5
- 239000000084 colloidal system Substances 0.000 description 5
- 238000001694 spray drying Methods 0.000 description 5
- 230000006641 stabilisation Effects 0.000 description 5
- 238000011105 stabilization Methods 0.000 description 5
- 150000008163 sugars Chemical class 0.000 description 5
- 229960000814 tetanus toxoid Drugs 0.000 description 5
- 241000700198 Cavia Species 0.000 description 4
- 108010041986 DNA Vaccines Proteins 0.000 description 4
- 229940021995 DNA vaccine Drugs 0.000 description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- 239000012190 activator Substances 0.000 description 4
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 4
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 4
- 238000012377 drug delivery Methods 0.000 description 4
- 239000000839 emulsion Substances 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000004108 freeze drying Methods 0.000 description 4
- 238000000338 in vitro Methods 0.000 description 4
- 238000001727 in vivo Methods 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- 231100000252 nontoxic Toxicity 0.000 description 4
- 230000003000 nontoxic effect Effects 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- XZKIHKMTEMTJQX-UHFFFAOYSA-N 4-Nitrophenyl Phosphate Chemical compound OP(O)(=O)OC1=CC=C([N+]([O-])=O)C=C1 XZKIHKMTEMTJQX-UHFFFAOYSA-N 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- 108010010803 Gelatin Proteins 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 3
- 241000700159 Rattus Species 0.000 description 3
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 3
- 230000002776 aggregation Effects 0.000 description 3
- 230000005875 antibody response Effects 0.000 description 3
- 239000012062 aqueous buffer Substances 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 239000003599 detergent Substances 0.000 description 3
- 238000004090 dissolution Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000008273 gelatin Substances 0.000 description 3
- 229920000159 gelatin Polymers 0.000 description 3
- 235000019322 gelatine Nutrition 0.000 description 3
- 235000011852 gelatine desserts Nutrition 0.000 description 3
- 230000005847 immunogenicity Effects 0.000 description 3
- 239000002198 insoluble material Substances 0.000 description 3
- KDXKERNSBIXSRK-UHFFFAOYSA-N lysine Chemical compound NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 3
- 210000003205 muscle Anatomy 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 150000002894 organic compounds Chemical class 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000004062 sedimentation Methods 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M sodium chloride Inorganic materials [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 3
- 229910052938 sodium sulfate Inorganic materials 0.000 description 3
- 235000011152 sodium sulphate Nutrition 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- 238000005507 spraying Methods 0.000 description 3
- 230000037317 transdermal delivery Effects 0.000 description 3
- BTJIUGUIPKRLHP-UHFFFAOYSA-N 4-nitrophenol Chemical compound OC1=CC=C([N+]([O-])=O)C=C1 BTJIUGUIPKRLHP-UHFFFAOYSA-N 0.000 description 2
- ZHZPKMZKYBQGKG-UHFFFAOYSA-N 6-methyl-2,4,6-tris(trifluoromethyl)oxane-2,4-diol Chemical compound FC(F)(F)C1(C)CC(O)(C(F)(F)F)CC(O)(C(F)(F)F)O1 ZHZPKMZKYBQGKG-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 238000002965 ELISA Methods 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- 239000011543 agarose gel Substances 0.000 description 2
- 238000005054 agglomeration Methods 0.000 description 2
- 239000008135 aqueous vehicle Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 238000013270 controlled release Methods 0.000 description 2
- 238000003795 desorption Methods 0.000 description 2
- 238000006911 enzymatic reaction Methods 0.000 description 2
- 238000007667 floating Methods 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 208000002672 hepatitis B Diseases 0.000 description 2
- 239000004434 industrial solvent Substances 0.000 description 2
- 239000007972 injectable composition Substances 0.000 description 2
- 229940090046 jet injector Drugs 0.000 description 2
- 210000004072 lung Anatomy 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000003607 modifier Substances 0.000 description 2
- 239000000615 nonconductor Substances 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- WYWIFABBXFUGLM-UHFFFAOYSA-N oxymetazoline Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C)=C1CC1=NCCN1 WYWIFABBXFUGLM-UHFFFAOYSA-N 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 230000004083 survival effect Effects 0.000 description 2
- 239000006188 syrup Substances 0.000 description 2
- 235000020357 syrup Nutrition 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 239000004408 titanium dioxide Substances 0.000 description 2
- 238000002255 vaccination Methods 0.000 description 2
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 1
- 206010001052 Acute respiratory distress syndrome Diseases 0.000 description 1
- 229920000936 Agarose Polymers 0.000 description 1
- 244000105624 Arachis hypogaea Species 0.000 description 1
- 230000005653 Brownian motion process Effects 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 208000034423 Delivery Diseases 0.000 description 1
- 238000009007 Diagnostic Kit Methods 0.000 description 1
- LVGKNOAMLMIIKO-UHFFFAOYSA-N Elaidinsaeure-aethylester Natural products CCCCCCCCC=CCCCCCCCC(=O)OCC LVGKNOAMLMIIKO-UHFFFAOYSA-N 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 102000001554 Hemoglobins Human genes 0.000 description 1
- 108010054147 Hemoglobins Proteins 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- 201000005505 Measles Diseases 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 206010036590 Premature baby Diseases 0.000 description 1
- 208000013616 Respiratory Distress Syndrome Diseases 0.000 description 1
- 206010038848 Retinal detachment Diseases 0.000 description 1
- 244000000231 Sesamum indicum Species 0.000 description 1
- 206010040880 Skin irritation Diseases 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 208000003152 Yellow Fever Diseases 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 125000003172 aldehyde group Chemical group 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 229920001222 biopolymer Polymers 0.000 description 1
- 239000001045 blue dye Substances 0.000 description 1
- 238000005537 brownian motion Methods 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 235000008504 concentrate Nutrition 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 239000002872 contrast media Substances 0.000 description 1
- 239000000599 controlled substance Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 229940124447 delivery agent Drugs 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000002059 diagnostic imaging Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- FBNOWTWLVCWGCZ-UHFFFAOYSA-L disodium 6-[(5-chloro-2-hydroxy-4-sulfonatophenyl)diazenyl]-5-hydroxynaphthalene-1-sulfonate Chemical compound [Na+].[Na+].Oc1cc(c(Cl)cc1N=Nc1ccc2c(cccc2c1O)S([O-])(=O)=O)S([O-])(=O)=O FBNOWTWLVCWGCZ-UHFFFAOYSA-L 0.000 description 1
- 238000009837 dry grinding Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 239000007911 effervescent powder Substances 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 210000002615 epidermis Anatomy 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- LVGKNOAMLMIIKO-QXMHVHEDSA-N ethyl oleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC LVGKNOAMLMIIKO-QXMHVHEDSA-N 0.000 description 1
- 229940093471 ethyl oleate Drugs 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 235000019634 flavors Nutrition 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000004334 fluoridation Methods 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000008241 heterogeneous mixture Substances 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 230000036512 infertility Effects 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 238000011081 inoculation Methods 0.000 description 1
- 210000000936 intestine Anatomy 0.000 description 1
- 230000005865 ionizing radiation Effects 0.000 description 1
- 230000007794 irritation Effects 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L magnesium chloride Substances [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 238000002595 magnetic resonance imaging Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 210000004400 mucous membrane Anatomy 0.000 description 1
- 229940031348 multivalent vaccine Drugs 0.000 description 1
- 239000000133 nasal decongestant Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 231100000957 no side effect Toxicity 0.000 description 1
- 231100000344 non-irritating Toxicity 0.000 description 1
- 239000002687 nonaqueous vehicle Substances 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229960001528 oxymetazoline Drugs 0.000 description 1
- 239000011236 particulate material Substances 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- WTWWXOGTJWMJHI-UHFFFAOYSA-N perflubron Chemical compound FC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)Br WTWWXOGTJWMJHI-UHFFFAOYSA-N 0.000 description 1
- 229960001217 perflubron Drugs 0.000 description 1
- 230000010412 perfusion Effects 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 238000006303 photolysis reaction Methods 0.000 description 1
- 230000015843 photosynthesis, light reaction Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 235000011151 potassium sulphates Nutrition 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 238000011027 product recovery Methods 0.000 description 1
- 239000003380 propellant Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 235000018102 proteins Nutrition 0.000 description 1
- KWGRBVOPPLSCSI-WCBMZHEXSA-N pseudoephedrine Chemical compound CN[C@@H](C)[C@@H](O)C1=CC=CC=C1 KWGRBVOPPLSCSI-WCBMZHEXSA-N 0.000 description 1
- 230000002685 pulmonary effect Effects 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 239000008159 sesame oil Substances 0.000 description 1
- 235000011803 sesame oil Nutrition 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 210000003491 skin Anatomy 0.000 description 1
- 230000036556 skin irritation Effects 0.000 description 1
- 231100000475 skin irritation Toxicity 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 235000015424 sodium Nutrition 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000007614 solvation Methods 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 238000010254 subcutaneous injection Methods 0.000 description 1
- 239000007929 subcutaneous injection Substances 0.000 description 1
- 229940089453 sudafed Drugs 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 239000003440 toxic substance Substances 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 230000009677 vaginal delivery Effects 0.000 description 1
- 238000004017 vitrification Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000001238 wet grinding Methods 0.000 description 1
- 239000011592 zinc chloride Substances 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0019—Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/10—Dispersions; Emulsions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/14—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
- A61K9/16—Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
- A61K9/1605—Excipients; Inactive ingredients
- A61K9/1617—Organic compounds, e.g. phospholipids, fats
- A61K9/1623—Sugars or sugar alcohols, e.g. lactose; Derivatives thereof; Homeopathic globules
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Epidemiology (AREA)
- Medicinal Chemistry (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Public Health (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Dispersion Chemistry (AREA)
- Dermatology (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Medicinal Preparation (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Abstract
第一の成分および第二の成分を含んでなる、安定な生物活性化合物を対象者へデリバリーするための組成物であって、第一の成分が、生物活性剤を含有した糖ガラスまたはホスフェートガラスの微粒子からなる。糖ガラスまたはホスフェートガラスは場合によりガラス形成促進剤化合物を含有し、第二の成分が、第一の成分が不溶性でかつ分散される少くとも1種の生物適合性液体ペルフルオロカーボンからなる。液体ペルフルオロカーボンは場合により界面活性剤を含有している。A composition for delivering a stable bioactive compound to a subject, comprising a first component and a second component, wherein the first component is a sugar glass or phosphate glass containing a bioactive agent. Of fine particles. The sugar glass or phosphate glass optionally contains a glass-forming accelerator compound, and the second component comprises at least one biocompatible liquid perfluorocarbon in which the first component is insoluble and dispersed. The liquid perfluorocarbon optionally contains a surfactant.
