[go: up one dir, main page]

JP2005001917A - Mold press-forming apparatus and method of manufacturing optical device - Google Patents

Mold press-forming apparatus and method of manufacturing optical device Download PDF

Info

Publication number
JP2005001917A
JP2005001917A JP2003165465A JP2003165465A JP2005001917A JP 2005001917 A JP2005001917 A JP 2005001917A JP 2003165465 A JP2003165465 A JP 2003165465A JP 2003165465 A JP2003165465 A JP 2003165465A JP 2005001917 A JP2005001917 A JP 2005001917A
Authority
JP
Japan
Prior art keywords
mold
support member
temperature
molds
optical element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003165465A
Other languages
Japanese (ja)
Inventor
Hiroyuki Sakai
裕之 坂井
Tadayuki Fujimoto
忠幸 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2003165465A priority Critical patent/JP2005001917A/en
Priority to CNB2004100484171A priority patent/CN1318330C/en
Publication of JP2005001917A publication Critical patent/JP2005001917A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/12Cooling, heating, or insulating the plunger, the mould, or the glass-pressing machine; cooling or heating of the glass in the mould
    • C03B11/125Cooling
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/12Cooling, heating, or insulating the plunger, the mould, or the glass-pressing machine; cooling or heating of the glass in the mould
    • C03B11/122Heating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/16Gearing or controlling mechanisms specially adapted for glass presses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/80Simultaneous pressing of multiple products; Multiple parallel moulds

