[go: up one dir, main page]

JP2005051136A - Solid-state imaging device and manufacturing method thereof - Google Patents

Solid-state imaging device and manufacturing method thereof Download PDF

Info

Publication number
JP2005051136A
JP2005051136A JP2003283441A JP2003283441A JP2005051136A JP 2005051136 A JP2005051136 A JP 2005051136A JP 2003283441 A JP2003283441 A JP 2003283441A JP 2003283441 A JP2003283441 A JP 2003283441A JP 2005051136 A JP2005051136 A JP 2005051136A
Authority
JP
Japan
Prior art keywords
type
drain region
photodiode
imaging device
state imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003283441A
Other languages
Japanese (ja)
Inventor
Yuji Kusayanagi
雄次 草柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003283441A priority Critical patent/JP2005051136A/en
Publication of JP2005051136A publication Critical patent/JP2005051136A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

【課題】 固体撮像装置におけるオーバーフロードレイン機能の低下をおさえ、電子シャッター動作の低電圧化を図る。
【解決手段】 P型のウエル領域12内で、N型のフォトダイオード部13とN型半導体基板11との間にN型ドレイン領域19を設け、これに電子シャッター動作時に電源20からパルス信号を印加し、ポテンシャルを深くすることでフォトダイオード部13にたまった信号電荷をN型ドレイン領域19に排出する。このフォトダイオード部13とN型ドレイン領域19との距離を短くできるので、その間に大きな電界がかかりやすく容易に空乏層が形成されるので制御する電源20の低電圧化ができる。N型ドレイン領域19はAsイオン注入で形成しその不純物濃度分布を高精度に制御できるので、フォトダイオードの飽和特性のばらつきを抑え、オーバーフロードレイン機能の向上を図れる。
【選択図】 図1
PROBLEM TO BE SOLVED: To reduce the voltage of an electronic shutter operation by suppressing a decrease in overflow drain function in a solid-state imaging device.
An N-type drain region 19 is provided between an N-type photodiode portion 13 and an N-type semiconductor substrate 11 in a P-type well region 12, and a pulse signal is supplied from a power source 20 to the electronic shutter operation. By applying the voltage and increasing the potential, signal charges accumulated in the photodiode portion 13 are discharged to the N-type drain region 19. Since the distance between the photodiode portion 13 and the N-type drain region 19 can be shortened, a large electric field is easily applied between them, and a depletion layer is easily formed. Therefore, the voltage of the power source 20 to be controlled can be reduced. Since the N-type drain region 19 is formed by As ion implantation and the impurity concentration distribution can be controlled with high accuracy, variation in saturation characteristics of the photodiode can be suppressed and the overflow drain function can be improved.
[Selection] Figure 1

Description

本発明は、固体撮像装置およびその製造方法に関するものである。   The present invention relates to a solid-state imaging device and a manufacturing method thereof.

従来の固体撮像装置についてまず説明する。図4は従来の固体撮像装置の画素部の断面図であり、41はN型半導体基板、42はN型半導体基板41に形成されたP型のウエル領域、43は光電変換を行うN型のフォトダイオード部、44は信号電荷を転送するためのN型の電荷転送部である。光電変換では光がフォトダイオード部43に入射すると電子と正孔が発生するが、固体撮像装置は電子を信号電荷として利用し、不要な正孔は蓄積させるため、45はP型のウエル領域42より不純物濃度が高く設定されており、フォトダイオード部43表面に形成されたP型の正孔を蓄積する正孔蓄積部である。46はゲート絶縁膜、47は信号電荷の転送を制御するゲート電極、48はフォトダイオード電子蓄積容量を決定しフォトダイオード容量を超える過剰電子が発生したとき、N型の電荷転送部44に電子が漏れこまないように、過剰電子をN型半導体基板41に流すオーバーフロードレインを機能させるためのVsub電源、49はゲート電極47を覆う絶縁膜である。   First, a conventional solid-state imaging device will be described. FIG. 4 is a cross-sectional view of a pixel portion of a conventional solid-state imaging device, 41 is an N-type semiconductor substrate, 42 is a P-type well region formed in the N-type semiconductor substrate 41, and 43 is an N-type that performs photoelectric conversion. The photodiode section 44 is an N-type charge transfer section for transferring signal charges. In photoelectric conversion, when light enters the photodiode portion 43, electrons and holes are generated. However, since the solid-state imaging device uses electrons as signal charges and accumulates unnecessary holes, 45 is a P-type well region 42. It is a hole accumulating portion that has a higher impurity concentration and accumulates P-type holes formed on the surface of the photodiode portion 43. 46 is a gate insulating film, 47 is a gate electrode for controlling the transfer of signal charges, 48 is a photodiode electron storage capacity, and when excess electrons exceeding the photodiode capacity are generated, electrons are transferred to the N-type charge transfer section 44. A Vsub power source 49 for functioning an overflow drain that allows excess electrons to flow to the N-type semiconductor substrate 41 so as not to leak, 49 is an insulating film covering the gate electrode 47.