Description
【0001】
【発明の背景】
注射用溶液中のワクチンまたは薬物は本来不安定であり、冷却を要する。医薬品業界は薬物を凍結乾燥することにより不安定問題に昔から取り組んできた。乾燥薬物の不正確な再調製で、誤った用量または汚染溶液をもたらすことがあるため、これは高価、不便、かつ本来的に危険である。確固とした、安定で、直ちに注射可能な液体処方物を開発する多くの試みが、過去100年にわたり行われてきたが、不成功に終わった。本来強くて小さな分子の薬物のみが、有用な貯蔵寿命で、水溶液中に残存しうる。
【0002】
この問題はワクチン業界で特に重大である。2005年度までに、36億回分のワクチンが世界中で投与されねばならないと見積もられている。これは常に冷却を要する標準ワクチンフォーマットを用いたのでは不可能である、と世界保健機関(WHO)により言われた(”Revolutionizing Immunizations”(革命的免疫法)Jodar L.,Aguado T.,Lloyd J.and Lambert P−H.,Genetic Engineering News,Feb 15 1998)。開発途上中の世界でワクチン工場から地方の町へと延びる冷却機の“コールド・チェーン(低温流通システム)”が現在用いられている。コールド・チェーンのコストは、免疫キャンペーンを行っているワクチン業界および非政府保健機関にとり莫大である。コールド・チェーンの維持コストだけで、毎年2億USドルを超える、とWHOは見積もっている。加えて、免疫キャンペーンはコールド・チェーンの末端リンク近くに住む者に届くだけかもしれない。
【0003】
ワクチン接種キャンペーンでは、所定の用量が正確に注射されて、分解の徴候を示さないよう、医療スタッフに要請している。麻疹、黄熱およびBCGのような一部のワクチンを再調製する必要性も、当業界では重大な関心事である。これは正しい投与量を保証するよう正確に行われねばならず、たびたび臨床的惨事を招いてきた汚染源にもなりかねない。加えて、所定期間中に2回以上ワクチンを接種することが多くの場合に必要であり、特定の混合物または“多価”ワクチンが一部成分の化学的不適合のせいで利用できなければ、これは複数回の注射を要することがある。WHOは、冷却の必要性がなく、再調製を要しない、次世代の安定ワクチンの研究を奨励することにより、これらの問題を重要視している(”Pre−Filled Monodose Injection Devices:A safety standard for new vaccines,or a revolution in the delivery of immunizations?”(前充填単用量分注射器具:新規ワクチンの安全標準または免疫デリバリーの革命)Lloyd J.and Aguado M.T.WHO publication,May 1998;”General policy issues:injectable solid vaccines:a role in future immunization?”(一般方針問題:注射用固形ワクチン:将来の免疫における役割)Aguado M.T.,Jodar L.,Lloyd J.,Lambert P.H.WHO publication No A59781)。
【0004】
この問題の理想的解決策は、完全に安定で直ちに注射可能な処方物であろう。このような安定ワクチンは注射器具自体に個別用量として入れられるか、または大規模免疫キャンペーンのために、多量に輸送されて、無針ジェットインジェクターにより投与される。ガスジェット注入による乾燥固形物の経皮デリバリーが記載されており(Sarphie DF,Burkoth TL.,Method for providing dense particle compositions for use in transdermal particle delivery(経皮粒子デリバリー用の高密度粒子組成物の調製方法).PCT公開WO9748485(1996))、乾燥DNAワクチンでの経皮接種が非常に有効なようである(“PowderJect’s Hepatitis B DNA Vaccine First To Successfully Elicit Protective Immune Response In Humans”(ヒトで防御免疫応答をうまく誘導する、初めてのPowderJectのB型肝炎DNAワクチン)http://www.powderject.com/pressreleases.htm(1998))。
【0005】
これらの粉末インジェクターを稼働するために用いられるヘリウムガスの極超音速衝撃波はパワーが限られており、その分量の微粒子を筋肉内にデリバリーできない。これは、低質量粒子が深く滲入する上で適度な勢いに到達しえないからである。コロイド金粒子に被覆されたDNAワクチンの皮内デリバリーが良好な免疫原性のためには向いているが、不溶性アルミニウムまたはカルシウム塩でアジュバントされた一般ワクチンは許容しえない皮膚刺激を生じる。それらは筋肉内に投与されねばならない。必要なものは、現行の針および注射器技術により達しうる場合に似た、皮内から筋肉深部内までのある範囲のデリバリー深さに達しうる、フレキシブルなシステムである。大規模ワクチン接種キャンペーンでは、これは約3000psi(約210kg/cm2)の圧力を用いて、細い(〜0.15mm径)液体流を“リキッド・ネール”(liquid nail)へ加速しうる液体ジェットインジェクターの開発により解決された。この器具は、表皮に微小な穴をあけることにより、皮膚から深部皮下または筋肉組織中へ無痛でその分量をデリバリーする。液体流へ伝えられる高い勢いのおかげで、深く滲入しうる。現在までのところ、注入される薬物およびワクチンは水ベースであったが、前記の不安定問題のせいで、この技術を活用しうる安定水性製品の範囲は非常に限られている。
【0006】
広範囲の生物活性分子は糖ガラス中で乾燥させて安定化されることが、現在認められている(Roser B.”Protection of proteins and the like”(タンパク質などの保護)UK特許2,187,191;Roser B and Colaco C.”Stabilization of biological macromolecular substances and other organic compounds”(生体高分子物質および他の有機化合物の安定化)PCT公開WO91/18091;Roser B and Sen S.”New stabilizing glasses”(新規安定化ガラス)PCT特許出願9805699.7,1998)。これらの乾燥安定化活性剤は、高温および電離放射線のような敵対的環境により影響をうけない。
【0007】
糖により分子の著しい安定化を生じるメカニズムはガラス転移である。活性分子を含有した糖溶液が乾燥されると、それは糖の溶解限界に達したときに結晶化するか、または過飽和シロップになる。結晶化に抵抗する糖の能力は、良好な安定剤の重要な性質である。トレハロースはこの点で優れているが(Green JL.& Angel CA.,Phase relations and vitrification in saccharide water solutions and the trehalose anomaly(糖水溶液中における相関係およびガラス化とトレハロース異常).J.Phys.Chem.93,2880−2882(1989))、唯一ではない。更に乾燥させるとシロップを次第に固化させ、これが低い残留水分でガラスに変わる。いつのまにか、活性分子が水中の溶液から乾燥糖ガラス中の固溶体へと変化する。化学拡散はガラス中ごくわずかで、そのため化学反応は事実上止む。変性は化学変化であるため、それはガラス中で生じえず、分子は安定化している。この形態のときは、もし他の一つの条件が合うならば、分子は未変化のままでいられる。これは良好な安定剤の第二の重要な性質である、即ち、それは化学的に不活性かつ非反応性である、ということである。多くのガラスが失敗したが、その理由はそれらが貯蔵時に生成物と反応するからである。明らかな問題は還元糖で生じ、これは良好な物理的ガラスを形成しても、それらのアルデヒド基は典型的メイラード反応で生成物のアミノ基を攻撃する。これが、多くの凍結乾燥薬剤が冷蔵保管を要する主な理由である。非反応性の糖は、全く冷却を要しない安定な製品を与える。
【0008】
糖ガラス中で固定された生体分子は、それら自体および糖の双方が不溶性である非水性工業溶媒中でも安定である(Cleland JL.and Jones AJS.”Excipient stabilization of polypeptides treated with organic solvents”(有機溶媒で処理されたポリペプチドの賦形剤安定化)US特許5,589,167(1994))。糖ガラスは非溶媒液中で不透過性バリアとして作用するため、ガラス中で固溶体の生体分子は溶媒の化学反応および環境の双方から防御される。液体自体が安定であれば、懸濁ガラス粒子中の感受性生成物は安定な2相液体処方物を形成する。Cleland and Jones(1994)により記載された種類の工業溶媒は、取扱いに際して有用性が限られている。生体適合性非水性液体に代えると、最も不安定な薬物、ワクチンおよび診断薬でも、安定な液体処方物として処方しうるであろう。
【0009】
第一世代の安定非水性液体は薬物またはワクチンデリバリー用に考えられた(B.J.Roser and S.D.Sen ”Stable particle in liquid formulations”(液体処方物中の安定粒子))。PCT特許出願GB98/00817は、ゴマ、落花生もしくは大豆油のような注射用油またはオレイン酸エチルのような単純エステルに懸濁された、活性剤を含有する安定化ガラスの粉末の処方物について記載していた。懸濁された糖ガラス粒子は極めて親水性であり、一方油は疎水性である。分離しやすい親水および疎水相の強い傾向のせいで、糖ガラス粒子は一緒に凝集しやすかった。このような“油中水型”懸濁物を安定化するために、連続油相に溶解された油溶性界面活性剤の使用が多くの場合に要求された。
【0010】
これらの低HLB(親水性/親油性バランス)界面活性剤は親水性粒子と油との界面に集中して、連続油相とより適合する両親媒層でそれらを被覆する。各糖ガラス粒子は乾燥油によりその近隣から離されるため、化学的相互作用は粒子間で生じない。したがって、同一の油製剤中に、潜在的に相互作用しうる異なる分子を各々が含有しても、それらを相互作用させることなく、いくつかの異なる粒子群を有することが可能である。複合的な多価ワクチンはこうして製造しうる。
【0011】
しかしながら、このアプローチは、万能の解決策であることを妨げる、ある欠点を有することがわかった。これらには、さほど高密度でない油状ビヒクル中で約1.5g/cm3の典型的密度を有する、懸濁粒子の不可避的沈降がある。その特許ではこの問題を認識しており、ブラウン運動のような熱力学力によりそれらを懸濁させておくために、直径で1μm以下に粒径を小さくすることにより、それを解決しようとしている。直径で全粒子を1μm以下にする要件は、提案された処方物の欠点である。このように小さな粒子粉末を得ることは、決して容易な作業ではない。改善されたスプレードライヤーデザインであればこれを達成しうるが、小さな粒径はサイクロンタイプコレクターの使用を妨げて、製品回収用フィルターのシステムを要する。
【0012】
サブミクロンサイズまで粒子を小さくすることも、Microfluidizer(Constant Systems Inc.)のような高圧微均質化装置で粒子が油中に懸濁された後であれば、理論的に達成しうる。これは余計なステップをそのプロセスに加え、球形のせいで非常に高い機械強度を有する噴霧乾燥糖ガラス微小球を砕く際に、それがさほど効率的でないことを我々は知った。これは装置に何回も通すことを強いる。それでも、これは多数の大きな粒子を未接触のままにしがちで、そのためそれらを除去するために後で濾過または沈降ステップを要する。しかも、通常の油状のビヒクル中で懸濁物が高粘度であることが、シリンジ中にそれらを引き込むことを難しくさせ、また、それらをゆっくり注入することを要する。それは、液体ジェットインジェクターシステムでみられるような、細いノズル中の速い流動を妨げる。
【0013】
油に懸濁された粒子は、特に低HLB界面活性剤を含有するとき、後で水性環境中へ抽出することを難しくさせることもわかったが、その理由は、意外にも、水性緩衝液で洗浄後にも、それらは強く結合した油の防水コートをそれらの周りに維持するからである。したがって、粒子が油相を出て水相へ入るために、それらは非常に激しい振盪および混合またはより水溶性の洗剤(このときは高HLB)の添加を要する。粒径が小さくなるほど、これは大きな問題になる。最終結果は、2つにはっきり分かれた相というよりも、むしろ不明瞭に混じり合ったエマルジョンであることが多い。体内で、この問題は、要求される迅速で予想しうるデリバリーよりも、むしろ活性剤の遅くて予測しえない放出を生じうる。水性環境中へのインビトロ抽出で、溶解した活性剤を含有する水相の上に油が浮かぶようになる。これは診断キットまたは自動アッセイシステムのようなあるインビトロ用途には許容しえない。最後に、臨床で用いうる天然FDA承認油のほとんどは光分解、酸化または他の形のダメージをうけやすく、暗所に比較的低温で慎重な貯蔵を要する。加えて、それらは完全には化学的に不活性でないため、それらは懸濁粒子とゆっくり反応しうる。
【0014】
Alliance Pharmaceutical Companyは、注目すべき新規な非水性ペルフルオロカーボン液体中での水溶性物質の粉末の使用を検討した(Kirkland WD,Composition and method for delivering active agents(活性剤デリバリー用の組成物および方法).US特許5,770,181(1995))。この特許は腸の診断画像化用の経口コントラスト増強剤として、PFCの機能に主に関する。そこで例示された水溶性粉末は、PFCの口当りの改善または胃腸管におけるコントラスト効果の向上のために加えられた。しかしながら、具体例は示していないが、これらの液体は薬物デリバリー向けにも用いうることを、Kirklandは認識していた。特に、貯蔵安定性の市販粉末のみがその特許では例示されている。我々は、今や、糖ガラス微小球で安定化された脆性活性剤が、経口および非経口双方のデリバリー用の極めて安定な2相PFC液体処方物を生じるように工学処理しうることを発見した。これは、いかなる類の冷却も要しない直ちに注射可能な処方物としての非経口薬物およびワクチンのデリバリーへも、Kirkland特許の有用性を広く拡大する。PFCの低い粘度、高い密度および低い表面張力が、これらの安定な懸濁物が液体ジェットインジェクターのような自動器具によりデリバリーされることを意味する、という発見は特に有益である。これは、この技術に2つの重要な追加分野、即ち、大規模免疫キャンペーンおよび自己注射を切り開いている。