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the eccentric precision of an optical device by preventing the thermal deformation of a supporting member supporting a plurality of mother dies. <P>SOLUTION: The mold press forming apparatus has top and bottom forming dies opposed to each other and a heating means for heating the top and bottom forming dies. The apparatus is composed of a plurality of pairs of top and bottom mother dies 102a, 102b, 104a and 104b provided with at least the pair of top and bottom forming dies, a plurality of pairs of the top and the bottom press shafts 110 and 112 respectively supporting a plurality of the top and bottom mother dies, top and bottom supporting members 114 and 116 for supporting the plurality of pairs of the top and bottom press shafts, a driving means for moving at least one of the top and bottom supporting members to be relatively close to or apart from the top and bottom forming dies each other and a temperature controlling means by a cooling water passages 116a and 116b provided at least one of the top and bottom supporting members. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、光学素子等の製造工程において、成形素材(予め予備成形したプリフォームなど)を加熱軟化させ、成形型でプレス成形して光学素子などを成形するためのモールドプレス成形装置及び光学素子の製造方法に関する。
【0002】
【従来の技術】
加熱軟化した状態の成形素材、例えばガラス素材を、所定形状に精密加工され、所定温度に加熱された成形型中でプレス成形し、その成形面をガラス素材に転写すると、研削、研磨などの後処理を行わなくても面精度、形状精度の高い光学素子を得ることができる。
この場合、光学素子(例えばレンズ)を効率よく生産するため母型上に複数の成形型を配設し、一回のプレス動作で複数のレンズを成形する装置が知られている。
【0003】
このような成形装置を用いて、一度に複数の成形素材をプレス成形するに際し、例えば成形母型を、誘導加熱コイルなどの加熱手段によって加熱すると、母型の上下面に温度差が生じ、母型に、図4に示すような反りを生じることがある。これは、母型を支持するプレス軸などから熱が逸散するために、母型全体の温度を均一にすることが困難なためである。
特に、母型上に複数の成形型を配置し、複数同時プレスを行う場合には、母型の反りによる影響が大きい。このため、母型上の成形型の位置によって、成形される光学素子の肉厚が変動したり、または上下の同軸性が損なわれて、偏心精度(ティルト)が悪化する。この問題は、母型上に配置された成形型の数が多いほど、あるいは、成形する光学素子の径が大きいほど、深刻である。
【0004】
そこで、複数同時プレスを行うにあたり、母型の水平方向の大きさを一定以下にするため、母型を複数にし、かつ、その複数の母型を複数のプレス軸によって単一支持部材に固定し、それを一本の主軸によって駆動する成形装置を本出願人が提案している(例えば、特許文献1)。この成形装置によれば、同時にプレスできる光学素子の数を維持したまま、反りの影響を小さくすることができる。
【0005】
【特許文献1】
特開2003−54967号
【0006】
【発明が解決しようとする課題】
このように、特許文献1に記載の成形装置によれば、ある程度偏心精度の高いプレス成形を行なうことが可能である。しかしながら、光学素子に要求される精度は益々高くなり、例えば、光ピックアップ用の対物レンズなどにおいては、記録密度の増大とともに、偏心精度の許容範囲もより一層狭くなり、必ずしも上記の成形装置で得られる製品の偏心精度では十分でない場合がある。
【0007】
そこで、本発明者らが、偏心精度をさらに向上させるため、偏心精度に悪影響を与えている要因を追求したところ、複数のプレス軸を支持する支持部材にも熱変形がわずかに生じており、この現象が、レンズの肉厚精度及び偏心精度に悪影響を与えていることを見出した。
すなわち、プレス成形装置は、加熱手段によって昇温する前には、図5(a)に示すように、上母型102a,102bと下母型104a,104bとの対向面が水平状態にあり、上下成形型の軸が一致した位置関係になっている。しかし、プレス成形に適した温度まで加熱することによって母型が高温(成形素材に依存し、600℃以上になることもある)になると、上下支持部材114,116は熱伝導及び熱輻射によって熱変形し、図5(b)に示すように、複数の母型を支持する複数のプレス軸が主軸に対してわずかに傾斜し、プレス成形したレンズの上下面の軸が傾いてしまう。これが、レンズの肉厚精度及び偏心精度を悪化させる原因となっていることが見出された。
したがって、プレス軸の傾きを抑えることにより、さらに肉厚精度及び偏心精度を向上できることが判明した。
【0008】
本発明は、上記事情にかんがみてなされたものであり、偏心精度の公差が極めて小さい光学素子であっても、プレス成形によって安定生産でき、また、サイクルタイムの短縮された非等温プレスを用いても、同時に複数の素子が、高精度の肉厚で安定生産できるモールドプレス成形装置及び光学素子の製造方法の提供を目的とする。
【0009】
【課題を解決するための手段】
上記目的を達成するため、本発明のモールドプレス成形装置は、対向する上下成形型と、この上下成形型を加熱する加熱手段とを有するモールドプレス成形装置において、それぞれが、少なくとも一対の前記上下成形型を備えた複数対の上下母型と、これら複数対の上下母型をそれぞれ支持する複数対の上下プレス軸と、これら複数対の上下プレス軸を支承する上下支持部材と、前記上下成形型が、相対的に接近及び離間するように前記上下支持部材の少なくとも一方を移動させる駆動手段と、前記上下支持部材の少なくとも一方に設けた調温手段とを、有する構成としてある。
【0010】
このような構成とすると、支持部材を調温して、支持部材の熱変形を防ぐことができ、これによって、支持部材の熱変形に起因する成形素子の偏心精度の低下を防止することができる。
【0011】
また、本発明は、前記調温手段を、前記支持部材の内部及び/又は外部に設けた構成としてある。
このような構成とすると、支持部材の内部及び/又は外部から、調温することができるので、支持部材の熱変形を効果的に防ぐことができる。特に、支持部材の内部を調温すると、支持部材の内外の温度差を小さくすることができ、好ましい。
【0012】
また、本発明は、前記調温手段を、冷却手段で構成してある。
このような構成とすると、支持部材の温度分布を短時間のうちに精度良く調整することができ、熱変形を効率よく防ぐことができる。
【0013】
また、本発明は、前記上下支持部材と前記上下母型との間の、少なくとも一方の間に、熱抵抗値が1K/W以上の熱抵抗体を介設した構成としてある。
このような構成とすると、母型から支持部材への熱伝達を抑制することができるので、支持部材に対する調温と相まって、より一層、成形素子の偏心精度の向上を図ることができる。
【0014】
上記目的を達成するため、本発明の光学素子の製造方法は、モールドプレス成形装置を用い、型加熱工程、素材供給工程、及び加圧工程を含む方法で光学素子を製造するときに、前記各工程のうち、少なくとも型加熱工程において前記支持部材の調温を行う方法としている。
このように、少なくとも、母型が高熱に加熱される型加熱工程において、支持部材の調温を行うと、支持部材の熱変形を効果的に防ぐことができ、ひいては、光学素子の偏心精度の向上及び均一化を図ることができる。
【0015】
また、本発明は、前記調温によって、支持部材のプレス軸を支承する側の面の温度分布を5℃以下、好ましくは2℃以下に維持する方法としてある。
このように、支持部材のプレス軸を支承する側の面の温度分布を5℃以下、好ましくは2℃以下に維持すると、水平面上の中心軸付近に熱だまりが発生するのを抑制し支持部材の熱変形を確実に防止することができる。
【0016】
また、本発明は、加熱した複数の上下成形型に、この上下成形型よりも高温に加熱し軟化した成形素材をそれぞれ同時に供給し、かつ、前記上下成形型によって同時に加圧する方法としてある。
このようにすると、高精度かつ均一な光学素子を短時間のうちに製造することができる。
【0017】
【発明の実施の形態】
以下、本発明の実施形態について、図面を参照しながら説明する。
なお、以下では、本発明をガラス光学素子の製造に適用した実施形態にそって説明するが、本発明のモールドプレス成形装置は、この実施形態に限られるものではなく、樹脂製光学素子の製造、あるいは、ガラス及び樹脂製の光学素子以外の部品製造にも適用できる。
【0018】
図1は、本発明の一実施の形態に係るプレス成形装置の要部構造を示す一部断面側面図であり、図2は下型の概略平面図である。このプレス成形装置は、ガラス素材を予め扁平な球形状に成形した被成形体としてのプリフォームを用いてレンズを成形するものである。図1に示すように、このプレス成形装置は、上型102及び下型104よりなる成形型セットを備えている。上型102及び下型104は、いずれも左右方向に長い長尺形状を有しており、その周囲には、それぞれ誘導加熱コイル122,124が設けられている。これら誘導加熱コイル122,124は、高周波誘導加熱により、上型102及び下型104をそれぞれ加熱するものである。
【0019】
上型102は、左右一対の母型である上母型102a,102bを有しており、下型104は、左右一対の母型である下母型104a,104bを有している。上母型102a,102bと下母型104a,104bは、鉛直方向において、互いに対向する複数(本実施形態では各3個)の上成形型105aと下成形型105bをそれぞれ備えている(図2参照)。
上下母型102a,102b,104a,104bの素材は、誘導加熱によって発熱し、耐熱性のある発熱体を用いている。この発熱体としては、熱膨張率が成形型105a,105bの素材と近いものを使用することが好ましく、例えば、タングステン合金、ニッケル合金などを用いることができる。
上母型102a,102bと下母型104a,104bの対向面には、上下成形型105a,105bを閉じるときの位置決めのために、ピンやスリーブなどの位置決め部材を設けることが好ましい。
【0020】
また、一列に配置された上下の成形型105a,105bには、例えば、炭化ケイ素、窒化ケイ素などのセラミック、あるいは超硬合金などを用いることができる。
なお、上下の成形型105a,105bの成形面は、成形する光学素子の形状に精密加工され、かつ離型性を高めるため離型膜を設けることが好ましい。離型膜としては、貴金属(Pt、Ir,Auなど)や、炭素を主成分とする膜が適用できる。
【0021】
上母型102a,102bの上面には、支持板106a,106bがそれぞれ固定されており、支持板106a,106bの上面には上プレス軸110a,110bがそれぞれ取り付けられている。上プレス軸110a,110bは、共通の支持部材114を介して、固定軸118に取り付けられている。一方、下母型104a,104bの下面には、支持板108a,108bがそれぞれ固定されており、支持板108a,108bの下面には下プレス軸112a,112bがそれぞれ取り付けられている。下プレス軸112a,112bは、共通の支持部材116を介して、駆動軸120に取り付けられている。駆動軸120は、ACサーボモータを備えた駆動装置により鉛直方向に直進駆動されるものであり、その軸心は、上型102及び下型104の各長手方向中心と一致している。駆動軸120が鉛直方向に移動すると、上型102と下型104との開閉が行われる。駆動軸120及び駆動装置などにより駆動手段を構成する。
