JP2005069212A - Floating body type wave force power generator - Google Patents
Floating body type wave force power generator Download PDFInfo
- Publication number
- JP2005069212A JP2005069212A JP2003338775A JP2003338775A JP2005069212A JP 2005069212 A JP2005069212 A JP 2005069212A JP 2003338775 A JP2003338775 A JP 2003338775A JP 2003338775 A JP2003338775 A JP 2003338775A JP 2005069212 A JP2005069212 A JP 2005069212A
- Authority
- JP
- Japan
- Prior art keywords
- wave
- water chamber
- plate
- hull
- power generator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000007667 floating Methods 0.000 title claims abstract description 33
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 107
- 239000013535 sea water Substances 0.000 claims abstract description 8
- 230000033001 locomotion Effects 0.000 claims description 35
- 230000008859 change Effects 0.000 claims description 16
- 230000001360 synchronised effect Effects 0.000 claims 2
- 238000010587 phase diagram Methods 0.000 description 35
- 238000010248 power generation Methods 0.000 description 32
- 230000000694 effects Effects 0.000 description 6
- 230000009467 reduction Effects 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000009434 installation Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- WURBVZBTWMNKQT-UHFFFAOYSA-N 1-(4-chlorophenoxy)-3,3-dimethyl-1-(1,2,4-triazol-1-yl)butan-2-one Chemical compound C1=NC=NN1C(C(=O)C(C)(C)C)OC1=CC=C(Cl)C=C1 WURBVZBTWMNKQT-UHFFFAOYSA-N 0.000 description 2
- 241000283153 Cetacea Species 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 230000004087 circulation Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000009360 aquaculture Methods 0.000 description 1
- 244000144974 aquaculture Species 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/30—Energy from the sea, e.g. using wave energy or salinity gradient
Landscapes
- Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
Abstract
Description
本発明は、海岸から離れた海上での自然エネルギーの波力を駆動力とする、高効率の浮体型波力発電装置に関する。 The present invention relates to a high-efficiency floating-type wave power generation apparatus that uses a wave power of natural energy on the sea away from a coast as a driving force.
エネルギー資源の枯渇と地球温暖化に象徴される環境対策が、近い将来の重要な問題であることが広く認識されるようになり、風力や太陽エネルギーを利用する自然エネルギー発電が盛んになりつつある中で、賦存量が27億キロワットといわれる海洋波浪エネルギーは、実用化の見通しは厳しく、小数の実証プラントが建設されたに止まっている。以前から海洋波浪エネルギーの利用研究は続けられているのだが、波力発電の経済性確立が容易ではないことが、実用化の最大のネックとなっている。 Environmental measures symbolized by the depletion of energy resources and global warming are widely recognized as important issues in the near future, and natural energy power generation using wind power and solar energy is becoming popular. Among them, the ocean wave energy, which is said to have a surplus of 2.7 billion kilowatts, has a severe prospect of practical use, and only a small number of demonstration plants have been constructed. Research on the use of ocean wave energy has been ongoing, but the fact that it is not easy to establish the economics of wave power generation is the biggest bottleneck in practical application.
浮体に発電装置を搭載し、洋上で発電するタイプとして、最も古い実証装置である波力発電船「海明」や、三重県南勢町に近年設けられた「マイティホエール」の実例があるが、浮体の揺動により効率低下が生じ、その対策には多額の費用を必要としてきた。現実には、実用化には程遠い低効率装置に止まっている。 There are actual examples of the wave power generation ship `` Kaimei '' which is the oldest demonstration device and `` Mighty Whale '' recently established in Minami-cho, Mie, as a type that generates power on the ocean with a power generator mounted on the floating body, The efficiency has been reduced by the swinging of the floating body, and a large amount of cost has been required for the countermeasure. In reality, it remains a low-efficiency device that is far from practical use.