【0015】
ペルフルオロカーボン(PFC)は、ある有機化合物の完全フッ素化により製造される、新しい、極めて安定な液体である。それらは油および水の双方または極性もしくは無極性いずれの他の溶媒とも事実上本質的に非混和性であるため(他のPFCを除き)、それらは親水性または親油性のいずれにも分類しえない(Reviewed in Krafft MP & Riess JG.”Highly fluorinated amphiphiles and colloidal systems,and their applications in the biomedical field.A contribution.”(高度フッ素化両親媒性化合物およびコロイド系、および生物医学分野におけるそれらの用途.寄与)Biochimie,80,489−514,1998)。更に、それらは油との疎水性相互作用にも、水または親水性物質との親水性相互作用にも関与しない。結果的に、親水性粒子が油中で一緒に強く凝集したときにみられる大きな相分離は、PFCで生じにくい。それらは安定な懸濁物を形成する上で界面活性剤を必要としないが、フルオロヒドロカーボン(FHC)界面活性剤が利用でき(Krafft & Riess,1998)、PFC液体中でごくわずかな濃度で活性である。これらの非常に低い濃度で、FHC界面活性剤は、それらの不在下で凝集する傾向を示すある粒子の完全な単分散系を保証しうる。PFC液体自体は化学的に完全に非反応性であり、低分子量タイプでは体内に蓄積せず、揮発性であり、いずれ息で吐き出される。
【0016】
それらは気体用の優れた溶媒であるため、PFCは非常に特別な臨床用途で既に大量に用いられてきた。二酸化炭素を溶解酸素と交換しうるそれらの能力は、ヘモグロビンの場合よりも良い。これは1968年にR.P.Geyerにより“無血ラット”で最初に証明された(Geyer RP,Monroe RG & Taylor K.”Survival of rats totally perfused with perfluorocarbon−detergent preparation”(ペルフルオロカーボン‐界面活性剤の製剤で全体的に灌流されたラットの生存)Organ Perfusion and Preservation,J.V.Norman,J Folkman,L.E.Hardison,L.E.Ridolf and F.J.Veith eds.Appleton−Century−Crofts,New York,85−95(1968))。ペルフルオロオクチルブロミドは、水中PFC型エマルジョンの形態で、商品名OxygentTM(Alliance Pharmaceutical Corp.)で、ある外科手術向け輸血の代用品として、現在ヒトで評価されている。PFCは、未熟児の呼吸障害症候群の治療にも、液体として肺へ吸入により用いられてきた。
【0017】
それらの高密度性も、化学的不活性と共に、価値あることがわかった。商品名VitreonTM(Vitrophage Inc.)のペルフルオロフェナントレンが、手術に際して目の被膜の崩壊を防ぎ、剥離網膜の修復を行うために用いられる。PFCは磁気共鳴画像化(MRI)用の造影剤としても用いられ、この目的から、それらの画像性を改善するか、またはそれらを嗜好上より好ましくするために、親水性粉末がそれらに懸濁しうることが報告された(Kirkland W.D.”Composition and method for delivering active agents”US特許5,770,181(1998))。この特許は、粒状水溶性薬物デリバリー用の連続相としてのPFCの使用も示唆している。室温で乾燥粉末として安定な非経口薬物の数は限られているため、この特許は大部分の注射可能薬物への適用可能性を有していない。しかしながら、Roser and Garcia de Castro(1998)で記載されているような糖ガラスの微小球粉末における薬物安定性と注射可能PFCとの組合せで、事実上すべての非経口薬物およびワクチンへこの技術を適用しうる。
【0018】
【発明の要旨】
本発明は、薬物デリバリー製剤として、懸濁状態で不連続ガラス相を含有する連続相としてPFCを含んでなる、2相系を用いている。密度約1.5〜2.5g/cm3の最終混合物を得るために異なるPFCを混合しうる、という大きな利点をペルフルオロカーボンベース製剤は発揮する。こうして、粒子が浮かばずまたは容器の底に沈まずに、安定懸濁物の形で留まるように、懸濁流体と一致する密度で粒子を処方しうる。したがって、粒子は沈降を防ぐために油性製剤で必要とされるようなサブミクロンサイズでなくてもよく、サイズは大いに変わりうる。究極の粒径は製剤の目的のみにより決められる。針注射またはジェット注入向けの製剤は、0.1〜100マイクロメーター、好ましくは1〜10マイクロメーター範囲の粒子を含有する。これは粒子の製造法をかなり簡略化して、粉砕による極めて小さな粒径の必要性を回避する。粒子は、従来の噴霧乾燥または凍結乾燥、次いで単純な乾式または湿式粉砕により作製してよい。懸濁物中で高固形分が要されるとき、粒子は形状が球形であることが望ましい。不規則形状粒子は一緒に“結合”して易流動性を妨げるかなり大きな傾向を有しているが、球形粒子は固有の“滑らかさ”を有しているため、20%をかなり超える固形分に達することができる。このような粒子は噴霧乾燥、噴霧凍結乾燥またはエマルジョン固化により容易に作製される。
【0019】
懸濁粉末は、適宜に処方されるならば、界面活性剤を必要とせず、水と共に振盪されたとき、ほぼ即座に糖ガラス粒子が溶解する安定な懸濁物を形成する。小さな凝集が問題としてみられるならば、Krafft and Riess(1998)で記載されているような少量のFHC界面活性剤が、安定粉末の混合前または後にPFC液へ有利に加えうる。PFCのように、これらのFHCは本来極めて不活性で、非反応性である。そのため粒子の溶媒和はなく、懸濁粒子とPFC相との化学反応はない。糖ガラス粒子およびPFC液体の双方が環境上安定であるため、光、高温、酸素などによる分解はない。それらは無視しうるほどのインビボまたはインビトロ毒性を有するだけであり、血液交換目的で多量に動物およびヒトの双方へ注入することで、それらは正式機関により大規模に試験され、承認された。高分子量のPFCは肝臓に蓄積することが報告されたが、この出願で用いられる低分子量の例は呼気で体内から結局は排出される。
【0020】
それらの低い表面張力およびそれらの低い粘度のおかげで、皮下針、自動システムまたは液体ジェットインジェクターでみられる細い孔から、非常に容易にそれらを流動させうる。PFCは優れた電気絶縁物であり、そのため同様の小さな表面静電荷を有する粒子の単分散懸濁物を得ることが容易である。それらは乾燥した、完全に非吸湿性の液体である。これらの非常に低い水分のおかげで懸濁粉末の乾燥性を維持しうるため、配合活性剤の溶解または分解を防げる。それらの独特な溶解性欠如は親水性または疎水性粒子を懸濁する上でそれらを理想的なものにし、最終懸濁物が容器またはデリバリー装置で用いられる事実上すべての物質と適合しうることを意味する。これは、例えば、プランジャーでゴムシールを膨張させることによりシリンジのひどい目詰まりを生じうる油性製剤と対照的である。PFCはある範囲の密度、蒸気圧および揮発性で得られる(表I)。それらの高い密度はほとんどの従来の緩衝液中にそれらを沈ませるため、上に浮かぶ水相に溶解している生成物粒子から容易に分離しうる。したがって、これは診断薬のようなインビトロ用途向けとしてそれらの使用を促す。
【0021】
【発明の具体的な説明】
表I 一部PFCの性質
【0022】
薬剤または生物活性剤のデリバリー用ビヒクルとしてのPFCの使用は、Kirkland(1995)で既に示唆されていた。この特許では、本来安定な市販の香味または発泡性粉末などについて例示するのみであった。ワクチンまたは薬剤のような安定化された生物活性剤については、それはいかなる例も含んでいなかった。更に、活性剤粒子用の懸濁ビヒクルとしてPFCを用いることにより注射用(非経口)製剤を作る可能性を、そこでは考慮していない。非水性ビヒクルとしてPFCを用いて長い貯蔵寿命を有する、本来脆い生体分子の安定処方物を得るために、好ましくは配合活性剤を安定化しうるガラス形成剤を含有するように粒子が処方される。これは、PCT WO91/18091で記載されているようなトレハロース、ラクチトール、パラチニットなどを含めた様々な糖類からでも、あるいは更に好ましくは、UK特許出願9820689.9で記載されているような他のより有効な単糖の糖アルコールまたはガラス形成剤からでもよい。
【0023】
高密度PFC相に粒子を浮かべないように、粒子に密度調整剤を配合することが有利である。これは、塩化または硫酸ナトリウムまたはカリウムのような可溶性塩でも、あるいは更に好ましくは、硫酸バリウム、リン酸カルシウム、二酸化チタンまたは水酸化アルミニウムのような不溶性物質でもよい。体内で多量のイオン性塩の放出は著しい局所的な痛みおよび刺激を生じうることから、不溶性の無毒性物質が好ましい。不溶性物質は、一部の場合には、例えばワクチン製剤中でも、アジュバントとして活性製剤の一部でありうる。密度調整剤は糖ガラス粒子中の固溶体中でも、または糖ガラス中に懸濁された不溶性粒状物質中にあってもよい。正しく処方されると、糖ガラス粒子はPFC液体とほぼ密度が一致し、浮力中性であり、浮遊も沈降もせず、ケーキングのない安定な懸濁物のままである。
【0024】
PFC液体は1013オーム.cm以上の典型的抵抗率を有する良好な電気絶縁物であるため、懸濁粒子のわずかな表面電荷は懸濁安定性上大きな効果を有しうる。弱い短距離力による凝集を懸濁粒子で防ぐために、乾燥粒子へ弱い残留静電荷を付与しうるリジンまたはアスパラギン酸のような賦形剤を好ましくはそれらへ含有させて製造する。安定コロイドでみられる場合と同様に、粒子の電荷反発を確保することにより、これは凝集を防いでいる。一方、少量のFHC界面活性剤、例えばペルフルオロデカン酸は、分散された、好ましくは単分散の懸濁物を得るために、有利にはPFCへ溶解させてもよい。
【0025】
これらの粒子は空気、噴霧、または凍結乾燥を含めたいくつかの手法で製造しうるが、特に小さくなくてもよく、直径0.1〜100μサイズの不均一混合物でもよい。一部の用途では、ミリメーターサイズの粒子でも適する。
【0026】
これらの安定な懸濁物の使用は、前記のような非経口使用にも、またはKirkland(1995)で例示されているような経口使用にも限定されない。PFC液体ビヒクルは無毒性で非反応性であるため、それは肺内、鼻内、眼内、直腸内および膣内デリバリーを含めた粘膜用の理想的なビヒクルである。非常に不安定な薬物またはワクチンの粘膜デリバリー用ですら、安定、無菌で無刺激性の処方物を製造しうる、この特許によりもたらされる能力は、著しい進歩である。しかも、微生物が水の不在下で増殖しえないため、PFC液体の非常に乾燥した完全に非吸湿性の性質は、長期貯蔵および断続的使用に際して、これら製剤の無菌性の維持に大いに役立つ。
【0027】
揮発性のペルフルオロヒドロカーボンおよびクロロフルオロカーボンは、肺深部への薬物デリバリーを行うために考えられた吸入器で、噴射剤として長期間にわたり用いられてきたため、ここで記載された安定PFC処方物は肺内デリバリー用の液体STASIS小滴の微細なミストを生成する上で理想的である。この用途の場合、PFC小滴で不連続懸濁相を構成する粒子のサイズは重要であり、1〜5μm、好ましくは0.1〜1μmの直径を超えるべきでない。鼻または目で他の粘膜表面へのデリバリーの場合、粒径はさほど重要でなく、直径100μm以内でもまたは数mmでもよい。
【0028】
図面の説明
図1
アルカリホスファターゼ(Sigma Aldrich Ltd.)を、マンニトール33.3%、乳酸カルシウム33.3%および分解ゼラチン33.3%(Byco C,Croda Colloids Ltd.)をベースにしたガラス中で安定化させ、微小球として噴霧乾燥させ、乾燥粉末としてまたはペルフルオロデカリン中の安定な懸濁物として55℃で貯蔵した。活性は約100%標準のままであった(20日で103%および30日で94%)。PFCに懸濁されていない乾燥粉末の方が大きな損失であった(残存活性約80%)。
図2
市販の破傷風トキソイドワクチン(Evans Medeva plcにより快く供与された#T022)を、20%トレハロース溶液にリン酸カルシウムを加えて用い、密度一致粉末として処方した。2液ノズルを用いて液体窒素中に噴霧することによりそれを凍結乾燥させ、次いで主乾燥中ずっと−40℃の初期貯蔵温度でLabconco凍結乾燥機で凍結微小球粉末を凍結乾燥させた。塩水緩衝液でまたは油もしくはPFC中の無水製剤として再調製された、同用量のASSIST安定化破傷風トキソイドワクチンで注射した後、モルモット10匹の6群の抗体応答を4、8および12週目に測定した。
すべての乾燥製剤に対する応答は新鮮ワクチンコントロール(示さず)より低く、噴霧乾燥で免疫原性の有意な損失を示した。トキソイドの抗原性は、捕捉ELISAで測定されるのであるが、乾燥プロセスにより不変であった。これは、乾燥に際して水酸化アルミニウムアジュバントの保存を完全化させる、更なる作業が必要であることを示唆した。
リン酸カルシウムで密度一致化されたSTASISワクチン(群3)に対する応答は、水性緩衝液で再調製されたコントロールワクチン(群1)および油中粉末ワクチン(群2)と本質的に同一であり、一方非水性ビヒクルのみで注射されたコントロール動物(群4&5)は応答を示さなかった。
【0029】
【実施例】
好ましい態様の説明
例1:
PFC中の噴霧乾燥粒子
LabplantモデルSD1スプレードライヤーを用いて、糖および他の賦形剤を用いた水溶液から噴霧乾燥することにより、粒子を製造した。典型的処方は次のとおりであった:
A.水中
マンニトール 15%w/v
乳酸カルシウム 15%w/v
B.水中
トレハロース 15%w/v
リン酸カルシウム 15%w/v
【0030】