固定軸118と駆動軸120の軸心は、上下母型の対向面に対する垂線と平行となっている。
なお、本実施形態では、上型を固定し、下型を上下動するようになっているが、下型を固定し、上型を上下動させるようにしてもよく、また、上下型を上下動させるようにしてもよい。
【0022】
上記のように、上母型102a,102bと下母型104a,104bは、上下支持板106a,106bを介して上下プレス軸110,112に固定されている。したがって、上下プレス軸110,112や上下支持板106a,106bとして、熱を伝達しにくい形状及び素材を選択することによって、支持部材への熱の波及を抑止することができる。また、上下プレス軸110,112や上下支持板106a,106bに熱抵抗体を用いると、より一層熱伝達を抑止することができて好ましい。ここで、熱抵抗体とは、熱抵抗が1K/W(ケルビン/ワット)以上のものをいう。例えば、熱伝導率の小さい材料を用いたり、中空にするなどして形状に工夫を加えることによって、上記の熱抵抗体を得ることができる。たとえば、Si、ZrO等の素材を用いた、中空のプレス軸を用いると、効果的に支持部材への熱の波及を抑止することができ、支持部材の熱変形を抑えられる。ここで、熱抵抗は
R=d/(A・K)で表すことができる。
R:熱抵抗、d:距離(長さ)、A:面積、 K:熱伝導率
【0023】
図2は、下型104(下母型104a,104b)及びその周囲の誘導加熱コイル124を上方から見た平面図である。上型102(上母型102a,102b)の平面形状も下型104と同様となっているので、図中、上型に対応する符号をかっこ内に付してある。
誘導加熱コイル124は、下母型104a,104bの両方を囲むよう、これら下母型104a,104bの外周に倣った形状に巻回されている。なお、上母型102a,102bの周囲に設けられた誘導加熱コイル122も、誘導加熱コイル124と同様の平面形状を有している。
【0024】
上下支持部材114,116は、耐熱性、加工性に富み、機械的強度に優れた材質のものを用いると好適であり、線膨張係数は、18×10−6/℃以下が好ましい。素材としてはステンレス鋼などを用いることができる。
また、上下支持部材114,116のサイズは、複数のプレス軸を固定できる面積を有することが必要であるとともに、厚みは各プレス軸の位置する断面二次モーメントとヤング率から計算される支持部材撓み量が2μm以下となることが好ましい。
ここで、撓み量(δ)は、
δ=βWL/EI
(W:荷重、L:距離(ここでは2本のプレス軸間距離)、E:ヤング率、I:断面二次モーメント、β:たわみ係数)
【0025】
上下支持部材114,116には調温手段が設けてある。上下支持部材114,116の調温は、加熱によって高温になる上下母型102a,102b,104a,104bの熱が、プレス軸110a,110b,112a,112b、支持部材114,116、及び固定軸118,駆動軸120を伝達して逃げる際に生じる支持部材上下方向の不均一な温度分布を調整し、支持部材に不均一な熱膨張を生じないようにするためのものである。具体的には、上下支持部材114,116の外周及び/又は内部に冷却媒体を循環させて調温することができる。
【0026】
下部支持部材116に形成した調温手段の一例について、図1(b)及び図3を参照して説明する。
この調温手段は、下部支持部材116に固定した駆動軸120に外部から冷却水を導入する導水路121a及び外部に冷却水を戻す還水路121bと、下部支持部材116の内部に形成された水路116aと連水路116bとからなっている。下部支持部材116の内部に形成された水路116aは、支持部材116の上面側において蛇行して形成してあり、その一端が導水路121aと連通し、他端が還水路121bと連通している。
このようにすると、導水路121aから導水された一定温度の冷媒(例えば、冷却水)は、下部支持部材116のほぼ中央から水路116aに送り込まれ、まず、下部支持部材116の上面側左半分を蛇行して冷却した後、図中、左端部から連水路116bを介して右端部に送られ、続いて、下部支持部材116の上面側右半分を蛇行して冷却し、その後、下部支持部材116のほぼ中央部から、還水路121bを通って外部に戻される。
この場合、熱交換器を備えた冷却装置を用い、常に一定温度に保たれた水などの冷媒を、下部支持部材116に循環させることが好ましい。
【0027】
このよう調温手段を設けると、下部母型が加熱されても、下部支持部材116の温度が一定以上とならないようにして、支持部材の局所的な温度差を小さくすることができるので、下部支持部材116が変形したりすることがない。
なお、流体による調温以外に、ペルティエ素子等の電子的冷却装置を用いることもできる。
調温手段は、支持部材における温度分布のバランスをとるためのものであるので、加熱手段を利用したもの、あるいは、冷却手段と加熱手段を併設したものであってもよい。
さらに、調温手段は、下部支持部材116の外周に設けることもでき、例えば、下部支持部材116を巻回するような冷却水路を設けたり、あるいは、冷風を下部支持部材116の周囲から吹き付けるようにしたものであってもよい。
さらにまた、調温手段を下部支持部材116の内部及び外部に併設することも可能である。
これら調温手段は、上下の支持部材に併設しても、いずれか一方の支持部材のみに設けるようにしてもよく、上部支持部材114に調温手段を設けるときには、下部支持部材116の場合と同様の調温手段を設けることができる。
【0028】
このように、各母型をプレス軸によって支持し、複数のプレス軸を一つの支持部材で支持するモールドプレス成形装置においては、支持部材の熱変形を防ぐことによって、母型の熱変形によるレンズ肉厚の不揃い又は偏心精度の悪化を抑止する。さらに、支持部材は母型のように高温下におかれることがないため、熱変形による影響はないものとされていたが、本発明を適用すれば、さらなる偏心精度の向上が達成でき、光学性能のより高い成形素子(光学素子)を、より高い歩留りで安定生産できる。
【0029】
[ガラス光学素子の製造方法]
以上のような構成のガラス光学素子製造装置を用いて、本発明に係るガラス光学素子を製造する方法の実施形態について説明する。
(a)型加熱工程
上下母型を、高周波誘導加熱コイルによって所定温度に加熱する。連続成形の場合、前回の成形サイクルが終了した状態の上下成形型は、Tg付近またはそれ以下の温度に冷却されているため、プレス成形に適した温度まで加熱する必要がある。すなわち、上母型と下母型の周囲を巻回する誘導加熱コイルに電流を流し、上下母型を発熱させ、この熱伝導によって上下の各成形型を所定温度まで加熱する。
【0030】
上下母型の発熱体が発熱して昇温し、複数の成形型温度が上昇する。上下母型の温度設定値は、上下同一でもよく、温度差を設けたものであってもよい。例えば、成形する光学素子の形状や径によって、上母型より下母型を高温にしたり、上母型より下母型を低温にしたりする。上下母型の温度は、ガラスプリフォームの粘度で10〜1012ポアズ相当とすることができる。上下母型411a,411bに温度差をつける場合には、2〜15℃の範囲が好ましい。
【0031】
(b)素材供給工程
加熱された上型及び下型間に、搬送されたプリフォーム(ガラス素材)が供給され、下型上に配置される。ガラス素材の供給は、予め適切な重量の所定形状に予備成形されたガラス素材を用い、成形に適した粘度まで軟化したものを供給するか、あるいは、成形に適した温度よりも低温のガラス素材を上型及び下型間に供給し、成形型においてさらに加熱してもよい。
予め、型の設定温度よりも高温に加熱し、軟化した状態のガラス素材を供給(いわゆる非等温プレス)し、直ちに上下成形型を密着させてプレス成形する場合には、加熱された状態下において、対をなす上下成形型の同軸性が精密に保たれていることが必要であるので、本発明を実施すると好適である。非等温プレスは、成形サイクルタイムを短縮でき、生産効率の上で有利である。
このときのガラス素材の温度は、粘度で10ポアズ相当未満の温度とし、好ましくは10〜18ポアズ相当とする。
なお、軟化したガラス素材を搬送して下型上に配置するときに、ガラス素材が搬送部材に接触して、表面に欠陥が起きると、成形される光学素子の面形状に影響するため、軟化したガラス素材を気体により浮上させた状態で搬送し、下型上にガラス素材を落下させる治具を用いることが好ましい。
また、必要に応じて、供給するガラスプリフォームが落下した下成形型上の位置を成形面中央に修正するための部材(チャックなど)を上下母型の間に挿入したり、落下時のガラス素材をガイドするファンネルのような部材を挿入したりすることもできる。
【0032】
(c)加圧工程
上型及び下型とガラス素材がそれぞれ所定の温度範囲にあり、ガラス素材が加熱軟化した状態で、下母型を上昇させて加圧し、上下成形型の成形面を転写することによって、所定面形状をもったガラス光学素子を成形する。下型の上昇は、駆動手段(例えばサーボモータ)を作動させて行う。ガラス素材が加熱軟化した状態で供給される場合には、供給後直ちに加圧が行われる。
加圧のための下型の上昇ストロークは、予め、成形する光学素子の肉厚から設定された値であり、この後の冷却工程においてガラスが熱収縮する分を見込んで定めた量とする。加圧のスケジュールは、成形する光学素子の形状や大きさに応じて任意に設定することができ、初期加圧の後、荷重を開放したのち、二次加圧を行うなどの、複数回の加圧方法を採用することもできる。
【0033】
(d)冷却・離型工程
加圧を維持したまま、あるいは加圧を減じた状態で、成形されたガラス光学素子と成形型の密着を保ち、ガラスの粘度で1012ポアズ相当の温度になるまで冷却したのち、下成形型を下降させることで上下成形型を離間し、離型する。冷却速度は、40〜200℃/minが好ましい。離型温度は、1012.5〜1013.5ポアズ相当、あるいはそれ以下で行うことが好ましい。
【0034】
(e)取り出し工程
吸着部材を備えた取り出しアーム等により、離間した上下型の間から成形されたガラス光学素子を自動的に取り出す。
なお、本実施形態では、上型を固定し、下型を可動としたが、上型を可動とし下型を固定としてもよく、あるいは、上型と下型の両方を可動としてもよい。
【0035】
上記工程を繰り返すことにより、連続プレス成形を行う。
このうち、少なくとも、成形型を加熱する工程において、支持部材の調温を行う。好ましくは型加熱、素材供給、加圧のすべての工程において支持部材の調温を行う。この調温によって、支持部材の上下面の温度差を5℃以下、好ましくは2℃以下に維持する。また、支持部材の上面及び下面の面内温度差も同様の範囲内でとすることが好ましい。
なお、装置の熱サイクル中、降温、昇温のタイミングに応じて、冷媒の流量を調整してもよい。
【0036】
本発明の方法によって製造する光学素子は、例えば、径が2〜22mmの凹メニスカスレンズ、凸メニスカスレンズ、両凸レンズなどに適用できる。また、偏心精度の公差が極めて小さい(例えばティルトが2分以下)、光ピックアップ用対物レンズなどに、有効に適用できる。
【0037】
次に、本発明の成形装置と製造方法を用いてガラス光学素子の製造を行った実施例と、比較例の結果を示す。
[実施例1]
図1、図2に示す装置を用いて、ガラス素材をプレス成形した。ここでは、1本のプレス主軸に支持部材を設け、この支持部材上に2本のプレス軸を設けることにより2個の母型を用いてプレスを行う成形装置を作製した。各母型には3個の成形型をセットし、上下の各2個の母型に収められた上下各6個の成形型により、一度に6個のレンズを成形した。
ここで用いた上下支持部材には、本実施形態で説明した冷却水循環型の調温手段を用いた。そして、この調温手段によって、加熱、供給、加圧のすべての工程において調温を行った。
この成形機を用いて、ホウケイ酸塩ガラス(Tg515℃、Ts545℃)のガラスプリフォームを用い、径15mmの凹メニスカスレンズの成形を行った。上下成形型を590℃(ガラス粘度で108.1ポアズ相当)に加熱した後、625℃(10ポアズ相当)に加熱されたガラスプリフォームを、6個同時に落下供給し、下主軸を上方に駆動させることによって上下成形型を密着させ、加圧した。その後、冷却速度60℃/分で、Tg以下の温度になるまで冷却し、下主軸を下方に駆動させて型を開き、成形されたレンズを取り出した。
全工程を通じて、支持部材全体は30〜33℃の範囲に調温された。また、同時に成形された6個のレンズの肉厚差は下表に示すように、10μm以下であり、成形偏心ティルトも2分以下であり良好であった。
【表1】