一方、防波堤などの固定物に発電装置を据え付けて、沿岸で発電するタイプとして、本発明者らが室蘭港で実証装置を設置した、振り子式発電装置や、海外での実例が多い水柱振動式波力発電装置の例がある。沿岸の低エネルギー波浪が動力源の対象であるが、効率は実用化に堪える良好なレベルである反面、防波堤などの施設は極めて高価であり、発電目的で防波堤を建設していては発電単価の低減は望めない。
本発明が解決しようとする第一の課題は、小型で極めて簡易な構造の低コスト浮体型波力発電装置を実現することであり、第二の課題は、波力による浮体揺動を波力自体によって効果的に抑制する結果、波力からのエネルギー取得効率を著しく高めることができる浮体型波力発電装置を得ることであり、第三の課題は、これらの両課題解決による相乗効果により、経済的な実用レベルに達することができる、真に実用可能な波力発電装置を世界で初めて提供することである。 The first problem to be solved by the present invention is to realize a low-cost floating-type wave power generator with a small and extremely simple structure. As a result of effectively suppressing by itself, it is to obtain a floating wave power generation device that can significantly increase the energy acquisition efficiency from wave power, and the third problem is due to the synergistic effect by solving these two problems, It is to provide the world's first truly practical wave power generator that can reach an economical practical level.
本発明では、波力発電装置の基本を浮体型式に選んでいる。この型式の波力発電装置は、浮体揺動による発電効率の低下を如何に効果的に防げるかが重要である。浮体揺動は外力となる波力による強制振動現象の一例である。従って、この現象に関与するパラメータが判れば、直ちに現象は予測できる。本発明では先ず最初に、浮体揺動運動抑制のために、浮体に作用する波力の位相制御方式という新規な技術思想を導入することとした。揺動制御に効果がある位相遅れは120〜180°であり、少なくとも90°以上の位相遅れの波力が浮体揺動に対してプラスに作用し、発電出力も増加するという原理は知られていたが、その具体的な実現手段が見つかっていなかった。本発明は、浮体に波を受け入れる水室と、この水室内部で揺動する振り子板で波力を受け取る基本構造を設けると共に、振り子板の取付位置から1/2波長の距離で、180°位相遅れとなる位置に十分な面積の垂直板とその下面に固定した水平板とを、しっかりと固定することで実現することができた。これは板を固定するだけの極めて簡便な構造である。従って運動制限を行う従来型の高価なダンパーは一切使用していない。 In the present invention, the basis of the wave power generator is selected as the floating body type. In this type of wave power generation device, it is important how to effectively prevent a decrease in power generation efficiency due to floating body swinging. Floating body swing is an example of a forced vibration phenomenon caused by wave forces that are external forces. Therefore, if the parameters related to this phenomenon are known, the phenomenon can be predicted immediately. In the present invention, first, in order to suppress the floating body swinging motion, a new technical idea of a phase control method of wave force acting on the floating body is introduced. The phase delay that is effective for swing control is 120 to 180 °, and the principle that a wave force with a phase delay of at least 90 ° acts positively on floating body swing and the power generation output is also increased is known. However, no concrete means of realization was found. The present invention provides a water chamber for receiving waves in a floating body and a basic structure for receiving wave force by a pendulum plate that swings in the water chamber, and is 180 ° at a distance of ½ wavelength from the attachment position of the pendulum plate. This was achieved by firmly fixing the vertical plate with a sufficient area at the position where the phase was delayed and the horizontal plate fixed to the lower surface. This is a very simple structure that only fixes the plate. Therefore, no conventional expensive dampers that limit movement are used.
本発明によれば、浮体に水室を設けて、水室内波浪で発電するので、水室の形状・寸法の選択によって振動パラメータを操作し、浮体揺動を逆位相の波力により効果的に制御することが可能である。振り子式波力発電装置や水柱振動式波力発電装置はこの形式なので、浮体揺動制御に本発明の方式を採用すると、発電単価低減のためには大きな効果がある。従来は7割のコストを占めた防波堤やケーソンの海洋土木建設コストが不要であり、波力発電装置全体の建設コストの大幅な低減が可能となる。次いで浮体波力発電方式の揺動による効率低下問題が、極めて簡便な手段により効果的に解決できるに止まらず、浮体揺動をもたらしていた波力を積極的に発電出力向上に活用し、発電出力の大幅な増大が得られる。更には、従来の水柱振動式波力発電装置で必要であった、多点緊張係留方式は不要であり、緩い一点係留方式で十分なので、係留費用も大幅に少なくなる。この結果、上記各効果が相乗的に働いて、実用化に堪える効果的な発電単価低減を可能とする。 According to the present invention, the floating body is provided with a water chamber, and power is generated by waves in the water chamber. Therefore, the vibration parameters are manipulated by selecting the shape and size of the water chamber, and the floating body is effectively swung by an anti-phase wave force. It is possible to control. Since the pendulum type wave power generation device and the water column vibration type wave power generation device are of this type, adopting the method of the present invention for floating body swing control has a great effect on reducing the unit price of power generation. Conventionally, the construction cost of breakwaters and caisson offshore civil engineering, which accounted for 70% of the cost, is unnecessary, and the construction cost of the entire wave power generator can be greatly reduced. Next, the problem of efficiency reduction due to swinging of the floating wave power generation system can not only be solved effectively by extremely simple means, but the wave power that has caused floating body swinging is actively utilized to improve the power generation output. A significant increase in output is obtained. Furthermore, the multi-point tension mooring method required in the conventional water column vibration type wave power generation apparatus is unnecessary, and the loose one-point mooring method is sufficient, so the mooring cost is greatly reduced. As a result, the above-mentioned effects work synergistically to enable an effective reduction in unit price of power generation that can withstand practical use.