内径0.5mmの液体オリフィスを有する2液ノズルを用いて、粒子を製造した。半最大ノズル気流が最良とわかり、乾燥室を135℃の入口温度および70〜75℃の出口温度で操作した。粒子をガラスサイクロンで集め、4時間にわたる80℃までの温度傾斜を用いて真空オーブンで二次乾燥に付した。冷却後、超音波を用いて、それらをPFCに懸濁させた。約75%のパワーで操作するMSE MK2超音波キャビネットでチタンプローブから超音波エネルギーの30秒間バースト、または10秒以内におけるDecon FS200 Frequency sweep 超音波浴への浸漬であれば、十分とわかった。
【0031】
得られた懸濁物は単分散性であり、顕微鏡でみると、大きさが平均約10μで約0.5〜30μ範囲の球形ガラス粒子からなっていた。マンニトール/乳酸カルシウム粒子は数分でPFC層の上に昇ったが、穏やかな振盪で容易に再懸濁させることができた。トレハロース/リン酸カルシウム粒子はPFCとほぼ密度一致しており、安定な懸濁物を形成した。
【0032】
糖ガラス粒子の噴霧乾燥粉末をペルフルオロヘキサン、ペルフルオロデカリンおよびペルフルオロフェナントレンに1、10、20および40%w/vで懸濁した。それらは、凝集傾向のほとんどない単分散懸濁物を生じることがわかった。PFCへの0.1%ペルフルオロデカン酸の添加は、表面上のわずかな凝集傾向を阻止した。これらの懸濁物は、吸引または射出で25g針を容易に通過することがわかった。
【0033】
例2:
PFC中ガラス安定化酵素の懸濁物の安定性
アルカリホスファターゼ(Sigma Aldrich Ltd.)を前記のようにLabplantで噴霧乾燥させた。その処方物はマンニトール33.3%w/w、リン酸カルシウム33.3%w/wおよび分解ゼラチン(Byco C,Croda Colloids Ltd.)33.3%を含有していた。乾燥酵素を乾燥粉末またはペルフルオロデカリン中の懸濁物として55℃で貯蔵した。ペルフルオロデカリンに懸濁されたマンニトールベースガラスからなるこれらの微小球で処方された酵素は、55℃で30日間以上にわたり酵素活性の100%近い残留を示す(図1)。
【0034】
例3:
インビボ効力
臨床破傷風トキソイドワクチン(Medeva plcにより快く供与された)を含有した類似処方物の前臨床試験を、National Institute of Biological standards and Control(世界保健機関の認可研究所)と共同して行った。この試験の結果は、モルモットを免疫して防御血清抗体応答を呈する能力に関して、安定STASIS製剤が水性液体ワクチンと完全に同等であることを示した(図2)。こうして、従来の水性液体処方物と同様のインビボバイオアベイラビリティで、PFC中の懸濁物が直ちに注射可能な処方物を形成していることを証明した。
【0035】
例4:
噴霧凍結乾燥粒子
液体小滴を液体窒素中へ噴霧してから、凍結粉末を真空乾燥することによっても、粒子を製造した。これらの粒子は噴霧乾燥粉末より低い密度であり、20%w/vより高い濃度ではPFC中でペーストを形成した。それより低い濃度では、それらは音波処理後に単分散懸濁物を形成した。
用いられた典型的処方物は次のとおりであった:
【0036】
例5:
粉砕疎水性粒子
疎水性糖誘導体のスクロースオクタアセテートおよびトレハロースオクタアセテートは、融解物から急冷されたとき、あるいはクロロホルムまたはジクロロメタンの溶液から速やかに乾燥されたときに、ガラスを直ちに形成する。それらの使用は薬物デリバリー用の制御放出マトリックスとして記載されている(Roser et al ”Solid delivery systems for controlled release of molecules incorporated therein and methods of making same”(配合された分子の制御放出用の固形デリバリーシステムおよびその製造方法)PCT公開WO96/03978,1994)。
【0037】
マッフル炉で融解させて、ステンレス鋼プレート上でその融解物を急冷することにより、トレハロースオクタアセテート粉末を得た。得られたガラスディスクを乳棒および乳鉢、次いで高速ホモゲナイザーで砕き、微粉末を得た。これをペルフルオロヘキサン、ペルフルオロデカリンおよびペルフルオロフェナントレンに1および10%w/vで懸濁した。それらはよく分散された懸濁物を生じることがわかった。これらの懸濁物は23g針を容易に通過することがわかった。
【0038】
例6:
水性環境での再調製
安定な糖ガラス粒子の性質およびPFCの特性のおかげで、これら懸濁物中の活性剤は体内で急速に放出されるだろうと予想された。含有活性物質の完全な放出を証明するために、下記を含有した粒子を処方した:
トレハロース 20%w/v
乳酸カルシウム 20%w/v
リジン 0.5%w/v
Mordant Blue 9色素 1% w/v
【0039】
処方物を前記のように噴霧乾燥させ、ペルフルオロフェナントレンおよびペルフルオロデカリンへ加えて、20%w/v暗青色不透明懸濁物を調製した。その懸濁物へ等容量の水を加えて、振盪したところ、事実上すべての青色色素が水相中に放出されて、境界が明瞭な界面で、ほぼ無色のPFC上に浮かぶ澄んだ青色の層を形成することがわかった。
【0040】
例7:
懸濁物中粒子間で無反応
PFC懸濁物中で個別微小球は他のすべての粒子から物理的に離されているため、潜在的に反応性の物質は、それらが相互作用するいかなる危険性もなく、同一懸濁物中に別々な粒子として一緒に存在しうる。糖ガラスが溶解して、分子が一緒になると、反応が生じる。
これを証明するために、(a) 1つはアルカリホスファターゼ酵素で、(b) 他はその無色基質、p‐ニトロフェニルリン酸で、2タイプの粒子を含有した懸濁物を調製した。
【0041】
処方は次のとおりであった:
a)pH7.6の5mMトリス/HCl緩衝液中
トレハロース 10%w/v
硫酸ナトリウム 10%w/v
アルカリホスファターゼ 20U/ml
b)各々1mMの塩化Zn ++ およびMg ++ を含有したpH10.2の100mMグリシン緩衝液中
トレハロース 10%w/v
硫酸ナトリウム 10%w/v
p‐ニトロフェニルリン酸 0.44%w/v
【0042】
10%w/vの粉末“a”および10%w/vの粉末“b”を含有したペルフルオロデカリン中粉末の懸濁物は、いかなる発色反応も生ぜず、37℃で3週間にわたり白色懸濁物のままであることがわかった。
水の添加および振盪後に、粉末は上部の水相に溶解した。酵素反応が数分で生じ、調製したばかりのサンプルおよび37℃で3週間にわたり保たれたものの双方において、p‐ニトロフェノールの濃黄色を呈した。
【0043】
例8:
“組織間隙”モデルにおける生成物放出
インビボで注射されたときに、PFC懸濁物で生じうる動態を明らかにするために、ポリスチレン製装飾ボトルに0.2%アガロースゲルを入れることにより、透明水和組織間隙モデルを作製した。例5のペルフルオロデカリン懸濁物0.1mlをアガロースゲル中へ25g針から注入した。これは懸濁物の扁平化した白色球体を生じた。その後5〜10分間にわたり、白色は球体の底から上方へ消えて、PFCの透明球体を残留させた。酵素および基質がガラス粒子の溶解により放出されると、それらは一緒に反応して、p‐ニトロフェノールの黄色を生じ、その後1時間かけてアガロース全体に拡散した。
【0044】
例9:
密度一致:
従来の乾燥法のいずれかで得られる糖ガラス粒子(即ち、トレハロース)は、約1.5g/cm3の典型的密度を示す。我々が試験したペルフルオロカーボンは、典型的には1.68〜2.03g/cm3の密度を有する(表I)。この理由から、懸濁物中へ処方されたときに、糖ガラス粒子はPFC層に浮かびやすく、活性剤が均一に分布していない製剤をもたらす。しかしながら、粉末が中性浮力を有し、沈降も浮遊もしない、安定な懸濁物をPFC中で生じるように、それらは改変してもよい。これは粒子形成前に高密度物質の添加で達成しうる。これらは水溶性でもまたは不溶性でもよい。
【0045】
非水溶性物質
オルトリン酸三カルシウムは3.14g/cm3の密度を有し、ワクチン用のアジュバントとして承認され、実際上水に不溶性である。約50%リン酸カルシウムを含有するように調製された粉末は、約2g/cm3の増加密度を示して、20%固形分のときにペルフルオロフェナントレン中で安定な懸濁物を形成する。
【0046】
PFC中20%固形分で安定な懸濁物を形成する粉末の例には、次のものがある:
1 ペルフルオロデカリン中
2 ペルフルオロフェナントレン中
【0047】
用いられてきた他の密度増加非水溶性物質には、硫酸バリウムおよび二酸化チタンがある。いかなる無毒性で不溶性の物質も、適切な密度であれば用いうる。
【0048】
水溶性物質
密度2.7g/cm3の硫酸ナトリウムのような可溶性塩も密度増加剤として用いてよい。下記の粉末は、ペルフルオロデカリン中で安定な懸濁物を形成した:
他の無毒性高密度水溶性物質も用いてよい。おそらく高濃度のイオン性塩の急激な溶解のせいで、これらの処方物はモルモットで皮下注射後に不快感を生じることがわかった。
【0049】
例10:
懸濁物中活性剤で密度一致の効果
あるワクチンは、アジュバントとして働く不溶性ゲルまたは粒子へ吸着させて処方される。水酸化アルミニウムおよびリン酸カルシウムがこの目的のために広く用いられている。これらの不溶性アジュバントは、それ自体、懸濁される粒子の密度を増加させるために用いうる。この場合に、高密度物質は完全には不活性でなく、実際上溶液から活性高分子を吸着する。この吸着が活性剤を変性させないことを証明することが必要である。これを試験するために、アルカリホスファターゼを活性剤/ワクチンモデルとして用いた。
【0050】
下記の溶液を調製した:
pH7.6の5mMトリスHCl緩衝液中
アジュバントグレードリン酸カルシウム 10%w/v (Superphos Kemi a/s)
トレハロース 10%w/v
ZnCl2 1mM
MgCl2 1mM
アルカリホスファターゼ 20U /ml
【0051】
溶液を37℃で10分間にわたりよく混合して、リン酸カルシウムによりアルカリホスファターゼを吸着させた。リン酸カルシウムを遠心し、上澄をサンプリングし、基質としてp‐ニトロフェニルリン酸を用い405nmの波長でその酵素反応速度を測定することにより、1分間当たりのこの吸収変化を測定した。溶液を噴霧乾燥して、微粉末を製造した。酵素の脱着を、粉末の再水和後に、上記のような上澄で測定した。その粉末は、ペルフルオロフェナントレン中に20%w/vで懸濁させると、安定な懸濁物を形成することがわかった。
【0052】
【0053】
実験では次のことを証明している:
粒子の密度は、リン酸カルシウムアジュバントの含有により、PFCビヒクルの場合と一致させうる。
酵素活性の有意な脱着または損失は処方プロセス中に生じていない。
【0054】
例11:
例1のようなマンニトールベースガラスのSTASIS製剤をペルフルオロデカリン中に懸濁させ、オキシメタゾリン鼻鬱血除去剤(Sudafed,Warner Lambert)をデリバリーするために臨床で常用されている、外科的に清潔で、ポンプ式の、ポリプロピレンアトマイザー中へ入れた。ヒトボランティアの各鼻孔中へその懸濁物を2回スプレーして、彼らに感じた不快感の程度について質問した。ボランティアは全く不快感を訴えなかった。投与の副作用は観察されなかった。
【図面の簡単な説明】
【図1】
アルカリホスファターゼ(Sigma Aldrich Ltd.)を、マンニトール33.3%、乳酸カルシウム33.3%および分解ゼラチン33.3%(Byco C,Croda Colloids Ltd.)をベースにしたガラス中で安定化させ、微小球として噴霧乾燥させ、乾燥粉末としてまたはペルフルオロデカリン中の安定な懸濁物として55℃で貯蔵した。活性は約100%標準のままであった(20日で103%および30日で94%)。PFCに懸濁されていない乾燥粉末の方が大きな損失であった(残存活性約80%)。
【図2】
市販の破傷風トキソイドワクチン(Evans Medeva plcにより快く供与された#T022)を、20%トレハロース溶液にリン酸カルシウムを加えて用い、密度一致粉末として処方した。2液ノズルを用いて液体窒素中に噴霧することによりそれを凍結乾燥させ、次いで主乾燥中ずっと−40℃の初期貯蔵温度でLabconco凍結乾燥機で凍結微小球粉末を凍結乾燥させた。塩水緩衝液でまたは油もしくはPFC中の無水製剤として再調製された、同用量のASSIST安定化破傷風トキソイドワクチンで注射した後、モルモット10匹の6群の抗体応答を4、8および12週目に測定した。
すべての乾燥製剤に対する応答は新鮮ワクチンコントロール(示さず)より低く、噴霧乾燥で免疫原性の有意な損失を示した。トキソイドの抗原性は、捕捉ELISAで測定されるのであるが、乾燥プロセスにより不変であった。これは、乾燥に際して水酸化アルミニウムアジュバントの保存を完全化させる、更なる作業が必要であることを示唆した。
リン酸カルシウムで密度一致化されたSTASISワクチン(群3)に対する応答は、水性緩衝液で再調製されたコントロールワクチン(群1)および油中粉末ワクチン(群2)と本質的に同一であり、一方非水性ビヒクルのみで注射されたコントロール動物(群4&5)は応答を示さなかった。[0001]
BACKGROUND OF THE INVENTION
Vaccines or drugs in injectable solutions are inherently unstable and require cooling. The pharmaceutical industry has long addressed the instability problem by freeze-drying drugs. This is expensive, inconvenient, and inherently dangerous because incorrect reconstitution of the dry drug can result in the wrong dose or contaminating solution. Many attempts to develop robust, stable, ready-to-inject liquid formulations have been unsuccessful over the last 100 years. Only drugs that are naturally strong and small molecules can remain in aqueous solution with a useful shelf life.
