[go: up one dir, main page]

JP2005002968A - Exhaust emission control device of internal combustion engine - Google Patents

Exhaust emission control device of internal combustion engine Download PDF

Info

Publication number
JP2005002968A
JP2005002968A JP2003170244A JP2003170244A JP2005002968A JP 2005002968 A JP2005002968 A JP 2005002968A JP 2003170244 A JP2003170244 A JP 2003170244A JP 2003170244 A JP2003170244 A JP 2003170244A JP 2005002968 A JP2005002968 A JP 2005002968A
Authority
JP
Japan
Prior art keywords
exhaust gas
oxidation catalyst
internal combustion
combustion engine
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003170244A
Other languages
Japanese (ja)
Inventor
Ritsuko Shinozaki
律子 篠▼崎▲
Shinichi Saito
真一 斎藤
Yoshihisa Takeda
好央 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Fuso Truck and Bus Corp
Original Assignee
Mitsubishi Fuso Truck and Bus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Fuso Truck and Bus Corp filed Critical Mitsubishi Fuso Truck and Bus Corp
Priority to JP2003170244A priority Critical patent/JP2005002968A/en
Publication of JP2005002968A publication Critical patent/JP2005002968A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL-COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion
    • F01N3/2053By-passing catalytic reactors, e.g. to prevent overheating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL-COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL-COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/105General auxiliary catalysts, e.g. upstream or downstream of the main catalyst
    • F01N3/106Auxiliary oxidation catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL-COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion
    • F01N3/206Adding periodically or continuously substances to exhaust gases for promoting purification, e.g. catalytic material in liquid form, NOx reducing agents
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL-COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL-COMBUSTION ENGINES
    • F01N2410/00By-passing, at least partially, exhaust from inlet to outlet of apparatus, to atmosphere or to other device
    • F01N2410/02By-passing, at least partially, exhaust from inlet to outlet of apparatus, to atmosphere or to other device in case of high temperature, e.g. overheating of catalytic reactor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL-COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/14Parameters used for exhaust control or diagnosing said parameters being related to the exhaust gas