又、本発明の浮体型波力発電装置は設置場所を変更できる効果がある。状況により設置場所を選択し、移動すれば、効果的な波力発電装置の運用が可能となり、台風が襲来する場合は安全な場所に避難できる。加えて、小型化や高出力化が可能なので、海洋深層水の汲み上げ、養殖用水域の水循環、水素製造や冷房用エコアイスの製氷用洋上プラントなどの広域利用に供することができる。本発明の浮体型波力発電装置を曳航可能な、母船となる作業船としての洋上プラントに対して、発電した略全量の電力を供給できるようにすれば、マイティホエールで問題になっている、地上への電力の送電手段が困難な問題も回避可能である。加えて、本発明では1点係留方式なので、波の向きが変化しても自然に対応可能である。従って風向き変化による効率低下は無くなる効果がある。 In addition, the floating wave power generation device of the present invention has an effect that the installation location can be changed. If the installation location is selected and moved depending on the situation, the effective wave power generation device can be operated, and if a typhoon strikes, it can be evacuated to a safe location. In addition, since it is possible to reduce the size and increase the output, it can be used for wide-area applications such as pumping deep ocean water, water circulation in aquaculture water areas, offshore plant for ice production for hydrogen production and eco-ice for cooling. If it is possible to tow the floating-type wave power generation device of the present invention, an offshore plant as a work ship serving as a mother ship, if it is possible to supply almost the total amount of power generated, it has become a problem with mighty whales, It is also possible to avoid the problem that power transmission means to the ground is difficult. In addition, since the present invention is a one-point mooring system, it can naturally cope with changes in the direction of waves. Therefore, there is an effect that the efficiency reduction due to the change in wind direction is eliminated.
本発明を実施するための最良の形態は、図1で示した海上の波の運動形態の位相による変化を踏まえた、合理的な形態でなければ前記効果は期待できない。従って、最初に図1により波面の運動ベクトル変化による位相毎の運動形態の説明から始める。図1の▲1▼から▲5▼の位相線図は、海底1に対して左手から右方向に進行する正弦波状の波の、1/4周期毎の波面の変化を示しており、同一地点の波面は90°毎の位相変化を示している。▲1▼の位相線図の左端に示したA点は、▲2▼、▲3▼、▲4▼、▲5▼の各線図上において1/4波長の距離だけ海面を伝播し、▲5▼の位相線図の右端に到る波動が生じている。▲1▼の位相線図から▲5▼の位相線図までの波動は、丁度1波長に相当している。波動理論では、この間に水面に浮遊する物体が1波長距離だけ移動するのではなく、略円運動を繰り返す海水分子は、上流側から下流側に時間的な遅れを伴いながら円運動を伝播するために、見かけ上波面が下流側に移動するように波動が伝播している。本発明の波力発電装置が設置される海面は、水深10m程度の浅い海域を予定しているが、その場合は海面の水分子の運動は上下方向につぶれた楕円運動になっている。本発明の振り子設置予定位置は、破線で示すように▲2▼の位相線図のA点に相当する位置であり、垂直板の設置予定位置は、▲4▼の位相線図のA点に相当する位置である。この両位置における波面の運動ベクトルを楕円に沿う曲線で表している。▲1▼の位相線図の時は、振り子予定位置では波は頂点となり、右向きの大きな運動ベクトルで波の動きと波力を表現でき、垂直板の予定位置では谷底となる左向きの大きな運動ベクトルで波力を表現できる。この両者は波の位相が180°ずれていることになり、逆向き方向の波力が作用する。更に1/4周期経過後の▲2▼の位相線図の状態では、振り子予定位置のA点には下向きの矢印方向の波力となり、垂直板予定位置では図示の上向きの矢印方向の波力となる。更に1/4周期後の2/4周期時点である▲3▼の位相線図の時は、▲1▼の位相線図状態とは対称的に、振り子予定位置と垂直板予定位置は波の谷底位置と波の頂上位置になっており、波力も▲1▼の位相線図の時と逆方向となっている。