以下、上記のように構成された固体撮像装置の動作について説明する。フォトダイオード部43に光が入射するとPN接合部で光電変換が行われ、入射光量に応じた信号電荷(電子)が生成される。ゲート電極47の電位を変化させ電荷転送部44のポテンシャルを深くすることで、光による信号電荷がフォトダイオード部43から電荷転送部44に流入する。ゲート電極47にクロック信号を印加することで紙面に垂直方向に信号電荷の転送を行い、信号出力として変換し外部回路に取り出される。   Hereinafter, the operation of the solid-state imaging device configured as described above will be described. When light enters the photodiode unit 43, photoelectric conversion is performed at the PN junction, and signal charges (electrons) corresponding to the amount of incident light are generated. By changing the potential of the gate electrode 47 to deepen the potential of the charge transfer unit 44, signal charges due to light flow from the photodiode unit 43 into the charge transfer unit 44. By applying a clock signal to the gate electrode 47, signal charges are transferred in a direction perpendicular to the paper surface, converted into a signal output, and taken out to an external circuit.

図5は図4の固体撮像装置のA−A’線の切断断面の基板内ポテンシャルを示し、(a)はオーバーフロードレイン機能時のポテンシャル、(b)は電子シャッター作動時のポテンシャルを示す。フォトダイオード容量と、フォトダイオード容量を越える過剰な信号電荷をN型半導体基板41に排出するオーバーフロードレイン機能は、Vsub電源48の設定電圧により制御されるP型のウエル領域42のポテンシャルにより決定される。また、Vsub電源48にパルス信号を印加し、P型のウエル領域43のポテンシャルをフォトダイオード部43のポテンシャルと同等または深くし、フォトダイオード部43にたまった信号電荷を強制的に任意の時間内でN型半導体基板41に排出することで、露光時間を細かく制御する電子シャッター動作を実現している。
Y.Ishihara,E.Oda,H.Tanigawa,N.Teranishi,E.Takeuchi,I.Akiama,K.Arai,M.Nishimuraand T.Kamata: Interline CCD Image Sensor with Anti Blooming Structure,ISSCC Dig.Tech.Papers,pp.168-169(1982)
5 shows the in-substrate potential of the cross section taken along the line AA ′ of the solid-state imaging device of FIG. 4, (a) shows the potential when the overflow drain function is performed, and (b) shows the potential when the electronic shutter is activated. The photodiode drain and the overflow drain function for discharging excessive signal charges exceeding the photodiode capacitance to the N-type semiconductor substrate 41 are determined by the potential of the P-type well region 42 controlled by the set voltage of the Vsub power supply 48. . In addition, a pulse signal is applied to the Vsub power supply 48 to make the potential of the P-type well region 43 equal to or deeper than the potential of the photodiode portion 43, and the signal charge accumulated in the photodiode portion 43 is forcibly set within an arbitrary time. Thus, the electronic shutter operation for finely controlling the exposure time is realized by discharging to the N-type semiconductor substrate 41.
Y.Ishihara, E.Oda, H.Tanigawa, N.Teranishi, E.Takeuchi, I.Akiama, K.Arai, M.Nishimuraand T.Kamata: Interline CCD Image Sensor with Anti Blooming Structure, ISSCC Dig.Tech.Papers pp.168-169 (1982)

しかしながら上記従来の固体撮像装置では、N型半導体基板41のN型領域の不純物濃度変動・ウエハ間差や、イオン注入・熱拡散等の製造ばらつきによりウエル領域42やフォトダイオード部43のポテンシャルにばらつきが生じる。このため、フォトダイオード容量が変動しフォトダイオード部43が蓄積する実質的な電子の最大容量に対応する飽和特性がばらつく。またVsub電源48の設定電圧をN型半導体基板41に印加してもオーバーフロードレイン機能が十分に機能せず、過剰の電荷が電荷転送部44に信号電荷として漏れ込み、ブルーミングとよばれる疑信号が発生し画質劣化が生じるというという問題があった。   However, in the conventional solid-state imaging device, the potential of the well region 42 and the photodiode portion 43 varies due to variations in impurity concentration in the N-type region of the N-type semiconductor substrate 41, wafer-to-wafer differences, and manufacturing variations such as ion implantation and thermal diffusion. Occurs. For this reason, the photodiode characteristics vary, and the saturation characteristics corresponding to the substantial maximum capacity of electrons accumulated in the photodiode section 43 vary. Further, even if the set voltage of the Vsub power supply 48 is applied to the N-type semiconductor substrate 41, the overflow drain function does not sufficiently function, and excessive charge leaks into the charge transfer section 44 as a signal charge, and a suspicious signal called blooming is generated. There has been a problem that image quality degradation occurs.