Figure 2005001917
[比較例1]
実施例と同様の方法で、支持部材の調温を行わずに、6個のレンズを同時成形した。結果は、6個のレンズの肉厚差が最大70μmあり、また成形偏心ティルトは、5分以下だった。
【表2】
Figure 2005001917
【0038】
【発明の効果】
以上のように、本発明によれば、支持部材の調温を行うことによって支持部材の熱変形を防ぐことができるので、支持部材の変形に起因する肉厚精度及び偏心精度の悪化を防止することができる。
【図面の簡単な説明】
【図1】図1は、本発明の一実施形態にかかるモールドプレス成形装置の要部構造を示す一部断面側面図であり、(a)はプリフォームの供給状態を示し、(b)は加圧状態を示し、(c)は離型状態を示す。
【図2】図2は、図1における型の概略平面図である。
【図3】図3は、図1に示す支持部材の概略平面断面図である。
【図4】図4は、母型の熱変形(反り)を示す図である。
【図5】図5は、モールドプレス成形装置における支持部材が熱変形をしている状態の要部構造を示す側面図であり、(a)はプリフォームの供給状態を示し、(b)は加圧状態を示し、(c)は離型状態を示す。
【符号の説明】
102 上型
102a,102b 上母型
104 下型
104a,104b 下母型
105a 上成形型
105b 下成形型
106a 上支持板
106b 下支持板
110a,110b 上プレス軸
112a,112b 下プレス軸
114 上支持部材
116 下支持部材
116a 水路
116b 連水路
118 固定軸(主軸)
120 駆動軸(主軸)
121a 導水路
121b 還水路
122,124 高周波誘導コイル[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a mold press molding apparatus and an optical element for heating and softening a molding material (preliminarily preformed preform or the like) in a manufacturing process of an optical element or the like, and press molding with a molding die to mold the optical element or the like. It relates to the manufacturing method.
[0002]
[Prior art]
A molding material in a heat-softened state, for example, a glass material, is press-molded in a mold that is precisely processed into a predetermined shape and heated to a predetermined temperature, and the molding surface is transferred to the glass material. An optical element with high surface accuracy and shape accuracy can be obtained without processing.
In this case, in order to efficiently produce an optical element (for example, a lens), a device is known in which a plurality of molding dies are arranged on a mother die and a plurality of lenses are molded by a single press operation.
[0003]
When a plurality of molding materials are press-molded at once using such a molding apparatus, for example, if the molding die is heated by heating means such as an induction heating coil, a temperature difference is generated between the upper and lower surfaces of the mother die, and the mother The mold may be warped as shown in FIG. This is because it is difficult to make the temperature of the entire mother mold uniform because heat is dissipated from a press shaft or the like that supports the mother mold.
In particular, when a plurality of forming dies are arranged on the mother die and a plurality of simultaneous pressings are performed, the influence of the warp of the mother die is great. For this reason, the thickness of the optical element to be molded varies depending on the position of the mold on the mother die, or the upper and lower coaxiality is impaired, and the eccentricity accuracy (tilt) deteriorates. This problem is more serious as the number of molds arranged on the mother die is larger or the diameter of the optical element to be molded is larger.
[0004]
Therefore, when performing multiple simultaneous presses, in order to keep the size of the matrix in the horizontal direction below a certain level, the matrix is divided into a plurality of molds, and the plurality of molds are fixed to a single support member by a plurality of press shafts. The applicant has proposed a molding apparatus that drives it by a single spindle (for example, Patent Document 1). According to this molding apparatus, the influence of warpage can be reduced while maintaining the number of optical elements that can be pressed simultaneously.
[0005]
[Patent Document 1]
JP 2003-54967 A
[0006]
[Problems to be solved by the invention]
Thus, according to the molding apparatus described in Patent Document 1, it is possible to perform press molding with a certain degree of eccentricity accuracy. However, the accuracy required for optical elements becomes higher and higher. For example, in an objective lens for an optical pickup, the tolerance of decentering accuracy becomes narrower as the recording density increases. The eccentricity accuracy of the product to be obtained may not be sufficient.
[0007]
Therefore, in order to further improve the eccentric accuracy, the present inventors have pursued a factor that has an adverse effect on the eccentric accuracy, the thermal deformation also slightly occurs in the support member that supports the plurality of press shafts, It has been found that this phenomenon has an adverse effect on the lens thickness accuracy and eccentricity accuracy.
That is, in the press molding apparatus, before the temperature is raised by the heating means, as shown in FIG. 5A, the opposing surfaces of the upper mother molds 102a and 102b and the lower mother molds 104a and 104b are in a horizontal state. The axes of the upper and lower molds coincide with each other. However, when the mother mold is heated to a temperature suitable for press molding and becomes hot (depending on the molding material, it may be 600 ° C. or higher), the upper and lower support members 114 and 116 are heated by heat conduction and heat radiation. As shown in FIG. 5B, the plurality of press shafts that support the plurality of mother dies are slightly inclined with respect to the main axis, and the axes of the upper and lower surfaces of the press-molded lens are inclined. It has been found that this is a cause of deteriorating the thickness accuracy and eccentricity accuracy of the lens.
Therefore, it has been found that the wall thickness accuracy and the eccentricity accuracy can be further improved by suppressing the inclination of the press shaft.
[0008]
The present invention has been made in view of the above circumstances, and even an optical element having a very small tolerance of eccentricity accuracy can be stably produced by press molding, and a non-isothermal press with a reduced cycle time is used. Another object of the present invention is to provide a mold press molding apparatus and an optical element manufacturing method capable of stably producing a plurality of elements with high-accuracy thickness at the same time.
[0009]
[Means for Solving the Problems]
To achieve the above object, the mold press molding apparatus of the present invention is a mold press molding apparatus having opposed upper and lower molding dies and heating means for heating the upper and lower molding dies, each of which is at least a pair of the upper and lower moldings. A plurality of pairs of upper and lower mother dies provided with a mold, a plurality of pairs of upper and lower press shafts that respectively support the plurality of pairs of upper and lower mother dies, a vertical support member that supports these pairs of upper and lower press shafts, and the upper and lower molding dies However, the driving means for moving at least one of the upper and lower support members so as to relatively approach and separate from each other and the temperature control means provided on at least one of the upper and lower support members are provided.
[0010]
With such a configuration, the temperature of the support member can be adjusted to prevent thermal deformation of the support member, thereby preventing a decrease in the eccentric accuracy of the molding element due to the thermal deformation of the support member. .
[0011]
Moreover, this invention is set as the structure which provided the said temperature control means in the inside and / or the outside of the said supporting member.
With such a configuration, the temperature can be adjusted from the inside and / or the outside of the support member, so that thermal deformation of the support member can be effectively prevented. In particular, adjusting the temperature inside the support member is preferable because the temperature difference between the inside and outside of the support member can be reduced.
[0012]
In the present invention, the temperature adjusting means is constituted by a cooling means.
With such a configuration, the temperature distribution of the support member can be accurately adjusted in a short time, and thermal deformation can be efficiently prevented.
[0013]
In the present invention, a thermal resistor having a thermal resistance value of 1 K / W or more is interposed between at least one of the upper and lower support members and the upper and lower matrixes.
With such a configuration, heat transfer from the mother die to the support member can be suppressed, so that the eccentric accuracy of the molding element can be further improved in combination with temperature control on the support member.
[0014]
In order to achieve the above object, the optical element manufacturing method of the present invention uses a mold press molding apparatus to manufacture the optical element by a method including a mold heating step, a material supply step, and a pressure step. Among the processes, the temperature of the support member is adjusted at least in the mold heating process.
In this way, at least in the mold heating process in which the mother mold is heated to a high temperature, if the temperature of the support member is adjusted, thermal deformation of the support member can be effectively prevented, and consequently the eccentricity accuracy of the optical element can be reduced. Improvement and uniformity can be achieved.
[0015]
In addition, the present invention is a method for maintaining the temperature distribution on the surface of the support member on the side of supporting the press shaft at 5 ° C. or less, preferably 2 ° C. or less by the temperature control.
As described above, when the temperature distribution on the surface of the support member on the side where the press shaft is supported is maintained at 5 ° C. or less, preferably 2 ° C. or less, it is possible to suppress the occurrence of heat accumulation near the central axis on the horizontal plane. Can be reliably prevented.
[0016]
Further, the present invention is a method in which a plurality of heated upper and lower molds are simultaneously supplied with a molding material heated and softened to a temperature higher than that of the upper and lower molds, and simultaneously pressed by the upper and lower molds.
In this way, a highly accurate and uniform optical element can be manufactured in a short time.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
In the following, the present invention will be described in accordance with an embodiment in which the present invention is applied to the production of a glass optical element. However, the mold press molding apparatus of the present invention is not limited to this embodiment, and a resin optical element is produced. Alternatively, it can be applied to the manufacture of parts other than glass and resin optical elements.
[0018]