更に1/4周期経過後の3/4周期時点では、▲4▼の位相線図で示したように、振り子位置では波力は上向きだがA点の垂直板位置では下向きである。そして更に1/4周期後の▲5▼の位相線図時点では、最初の▲1▼の位相線図に示す状態に復帰し、同様にして波の運動が周期的に繰り返される。 In the best mode for carrying out the present invention, the above-described effect cannot be expected unless it is a rational form based on the change of the wave motion form on the sea due to the phase shown in FIG. Therefore, first, the explanation will be given with reference to FIG. 1 for explaining the motion form for each phase by the motion vector change of the wavefront. The phase diagrams from (1) to (5) in FIG. 1 show the change in the wavefront of each quarter cycle of a sine wave traveling from the left hand to the right with respect to the
図2において▲1▼から▲5▼の位相図で示すのは、本発明の波力発電装置内部の水面変化の状態であり、位相毎に異なる変化を示す水面は図1同様に線図で表現している。この図2では、図1に示した位相線図とは異なり、振り子が設置される水室内部や垂直板後方では、周囲の波とは必ずしも同一ではなく、部分的に異なる水面変動を伴っている。この両者の違いは、同一位相を示している▲1▼から▲5▼の同一番号の位相図を比較すれば、明暸に理解できる。特に水室内部の奥の方の、振り子と水室とで囲まれて周囲の波から独立した閉鎖水室では、振り子の揺動に伴う定常波が発生し、水面も略一定の振動を繰り返している。 In FIG. 2, the phase diagrams from (1) to (5) show the state of the water surface change inside the wave power generation device of the present invention. expressing. In FIG. 2, unlike the phase diagram shown in FIG. 1, the surrounding waves are not necessarily the same in the interior of the water chamber where the pendulum is installed or the rear of the vertical plate, but with partially different water surface fluctuations. Yes. The difference between the two can be clearly understood by comparing the phase diagrams with the same numbers (1) to (5) indicating the same phase. Especially in a closed water chamber that is surrounded by a pendulum and a water chamber at the back of the water chamber and independent of the surrounding waves, a standing wave is generated due to the swinging of the pendulum, and the water surface repeats a substantially constant vibration. Yes.
図2の▲1▼の位相図において、本発明の浮体型波力発電装置の基本構成を説明する。海底1に係留ロープ3で係留されている、浮体型波力発電装置の本体を構成する船体2は、左側に開口した水室4を有し、水室4内部で揺動可能に船体2の上部に軸攴された振り子板6が設けられている。水室4の底部には底板11が設けられ、水室4の後方に設けられる閉鎖水室10は、振り子板6と後壁5で囲まれて略閉鎖された水室を構成している。前記の振り子板6の揺動による定常波が生じているのは、この閉鎖水室10の内部である。本発明における最も特徴的な垂直板8と水平板9とは、振り子板6の1/2波長後方の、位相差では180゜の差が生ずる位置に連結板7により船体2にしっかりと固定されている。波力を吸収し、これを電気動力に変換するために、油圧式の装置により振り子運動を一方向の回転運動に変換し、発電機を回転させているが、その技術的な詳細は前記の文献を参照されたい。船体2の浮力は適度な厚みを有する側板でもたらされるが、詳細は後述する。 The basic configuration of the floating wave power generation device of the present invention will be described with reference to the phase diagram (1) in FIG. The