さらに、上記したように従来の固体撮像装置では、電子シャッター動作時にはVsub電源48にパルス信号を印加し、ポテンシャルを深くすることでフォトダイオード部43にたまった信号電荷を強制的にN型半導体基板41に排出しているが、この時、Vsub電源48の電圧を通じてウエル領域42を空乏化させポテンシャル障壁を完全になくすためには高いVsub電圧が必要であり、電子シャッターモードを低電圧で作動させ、固体撮像装置を低消費電力化するのは難しいという問題があった。   Further, as described above, in the conventional solid-state imaging device, a pulse signal is applied to the Vsub power supply 48 during the electronic shutter operation, and the potential is deepened to forcibly cause the signal charges accumulated in the photodiode portion 43 to be an N-type semiconductor substrate. At this time, in order to deplete the well region 42 and completely eliminate the potential barrier through the voltage of the Vsub power supply 48, a high Vsub voltage is required, and the electronic shutter mode is operated at a low voltage. There is a problem that it is difficult to reduce the power consumption of the solid-state imaging device.

上記のオーバーフロードレイン機能の劣化の現象をおさえるため、半導体基板濃度や半導体製造装置の不純物導入条件ばらつきを低減する方法があるが、不純物濃度のばらつきが少ない高精度の基板や不純物導入を高精度で行う装置を導入する必要がありコスト高となり現実的でない。また、上記の電子シャッター動作の低電圧化を実現するため、ウエル領域42やフォトダイオード部43の不純物元素を低濃度化し内部ポテンシャル障壁を低くし易くする方法があるが、これではフォトダイオード容量が低下し飽和特性が劣化してしまう。   In order to suppress the above-described phenomenon of deterioration of the overflow drain function, there is a method of reducing the variation in the semiconductor substrate concentration and the impurity introduction condition variation of the semiconductor manufacturing apparatus. It is necessary to introduce a device to perform, and the cost is high, which is not realistic. In order to reduce the voltage of the electronic shutter operation described above, there is a method of reducing the concentration of the impurity elements in the well region 42 and the photodiode portion 43 to easily lower the internal potential barrier. The saturation characteristic deteriorates.

本発明は上記従来の問題点を解決するもので、飽和特性のばらつきやオーバーフロードレイン機能の低下を抑えることができ、また電子シャッター機能の低電圧化が可能となる固体撮像装置およびその製造方法を提供することを目的とする。   The present invention solves the above-described conventional problems, and provides a solid-state imaging device and a method of manufacturing the same that can suppress variations in saturation characteristics and a decrease in overflow drain function and can reduce the voltage of an electronic shutter function. The purpose is to provide.

上記の課題を解決するための本発明の固体撮像装置は、第1導電型の半導体基板上に形成された第2導電型のウエル領域上に、光電変換により信号電荷を生成する第1導電型のフォトダイオード部と、フォトダイオード部で生成された信号電荷を転送するための第1導電型の電荷転送部とを備えた固体撮像装置であって、フォトダイオード部と半導体基板との間のウエル領域の内部に、所定の信号が印加される第1導電型のドレイン領域を設けたものである。   In order to solve the above problems, a solid-state imaging device according to the present invention has a first conductivity type that generates a signal charge by photoelectric conversion on a second conductivity type well region formed on a first conductivity type semiconductor substrate. A solid-state imaging device including a photodiode portion and a first-conductivity-type charge transfer portion for transferring a signal charge generated in the photodiode portion, the well between the photodiode portion and the semiconductor substrate A drain region of the first conductivity type to which a predetermined signal is applied is provided inside the region.

そして、第1導電型の半導体基板と第2導電型のウエル領域間に、フォトダイオードの電荷蓄積容量を決定するための電圧を印加する構成を有する。また、第1導電型のドレイン領域に印加される所定の信号はパルス電圧である。   A voltage for determining the charge storage capacity of the photodiode is applied between the first conductive type semiconductor substrate and the second conductive type well region. The predetermined signal applied to the drain region of the first conductivity type is a pulse voltage.