[0002]
This problem is particularly acute in the vaccine industry. It is estimated that by 2005, 3.6 billion doses of vaccine will have to be administered worldwide. This was not possible using a standard vaccine format that required constant cooling (WHO) ("Revolutionizing Immunizations" (Revolutionary Immunization) Joda L., Aguado T., Lloyd). J. and Lambert PH, Genetic Engineering News, Feb 15 1998). In the developing world, a "cold chain" of chillers running from vaccine factories to rural towns is currently in use. The cost of cold chains is enormous for the vaccine industry and non-governmental health organizations that are running immunization campaigns. WHO estimates that the cost of maintaining a cold chain alone will exceed $ 200 million annually. In addition, the immunization campaign may only reach those living near the end links of the cold chain.
[0003]
Vaccination campaigns require medical staff to ensure that a given dose is injected correctly and does not show any signs of degradation. The need to reconstitute some vaccines such as measles, yellow fever and BCG is also a significant concern in the art. This must be done accurately to ensure the correct dosage and can be a source of contamination that has often led to clinical catastrophe. In addition, it is often necessary to vaccinate more than once during a given time period, and this may not be possible if a particular mixture or "multivalent" vaccine is not available due to some component chemical incompatibility. May require multiple injections. The WHO emphasizes these issues by encouraging the study of next-generation stable vaccines that do not require cooling and do not require reconstitution ("Pre-Filled Monodose Injection Devices: A safety standard"). for new vaccines, or a revolution in the delivery of immunizations? "(Pre-filled single dose injection device: a safety standard for new vaccines or a revolution in immune delivery) Lloyd J. and Aguado M.T. General policy issues: injectable solid vaccines: a role in future immunization? "(General policy issue: solid vaccine for injection: role in future immunity) Aguado MT, Jodar L., Lloyd J., Lambert PH WHO publication No A59781).
[0004]
The ideal solution for this problem would be a completely stable and ready-to-inject formulation. Such stable vaccines are placed into the injection device itself as individual doses, or are shipped in large quantities and administered by needle-free jet injectors for large-scale immunization campaigns. Transdermal delivery of dry solids by gas jet injection is described (Sarphie DF, Burkoth TL., Method for providing dense particles composites for use in transdermal delivery of high-density particles of transdermal delivery particles. Methods) PCT publication WO97448485 (1996)), transdermal inoculation with a dry DNA vaccine appears to be very effective ("PowderJect's Hepatitis B DNA Vaccine First To Successful Emulsions Protection in Human Protection Essential Human Invasiveness Human Protection Essentials"). The first P that successfully induces an immune response wderJect of hepatitis B DNA vaccine) http://www.powderject.com/pressreleases.htm (1998)).
[0005]
The hypersonic shock wave of helium gas used to operate these powder injectors has limited power and cannot deliver that amount of fine particles into muscle. This is because the low-mass particles cannot reach moderate momentum as they penetrate deeply. While intradermal delivery of DNA vaccines coated with colloidal gold particles is suitable for good immunogenicity, common vaccines adjuvanted with insoluble aluminum or calcium salts produce unacceptable skin irritation. They must be administered intramuscularly. What is needed is a flexible system that can reach a range of delivery depths from intradermal to deep into the muscle, similar to those that can be achieved with current needle and syringe technology. For large-scale vaccination campaigns, this is about 3000 psi (about 210 kg / cm2This was solved by the development of a liquid jet injector capable of accelerating a small (〜0.15 mm diameter) liquid stream into a “liquid nail” using the pressure of (1). This device painlessly delivers its volume from the skin into the deep subcutaneous or muscle tissue by making a small hole in the epidermis. It can penetrate deeply due to the high momentum transmitted to the liquid stream. To date, infused drugs and vaccines have been water-based, but because of the instability problem described above, the range of stable aqueous products that can take advantage of this technology is very limited.
[0006]
It is now recognized that a wide range of biologically active molecules can be stabilized by drying in sugar glass (Roser B. "Protection of proteins and the like"), UK Patent 2,187,191. Roser B and Colaco C. "Stabilization of biological macromolecular substrates and other organic compounds" (stabilization of biopolymers and other organic compounds) PCT published WO 91 / 180Sen. New stabilized glass) PCT Patent Application No. 9805699.7, 1998). These dry stabilizing activators are not affected by hostile environments such as high temperatures and ionizing radiation.
[0007]
The mechanism by which sugars cause significant stabilization of the molecule is the glass transition. When the sugar solution containing the active molecule is dried, it crystallizes when it reaches the solubility limit of the sugar or becomes a supersaturated syrup. The ability of a sugar to resist crystallization is an important property of a good stabilizer. Trehalose is excellent in this regard (Green JL. & Angel CA., Phase relations and vitrification in saccharide water solutions and the trehalose anomaly in the aqueous sugar solution and in the presence of trehalose anomaly in sugar aqueous solution). .93, 2880-2882 (1989)). Upon further drying, the syrup gradually solidifies, which turns into glass with low residual moisture. At some point, the active molecules change from a solution in water to a solid solution in dry sugar glass. Chemical diffusion is negligible in the glass, so the chemical reaction virtually stops. Since denaturation is a chemical change, it cannot occur in glass and the molecule is stabilized. In this form, the molecule remains unchanged if another condition is met. This is the second important property of a good stabilizer, that is, it is chemically inert and non-reactive. Many glasses have failed because they react with the product during storage. An obvious problem arises with reducing sugars, which form good physical glasses, but their aldehyde groups attack the amino groups of the product in a typical Maillard reaction. This is the main reason that many freeze-dried drugs require refrigerated storage. Non-reactive sugars give a stable product requiring no cooling at all.
[0008]
Biomolecules immobilized in sugar glass are also stable in non-aqueous industrial solvents in which both themselves and the sugar are insoluble (Cleland JL. And Jones AJS. “Excipient stabilization of polypropylenes with organic solvents”). Excipient stabilization of polypeptides treated with US Pat. No. 5,589,167 (1994)). Because sugar glass acts as an impermeable barrier in non-solvent liquids, solid solution biomolecules in the glass are protected from both solvent chemical reactions and the environment. If the liquid itself is stable, the susceptible product in the suspended glass particles will form a stable two-phase liquid formulation. Industrial solvents of the type described by Cleland and Jones (1994) have limited utility in handling. As an alternative to biocompatible non-aqueous liquids, even the most unstable drugs, vaccines and diagnostics could be formulated as stable liquid formulations.
[0009]
First generation stable non-aqueous liquids were considered for drug or vaccine delivery (BJ Roser and SD Sen "Stable particles in liquid formulations" (stable particles in liquid formulations)). PCT patent application GB98 / 00817 describes the formulation of a stabilized glass powder containing an active agent suspended in an injection oil such as sesame, peanut or soybean oil or a simple ester such as ethyl oleate. Was. Suspended sugar glass particles are very hydrophilic, while oils are hydrophobic. Due to the strong tendency of the hydrophilic and hydrophobic phases to separate easily, the sugar glass particles tended to aggregate together. In order to stabilize such "water-in-oil" suspensions, the use of oil-soluble surfactants dissolved in the continuous oil phase has often been required.
[0010]
These low HLB (hydrophilic / lipophilic balance) surfactants concentrate at the interface between the hydrophilic particles and the oil and coat them with an amphiphilic layer that is more compatible with the continuous oil phase. Since each sugar glass particle is separated from its neighbors by dry oil, no chemical interaction occurs between the particles. Thus, it is possible to have several different groups of particles without each interacting, even though each may contain different molecules that can potentially interact in the same oil formulation. Complex multivalent vaccines can thus be produced.
[0011]
However, this approach has been found to have certain drawbacks that prevent it from being a universal solution. These include about 1.5 g / cm in a less dense oily vehicle.3There is inevitable sedimentation of suspended particles with a typical density of The patent recognizes this problem and attempts to solve it by reducing the particle size to less than 1 μm in diameter in order to keep them suspended by thermodynamic forces such as Brownian motion. The requirement that all particles be 1 μm or less in diameter is a disadvantage of the proposed formulation. Obtaining such small particle powders is not an easy task. This can be achieved with an improved spray dryer design, but small particle sizes hinder the use of cyclone-type collectors and require a system of product recovery filters.
[0012]
Reducing particles to sub-micron size can also be achieved theoretically if the particles are suspended in oil with a high-pressure microhomogenizer such as a Microfluidizer (Constant Systems Inc.). This adds an extra step to the process and we have found that it is not very efficient in breaking up spray-dried sugar glass microspheres that have very high mechanical strength due to the sphere. This forces multiple passes through the device. Nevertheless, this tends to leave many large particles untouched, thus requiring a later filtration or sedimentation step to remove them. Moreover, the high viscosity of the suspensions in normal oily vehicles makes it difficult to draw them into syringes and requires them to be injected slowly. It prevents fast flow through narrow nozzles, as found in liquid jet injector systems.
[0013]
It has also been found that particles suspended in oils make it difficult to extract them later into an aqueous environment, especially when they contain low HLB surfactants, because, unexpectedly, aqueous buffers Even after washing, they maintain a tightly bound oil waterproof coat around them. Therefore, they require very vigorous shaking and mixing or addition of a more water-soluble detergent (here high HLB) for the particles to leave the oil phase and enter the aqueous phase. This becomes a major problem as the particle size decreases. The end result is often an opaquely mixed emulsion, rather than two distinct phases. Within the body, this problem can result in a slow and unpredictable release of the active agent, rather than the required quick and predictable delivery. In vitro extraction into an aqueous environment causes the oil to float above the aqueous phase containing the dissolved active. This is unacceptable for certain in vitro applications such as diagnostic kits or automated assay systems. Finally, most of the clinically available natural FDA approved oils are susceptible to photolysis, oxidation or other forms of damage and require careful storage in the dark at relatively low temperatures. In addition, since they are not completely chemically inert, they can react slowly with suspended particles.