図2の各位相図における波面の変化について説明する。最初に振り子板6の影響を説明すると、左手側から水室4内部に水流が向かう時、振り子板6の面上で水流が減速し、圧力が上昇している。これは水位の上昇を招くが、振り子板6が水流の速度とあまり変らない速度で揺動すれば、水位上昇も僅かである。逆に、水流が振り子板6から遠退く方向に移動する時、振り子板6の面上で水流が加速し、水圧が低下している。これによって水位の低下をきたすが、振り子板6との相対的な速度が低下すれば、前記同様に水位の変化も少なくなる。閉鎖水室10内部では、波が定常波運動をしている結果、振り子板6が右方向に向かって揺動している時は、閉鎖水室10の体積が狭められるのに連動して水面上昇が起こり、逆方向の左方向に向かって揺動している時は、閉鎖水室10の体積が膨張するのに連動して水面降下が生じている。これらの各水面の運動により、振り子板6を軸支する軸には、交互に反時計回りと時計回り方向の回転モーメントMが発生している。▲1▼の位相図では、振り子板6は垂直下方に向き、右方向へ向かって揺動運動している最中の状態であるが、水室4内部に導入された波は振り子板6の位置で頂点を極める一方で、閉鎖水室10の水面はこれから振り子板6の揺動によって上昇しようとしており、低い方の水位である。1/4周期経過後の▲2▼の位相図で示す状態では、振り子板6は最も右側の位置迄揺動し、これから左方向への方向転換をしようとする瞬間である。方向転換のためには大きな時計回り方向のモーメントを必要としているが、閉鎖水室10の水面は最も高くなり、水室4の水面は低くなっており、特に振り子板6附近の水面はこれから急速に下に向かって移動しようとしている。従って両水室間の水位の差が大きくなろうとしている。更に1/4周期経過後の▲3▼の位相図の状態になると、振り子板6は垂直下方に向き、最大速度で左方向に向かう揺動運動の最中であり、水室4の振り子板6附近の水面は最低の谷底であるが、閉鎖水室10の水面は未だ中ぐらいの高さで、更に水面を低下させようとしている。更に1/4周期経過後の▲4▼の位相図の状態は、振り子板6が最も左側の位置に達して、今度は右方向に向かう方向転換をしようとしている瞬間である。左方向から開口した水室4内部に流入しようとする海水は、振り子板6の方向転換時点では振り子板6の速度が零となる結果、振り子板6に沿って水位が上昇し、右向きの回転モーメントを大きくしている。一方で閉鎖水室10内部の水面は最低レベルであり、両水室の水面差が大きな右向き反時計回りのモーメントを生じている。これによって振り子板6が再び右方向に向かう揺動運動を開始して、更に1/4周期後の▲5▼の位相図の状態となると、前記の▲1▼の位相図状態に戻り、同様の運動を継続する。 The change of the wavefront in each phase diagram of FIG. 2 will be described. First, the influence of the
前記で説明した振り子板6に生ずる波力を発電電力に変換するには、モーメントMの反力を船体2に加えなければならない。地上に固定する装置の場合は、地面の圧力がこの反力を受持っていることになるが、海上に浮かんだ浮体式波力発電装置では、この発電に必要な反力を合理的に生み出す工夫が必要であり、本発明は、波の性質を上手に利用することで、高効率波力発電を可能としている。即ち、図2における▲1▼の位相図において、振り子板6は波の頂上の右向きの波力を受けているが、1/2波長だけ離れた垂直板8の位置は、180°位相遅れの谷底となった波の左向きの波力を受ける状態である。垂直板8の左側の海水は、谷底となる波の位相では迅速に左方向に流れて水面の下降を実現しているが、垂直板8の右側の海水は、垂直板8に妨げられて左方向への移動が出来ず、水圧を上げて水面も上昇している。この結果、振り子板6が波力により受ける右向きの力以上の、大きな左向き方向の力を垂直板8は波力から受けているものと考えられる。垂直板8に大きな力が加われば、発電に利用できる波力を積極的に増強していると考えられる。従って垂直板8の面積は十分に大きな面積とする方が有利であると考えられる。次いで▲2▼の位相図の状態では、時計回り方向のモーメントMを受けて振り子板6は左方向に向かう方向転換を行うが、垂直板8の波面は上昇流により上向きの波力を受け、垂直板8の底部に固定された水平板9が、波力により船体2に反時計回り方向のモーメントを加える。更に1/4周期経過後の▲3▼の位相図の状態では、振り子板6は垂直方向になり左方向に向かう運動の真っ最中であり、時計回り方向のモーメントを受けるが、ここから1/2波長離れた180°位相遅れの垂直板8は、波の頂上に位置して右向きの波力を受けている。ここでも垂直板8は波面の右向き運動を阻止する働きをしており、その結果左側海面は周囲より上昇し、右側海面は周囲よりも低い海面になっている。この場合も、垂直板8が大きな力を船体2に加えると、波力から受ける発電エネルギーを高める効果が有ると考えられる。更に1/4周期だけ進行し▲4▼の位相図の状態になると、振り子板6は左向きから右向きへの方向転換を行う時であり、ここから180°位相遅れの垂直板8の位置では、水平板9が下向きの波力を受けている。振り子板6が受ける反時計回りのモーメントMに対抗して、水平板9は時計回りのモーメントを船体2に与えている。更に1/4周期が経過した▲5▼の位相図の状態になると、最初の▲1▼の位相図の状態に戻り、順次これらの循環を繰り返す。 In order to convert the wave force generated in the