また、上記のような本発明の固体撮像装置の製造方法は、第1導電型の半導体基板上に第2導電型の第1半導体層を形成する工程と、第1半導体層の所定領域に第1導電型のドレイン領域を形成する工程と、第1半導体層およびドレイン領域上に第2導電型の第2半導体層を形成することで、第1および第2半導体層からなるウエル領域を形成する工程と、第1導電型のドレイン領域上部のウエル領域内に、光電変換により信号電荷を生成する第1導電型のフォトダイオード部と、フォトダイオード部で生成された信号電荷を転送するための第1導電型の電荷転送部とを形成する工程とを含むものである。   The method for manufacturing a solid-state imaging device according to the present invention as described above includes a step of forming a first semiconductor layer of the second conductivity type on a semiconductor substrate of the first conductivity type, and a first region in a predetermined region of the first semiconductor layer. A step of forming a drain region of one conductivity type and a second semiconductor layer of a second conductivity type are formed on the first semiconductor layer and the drain region, thereby forming a well region composed of the first and second semiconductor layers. A first conductive type photodiode unit that generates signal charges by photoelectric conversion and a signal charge generated by the photodiode unit in the well region above the first conductive type drain region; Forming a charge transfer portion of one conductivity type.

以上のように本発明によると、第1導電型の半導体基板上の第2導電型のウエル領域内で、フォトダイオード部と半導体基板との間に、第1導電型のドレイン領域を設け、これに電子シャッター動作時にパルス電圧を印加しポテンシャルを深くすることでフォトダイオード部にたまった信号電荷をドレイン領域に排出する。このように半導体基板ではなくフォトダイオード部に近接したドレイン領域に信号電荷を排出することで電子シャッター機能の低電圧化が可能となり、低消費電力化を図ることができる。また、ドレイン領域はAsイオン注入等により形成することでその不純物濃度分布を高精度に制御できるので、フォトダイオード部からドレイン領域への過剰な信号電荷の吐き出しを速やかに行わせることが可能となり、オーバーフロードレイン機能が向上するとともにフォトダイオードの飽和特性のばらつきが減少する。   As described above, according to the present invention, the first conductivity type drain region is provided between the photodiode portion and the semiconductor substrate in the second conductivity type well region on the first conductivity type semiconductor substrate. A signal voltage accumulated in the photodiode portion is discharged to the drain region by applying a pulse voltage and deepening the potential during the electronic shutter operation. Thus, by discharging signal charges to the drain region adjacent to the photodiode portion instead of the semiconductor substrate, the voltage of the electronic shutter function can be reduced, and the power consumption can be reduced. Further, since the drain region is formed by As ion implantation or the like, the impurity concentration distribution can be controlled with high accuracy, so that it is possible to quickly discharge excessive signal charges from the photodiode portion to the drain region, The overflow drain function is improved and the variation in the saturation characteristics of the photodiode is reduced.

以下、図1に基づいて、本発明の一実施の形態に係わる固体撮像装置の構造について説明する。同図において、11はN型半導体基板、12はN型半導体基板11に形成されたP型のウエル領域、13は光電変換を行うN型のフォトダイオード部、14は信号電荷を転送するためのN型の電荷転送部、15はN型のフォトダイオード部13上に形成されたP型の正孔蓄積部、16はゲート絶縁膜、17は信号電荷の転送を制御するポリシリコンのゲート電極、18はフォトダイオード容量を決定しオーバーフロードレインを機能させるためのVsub電源である。   Hereinafter, the structure of a solid-state imaging device according to an embodiment of the present invention will be described with reference to FIG. In the figure, 11 is an N-type semiconductor substrate, 12 is a P-type well region formed in the N-type semiconductor substrate 11, 13 is an N-type photodiode portion for performing photoelectric conversion, and 14 is for transferring signal charges. N-type charge transfer unit, 15 is a P-type hole accumulation unit formed on the N-type photodiode unit 13, 16 is a gate insulating film, 17 is a polysilicon gate electrode for controlling the transfer of signal charges, Reference numeral 18 denotes a Vsub power source for determining the photodiode capacitance and causing the overflow drain to function.