[0014]
The Alliance Pharmaceutical Company has investigated the use of powders of water-soluble substances in remarkable new non-aqueous perfluorocarbon liquids (Kirkland WD, Composition and method for delivering active agents and activator composition delivery agents). US Patent 5,770,181 (1995)). This patent relates primarily to the function of PFC as an oral contrast enhancer for diagnostic imaging of the intestine. The exemplified water-soluble powders were added to improve the mouthfeel of the PFC or to enhance the contrast effect in the gastrointestinal tract. However, although no specific examples are given, Kirkland recognized that these liquids could also be used for drug delivery. In particular, only storage-stable commercial powders are exemplified in that patent. We have now discovered that brittle actives stabilized with sugar glass microspheres can be engineered to yield highly stable two-phase PFC liquid formulations for both oral and parenteral delivery. This broadly extends the utility of Kirkland's patent to the delivery of parenteral drugs and vaccines as ready-to-injectable formulations without the need for any kind of cooling. The finding that the low viscosity, high density and low surface tension of PFCs means that these stable suspensions are delivered by automated equipment such as liquid jet injectors is particularly beneficial. This opens up two important additional areas to this technology: large-scale immunization campaigns and self-injection.
[0015]
Perfluorocarbons (PFCs) are new, extremely stable liquids produced by the perfluorination of certain organic compounds. Because they are essentially immiscible with both oil and water or other solvents, either polar or non-polar (except for other PFCs), they are classified as either hydrophilic or lipophilic. (Reviewed in Kraft MP & Riess JG. "Highly fluorinated amphiphiles and colloidal systems, and their applications in the field of fluorinated biochemicals and biochemicals in the field of fluorinated biochemicals and biochemicals in the field of fluoridation" Applications and Contributions) Biochimie, 80, 489-514, 1998). Furthermore, they do not participate in hydrophobic interactions with oils or in hydrophilic interactions with water or hydrophilic substances. As a result, the large phase separation seen when the hydrophilic particles aggregate together strongly in the oil is less likely to occur with PFC. They do not require surfactants to form stable suspensions, but fluorohydrocarbon (FHC) surfactants are available (Krafft & Riess, 1998) and at very low concentrations in PFC liquids. Active. At these very low concentrations, FHC surfactants can ensure a complete monodisperse of certain particles that tend to agglomerate in their absence. The PFC liquid itself is completely non-reactive chemically, does not accumulate in the body in low molecular weight types, is volatile, and is eventually exhaled with breath.
[0016]
Because they are good solvents for gases, PFCs have already been used in large quantities in very special clinical applications. Their ability to exchange carbon dioxide for dissolved oxygen is better than for hemoglobin. This was in 1968 P. First demonstrated by Geyer in "bloodless rats" (Geyer RP, Monroe RG & Taylor K. "Survival of rats totally perforated with perfluorocarbon-detergent preparations with perfluorocarbon-detergent preparations. Survival of rats) Organ Perfusion and Preservation, JV Norman, J Folkman, LE Hardison, LE Ridolf and FJ Veith eds. Appleton-Centry-New York, New York-85 1968)). Perfluorooctyl bromide is in the form of a PFC-in-water emulsion, trade name OxygentTM(Alliance Pharmaceutical Corp.) is currently being evaluated in humans as a replacement for certain surgical blood transfusions. PFC has also been used as a liquid by inhalation into the lungs for the treatment of respiratory distress syndrome in premature babies.
[0017]
Their high density, along with chemical inertness, has also proven valuable. Product name VitreonTM(Vitrophage Inc.) perfluorophenanthrene is used to prevent eye capsule collapse during surgery and to repair detached retinas. PFCs are also used as contrast agents for magnetic resonance imaging (MRI), for which purpose hydrophilic powders are suspended in them to improve their imageability or make them more palatable. (Kirkland WD, "Composition and method for delivering active agents", US Pat. No. 5,770,181 (1998)). This patent also suggests the use of PFC as a continuous phase for delivery of particulate water-soluble drugs. Due to the limited number of parenteral drugs that are stable as dry powders at room temperature, this patent has no applicability to most injectable drugs. However, the combination of drug stability in sugar glass microsphere powders with injectable PFCs as described in Roser and Garcia de Castro (1998) applies this technology to virtually all parenteral drugs and vaccines. Can.
[0018]
[Summary of the invention]
The present invention uses a two-phase system comprising PFC as a continuous phase containing a discontinuous glass phase in suspension as a drug delivery formulation. Density about 1.5-2.5g / cm3The perfluorocarbon based formulation offers the great advantage that different PFCs can be mixed to obtain a final mixture of Thus, the particles may be formulated at a density consistent with the suspending fluid such that the particles remain in a stable suspension without floating or sinking to the bottom of the container. Thus, the particles need not be of submicron size as required in oily formulations to prevent sedimentation, and can vary greatly in size. The ultimate particle size is determined solely by the purpose of the formulation. Formulations for needle or jet injection contain particles in the range of 0.1 to 100 micrometers, preferably 1 to 10 micrometers. This greatly simplifies the process of producing the particles and avoids the need for very small particle sizes due to grinding. The particles may be made by conventional spray-drying or freeze-drying, followed by simple dry or wet milling. When high solids are required in the suspension, the particles are preferably spherical in shape. Irregularly shaped particles have a fairly large tendency to "bind" together to impede free flowing, whereas spherical particles have an inherent "smoothness" and thus have a solids content well over 20%. Can be reached. Such particles are easily made by spray drying, spray freeze drying or emulsion solidification.
[0019]
The suspension powder, if formulated properly, does not require a surfactant and forms a stable suspension in which the sugar glass particles dissolve almost immediately when shaken with water. If small agglomeration appears to be a problem, small amounts of FHC surfactants as described in Kraftt and Riess (1998) can be advantageously added to the PFC solution before or after mixing the stable powder. Like PFCs, these FHCs are inherently very inert and non-reactive. Therefore, there is no solvation of the particles and there is no chemical reaction between the suspended particles and the PFC phase. Since both the sugar glass particles and the PFC liquid are environmentally stable, they are not decomposed by light, high temperature, oxygen or the like. They have only negligible in vivo or in vitro toxicity, and have been extensively tested and approved by formal agencies on large scale infusions into both animals and humans for blood exchange purposes. Although high molecular weight PFCs have been reported to accumulate in the liver, the low molecular weight example used in this application is exhaled and eventually excreted from the body.
[0020]
Thanks to their low surface tension and their low viscosity, they can flow very easily from the small holes found in hypodermic needles, automatic systems or liquid jet injectors. PFC is an excellent electrical insulator, so it is easy to obtain a monodispersed suspension of particles with similar small surface electrostatic charges. They are dry, completely non-hygroscopic liquids. Thanks to these very low water contents, the dryness of the suspended powder can be maintained, thus preventing dissolution or decomposition of the formulated active agent. Their unique lack of solubility makes them ideal for suspending hydrophilic or hydrophobic particles, and the final suspension is compatible with virtually any substance used in containers or delivery devices Means This is in contrast to oily formulations, for example, which can cause severe clogging of the syringe by inflating the rubber seal with a plunger. PFCs are obtained in a range of densities, vapor pressures and volatility (Table I). Their high density allows them to sink in most conventional buffers, so that they can be easily separated from the product particles dissolved in the overlying aqueous phase. Thus, this facilitates their use for in vitro applications such as diagnostics.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Table I Properties of some PFCs
[0022]
The use of PFC as a vehicle for the delivery of drugs or bioactive agents was already suggested in Kirkland (1995). This patent merely exemplifies a commercially available flavor or effervescent powder which is inherently stable. For stabilized bioactive agents such as vaccines or drugs, it did not include any examples. Furthermore, the possibility of making injectable (parenteral) formulations by using PFC as a suspending vehicle for the active agent particles is not considered therein. To obtain a stable formulation of an inherently brittle biomolecule with long shelf life using PFC as a non-aqueous vehicle, the particles are preferably formulated to contain a glass former that can stabilize the formulated active. This may be from a variety of sugars, including trehalose, lactitol, palatinit, etc., as described in PCT WO 91/18091, or more preferably, from other sugars, such as those described in UK patent application 98206899.9. It may be from an effective monosaccharide sugar alcohol or a glass former.
[0023]
It is advantageous to incorporate a density modifier into the particles so that the particles do not float in the high-density PFC phase. This can be a soluble salt, such as sodium or potassium chloride or sulfate, or more preferably, an insoluble material such as barium sulfate, calcium phosphate, titanium dioxide or aluminum hydroxide. Insoluble non-toxic substances are preferred since the release of large amounts of ionic salts in the body can cause significant local pain and irritation. The insoluble substance may in some cases be part of the active formulation as an adjuvant, for example in a vaccine formulation. The density modifier may be in a solid solution in the sugar glass particles or in an insoluble particulate material suspended in the sugar glass. When properly formulated, the sugar glass particles are approximately density-matched to the PFC liquid, are buoyant-neutral, do not float or settle, and remain a stable suspension without caking.
[0024]
PFC liquid is 10ThirteenOhm. A small surface charge of the suspended particles can have a significant effect on suspension stability, as it is a good electrical insulator with a typical resistivity of at least cm. In order to prevent agglomeration due to weak short-range forces in the suspended particles, they are preferably made to contain excipients such as lysine or aspartic acid which can impart a weak residual electrostatic charge to the dried particles. This prevents aggregation, as is the case with stable colloids, by ensuring charge repulsion of the particles. On the other hand, small amounts of FHC surfactants, such as perfluorodecanoic acid, may advantageously be dissolved in the PFC to obtain a dispersed, preferably monodispersed, suspension.
[0025]
These particles may be produced by several techniques, including air, spray, or lyophilization, but need not be particularly small, and may be a heterogeneous mixture with a size of 0.1-100 μm in diameter. For some applications, millimeter-sized particles are also suitable.
[0026]
The use of these stable suspensions is not limited to parenteral use as described above, or to oral use as exemplified in Kirkland (1995). Because the PFC liquid vehicle is non-toxic and non-reactive, it is an ideal vehicle for mucous membranes, including pulmonary, nasal, ocular, rectal and vaginal delivery. The ability afforded by this patent to produce stable, sterile, non-irritating formulations, even for mucosal delivery of highly unstable drugs or vaccines, is a significant advance. Moreover, the very dry and completely non-hygroscopic nature of PFC liquids greatly aids in maintaining the sterility of these formulations during long-term storage and intermittent use, as microorganisms cannot grow in the absence of water.
[0027]
Because volatile perfluorohydrocarbons and chlorofluorocarbons have long been used as propellants in inhalers, which have been considered for delivering drugs to the deep lung, the stable PFC formulations described here have Ideal for generating fine mist of liquid STASIS droplets for internal delivery. For this application, the size of the particles that make up the discontinuous suspension phase with the PFC droplets is important and should not exceed a diameter of 1-5 μm, preferably 0.1-1 μm. For delivery to other mucosal surfaces by nose or eye, the particle size is not critical and may be within 100 μm in diameter or several mm.
[0028]
Description of the drawings
FIG.
Alkaline phosphatase (Sigma Aldrich Ltd.) was stabilized in a glass based on 33.3% mannitol, 33.3% calcium lactate and 33.3% degraded gelatin (Byco C, Croda Colloids Ltd.) and micronized. Spray dried as spheres and stored at 55 ° C. as a dry powder or as a stable suspension in perfluorodecalin. Activity remained at approximately 100% standard (103% at 20 days and 94% at 30 days). The dry powder not suspended in the PFC had a greater loss (about 80% residual activity).
FIG.
A commercially available tetanus toxoid vaccine (# T022, kindly provided by Evans Medeva plc) was formulated as a density matched powder using a 20% trehalose solution plus calcium phosphate. It was lyophilized by spraying into liquid nitrogen using a two-part nozzle, and then the frozen microsphere powder was lyophilized on a Labconco lyophilizer at an initial storage temperature of -40 ° C throughout the main drying. After injection with the same dose of ASSIST-stabilized tetanus toxoid vaccine, reconstituted in saline buffer or as an anhydrous formulation in oil or PFC, the antibody response of 6 groups of 10 guinea pigs at 4, 8, and 12 weeks It was measured.