FIG. 1 is a partial cross-sectional side view showing a main structure of a press molding apparatus according to an embodiment of the present invention, and FIG. 2 is a schematic plan view of a lower mold. This press molding apparatus molds a lens using a preform as a molded body in which a glass material is previously molded into a flat spherical shape. As shown in FIG. 1, the press molding apparatus includes a mold set including an upper mold 102 and a lower mold 104. Each of the upper mold 102 and the lower mold 104 has a long shape that is long in the left-right direction, and induction heating coils 122 and 124 are respectively provided around the upper mold 102 and the lower mold 104. These induction heating coils 122 and 124 heat the upper mold 102 and the lower mold 104, respectively, by high frequency induction heating.
[0019]
The upper mold 102 has upper mother molds 102a and 102b which are a pair of left and right mother molds, and the lower mold 104 has lower mother molds 104a and 104b which are a pair of left and right mother molds. The upper mother molds 102a and 102b and the lower mother molds 104a and 104b respectively include a plurality of (three in the present embodiment) upper mold 105a and lower mold 105b that face each other in the vertical direction (FIG. 2). reference).
The materials of the upper and lower mother dies 102a, 102b, 104a, 104b generate heat by induction heating and use heat-resistant heating elements. As the heating element, it is preferable to use a material having a coefficient of thermal expansion close to that of the molds 105a and 105b. For example, a tungsten alloy or a nickel alloy can be used.
Positioning members such as pins and sleeves are preferably provided on the opposing surfaces of the upper mother molds 102a and 102b and the lower mother molds 104a and 104b for positioning when the upper and lower molds 105a and 105b are closed.
[0020]
Further, for example, ceramics such as silicon carbide and silicon nitride, cemented carbide or the like can be used for the upper and lower molding dies 105a and 105b arranged in a row.
The molding surfaces of the upper and lower molding dies 105a and 105b are preferably precisely processed into the shape of the optical element to be molded, and a release film is preferably provided in order to improve the mold release property. As the release film, a film mainly composed of noble metals (Pt, Ir, Au, etc.) or carbon can be applied.
[0021]
Support plates 106a and 106b are respectively fixed to the upper surfaces of the upper master dies 102a and 102b, and upper press shafts 110a and 110b are respectively attached to the upper surfaces of the support plates 106a and 106b. The upper press shafts 110 a and 110 b are attached to the fixed shaft 118 via a common support member 114. On the other hand, support plates 108a and 108b are respectively fixed to the lower surfaces of the lower master dies 104a and 104b, and lower press shafts 112a and 112b are respectively attached to the lower surfaces of the support plates 108a and 108b. The lower press shafts 112 a and 112 b are attached to the drive shaft 120 via a common support member 116. The drive shaft 120 is linearly driven in the vertical direction by a drive device having an AC servo motor, and its axis coincides with the longitudinal center of the upper mold 102 and the lower mold 104. When the drive shaft 120 moves in the vertical direction, the upper mold 102 and the lower mold 104 are opened and closed. A drive means is constituted by the drive shaft 120 and the drive device.
The axes of the fixed shaft 118 and the drive shaft 120 are parallel to the perpendicular to the opposing surfaces of the upper and lower mother dies.
In this embodiment, the upper mold is fixed and the lower mold is moved up and down, but the lower mold may be fixed and the upper mold moved up and down, and the upper and lower molds are moved up and down. You may make it move.
[0022]
As described above, the upper mother dies 102a and 102b and the lower mother dies 104a and 104b are fixed to the upper and lower press shafts 110 and 112 via the upper and lower support plates 106a and 106b. Therefore, by selecting a shape and a material that do not easily transmit heat as the upper and lower press shafts 110 and 112 and the upper and lower support plates 106a and 106b, it is possible to suppress the spread of heat to the support member. In addition, it is preferable to use thermal resistors for the upper and lower press shafts 110 and 112 and the upper and lower support plates 106a and 106b because heat transfer can be further suppressed. Here, the thermal resistor means one having a thermal resistance of 1 K / W (Kelvin / Watt) or more. For example, the above-described thermal resistor can be obtained by using a material having a low thermal conductivity or making a hollow shape to improve the shape. For example, Si 3 N 4 , ZrO 2 If a hollow press shaft using a material such as is used, the spread of heat to the support member can be effectively suppressed, and thermal deformation of the support member can be suppressed. Where the thermal resistance is
R = d / (A · K).
R: thermal resistance, d: distance (length), A: area, K: thermal conductivity
[0023]
FIG. 2 is a plan view of the lower mold 104 (lower mother molds 104a and 104b) and the surrounding induction heating coil 124 as viewed from above. Since the planar shape of the upper mold 102 (upper mother molds 102a and 102b) is the same as that of the lower mold 104, the reference numerals corresponding to the upper mold are given in parentheses in the figure.
The induction heating coil 124 is wound in a shape following the outer periphery of the lower mother dies 104a and 104b so as to surround both of the lower mother dies 104a and 104b. The induction heating coil 122 provided around the upper mother molds 102a and 102b also has the same planar shape as the induction heating coil 124.
[0024]
The upper and lower support members 114 and 116 are preferably made of a material having excellent heat resistance and workability and excellent mechanical strength. The linear expansion coefficient is 18 × 10. -6 / ° C or less is preferred. Stainless steel or the like can be used as the material.
In addition, the size of the upper and lower support members 114 and 116 is required to have an area capable of fixing a plurality of press shafts, and the thickness is a support member calculated from the cross-sectional second moment and the Young's modulus where each press shaft is located. The amount of deflection is preferably 2 μm or less.
Here, the amount of deflection (δ) is
δ = βWL 3 / EI
(W: load, L: distance (distance between two press axes here), E: Young's modulus, I: sectional moment of inertia, β: deflection coefficient)
[0025]
The upper and lower support members 114 and 116 are provided with temperature control means. The temperature of the upper and lower support members 114 and 116 is adjusted by the heat of the upper and lower mother dies 102a, 102b, 104a, and 104b, which is heated by heating, by the press shafts 110a, 110b, 112a, and 112b, the support members 114 and 116, and the fixed shaft 118. , To adjust the non-uniform temperature distribution in the vertical direction of the support member that occurs when the drive shaft 120 is transmitted and escapes, so as to prevent the support member from causing non-uniform thermal expansion. Specifically, the temperature can be adjusted by circulating a cooling medium around the outer periphery and / or the inside of the upper and lower support members 114, 116.
[0026]
An example of the temperature control means formed on the lower support member 116 will be described with reference to FIG.
The temperature control means includes a water guide channel 121a for introducing cooling water from the outside to the drive shaft 120 fixed to the lower support member 116, a return water channel 121b for returning the cooling water to the outside, and a water channel formed inside the lower support member 116. 116a and a continuous water channel 116b. The water channel 116a formed inside the lower support member 116 is meandering on the upper surface side of the support member 116, and one end thereof communicates with the water conduit 121a and the other end communicates with the return water channel 121b. .
In this way, a constant temperature refrigerant (for example, cooling water) introduced from the water guide passage 121a is sent to the water passage 116a from substantially the center of the lower support member 116. After meandering and cooling, in the figure, it is sent from the left end to the right end via the continuous water channel 116b, and then the upper right side half of the lower support member 116 is meandered and cooled, and then the lower support member 116 is cooled. Is returned to the outside through the return water channel 121b.
In this case, it is preferable to use a cooling device equipped with a heat exchanger and circulate a coolant such as water, which is always kept at a constant temperature, to the lower support member 116.
[0027]
By providing such temperature control means, even if the lower matrix is heated, the temperature of the lower support member 116 does not exceed a certain level, and the local temperature difference of the support member can be reduced. The support member 116 is not deformed.
In addition to temperature control using a fluid, an electronic cooling device such as a Peltier element can also be used.
Since the temperature adjustment means is for balancing the temperature distribution in the support member, the temperature adjustment means may use a heating means or may be provided with a cooling means and a heating means.
Further, the temperature control means can be provided on the outer periphery of the lower support member 116, for example, a cooling water channel that winds the lower support member 116 is provided, or cold air is blown from the periphery of the lower support member 116. It may be the one.
Furthermore, temperature control means can be provided inside and outside the lower support member 116.
These temperature control means may be provided on the upper and lower support members or only on one of the support members. When the temperature control means is provided on the upper support member 114, the case of the lower support member 116 may be used. Similar temperature control means can be provided.
[0028]
Thus, in a mold press molding apparatus that supports each mother die by a press shaft and supports a plurality of press shafts by a single support member, the lens due to thermal deformation of the mother die is prevented by preventing thermal deformation of the support member. Suppresses uneven thickness or deterioration of eccentricity. Furthermore, since the support member is not placed at a high temperature unlike the mother die, it is supposed that there is no influence by thermal deformation. However, if the present invention is applied, further improvement in eccentricity accuracy can be achieved, and the optical A molding element (optical element) with higher performance can be stably produced with a higher yield.