19はP型のウエル領域12内に局所的にAsを分布させ形成したN型ドレイン領域であり、画素それぞれに設置されたフォトダイオード部13の下方に設けられている。このN型ドレイン領域19の平面的パターンは、画素アレイの列または行に沿って配列された短冊形になっているものである。そして画素アレイ端部でこのパターンと電源20のライン配線が接続される。また、上記の短冊形とは異なり、N型ドレイン領域19の平面的パターンが、フォトダイオード部13に対向した方形状パターンが細い拡散層でつながった平面パターンとなっていてもよい。この場合も画素アレイ端部で電源20のライン配線と接続される。20はN型ドレイン領域19に接続されたパルス信号を印加する電源である。21はゲート電極17を覆う絶縁膜である。   Reference numeral 19 denotes an N-type drain region formed by locally distributing As in the P-type well region 12 and is provided below the photodiode portion 13 provided in each pixel. The planar pattern of the N-type drain region 19 has a strip shape arranged along the column or row of the pixel array. This pattern is connected to the line wiring of the power source 20 at the end of the pixel array. In addition, unlike the above-described strip shape, the planar pattern of the N-type drain region 19 may be a planar pattern in which a rectangular pattern facing the photodiode portion 13 is connected by a thin diffusion layer. Also in this case, it is connected to the line wiring of the power source 20 at the end of the pixel array. A power source 20 applies a pulse signal connected to the N-type drain region 19. An insulating film 21 covers the gate electrode 17.

この固体撮像装置は、フォトダイオード部13に光が入射すると、フォトダイオード部13とウエル領域12とのPN接合部で光電変換が行われ、入射光量に応じた信号電荷(電子)が生成される。ゲート電極17の電位を変化させ電荷転送部14のポテンシャルを深くすることで、光による信号電荷がフォトダイオード部13から電荷転送部14に流入する。ゲート電極17にクロック信号を印加することで紙面に垂直方向に信号電荷の転送を行い、信号出力として変換し外部回路に取り出される。   In this solid-state imaging device, when light enters the photodiode unit 13, photoelectric conversion is performed at the PN junction between the photodiode unit 13 and the well region 12, and signal charges (electrons) corresponding to the amount of incident light are generated. . By changing the potential of the gate electrode 17 to deepen the potential of the charge transfer unit 14, signal charge due to light flows from the photodiode unit 13 into the charge transfer unit 14. By applying a clock signal to the gate electrode 17, signal charges are transferred in the direction perpendicular to the paper surface, converted into a signal output, and taken out to an external circuit.

次に、図2に基づいて、図1に対応する固体撮像装置の製造方法について説明する。N型半導体基板11にBのイオン注入を行ったのち熱拡散・アニールによりP型の下部ウエル領域12aを形成する(図2(a))。次にレジストをマスクとしたAsのイオン注入をP型の下部ウエル領域12aに行い、下部ウエル領域12aの表面にN型ドレイン領域19を形成する。このN型ドレイン領域19はパルス信号を印加する電源20に接続すべきものである。そして基板上にさらにエピタキシャル法などでP型半導体層(P型の上部ウエル領域12b)を堆積することで、P型のウエル領域12の内部にN型ドレイン領域19が形成された図2(b)の構造とする。なお、P型半導体層(P型の上部ウエル領域12b)堆積後に、レジストをマスクとしたAsのイオン注入を行なうことでN型ドレイン領域19を形成するようにしてもよい。   Next, a method for manufacturing the solid-state imaging device corresponding to FIG. 1 will be described with reference to FIG. After implanting B ions into the N-type semiconductor substrate 11, a P-type lower well region 12a is formed by thermal diffusion and annealing (FIG. 2A). Next, As ions are implanted into the P-type lower well region 12a using a resist as a mask, and an N-type drain region 19 is formed on the surface of the lower well region 12a. This N-type drain region 19 is to be connected to a power source 20 to which a pulse signal is applied. Further, by depositing a P-type semiconductor layer (P-type upper well region 12b) on the substrate by an epitaxial method or the like, an N-type drain region 19 is formed in the P-type well region 12 as shown in FIG. ) Structure. The N-type drain region 19 may be formed by performing As ion implantation using a resist as a mask after deposition of the P-type semiconductor layer (P-type upper well region 12b).

次に、レジストをマスクとしてAsのイオン注入によりN型のフォトダイオード部13を、また、AsとPのイオン注入により電荷転送部14を、Bのイオン注入により正孔蓄積部15を形成する(図2(c))。続いて、ゲート絶縁膜16およびポリシリコンを成膜後、レジストをマスクとしたエッチングによりポリシリコンのゲート電極17を形成し、その後、ゲート電極17の上部および側部を覆う絶縁膜21を成膜する(図2(d))。   Next, using the resist as a mask, an N-type photodiode portion 13 is formed by ion implantation of As, a charge transfer portion 14 is formed by ion implantation of As and P, and a hole accumulation portion 15 is formed by ion implantation of B ( FIG. 2 (c)). Subsequently, after forming a gate insulating film 16 and polysilicon, a polysilicon gate electrode 17 is formed by etching using a resist as a mask, and then an insulating film 21 covering the upper and side portions of the gate electrode 17 is formed. (FIG. 2D).