The response to all dried formulations was lower than the fresh vaccine control (not shown) and showed a significant loss of immunogenicity upon spray drying. The antigenicity of the toxoid, measured by a capture ELISA, was unchanged by the drying process. This indicated that further work was required to complete the storage of the aluminum hydroxide adjuvant upon drying.
The response to the STASIS vaccine densified with calcium phosphate (Group 3) is essentially identical to the control vaccine (Group 1) and the powder-in-oil vaccine (Group 2) reconstituted in aqueous buffer, while Control animals (Groups 4 & 5) injected with aqueous vehicle only showed no response.
[0029]
【Example】
Description of the preferred embodiment
Example 1:
Spray-dried particles in PFC
Particles were prepared by spray drying from an aqueous solution with sugar and other excipients using a Labplant model SD1 spray dryer. A typical formulation was as follows:
A. Underwater
Mannitol @ 15% w / v
Calcium lactate @ 15% w / v
B. Underwater
Trehalose @ 15% w / v
Calcium phosphate 15% w / v
[0030]
Particles were produced using a two-liquid nozzle with a liquid orifice having an inner diameter of 0.5 mm. The half-maximum nozzle airflow was found to be best and the drying chamber was operated at 135 ° C inlet temperature and 70-75 ° C outlet temperature. The particles were collected in a glass cyclone and subjected to secondary drying in a vacuum oven using a temperature ramp to 80 ° C over 4 hours. After cooling, they were suspended in PFC using ultrasound. A 30 second burst of ultrasonic energy from a titanium probe in a MSE MK2 ultrasonic cabinet operating at about 75% power, or immersion in a Decon FS200 Frequency sweep ultrasonic bath within 10 seconds, has proven satisfactory.
[0031]
The resulting suspension was monodisperse and, when viewed microscopically, consisted of spherical glass particles with an average size of about 10μ and a range of about 0.5-30μ. The mannitol / calcium lactate particles rose over the PFC layer in a few minutes, but could be easily resuspended with gentle shaking. The trehalose / calcium phosphate particles were nearly density-matched to the PFC and formed a stable suspension.
[0032]
The spray-dried powder of sugar glass particles was suspended in perfluorohexane, perfluorodecalin and perfluorophenanthrene at 1, 10, 20 and 40% w / v. They were found to produce monodisperse suspensions with little tendency to agglomerate. Addition of 0.1% perfluorodecanoic acid to the PFC prevented a slight tendency to aggregate on the surface. These suspensions were found to easily pass through a 25 g needle by suction or injection.
[0033]
Example 2:
Stability of suspensions of glass-stabilized enzymes in PFC
Alkaline phosphatase (Sigma Aldrich Ltd.) was spray dried on a Labplant as described above. The formulation contained mannitol 33.3% w / w, calcium phosphate 33.3% w / w and degraded gelatin (Byco C, Croda Colloids Ltd.) 33.3%. The dried enzyme was stored at 55 ° C. as a dry powder or suspension in perfluorodecalin. Enzymes formulated with these microspheres, consisting of mannitol-based glass suspended in perfluorodecalin, show nearly 100% residual enzyme activity over 55 days at 55 ° C. (FIG. 1).
[0034]
Example 3:
In vivo efficacy
Preclinical studies of a similar formulation containing a clinical tetanus toxoid vaccine (kindly provided by Medeva plc) were conducted in collaboration with the National Institute of Biological standards and Control (a licensed laboratory of the World Health Organization). The results of this study showed that the stable STASIS formulation was completely equivalent to the aqueous liquid vaccine in its ability to immunize guinea pigs to develop a protective serum antibody response (FIG. 2). Thus, with in vivo bioavailability similar to conventional aqueous liquid formulations, it was demonstrated that the suspension in PFC was immediately forming an injectable formulation.
[0035]
Example 4:
Spray freeze-dried particles
Particles were also produced by spraying liquid droplets into liquid nitrogen and then vacuum drying the frozen powder. These particles were of lower density than the spray-dried powder and formed a paste in PFC at concentrations higher than 20% w / v. At lower concentrations, they formed a monodispersed suspension after sonication.
The typical formulation used was as follows:
[0036]
Example 5:
Crushed hydrophobic particles
The hydrophobic sugar derivatives sucrose octaacetate and trehalose octaacetate immediately form a glass when quenched from the melt or quickly dried from a solution of chloroform or dichloromethane. Their use has been described as controlled release matrices for drug delivery (Roser et al "Solid delivery systems for controlled release of moleculars incorporated in the form of controlled delivery matrices of the molecules of the controlled drug delivery system". And its manufacturing method) PCT Publication WO96 / 03978, 1994).
[0037]
Trehalose octaacetate powder was obtained by melting in a muffle furnace and quenching the melt on a stainless steel plate. The obtained glass disk was crushed with a pestle and a mortar and then with a high-speed homogenizer to obtain a fine powder. This was suspended at 1 and 10% w / v in perfluorohexane, perfluorodecalin and perfluorophenanthrene. They have been found to produce well dispersed suspensions. These suspensions were found to pass easily through a 23 g needle.
[0038]
Example 6:
Reconstitution in aqueous environment
Due to the properties of stable sugar glass particles and the properties of PFC, it was expected that the active agents in these suspensions would be released rapidly in the body. To demonstrate complete release of the active substance contained, particles containing the following were formulated:
Trehalose @ 20% w / v
Calcium lactate @ 20% w / v
Lysine @ 0.5% w / v
Mordant Blue 9 dyes 1% w / v
[0039]
The formulation was spray dried as described above and added to perfluorophenanthrene and perfluorodecalin to prepare a 20% w / v dark blue opaque suspension. When an equal volume of water is added to the suspension and shaken, virtually all of the blue dye is released into the aqueous phase, with a clear blue interface floating on a nearly colorless PFC at a well-defined interface. It was found to form a layer.
[0040]
Example 7:
No reaction between particles in suspension
Because the individual microspheres are physically separated from all other particles in the PFC suspension, potentially reactive substances will be in the same suspension without any risk of their interaction. May be present together as separate particles. When the sugar glass dissolves and the molecules come together, a reaction occurs.
To prove this, suspensions containing two types of particles were prepared, one with alkaline phosphatase enzyme (a) and the other with its colorless substrate, p-nitrophenyl phosphate.
[0041]
The prescription was as follows:
a)in 5 mM Tris / HCl buffer, pH 7.6
Trehalose @ 10% w / v
Alkaline phosphatase @ 20 U / ml
b)1 mM Zn chloride each ++ And Mg ++ In 100 mM glycine buffer at pH 10.2
Trehalose @ 10% w / v
p-Nitrophenylphosphoric acid 0.44% w / v
[0042]
A suspension of the powder in perfluorodecalin containing 10% w / v powder "a" and 10% w / v powder "b" did not produce any color reaction and was a white suspension at 37 ° C for 3 weeks. It turned out to be something.
After addition of water and shaking, the powder dissolved in the upper aqueous phase. The enzymatic reaction occurred in a few minutes and exhibited the dark yellow color of p-nitrophenol in both freshly prepared samples and those kept at 37 ° C. for 3 weeks.
[0043]
Example 8:
Product release in the "tissue gap" model
To clarify the possible kinetics of the PFC suspension when injected in vivo, a clear hydrated tissue gap model was created by placing a 0.2% agarose gel in a polystyrene decorative bottle. 0.1 ml of the perfluorodecalin suspension of Example 5 was injected into an agarose gel through a 25 g needle. This resulted in flattened white spheres of the suspension. Over the next 5-10 minutes, the white color disappeared upward from the bottom of the sphere, leaving a clear sphere of PFC. As the enzyme and substrate were released by dissolution of the glass particles, they reacted together to produce the yellow color of p-nitrophenol, which then diffused throughout the agarose over an hour.
[0044]
Example 9:
Density match:
Sugar glass particles (ie, trehalose) obtained by any of the conventional drying methods are about 1.5 g / cm3Shows the typical density of The perfluorocarbons we tested are typically between 1.68 and 2.03 g / cm3(Table I). For this reason, when formulated in suspension, the sugar glass particles tend to float in the PFC layer, resulting in a formulation in which the active agent is not evenly distributed. However, they may be modified so that the powders have a neutral buoyancy and do not settle or float, resulting in a stable suspension in the PFC. This can be achieved by the addition of a high density material prior to particle formation. These may be water-soluble or insoluble.
[0045]
Water-insoluble substance
3.14 g / cm of tricalcium orthophosphate3It is approved as an adjuvant for vaccines and is practically insoluble in water. A powder prepared to contain about 50% calcium phosphate will have about 2 g / cm3To form a stable suspension in perfluorophenanthrene at 20% solids.
[0046]
Examples of powders that form stable suspensions at 20% solids in PFC include:
1 In perfluorodecalin
2 In perfluorophenanthrene
[0047]
Other density increasing water insoluble materials that have been used include barium sulfate and titanium dioxide. Any non-toxic, insoluble material can be used, provided that it is of the appropriate density.
[0048]
Water-soluble substance
Density 2.7g / cm3Soluble salts, such as sodium sulfate, may also be used as a density increasing agent. The following powder formed a stable suspension in perfluorodecalin:
Other non-toxic high-density water-soluble substances may also be used. These formulations were found to cause discomfort after subcutaneous injection in guinea pigs, presumably due to the rapid dissolution of high concentrations of ionic salts.
[0049]
Example 10:
Density matching effect with actives in suspension
Some vaccines are formulated adsorbed on an insoluble gel or particle that acts as an adjuvant. Aluminum hydroxide and calcium phosphate are widely used for this purpose. These insoluble adjuvants can themselves be used to increase the density of the suspended particles. In this case, the high density material is not completely inert and effectively adsorbs the active polymer from solution. It is necessary to prove that this adsorption does not denature the activator. To test this, alkaline phosphatase was used as an activator / vaccine model.
[0050]
The following solutions were prepared:
in 5 mM Tris HCl buffer, pH 7.6
Adjuvant grade calcium phosphate {10% w / v} (Superphos Kemia / s)
Trehalose @ 10% w / v
ZnCl21 mM
MgCl21 mM
Alkaline phosphatase 20U / Ml
[0051]
The solution was mixed well at 37 ° C. for 10 minutes, and the alkaline phosphatase was adsorbed by calcium phosphate. This change in absorption per minute was determined by centrifuging the calcium phosphate, sampling the supernatant, and measuring its enzymatic reaction rate at a wavelength of 405 nm using p-nitrophenyl phosphate as a substrate. The solution was spray dried to produce a fine powder. Enzyme desorption was measured in the supernatant as described above after rehydration of the powder. The powder was found to form a stable suspension when suspended at 20% w / v in perfluorophenanthrene.
[0052]
[0053]
Experiments have proven that:
The density of the particles can be matched with that of a PFC vehicle by the inclusion of a calcium phosphate adjuvant.
No significant desorption or loss of enzyme activity occurred during the formulation process.
[0054]
Example 11:
A STASIS formulation of a mannitol-based glass as in Example 1 is suspended in perfluorodecalin and is a surgically clean, commonly used clinically to deliver an oxymetazoline nasal decongestant (Sudafed, Warner Lambert). , Pumped into a polypropylene atomizer. The suspension was sprayed twice into each nostril of human volunteers and asked about the degree of discomfort they felt. The volunteers did not complain at all. No side effects of administration were observed.
[Brief description of the drawings]
FIG.
Alkaline phosphatase (Sigma Aldrich Ltd.) was stabilized in a glass based on 33.3% mannitol, 33.3% calcium lactate and 33.3% degraded gelatin (Byco C, Croda Colloids Ltd.) and micronized. Spray dried as spheres and stored at 55 ° C. as a dry powder or as a stable suspension in perfluorodecalin. Activity remained at approximately 100% standard (103% at 20 days and 94% at 30 days). The dry powder not suspended in the PFC had a greater loss (about 80% residual activity).
FIG. 2
A commercially available tetanus toxoid vaccine (# T022, kindly provided by Evans Medeva plc) was formulated as a density matched powder using a 20% trehalose solution plus calcium phosphate. It was lyophilized by spraying into liquid nitrogen using a two-part nozzle, and then the frozen microsphere powder was lyophilized on a Labconco lyophilizer at an initial storage temperature of -40 ° C throughout the main drying. After injection with the same dose of ASSIST-stabilized tetanus toxoid vaccine, reconstituted in saline buffer or as an anhydrous formulation in oil or PFC, the antibody response of 6 groups of 10 guinea pigs at 4, 8, and 12 weeks It was measured.