[0029]
[Glass optical element manufacturing method]
An embodiment of a method for manufacturing a glass optical element according to the present invention using the glass optical element manufacturing apparatus having the above configuration will be described.
(A) Mold heating process
The upper and lower mother dies are heated to a predetermined temperature by a high frequency induction heating coil. In the case of continuous molding, the upper and lower molds in the state where the previous molding cycle has been completed are cooled to a temperature near or below Tg, and thus need to be heated to a temperature suitable for press molding. That is, an electric current is passed through an induction heating coil wound around the upper mother die and the lower mother die, the upper and lower mother dies are heated, and the upper and lower molding dies are heated to a predetermined temperature by this heat conduction.
[0030]
The upper and lower matrix heating elements generate heat and rise in temperature, and the temperature of the plurality of molds rises. The temperature setting values of the upper and lower matrixes may be the same in the upper and lower sides or may be provided with a temperature difference. For example, depending on the shape and diameter of the optical element to be molded, the lower mother die is set to a higher temperature than the upper mother die, or the lower mother die is set to a lower temperature than the upper mother die. The temperature of the upper and lower molds is 10 as the viscosity of the glass preform. 8 -10 12 It can be equivalent to Poise. In the case of providing a temperature difference between the upper and lower mother dies 411a and 411b, a range of 2 to 15 ° C. is preferable.
[0031]
(B) Material supply process
The conveyed preform (glass material) is supplied between the heated upper mold and lower mold, and is placed on the lower mold. The glass material is supplied by using a glass material that has been pre-formed into a predetermined shape with an appropriate weight and softened to a viscosity suitable for molding, or a glass material that is lower than the temperature suitable for molding. May be supplied between the upper mold and the lower mold and further heated in the mold.
In the case of heating to a temperature higher than the set temperature of the mold in advance and supplying a glass material in a softened state (so-called non-isothermal pressing) and immediately pressing the upper and lower molds in close contact, Since it is necessary that the coaxiality of the upper and lower molds forming a pair be maintained precisely, it is preferable to implement the present invention. The non-isothermal press can shorten the molding cycle time and is advantageous in terms of production efficiency.
The temperature of the glass material at this time is 10 in terms of viscosity. 9 The temperature is less than the equivalent of Poise, preferably 10 6 ~ 18 8 Equivalent to Pois.
When the softened glass material is transported and placed on the lower mold, if the glass material comes into contact with the transport member and a defect occurs on the surface, the surface shape of the optical element to be molded is affected. It is preferable to use a jig that conveys the glass material that has been floated by gas and drops the glass material onto the lower mold.
If necessary, insert a member (such as a chuck) between the upper and lower molds to correct the position on the lower mold where the glass preform to be supplied has dropped to the center of the molding surface. It is also possible to insert a member such as a funnel for guiding the material.
[0032]
(C) Pressurization process
The upper mold, the lower mold, and the glass material are each in a predetermined temperature range, and the glass material is heated and softened. A glass optical element having a shape is molded. The lower mold is raised by operating a driving means (for example, a servo motor). When the glass material is supplied in a heated and softened state, pressurization is performed immediately after the supply.
The ascending stroke of the lower mold for pressurization is a value set in advance from the thickness of the optical element to be molded, and is set to an amount that is determined in consideration of heat shrinkage of the glass in the subsequent cooling step. The pressurization schedule can be arbitrarily set according to the shape and size of the optical element to be molded. After initial pressurization, the load is released and then secondary pressurization is performed. A pressurizing method can also be employed.
[0033]
(D) Cooling / mold release process
While maintaining the pressure or reducing the pressure, the molded glass optical element and the mold are kept in close contact, and the viscosity of the glass is 10 12 After cooling to a temperature equivalent to Poise, the lower mold is moved downward to separate the upper and lower molds and release them. The cooling rate is preferably 40 to 200 ° C./min. The mold release temperature is 10 12.5 -10 13.5 It is preferable to carry out at or below Poise.
[0034]
(E) Removal process
A glass optical element molded from between the spaced apart upper and lower molds is automatically taken out by a take-out arm or the like equipped with an adsorbing member.
In this embodiment, the upper mold is fixed and the lower mold is movable, but the upper mold may be movable and the lower mold may be fixed, or both the upper mold and the lower mold may be movable.
[0035]
Continuous press molding is performed by repeating the above steps.
Among these, the temperature of the support member is adjusted at least in the step of heating the mold. Preferably, the temperature of the support member is adjusted in all steps of mold heating, material supply, and pressurization. By this temperature control, the temperature difference between the upper and lower surfaces of the support member is maintained at 5 ° C. or less, preferably 2 ° C. or less. The in-plane temperature difference between the upper surface and the lower surface of the support member is preferably within the same range.
In addition, you may adjust the flow volume of a refrigerant | coolant according to the timing of temperature fall and temperature rise during the thermal cycle of an apparatus.
[0036]
The optical element manufactured by the method of the present invention can be applied to, for example, a concave meniscus lens having a diameter of 2 to 22 mm, a convex meniscus lens, and a biconvex lens. Further, the tolerance of the eccentricity accuracy is extremely small (for example, tilt is 2 minutes or less), and the present invention can be effectively applied to an optical pickup objective lens.
[0037]
Next, the result of the Example which manufactured the glass optical element using the shaping | molding apparatus and manufacturing method of this invention, and a comparative example is shown.
[Example 1]
A glass material was press-molded using the apparatus shown in FIGS. Here, a forming apparatus that performs pressing using two master dies was prepared by providing a supporting member on one pressing main shaft and providing two pressing shafts on this supporting member. Three molds were set in each mother mold, and six lenses were molded at a time with six upper and lower molds housed in two upper and lower mother molds.
As the upper and lower support members used here, the cooling water circulation type temperature control means described in the present embodiment was used. And this temperature control means temperature-controlled in all the processes of heating, supply, and pressurization.
Using this molding machine, a concave meniscus lens having a diameter of 15 mm was molded using a glass preform of borosilicate glass (Tg 515 ° C., Ts 545 ° C.). Set the upper and lower molds at 590 ° C. 8.1 625 ° C. (10 7 Six glass preforms heated to the equivalent of Poise were dropped and supplied at the same time, and the upper and lower molds were brought into close contact with each other by driving the lower spindle upward and pressurized. Thereafter, the cooling was performed at a cooling rate of 60 ° C./min until the temperature reached Tg or less, the lower main shaft was driven downward to open the mold, and the molded lens was taken out.
Throughout the entire process, the temperature of the entire support member was adjusted to a range of 30 to 33 ° C. Further, as shown in the table below, the thickness difference of the six lenses molded at the same time was 10 μm or less, and the molding eccentric tilt was 2 minutes or less.
[Table 1]
Figure 2005001917
[Comparative Example 1]
In the same manner as in the example, six lenses were simultaneously molded without adjusting the temperature of the support member. As a result, the maximum thickness difference of the six lenses was 70 μm, and the molding eccentric tilt was 5 minutes or less.
[Table 2]
Figure 2005001917
[0038]
【The invention's effect】
As described above, according to the present invention, it is possible to prevent thermal deformation of the support member by adjusting the temperature of the support member, thereby preventing deterioration in thickness accuracy and eccentricity accuracy due to deformation of the support member. be able to.
[Brief description of the drawings]
FIG. 1 is a partial cross-sectional side view showing the main structure of a mold press molding apparatus according to an embodiment of the present invention, (a) showing a preform supply state, and (b) A pressure state is shown, and (c) shows a release state.
FIG. 2 is a schematic plan view of the mold in FIG. 1;
FIG. 3 is a schematic plan sectional view of the support member shown in FIG. 1;
FIG. 4 is a diagram showing thermal deformation (warping) of a mother die.
FIG. 5 is a side view showing the main structure of a state in which a support member in a mold press molding apparatus is thermally deformed, (a) showing a preform supply state, (b) A pressure state is shown, and (c) shows a release state.
[Explanation of symbols]
102 Upper mold
102a, 102b Upper matrix
104 Lower mold
104a, 104b Lower matrix
105a Upper mold
105b Lower mold
106a Upper support plate
106b Lower support plate
110a, 110b Upper press shaft
112a, 112b Lower press shaft
114 Upper support member
116 Lower support member
116a waterway
116b continuous waterway
118 Fixed shaft (spindle)
120 Drive shaft (spindle)
121a Waterway
121b Return channel
122,124 high frequency induction coil