垂直板8とこれに固定された水平板9の作用について述べてきた。これらは船体2のサージモーションとピッチングモーションに関与している。即ち、垂直板8は船体2の前後方向の揺動となるサージモーションを効果的に防止し、水平板9はピッチングモーション防止に大きな貢献をしている。浮体揺動に関するもう一つの有害な船体の動きは、垂直方向に上下動するヒーブモーションであるが、この最後のヒーブモーション防止につき以下に説明を加える。図2の▲1▼から▲4▼の各位相図において、水室4の内部にある海水は、底板11に対して垂直圧力となる水圧を加えている。この水圧は船体2に対して垂直荷重となっている。従って波の頂上が水室4の内部に深く侵入してくると、この垂直荷重も最大となり、同時に船体2に加わる浮力の最大値とほぼ同期して、垂直荷重と浮力とは相互に打ち消し合う作用が働くことになる。このための条件としては、水室4の幅寸法と船体の両側の側板の幅寸法とが整合された寸法であることが必要であるが、設計上の寸法の最適化で難なくこのヒーブモーション防止手段を得ることが可能である。因に模型実験装置では錘を船体内部に導入して最適調整を行っている。従ってこのヒーブモーション対策も確実に実現できる。 The operation of the
最後に図3により本発明の浮体型波力発電装置の船体2の構造を、1/25模型の斜視図にて示し、説明を加える。この船体2の横幅は40cm、長さは80cm、高さは37cmとしている。水室4の開口は左端に開かれており、水室内部側には徐々に横幅を狭めて22cm一定幅の、後壁5までの奥行きが50cmの水室を構成し、これを振り子板6で開放側の水室4と、閉鎖水室10とに別けている。船体2は底板11と両側の側板12、12および後壁5を有するが、船体2に必要な浮力を与えるのはこの側板12の厚みである。1/25模型ではこの厚み寸法は9cmとしている。本発明装置の特徴的な構成要素である垂直板8とこれに固定された水平板9とは、連結板7、7により船体2にしっかり固定されている。この垂直板8の横幅は42cmであり、高さは船体2と同じ37cmである。振り子板6の取付位置から垂直板8までの距離は95cmである。この連結板7は波の向きが変化した時は、波力を受けて水室4の開口部を波の正面に向かわせる働きが期待できる。 Finally, the structure of the
この図3の1/25模型を使用して水槽に波長1.9mの規則波を発生させて模型実験を行った。実験では振り子にダンパーを取り付けて、振り子の揺動運動における負荷条件を変えてエネルギー取得効率変化を測定した。従来のケーソン型振り子式波力発電装置でも、振り子の揺動運動の固有振動数と、負荷の最適化によるインピーダンスマッチングを図ることにより最高の効率化が図れたが、今回の実験では、実験装置の制約から最適条件からかなり外れた条件で負荷を変えながら行った。そのデータは、ケーソン型の効率を上回り、同等以上と評価できる結果が得られた。船体のヒーブ、サージ、及びピッチの各モーションも観測したが、いずれのモーションも小さく、かつ振り子位置の波に対して180°程度の位相遅れの微小モーションであることが確認できた。この時のエネルギー変換効率65〜86%は正にチャンピオンデータである。インピーダンスマッチングの最適化が図られれば、更に良好なデータが得られると考えられる。 Using the 1/25 model shown in FIG. 3, a model wave was generated by generating a regular wave having a wavelength of 1.9 m in a water tank. In the experiment, a damper was attached to the pendulum, and the change in energy acquisition efficiency was measured by changing the load condition in the swing motion of the pendulum. Even with the conventional caisson-type pendulum wave power generator, the highest frequency efficiency was achieved by impedance matching by optimizing the natural frequency of the swinging motion of the pendulum and the load. The load was changed under conditions that deviated from the optimum conditions. The data exceeded the caisson-type efficiency, and the results were evaluated as equal or better. We also observed heave, surge, and pitch motions of the hull, but all the motions were small and confirmed to be minute motions with a phase lag of about 180 ° with respect to the wave at the pendulum position. The energy conversion efficiency 65 to 86% at this time is exactly champion data. It is considered that better data can be obtained if the impedance matching is optimized.