    • F01N2900/1402Exhaust gas composition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL-COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/14Parameters used for exhaust control or diagnosing said parameters being related to the exhaust gas
    • F01N2900/1404Exhaust gas temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Materials Engineering (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust emission control device of an internal combustion engine which can clean up NOx with high efficiency. <P>SOLUTION: The exhaust emission control device 1 has an SCR catalyst 7 and a powerful oxidation catalyst 8 on the upstream side of the SCR catalyst 7 in an exhaust system of the engine 2. Further, the device is provided with an oxidation catalyst bypass 15 which bypasses the powerful oxidation catalyst 8, and a changeover valve 16 which changes an exhaust gas passage. When the exhaust gas is at such a temperature that an NO<SB>2</SB>invert ratio of the powerful oxidation catalyst 8 is 50% or more, the exhaust gas is let to flow to the oxidation catalyst bypass 15 by the changeover valve 16, so that it is possible to prevent excessive generation of NO<SB>2</SB>which results in reduction of the NOx cleaning efficiency in SCR catalyst 7. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の排気浄化装置に関する。
【0002】
【従来の技術】
ディーゼルエンジン等の内燃機関から排出される排気ガスには、HC(炭化水素)、CO(一酸化炭素)、NOx(窒素酸化物)及びPM(Particulate Matter:パティキュレート)等の汚染物質が含まれる。これらの汚染物質の中でもNOxは、酸化触媒やガソリン自動車で実用化されている三元触媒では浄化が難しく、NOxを浄化することができる有望な触媒として選択還元型NOx触媒(SCR触媒)の開発が行われている。
【0003】
SCR触媒はアンモニアなどの還元剤の存在下でNOxを浄化する触媒である。尿素水タンクからSCR触媒の上流側の排気系に添加された尿素水は、排気ガスの熱により加水分解されアンモニアを生成する。このアンモニアが還元剤として働き、排気ガス中のNOxと反応することにより排気ガス中のNOxが浄化される。
【0004】
このNOx浄化については、下記(1)〜(4)式に示す反応により浄化反応が進行することが知られている。
4NO+4NH+O → 4N+6HO (1)
NO+NO+2NH → 2N+3HO (2)
2NO+4NH+O → 3N+6HO (3)
6NO+8NH → 7N+12HO (4)
【0005】
また、上記(1)〜(4)式の浄化反応は、その反応速度に差があることが知られており、(2)式による浄化反応が最も反応速度が速く、次に(1)式による浄化反応が速く、(3)又は(4)式の浄化反応は他の反応と比較して遅いことが分かっている。最も反応速度が速い(2)式は、NO(一酸化窒素)とNO(二酸化窒素)とが1対1で共存しこれらと同量のアンモニアとが反応する浄化反応であり、したがって、排気ガス中のNOxにおけるNOとNOとの比が1:1のときに、最もNOx浄化反応が良くなる(下記、特許文献1参照。)。
【0006】
一方、内燃機関から排出されるNOxはほとんどがNOである。このため、SCR触媒の上流側に酸化触媒を設けてNOの一部をNOに酸化することにより、排気ガス中のNOとNOとの比を1:1に近づけるようにしている。しかしながら、酸化触媒を併用したこの浄化システムでは、排気ガスの温度が高温のときに酸化触媒による酸化能力が強くなりすぎて、NOが過剰に酸化され多量のNOが生成してしまう。この結果、反応速度の遅い上記(3)又は(4)式による浄化反応が起こるようになり、SCR触媒によるNOx浄化性能が減少してしまう。
【0007】
また、上記(1)、(2)式の浄化反応では、NHと浄化されるNOx(NOとNOの総量)との比が1対1の関係(NH/NOx=1)にあるが、上記(3)、(4)式の浄化反応では浄化されるNOxの総量に対してより多くのNHが必要(NH/NOx>1)となる。このため、当初、(1)、(2)式の浄化反応を想定して添加する尿素水を制御していても、(3)、(4)式の浄化反応が起こることでアンモニア量が不足してしまい、SCR触媒によるNOx浄化性能が減少してしまう。