Claims (7)

対向する上下成形型と、この上下成形型を加熱する加熱手段とを有するモールドプレス成形装置において、
それぞれが、少なくとも一対の前記上下成形型を備えた複数対の上下母型と、
これら複数対の上下母型をそれぞれ支持する複数対の上下プレス軸と、
これら複数対の上下プレス軸を支承する上下支持部材と、
前記上下成形型が、相対的に接近及び離間するように前記上下支持部材の少なくとも一方を移動させる駆動手段と、
前記上下支持部材の少なくとも一方に設けた調温手段とを、
有することを特徴としたモールドプレス成形装置。
In a mold press molding apparatus having opposing upper and lower molds and heating means for heating the upper and lower molds,
Each of a plurality of pairs of upper and lower molds each including at least a pair of the upper and lower molds,
A plurality of pairs of upper and lower press shafts that respectively support the plurality of pairs of upper and lower matrixes;
An upper and lower support member for supporting these multiple pairs of upper and lower press shafts;
Drive means for moving at least one of the upper and lower support members so that the upper and lower molds are relatively approaching and separating;
Temperature control means provided on at least one of the upper and lower support members,
A mold press molding apparatus characterized by comprising:
前記調温手段が、前記支持部材の内部及び/又は外部に設けてあることを特徴とした請求項1に記載のモールドプレス成形装置。The mold press molding apparatus according to claim 1, wherein the temperature control means is provided inside and / or outside the support member. 前記調温手段が、冷却手段であることを特徴とした請求項1又は2記載のモールドプレス成形装置。The mold press molding apparatus according to claim 1 or 2, wherein the temperature control means is a cooling means. 前記上下支持部材と前記上下母型との間の、少なくとも一方の間に、熱抵抗値が1K/W以上の熱抵抗体を介設したこと特徴とした請求項1〜3のいずれかに記載のモールドプレス成形装置。4. A thermal resistor having a thermal resistance value of 1 K / W or more is interposed between at least one of the upper and lower support members and the upper and lower matrixes. Mold press molding equipment. 請求項1〜4のいずれかに記載のモールドプレス成形装置を用い、型加熱工程、素材供給工程、及び加圧工程を含む方法で光学素子を製造するときに、前記各工程のうち、少なくとも型加熱工程において前記支持部材の調温を行うことを特徴とした光学素子の製造方法。When manufacturing an optical element by a method including a mold heating process, a material supply process, and a pressurization process using the mold press molding apparatus according to any one of claims 1 to 4, at least a mold among the above processes. A method of manufacturing an optical element, wherein the temperature of the support member is adjusted in the heating step. 前記調温によって、支持部材のプレス軸を支承する側の面の温度分布を5℃以下に維持すること特徴とした請求項5記載の光学素子の製造方法。6. The method of manufacturing an optical element according to claim 5, wherein the temperature distribution of the surface of the support member on the side supporting the press shaft is maintained at 5 [deg.] C. or less. 加熱した複数の上下成形型間に、この上下成形型よりも高温に加熱し軟化した成形素材をそれぞれ同時に供給し、かつ、前記上下成形型によって同時に加圧することを特徴とした請求項5又は6記載の光学素子の製造方法。7. A plurality of heated upper and lower molds are simultaneously supplied with a molding material heated and softened to a temperature higher than that of the upper and lower molds, and simultaneously pressed by the upper and lower molds. The manufacturing method of the optical element of description.
JP2003165465A 2003-06-10 2003-06-10 Mold press-forming apparatus and method of manufacturing optical device Pending JP2005001917A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003165465A JP2005001917A (en) 2003-06-10 2003-06-10 Mold press-forming apparatus and method of manufacturing optical device
CNB2004100484171A CN1318330C (en) 2003-06-10 2004-06-03 Moulding device and method for manufacturing optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003165465A JP2005001917A (en) 2003-06-10 2003-06-10 Mold press-forming apparatus and method of manufacturing optical device