以上のように本実施の形態によって固体撮像装置が完成する。この装置において、N型ドレイン領域は従来の半導体基板11に代わり、電圧が印加されてポテンシャルが制御される。図3は本実施の形態の固体撮像装置の動作を説明する図であり、図1のA−A’線の切断断面のポテンシャルを模式的に示し、(a)はオーバーフロードレイン機能時のポテンシャル、(b)は電子シャッター作動時のポテンシャルを示す。   As described above, the solid-state imaging device is completed according to the present embodiment. In this device, the potential of the N-type drain region is controlled by applying a voltage in place of the conventional semiconductor substrate 11. FIG. 3 is a diagram for explaining the operation of the solid-state imaging device of the present embodiment, schematically showing the potential of the cross section taken along the line AA ′ of FIG. 1, wherein (a) shows the potential at the overflow drain function. (B) shows the potential when the electronic shutter is activated.

図3のポテンシャルは図5の従来のポテンシャルに比べ、フォトダイオード部13とN型ドレイン領域19の距離が短くその間に大きな電界がかかりやすくなっており、容易に空乏層が形成される状態になっている。また、レジストをマスクとしたAsのイオン注入によりN型ドレイン領域19を形成することで、N型ドレイン領域19のN型半導体基板11に対する横方向の寸法(N型ドレイン領域19のフォトダイオード部13に対する横(水平)方向の位置)と深さ方向の不純物濃度分布が高精度に制御されている。したがってフォトダイオード部13からの過剰な信号電荷の吐き出しが速やかに行なわれ、オーバーフロードレイン機能が向上するとともに飽和特性ばらつきが減少する。このように、従来ドレイン領域としてN型半導体基板を用いたため問題であった不純物濃度むら・ウエハ間差など製造ばらつきの影響を受けることなしに、N型ドレイン領域19の不純物濃度分布を高精度に制御することができ、飽和特性のばらつきやブルーミングによる画像劣化の発生を抑えることができる。   The potential of FIG. 3 is shorter than the conventional potential of FIG. 5 because the distance between the photodiode portion 13 and the N-type drain region 19 is short, and a large electric field is easily applied between them, and a depletion layer is easily formed. ing. Further, by forming the N-type drain region 19 by As ion implantation using a resist as a mask, the lateral dimension of the N-type drain region 19 relative to the N-type semiconductor substrate 11 (the photodiode portion 13 of the N-type drain region 19). The position in the horizontal (horizontal) direction) and the impurity concentration distribution in the depth direction are controlled with high accuracy. Therefore, excessive signal charges are quickly discharged from the photodiode portion 13 to improve the overflow drain function and reduce the saturation characteristic variation. As described above, the impurity concentration distribution of the N-type drain region 19 can be accurately obtained without being affected by manufacturing variations such as impurity concentration unevenness and wafer-to-wafer differences, which were problems due to the conventional use of the N-type semiconductor substrate as the drain region. Therefore, it is possible to suppress the variation in saturation characteristics and the occurrence of image deterioration due to blooming.

また、電子シャッター動作時は、従来の不純物元素濃度のばらつきの大きいN型半導体基板でなく、不純物元素の濃度が制御されたN型ドレイン領域19に信号電荷を吐き出すため、フォトダイオード部13とN型ドレイン領域19を隔てている不純物元素の濃度が制御されたP型のウエル領域12のポテンシャルに相当する電圧を印加するだけで動作することができ、やはり特性ばらつきを減少させる。それとともにフォトダイオード部13とN型ドレイン領域19を近くすることができるのでその間に大きな電界がかかりやすくなっており、容易に空乏層が形成されるので制御する電源20の印加電圧を低電圧化できる。   Further, during the electronic shutter operation, signal charges are discharged to the N-type drain region 19 in which the concentration of the impurity element is controlled instead of the conventional N-type semiconductor substrate having a large variation in impurity element concentration. Operation can be performed simply by applying a voltage corresponding to the potential of the P-type well region 12 in which the concentration of the impurity element separating the type drain region 19 is controlled, and variation in characteristics is also reduced. At the same time, the photodiode portion 13 and the N-type drain region 19 can be made close to each other, so that a large electric field is easily applied between them, and a depletion layer is easily formed. it can.