【0008】
【特許文献1】
特表2001−525902号公報
【0009】
【発明が解決しようとする課題】
本発明は、上記状況に鑑みてなされたものであり、過剰のNO酸化(NO生成)を行わず、なおかつNOとNOとをNOx浄化に理想的な1対1となるように共存させることができる内燃機関の排気浄化装置を提供することを目的とする。
【0010】
【課題解決するための手段】
上記課題を解決する第1の発明は、内燃機関の排気系に設けられアンモニアを還元剤として排気ガス中のNOxを選択還元するNOx触媒と、前記排気系のうち当該NOx触媒よりも上流側に設けられる第1酸化触媒とを有する内燃機関の排気浄化装置において、
前記第1酸化触媒をバイパスする酸化触媒バイパスと、
前記内燃機関からの排気ガスの流路を前記第1酸化触媒または前記酸化触媒バイパスのいずれかに切り替える切替手段と、
前記内燃機関からの排気ガスの温度を検出又は推測する排気ガス温度検出手段と、
前記排気ガス温度検出手段により検出又は推測される排気ガスの温度が所定温度以上であるときに、前記内燃機関からの排気ガスが前記酸化触媒バイパスを通過するように前記切替手段を制御する切替制御手段とを備えたことを特徴とする内燃機関の排気浄化装置である。
【0011】
SCR触媒におけるNOx浄化率を向上させるため、NOx触媒の上流側に酸化触媒(第1酸化触媒)を設置してNOxの一部をNOに酸化しているが、排気ガスの温度が所定温度以上の場合には、このNOの生成が過剰となり、NOx浄化性能が低下する。そこで、第1の発明では、排気ガスの温度が所定温度以上の場合には、排気ガスの流路を第1酸化触媒側から酸化触媒バイパス側へ切り替えて、NOxの酸化(NOの生成)を抑制するようにする。
【0012】
酸化触媒バイパスを設置した第1の発明では、排気ガス温度が所定温度以上の場合に排気ガス中のNOを酸化することなくSCR触媒へ送ることとなるが、排気ガスが既に高温状態となっておりSCR触媒の活性も高いため、酸化触媒(第1酸化触媒)を介さずとも十分にNOx浄化を行うことができる。
【0013】
排気ガス温度検出手段は、内燃機関からの排気ガスの温度を検出又は推測する機能を有し、排気系であればいずれの場所に設けても本発明の効果を得ることができる。好ましくは、内燃機関から排出された直後の排気ガス温度を検出等することができる位置、第1酸化触媒の直上流の位置又は切替手段の直上流の位置がよい。
【0014】
切替手段は、内燃機関からの排気ガスの流路を第1酸化触媒または酸化触媒バイパスのいずれかに切り替える機能を有するが、当該機能としては、流路を完全に切り替える機能のほかに、第1酸化触媒と酸化触媒バイパスとを流れる排気ガスの流量比を制御する機能であっても良い。
【0015】
上記課題を解決する第2の発明は、内燃機関の排気系に設けられアンモニアを還元剤として排気ガス中のNOxを選択還元するNOx触媒と、前記排気系のうち当該NOx触媒よりも上流側に設けられる第1酸化触媒とを有する内燃機関の排気浄化装置において、
前記排気系のうち前記第1酸化触媒と並列に設けられ、前記第1酸化触媒よりも比較的酸化力が弱い第2酸化触媒と、
前記内燃機関からの排気ガスの流路を前記第1酸化触媒または前記第2酸化触媒のいずれかに切り替える切替手段と、
前記内燃機関からの排気ガスの温度を検出又は推測する排気ガス温度検出手段と、
前記排気ガス温度検出手段により検出又は推測される排気ガスの温度が所定温度以上であるときに、前記内燃機関からの排気ガスが前記第2酸化触媒を通過するように前記切替手段を制御する切替制御手段とを備えたことを特徴とする内燃機関の排気浄化装置である。
【0016】
排気ガスの温度が所定温度以上の場合には、酸化触媒(第1酸化触媒)によるNOの生成が過剰となり、NOx浄化性能が低下する。そこで、第2の発明では、排気ガスの温度が所定温度以上の場合には、排気ガスの流路を第1酸化触媒側から酸化力が弱い第2酸化触媒側へ切り替えて、NOxの酸化(NOの生成)効率を下げるようにする。
【0017】
第1酸化触媒、第2酸化触媒の酸化力の強弱は、例えば、担持させるPt等の触媒量で調整する。例えば、第1酸化触媒には低温から高い活性を与えるため触媒量を比較的多くして強力酸化触媒とする一方、第2酸化触媒は、第1酸化触媒において過剰な酸化反応が始まる温度あたりから活性化されるように触媒量を少なく調整して弱力酸化触媒とする。
【0018】
上記課題を解決する第3の発明は、第2の発明に係る内燃機関の排気浄化装置において、
前記第2酸化触媒は、前記排気ガス中のNOを酸化してNOに転化する転化率が最大でも50%以下であることを特徴とする内燃機関の排気浄化装置である。
【0019】
酸化触媒の性能を示すNO→NO転化率は排気ガスの温度により変化する。第2酸化触媒として、NO→NO転化率の最大値が50%以下の酸化触媒を採用することにより、第1酸化触媒におけるNO過剰酸化(NOの50%より多くが酸化されてしまう状態)を回避する役割を有する第2酸化触媒においてNOの過剰酸化を起こさないようにする。
【0020】
上記課題を解決する第4の発明は、第1ないし第3のいずれかの発明に係る内燃機関の排気浄化装置において、
前記所定温度は、前記第1酸化触媒が前記排気ガス中のNOを酸化してNOに転化する転化率が50%となる温度であることを特徴とする内燃機関の排気浄化装置である。
【0021】
所定温度を第1酸化触媒のNO→NO転化率が50%となる温度に設定し、排気ガスの温度が当該所定温度以上となったときに、排気ガスの流路を切替手段により酸化触媒バイパス側又は第2酸化触媒側に切替えて、NOの過剰生成を抑制してSCR触媒におけるNOx浄化性能の低下を防止する。なお、酸化触媒のNO→NO転化率は排気ガスの温度により変化するが、転化率と排気ガス温度との関係がやまなりのグラフとなり、転化率が50%となる排気ガス温度が2つ以上存在する場合には、それらのうち最も低い温度を所定温度とする。