尚、本発明の閉鎖水室の寸法は、従来のケーソン型波力発電における定常波の理論的寸法よりもかなり短めの寸法にしている。海上の波の1/4波長相当寸法の63%程度である。その第一の理由は、水深が海上の波に比較して浅くなる水室では波の波長も短くなる性質が有るからである。第二の理由は、これ迄の経験により、規則波という実験上の波ではなく、波の波長と周期が不定である自然の波では、波長が長くなる波に対する効率低下は小さいものの、波長が短くなる波に対する効率の低下が著しく、全体の効率低下防止のためには、短い波長の波に合わせた装置にしておけば良いと考えられるからである。この結果、鉄板を溶接して建造する予定の船体の長さをかなり短縮でき、この点でも低コスト化には有利になっている。 The size of the closed water chamber of the present invention is considerably shorter than the theoretical size of the standing wave in the conventional caisson type wave power generation. It is about 63% of the dimension corresponding to a quarter wavelength of waves at sea. The first reason is that in the water chamber where the water depth is shallower than the wave at sea, the wavelength of the wave is shortened. The second reason is that, based on experience so far, it is not an experimental wave called a regular wave, but a natural wave with an indefinite wave wavelength and period has a small decrease in efficiency for a wave with a long wavelength, but the wavelength is small. This is because the efficiency is significantly reduced with respect to a short wave, and it is considered that an apparatus adapted to a wave with a short wavelength may be used in order to prevent overall efficiency reduction. As a result, the length of the hull planned to be constructed by welding iron plates can be considerably shortened, which is advantageous for cost reduction.
規則波を利用する水槽内の実験データに対して、自然の波を対象とする実際の波力発電装置での効率の低下率は、経験によれば65%程度である。今回のデータを基にした実機によるエネルギー取得効率は、概ね55%程度と推定できる。 According to experience, the rate of decrease in the efficiency of an actual wave power generator targeting natural waves is about 65% with respect to experimental data in a water tank using regular waves. The energy acquisition efficiency of the actual machine based on this data can be estimated to be approximately 55%.
最後に発明を実施するための最良の実施例としての、実用機の設計寸法外の仕様を記述する。対象海面の水深:10m、波高:2m、波周期:6秒、波長:48m、水室開口幅10m当りの入射波のパワー:250kw(規則波の場合)、発電機容量:150kw、総重量:140トン Finally, specifications outside the design dimensions of the practical machine will be described as the best embodiment for carrying out the invention. Water depth of the target sea surface: 10 m, wave height: 2 m, wave period: 6 seconds, wavelength: 48 m, incident wave power per 10 m of water chamber opening width: 250 kW (in the case of regular waves), generator capacity: 150 kW, total weight: 140 tons
1 海底
2 本発明装置の波力発電装置を備えた浮体としての船体
3 船体の係留ロープ
4 海上の波を受け入れる開口を有する水室
5 水室の後壁
6 振り子板
7 垂直板を船体に固定する連結板
8 垂直板
9 垂直板の下部に固定された水平板
10 閉鎖水室
11 底板
12 側板
M 振り子板に加わる回転モーメント
T 波の周期DESCRIPTION OF
Claims (4)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2003338775A JP4448972B2 (en) | 2003-08-22 | 2003-08-22 | Floating wave power generator |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2003338775A JP4448972B2 (en) | 2003-08-22 | 2003-08-22 | Floating wave power generator |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2005069212A true JP2005069212A (en) | 2005-03-17 |
| JP4448972B2 JP4448972B2 (en) | 2010-04-14 |
Family
ID=34419125
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2003338775A Expired - Fee Related JP4448972B2 (en) | 2003-08-22 | 2003-08-22 | Floating wave power generator |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP4448972B2 (en) |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2012164604A1 (en) * | 2011-05-30 | 2012-12-06 | Fujimura Noriaki | Wave power generation method |
| US8525360B2 (en) | 2010-05-27 | 2013-09-03 | Linear Circuit Inc. | Apparatus for generating electric power |
| JP2014503424A (en) * | 2011-01-25 | 2014-02-13 | イデオル | Annular floating body |
| EP3901449A1 (en) * | 2014-12-20 | 2021-10-27 | AW-Energy Oy | Method for manufacturing a wave energy conversion apparatus |