また、Asのイオン注入の加速電圧やドーズ量を変えることでN型ドレイン領域19の厚さやフォトダイオード部13との距離などを任意に変えることができるのでオーバーフロードレインや電子シャッターの動作特性を任意に設定することが可能となる。   Further, by changing the acceleration voltage and dose amount of As ion implantation, the thickness of the N-type drain region 19 and the distance to the photodiode portion 13 can be arbitrarily changed, so that the operating characteristics of the overflow drain and the electronic shutter can be arbitrarily set. It becomes possible to set to.

なお、本実施の形態では、レジストをマスクとしたAsのイオン注入によりN型ドレイン領域19を形成したが、その他、エピタキシャル成長を選択的に行なうことによりN型ドレイン領域19を形成しても同様の効果があることは明白である。   In the present embodiment, the N-type drain region 19 is formed by As ion implantation using a resist as a mask. However, the N-type drain region 19 may be similarly formed by selectively performing epitaxial growth. It is clear that there is an effect.

本発明にかかる固体撮像装置およびその製造方法は、飽和特性のばらつきやオーバーフロードレイン機能の低下を抑え、また電子シャッター機能の低電圧化が可能となり、小型化・高画素化された固体撮像装置およびその製造方法等として有用である。   A solid-state imaging device and a manufacturing method thereof according to the present invention suppress a variation in saturation characteristics and a decrease in overflow drain function, and can reduce the voltage of an electronic shutter function. It is useful as a manufacturing method thereof.

本発明の一実施の形態に係わる固体撮像装置の断面図Sectional drawing of the solid-state imaging device concerning one embodiment of this invention 本発明の一実施の形態に係わる固体撮像装置の製造方法を示す工程断面図Process sectional drawing which shows the manufacturing method of the solid-state imaging device concerning one embodiment of this invention 本発明の一実施の形態に係わる固体撮像装置におけるオーバーフロードレイン機能時と電子シャッター動作時のポテンシャルを示す図The figure which shows the potential at the time of the overflow drain function and electronic shutter operation | movement in the solid-state imaging device concerning one embodiment of this invention 従来の固体撮像装置の断面図Sectional view of a conventional solid-state imaging device 従来の固体撮像装置におけるオーバーフロードレイン機能時と電子シャッター動作時のポテンシャルを示す図The figure which shows the potential at the time of the overflow drain function and the electronic shutter operation in the conventional solid-state imaging device

符号の説明Explanation of symbols

11,41 N型半導体基板
12,42 P型のウエル領域
13,43 フォトダイオード部
14,44 電荷転送部
15,45 正孔蓄積部
16,46 ゲート絶縁膜
17,47 ゲート電極
18,48 Vsub電源
19 N型ドレイン領域
20 パルス信号を印加する電源
11, 41 N-type semiconductor substrate 12, 42 P-type well region 13, 43 Photodiode portion 14, 44 Charge transfer portion 15, 45 Hole accumulation portion 16, 46 Gate insulating film 17, 47 Gate electrode 18, 48 Vsub power supply 19 N-type drain region 20 Power supply for applying pulse signal

Claims (4)