The response to all dried formulations was lower than the fresh vaccine control (not shown) and showed a significant loss of immunogenicity upon spray drying. The antigenicity of the toxoid, measured by a capture ELISA, was unchanged by the drying process. This indicated that further work was required to complete the storage of the aluminum hydroxide adjuvant upon drying.
The response to the STASIS vaccine densified with calcium phosphate (Group 3) is essentially identical to the control vaccine (Group 1) and the powder-in-oil vaccine (Group 2) reconstituted in aqueous buffer, while Control animals (Groups 4 & 5) injected with aqueous vehicle only showed no response.
Claims (18)
上記の第一の成分が、上記の生物活性剤を含有した、糖ガラス、金属カルボキシレートガラスまたはホスフェートガラスの微粒子からなり、上記の糖ガラス、金属カルボキシレートガラスまたはホスフェートガラスが場合によりガラス形成促進剤化合物を含有し、
上記の第二の成分が、上記の第一の成分が不溶性でかつ分散される少くとも1種の生物適合性液体ペルフルオロカーボンからなり、その液体ペルフルオロカーボンが場合により界面活性剤を含有している、上記組成物。A composition for delivering a stable bioactive compound to a subject, comprising a first component and a second component,
The first component contains the above-mentioned bioactive agent, and is composed of fine particles of sugar glass, metal carboxylate glass or phosphate glass, and the sugar glass, metal carboxylate glass or phosphate glass optionally promotes glass formation. Agent compound,
The second component comprises at least one biocompatible liquid perfluorocarbon in which the first component is insoluble and dispersed, the liquid perfluorocarbon optionally containing a surfactant. And the above composition.
(b)請求項1に記載されている第二の成分のペルフルオロカーボン中に上記の微粒子を懸濁させ;および
(c)上記の混合物を対象者へ投与する
ステップからなる、対象者へ生物活性物質をデリバリーするための方法。(A) preparing fine particles of the first component according to claim 1;
(B) suspending the microparticles in the second component perfluorocarbon of claim 1; and (c) administering the mixture to the subject. A method for delivering a substance.
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/US2000/028244 WO2002032402A1 (en) | 2000-10-13 | 2000-10-13 | Composition and method for stable injectable liquids |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2003383800A Division JP4027881B2 (en) | 2003-11-13 | 2003-11-13 | Compositions and methods for stable injections |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2004513093A true JP2004513093A (en) | 2004-04-30 |
| JP2004513093A5 JP2004513093A5 (en) | 2005-08-04 |
Family
ID=21741883
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2002535640A Withdrawn JP2004513093A (en) | 2000-10-13 | 2000-10-13 | Compositions and methods for stable injections |
Country Status (12)
| Country | Link |
|---|---|
| EP (1) | EP1328255A1 (en) |
| JP (1) | JP2004513093A (en) |
| KR (1) | KR20030096224A (en) |
| CN (1) | CN100339066C (en) |
| AU (2) | AU2001211986B2 (en) |
| CA (2) | CA2689856C (en) |
| ES (1) | ES2337252T3 (en) |
| MX (1) | MXPA03003236A (en) |
| NO (1) | NO20031706D0 (en) |
| PL (1) | PL360052A1 (en) |
| PT (1) | PT1452171E (en) |
| WO (1) | WO2002032402A1 (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2009510156A (en) * | 2005-10-04 | 2009-03-12 | ケンブリッジ バイオスタビリティ リミテッド | Pharmaceutical composition stabilized in glassy particles |
| WO2009091017A1 (en) * | 2008-01-18 | 2009-07-23 | Asahi Kasei Pharma Corporation | Stable pharmaceutical composition |
Families Citing this family (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPWO2004037293A1 (en) * | 2002-10-22 | 2006-02-23 | 大日本住友製薬株式会社 | Stabilizing composition |
| JP2007001865A (en) * | 2003-09-16 | 2007-01-11 | Ltt Bio-Pharma Co Ltd | Fine particle enclosing fat-soluble medicine, method for producing the same and preparation containing the same |
| AU2005232441B2 (en) | 2004-04-13 | 2010-11-11 | Cambridge Biostability Limited | Liquids containing suspended glass particles |
| GB0408199D0 (en) * | 2004-04-13 | 2004-05-19 | Cambridge Biostability Ltd | Liquids containing suspended sugar glass particles |
| GB0523638D0 (en) * | 2005-11-21 | 2005-12-28 | Cambridge Biostability Ltd | Pharmaceutical device for the administration of substances to patients |
| US8946200B2 (en) | 2006-11-02 | 2015-02-03 | Southwest Research Institute | Pharmaceutically active nanosuspensions |
| US8404850B2 (en) | 2008-03-13 | 2013-03-26 | Southwest Research Institute | Bis-quaternary pyridinium-aldoxime salts and treatment of exposure to cholinesterase inhibitors |
| US8722706B2 (en) | 2008-08-15 | 2014-05-13 | Southwest Research Institute | Two phase bioactive formulations of bis-quaternary pyridinium oxime sulfonate salts |
| US8309134B2 (en) | 2008-10-03 | 2012-11-13 | Southwest Research Institute | Modified calcium phosphate nanoparticle formation |
| WO2010146536A1 (en) | 2009-06-18 | 2010-12-23 | Koninklijke Philips Electronics N.V. | Suspension of particles with drug |
| WO2011007327A2 (en) | 2009-07-16 | 2011-01-20 | Koninklijke Philips Electronics N.V. | Suspension for therapeutic use and device for delivering said suspension |
| ES2362525B8 (en) | 2009-10-08 | 2013-01-03 | Azurebio, S.L. | Medication formulation in the form of penetrating percutaneous needles. |
| US9028873B2 (en) | 2010-02-08 | 2015-05-12 | Southwest Research Institute | Nanoparticles for drug delivery to the central nervous system |
| US9884498B2 (en) | 2014-03-24 | 2018-02-06 | Seiko Epson Corporation | Tape printing device and tape printing system |
| CA2940599A1 (en) * | 2014-03-27 | 2015-10-01 | Novartis Ag | Spray-dried solid-in-oil-in-water dispersions for inhalation of active pharmaceutical ingredients |
Family Cites Families (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GR78151B (en) * | 1982-04-05 | 1984-09-26 | Alcon Lab Inc | |
| US5518731A (en) * | 1990-09-27 | 1996-05-21 | Allergan, Inc. | Nonaqueous fluorinated drug delivery vehicle suspensions |
| AU3924193A (en) * | 1992-03-19 | 1993-10-21 | Allergan, Inc. | Compositions comprising a drug delivery vehicle suspended in a nonaqueous fluorinated liquid |
| GB9705588D0 (en) * | 1997-03-18 | 1997-05-07 | Anglia Research Foundation | Stable particle in liquid formulations |
| US6190701B1 (en) * | 1999-03-17 | 2001-02-20 | Peter M. Ronai | Composition and method for stable injectable liquids |
-
2000
- 2000-10-13 MX MXPA03003236A patent/MXPA03003236A/en active IP Right Grant
- 2000-10-13 EP EP00973483A patent/EP1328255A1/en not_active Withdrawn
- 2000-10-13 KR KR10-2003-7004941A patent/KR20030096224A/en not_active Ceased
- 2000-10-13 PT PT04013422T patent/PT1452171E/en unknown
- 2000-10-13 WO PCT/US2000/028244 patent/WO2002032402A1/en active IP Right Grant
- 2000-10-13 CA CA2689856A patent/CA2689856C/en not_active Expired - Lifetime
- 2000-10-13 PL PL00360052A patent/PL360052A1/en unknown
- 2000-10-13 JP JP2002535640A patent/JP2004513093A/en not_active Withdrawn
- 2000-10-13 AU AU2001211986A patent/AU2001211986B2/en not_active Ceased
- 2000-10-13 AU AU1198601A patent/AU1198601A/en active Pending
- 2000-10-13 CA CA2424656A patent/CA2424656C/en not_active Expired - Lifetime
- 2000-10-13 CN CNB008199655A patent/CN100339066C/en not_active Expired - Fee Related
- 2000-10-13 ES ES04013422T patent/ES2337252T3/en not_active Expired - Lifetime
-
2003
- 2003-04-11 NO NO20031706A patent/NO20031706D0/en not_active Application Discontinuation
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2009510156A (en) * | 2005-10-04 | 2009-03-12 | ケンブリッジ バイオスタビリティ リミテッド | Pharmaceutical composition stabilized in glassy particles |
| WO2009091017A1 (en) * | 2008-01-18 | 2009-07-23 | Asahi Kasei Pharma Corporation | Stable pharmaceutical composition |
| JP2013177415A (en) * | 2008-01-18 | 2013-09-09 | Asahi Kasei Pharma Kk | Stable pharmaceutical composition |
| JP5301468B2 (en) * | 2008-01-18 | 2013-09-25 | 旭化成ファーマ株式会社 | Stable pharmaceutical composition |
| US9006225B2 (en) | 2008-01-18 | 2015-04-14 | Asahi Kasei Pharma Corporation | Stable pharmaceutical composition |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2002032402A1 (en) | 2002-04-25 |
| EP1328255A1 (en) | 2003-07-23 |
| PL360052A1 (en) | 2004-09-06 |
| AU2001211986B2 (en) | 2007-04-26 |
| AU1198601A (en) | 2002-04-29 |
| PT1452171E (en) | 2010-03-08 |
| NO20031706L (en) | 2003-04-11 |
| CN1527699A (en) | 2004-09-08 |
| CN100339066C (en) | 2007-09-26 |
| KR20030096224A (en) | 2003-12-24 |
| CA2689856A1 (en) | 2002-04-25 |
| CA2424656C (en) | 2010-03-23 |
| CA2424656A1 (en) | 2002-04-25 |
| NO20031706D0 (en) | 2003-04-11 |
| MXPA03003236A (en) | 2004-12-03 |
| ES2337252T3 (en) | 2010-04-22 |
| CA2689856C (en) | 2013-09-24 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6190701B1 (en) | Composition and method for stable injectable liquids | |
| CA2689856C (en) | Composition and method for stable injectable liquids | |
| TWI260988B (en) | Lipophilic-coated microparticles containing a protein drug or antigen and formulation comprising same | |
| AU2001211986A1 (en) | Composition and method for stable injectable liquids | |
| EA001873B1 (en) | Stable particle in liquid formulations | |
| EP1750668B1 (en) | Liquids containing suspended glass particles | |
| JP2001524533A (en) | Transdermal delivery of particulate vaccine compositions | |
| KR102624471B1 (en) | Gas-filled microvesicles | |
| KR20030020294A (en) | Powder Compositions | |
| JP2011514337A (en) | Sugar vitrified virus-like particles (VLP) | |
| IL189402A (en) | Method of producing a dry powder comprising a cellular material and powder produced by such method | |
| CA2438108C (en) | Improved drug formulation of soluble glass particles suspended in a liquid | |
| EP1592443A1 (en) | Improved anthrax vaccines and delivery methods | |
| JP4027881B2 (en) | Compositions and methods for stable injections | |
| KR100796220B1 (en) | Particle Delivery System and Method of Use | |
| JP4382706B2 (en) | Pharmaceutical liquid suspension | |
| AU2005203369B2 (en) | Pharmaceutical liquid suspensions | |
| CN100594937C (en) | Stable injectable compositions and methods | |
| RU2259817C2 (en) | Composition for delivering stable injectable liquids and method for delivery | |
| EP1452171B1 (en) | Pharmaceutical liquid suspensions | |
| KR100743442B1 (en) | Pharmaceutical liquid suspension | |
| NZ525026A (en) | A two-component composition comprising particles of sugar glass and a biocompatible liquid perfluorocarbon | |
| NZ538681A (en) | A pharmaceutical composition comprising active biological ingredient carried by particles that form a stable suspension in a liquid indefinitely | |
| RU2003113537A (en) | COMPOSITION FOR DELIVERY OF STABLE INJECTED LIQUIDS AND METHOD OF DELIVERY |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060905 |
|
| A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20061205 |
|
| A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20061212 |
|
| A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20070305 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20070305 |