| US11455817B2 (en) | 2016-07-20 | 2022-09-27 | Cypress Semiconductor Corporation | Non-finger object rejection for fingerprint sensors |
-
2003
- 2003-08-22 JP JP2003338775A patent/JP4448972B2/en not_active Expired - Fee Related
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8525360B2 (en) | 2010-05-27 | 2013-09-03 | Linear Circuit Inc. | Apparatus for generating electric power |
| JP2014503424A (en) * | 2011-01-25 | 2014-02-13 | イデオル | Annular floating body |
| WO2012164604A1 (en) * | 2011-05-30 | 2012-12-06 | Fujimura Noriaki | Wave power generation method |
| EP3901449A1 (en) * | 2014-12-20 | 2021-10-27 | AW-Energy Oy | Method for manufacturing a wave energy conversion apparatus |
| US11455817B2 (en) | 2016-07-20 | 2022-09-27 | Cypress Semiconductor Corporation | Non-finger object rejection for fingerprint sensors |
Also Published As
| Publication number | Publication date |
|---|---|
| JP4448972B2 (en) | 2010-04-14 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN107701359B (en) | A kind of floating breakwater and method for taking into account interior oscillating water column wave energy conversion function | |
| EP1915528B1 (en) | Free floating wave energy converter | |
| CN108411846B (en) | A floating breakwater and method for taking into account the function of hydraulic turbine wave energy conversion | |
| WO2008063086A9 (en) | Wave energy converter | |
| US9062649B2 (en) | Device for conversion of mechanical energy from sea waves to electric energy | |
| CN113135272B (en) | A floating offshore platform module and offshore platform combining wind, solar and wave power generation | |
| CN102187087B (en) | Platform for capturing wave energy | |
| CN107143460A (en) | The semisubmersible platform type wave energy generating set of quenched damping control | |
| CN107288807A (en) | Many buoyant raft wave energy generating sets with vibration suppressing plate | |
| JP6122550B2 (en) | Multi-function mounting device for tidal current generator and method of using the same | |
| CN104005903B (en) | Vertical-axis wave-activated generator | |
| CN107044379A (en) | A kind of marine self-propulsion type green energy resource electric power supply apparatus | |
| CN102678429A (en) | Floating lighthouse type natural-vibration-frequency-adjustable wave-energy directly-driven power generation device | |
| KR101548433B1 (en) | Oscillating Water Column Type Wave Energy Harvest | |
| CN110439734A (en) | Oscillating floater wave energy power generation facility with biasing inertia body | |
| JP2018505345A (en) | Hydroelectric power generation equipment utilizing the high and low tides of seawater | |
| JP4448972B2 (en) | Floating wave power generator | |
| CN104696150A (en) | Floating type wave energy extraction device based on original overwater structures | |
| CN119778139A (en) | A nearshore wave energy focusing-wave-induced current combined power generation and wave-absorbing device | |
| CN106382183A (en) | Wave energy power generation device | |
| EP3423704B1 (en) | Wave power device | |
| KR101492768B1 (en) | Floating wave power generation device using the cross flow turbine | |
| Zhang et al. | Energy conversion performance of a triplet BBDB device model under regular wave conditions | |
| CN205841081U (en) | A kind of structure having breakwater function floating wave energy power station concurrently | |
| CN210769129U (en) | An oscillating water column wave energy conversion device with a built-in point absorption device |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060816 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20091222 |
|
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100107 |
|
| R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160205 Year of fee payment: 6 |
|
| LAPS | Cancellation because of no payment of annual fees |