第1導電型の半導体基板上に形成された第2導電型のウエル領域上に、光電変換により信号電荷を生成する第1導電型のフォトダイオード部と、前記フォトダイオード部で生成された信号電荷を転送するための第1導電型の電荷転送部とを備えた固体撮像装置であって、
前記フォトダイオード部と前記半導体基板との間の前記ウエル領域の内部に、所定の信号が印加される第1導電型のドレイン領域を設けたことを特徴とする、固体撮像装置。
A first conductivity type photodiode section that generates signal charges by photoelectric conversion on a second conductivity type well region formed on a first conductivity type semiconductor substrate, and a signal charge generated by the photodiode section A solid-state imaging device comprising a first conductivity type charge transfer unit for transferring
A solid-state imaging device, wherein a drain region of a first conductivity type to which a predetermined signal is applied is provided in the well region between the photodiode portion and the semiconductor substrate.
前記第1導電型の半導体基板と前記第2導電型のウエル領域間に、前記フォトダイオードの電荷蓄積容量を決定するための電圧を印加する構成を有することを特徴とする、請求項1記載の固体撮像装置。   2. The structure according to claim 1, wherein a voltage for determining a charge storage capacity of the photodiode is applied between the first conductive type semiconductor substrate and the second conductive type well region. Solid-state imaging device. 前記第1導電型のドレイン領域に印加される所定の信号はパルス電圧であることを特徴とする、請求項1記載の固体撮像装置。   The solid-state imaging device according to claim 1, wherein the predetermined signal applied to the drain region of the first conductivity type is a pulse voltage. 第1導電型の半導体基板上に第2導電型の第1半導体層を形成する工程と、前記第1半導体層の所定領域に第1導電型のドレイン領域を形成する工程と、前記第1半導体層および前記ドレイン領域上に第2導電型の第2半導体層を形成することで、前記第1および第2半導体層からなるウエル領域を形成する工程と、前記第1導電型のドレイン領域上部の前記ウエル領域内に、光電変換により信号電荷を生成する第1導電型のフォトダイオード部と、前記フォトダイオード部で生成された信号電荷を転送するための第1導電型の電荷転送部とを形成する工程とを含むことを特徴とする、固体撮像装置の製造方法。   Forming a second conductive type first semiconductor layer on the first conductive type semiconductor substrate; forming a first conductive type drain region in a predetermined region of the first semiconductor layer; and the first semiconductor. Forming a second semiconductor layer of the second conductivity type on the layer and the drain region, forming a well region composed of the first and second semiconductor layers; and an upper portion of the drain region of the first conductivity type Formed in the well region are a first conductivity type photodiode section for generating signal charges by photoelectric conversion and a first conductivity type charge transfer section for transferring signal charges generated by the photodiode section. A solid-state imaging device manufacturing method.
JP2003283441A 2003-07-31 2003-07-31 Solid-state imaging device and manufacturing method thereof Pending JP2005051136A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003283441A JP2005051136A (en) 2003-07-31 2003-07-31 Solid-state imaging device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003283441A JP2005051136A (en) 2003-07-31 2003-07-31 Solid-state imaging device and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2005051136A true JP2005051136A (en) 2005-02-24

Family

ID=34268326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003283441A Pending JP2005051136A (en) 2003-07-31 2003-07-31 Solid-state imaging device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2005051136A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008160132A (en) * 2006-12-22 2008-07-10 Magnachip Semiconductor Ltd CMOS image sensor with floating base reading concept
US7554069B2 (en) 2007-02-23 2009-06-30 Sony Corpration Solid state imaging device and imaging apparatus having a first well region forming an overflow barrier interposed between a photoelectric conversion area and a second well region

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008160132A (en) * 2006-12-22 2008-07-10 Magnachip Semiconductor Ltd CMOS image sensor with floating base reading concept
JP2012235137A (en) * 2006-12-22 2012-11-29 Intellectual Venturesii Llc Cmos image sensor having floating base reading concept
US8723990B2 (en) 2006-12-22 2014-05-13 Intellectual Ventures Ii Llc Image pixel employing floating base readout concept, and image sensor and image sensor array including the image pixel
US7554069B2 (en) 2007-02-23 2009-06-30 Sony Corpration Solid state imaging device and imaging apparatus having a first well region forming an overflow barrier interposed between a photoelectric conversion area and a second well region

Similar Documents

Publication Publication Date Title
JP5365144B2 (en) SOLID-STATE IMAGING DEVICE, ITS MANUFACTURING METHOD, AND ELECTRONIC DEVICE
JP4785963B2 (en) Solid-state imaging device
US9236407B2 (en) Image sensor
US7939859B2 (en) Solid state imaging device and method for manufacturing the same
US12289924B2 (en) Transistors having increased effective channel width
US20210305298A1 (en) Transistors having increased effective channel width
US20140191290A1 (en) Solid-state imaging element
CN101211950B (en) Image sensor and manufacturing method thereof
JP5539373B2 (en) Solid-state imaging device and manufacturing method thereof
JP2005072236A (en) Semiconductor device and method for manufacturing same
JP5546198B2 (en) Solid-state imaging device
TW202131501A (en) Transistor having increased effective channel width
JP2010114324A (en) Solid-state imaging device and method for manufacturing the same, and electronic apparatus
JP5717329B2 (en) Solid-state imaging device and manufacturing method thereof
WO2014002365A1 (en) Solid-state image pickup apparatus and method for manufacturing same
CN100394610C (en) Solid-state imaging device and driving method thereof
EP2519973B1 (en) Image sensor with doped transfer gate
JP2005051136A (en) Solid-state imaging device and manufacturing method thereof
JP5312511B2 (en) Solid-state imaging device
JP4561328B2 (en) Solid-state imaging device and manufacturing method thereof
JP4561327B2 (en) Solid-state imaging device and manufacturing method thereof
JP2004140258A (en) Solid-state imaging device and method of manufacturing the same
JP5623349B2 (en) Solid-state imaging device
JP5377590B2 (en) Solid-state imaging device
JP2006135172A (en) Solid state image sensor and manufacturing method of same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060330

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090728

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091027