Publications (1)

Publication Number Publication Date
JP2005001917A true JP2005001917A (en) 2005-01-06

Family

ID=34091940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003165465A Pending JP2005001917A (en) 2003-06-10 2003-06-10 Mold press-forming apparatus and method of manufacturing optical device

Country Status (2)

Country Link
JP (1) JP2005001917A (en)
CN (1) CN1318330C (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4667931B2 (en) * 2005-03-31 2011-04-13 Hoya株式会社 Mold press apparatus and mold press molded product manufacturing method
JP5033340B2 (en) * 2006-03-20 2012-09-26 株式会社オハラ Molding apparatus and glass molded product manufacturing apparatus using the same
CN105016609A (en) * 2012-08-30 2015-11-04 朱保生 Double-station press for production of optical glass lenses and glass products
CN109553283A (en) * 2018-12-27 2019-04-02 深圳市赢合技术有限公司 A kind of 3D bend glass hot bending shape equipment

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0948621A (en) * 1995-08-04 1997-02-18 Canon Inc Optical element molding method
JPH10138356A (en) * 1996-11-11 1998-05-26 Matsushita Electric Ind Co Ltd Method for producing optical element molding material, method for producing optical element, and method for molding optical element
JP3869231B2 (en) * 2001-08-13 2007-01-17 Hoya株式会社 Press molding apparatus and optical element manufacturing method

Also Published As

Publication number Publication date
CN1572732A (en) 2005-02-02
CN1318330C (en) 2007-05-30

Similar Documents

Publication Publication Date Title
US6918267B2 (en) Press molding apparatus and press molding method
US7013676B2 (en) Press molding apparatus
US6141991A (en) Press molding apparatus for glass optical elements and molding method for glass optical elements
TWI331987B (en) Press-molding apparatus, press-molding method and method of producing an optical element
JP2012116705A (en) Molding apparatus and molding method for optical device
JP2005001917A (en) Mold press-forming apparatus and method of manufacturing optical device
JP3869239B2 (en) Optical element press molding apparatus and optical element manufacturing method
JP4460339B2 (en) Mold press molding apparatus and optical element manufacturing method
JP3188676B2 (en) Method for manufacturing glass molded body
JP3608768B2 (en) Glass optical element press molding apparatus and glass optical element molding method
US20040212110A1 (en) Press-molding apparatus and method of producing an optical element
JP4266115B2 (en) Mold press molding apparatus and glass optical element manufacturing method
CN1765786B (en) Press molding apparatus and press molding method
JP3869231B2 (en) Press molding apparatus and optical element manufacturing method
JP4157080B2 (en) Mold press molding apparatus and optical element manufacturing method
JP4141983B2 (en) Mold press molding method and optical element manufacturing method
JPH04164826A (en) Glass lens molding equipment and manufacturing method
JP2011184248A (en) Optical element molding device
JP2013112592A (en) Apparatus and method for molding optical element
CN100404449C (en) Mold pressure forming device and method for manufacturing optical element
JP4255294B2 (en) Glass optical element manufacturing method and molding apparatus
JP3767780B2 (en) Manufacturing method of glass optical element
JP2015105221A (en) Optical element molding method and molding apparatus
JPH08217469A (en) Method for forming optical element
JP2004231477A (en) Method and apparatus for molding optical element

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070717

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071019

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20071228

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080208