【0022】
上記課題を解決する第5の発明は、第1ないし第4のいずれかの発明に係る内燃機関の排気浄化装置において、
前記NOx触媒は、主として下記(1)式又は(2)式の少なくとも一方により排気ガス中のNOxを浄化することを特徴とする内燃機関の排気浄化装置である。
4NO+4NH+O → 4N+6HO (1)
NO+NO+2NH → 2N+3HO (2)
【0023】
SCR触媒においてNOx浄化速度が比較的速い反応を主として用いるように、内燃機関の排気浄化装置を制御することにより、下記(3)、(4)式に示す反応速度が比較的遅く、NOx浄化性能の低下の原因となる反応が起こることを防止する。
2NO+4NH+O → 3N+6HO (3)
6NO+8NH → 7N+12HO (4)
【0024】
上記課題を解決する第6の発明は、第1ないし第4のいずれかの発明に係る内燃機関の排気浄化装置において、
前記切替制御手段は、前記排気ガス温度検出手段により検出又は推測される排気ガスの温度が所定温度以上であるときに、前記切替手段により、前記第1酸化触媒を流れる排気ガスと前記第2酸化触媒又は前記酸化触媒バイパスを流れる排気ガスとの流量比を調整して、前記NOx触媒に流入する排気ガス中のNOとNOとの比が略1対1となるように制御することを特徴とする内燃機関の排気浄化装置である。
【0025】
排気ガスの温度が所定温度以上であるときに、NOx触媒に流入する排気ガス中のNOとNOとの比が略1対1となるように排気系の流路制御をすることにより、最も効率よくNOxを浄化することができる排気浄化装置とする。排気ガス中のNOとNOとの比率の検出手段としては、直接検出することができるNOxセンサによる手段や、排気ガスの状態(排気ガス温度、酸化触媒におけるNO→NO転化率及び各流路を通過する排気ガス流量等)から推測する手段等が挙げられる。
【0026】
【発明の実施の形態】
以下、図面に基づき本発明の好適な実施例を例示的に詳しく説明する。
【0027】
<第1の実施形態>
図1は、本発明の第1の実施形態に係る内燃機関の排気浄化装置を示した構成図である。同図に示すように、排気浄化装置1は、内燃機関としてのエンジン2の排気系に設けられたNOx触媒としてのSCR触媒7と、排気系のうちSCR触媒7よりも上流側に設けられた第1酸化触媒としての強力酸化触媒8と、排気系のうちSCR触媒7よりも上流側であり強力酸化触媒8よりも下流側に還元剤としてのアンモニアを供給する尿素水添加装置9等と、強力酸化触媒8をバイパスする酸化触媒バイパス15と、強力酸化触媒8と酸化触媒バイパス15との分岐部分に設けられエンジン2からの排気ガスの流路として強力酸化触媒8又は酸化触媒バイパス15のいずれかを選択する切替手段としての切替弁16と、切替弁16の上流側の排気ガスの温度を検出する排気ガス温度検出手段としての排気ガス温度センサ17と、尿素水添加装置9に内蔵され所定の条件によって切替弁16を制御する切替制御手段とから構成される。なお、切替弁16の切替制御は、図示していないエンジンECUにて行ってもよい。
【0028】
エアクリーナー3から吸引された空気は、ターボチャージャー4によって過給され、インタークーラー5を介してエンジン2に供給された後、エンジン2内で燃料と共に燃焼し、排気ガスとして排気系へ排出される。
【0029】
還元剤を供給するユニットとしては、還元剤としてのアンモニアの素となる尿素水を貯蔵する尿素水タンク10と、SCR触媒7の温度を検出又は推測する触媒温度センサ13と、尿素水を排気系におけるSCR触媒7の上流側に供給する尿素水噴射ノズル12と、触媒温度センサ13により推測される温度により添加する尿素水量を制御する尿素水添加装置9とから構成される。
【0030】
触媒温度センサ13は、SCR触媒7の上流側と下流側とに設けられ、当該2つのポイントにおける排気ガスの温度の平均値をSCR触媒7の温度として推測している。なお、触媒温度センサとしては、SCR触媒7の温度を直接検出できるセンサであってもよい。
【0031】
また、SCR触媒7の下流側には、酸化触媒14が設けられ、過剰な尿素水の添加による余剰のアンモニア(アンモニアスリップの発生)を分解するようになっている。なお、アンモニアスリップを発生させない尿素水添加制御を行うことができる還元剤を供給するユニットであれば、酸化触媒14を省略することができる。
【0032】
尿素水添加装置9は、切替制御手段としての機能も有し、排気ガス温度センサ17により検出される排気ガスの温度が所定温度以上の場合には、切替弁16を制御し、エンジン2からの排気ガスを酸化触媒バイパス15へ流入させると共に、排気ガスの温度が所定温度より低い場合には、排気ガスが強力酸化触媒8を通過するように切替弁16を制御する。
【0033】
図2は、強力酸化触媒の一例に係るNO→NO転化率と排気ガス温度との関係図である。なお、同図には、下記第2の実施形態で説明する弱力酸化触媒のNO転化率と排気ガス温度との関係も示してある。
【0034】
同図に示すように、強力酸化触媒の一例に係るNO転化率は、排気ガス温度が約300℃までは温度の上昇に従い高くなり、排気ガス温度が300℃付近で約70%以上の転化率となり、さらに排気ガス温度が高くなると転化率が低下していくという、排気ガス温度に対して転化率がやまなりに変化する関係を有する。また、排気ガス温度が約230℃〜約390℃の範囲では転化率が50%以上となり、過剰のNOを生成してNOx浄化効率を低下させる温度範囲となっている。なお、同図に示す転化率特性は、強力酸化触媒の一例を示すものであり、酸化触媒に担持させるPt等の触媒量で調整することができる。
【0035】
切替制御手段としての尿素水添加装置9は、排気ガス温度センサ17により検出される強力酸化触媒8の直上流を流れる排気ガスの温度が所定温度以上か否かにより切替弁16の制御を行うが、この所定温度としては、強力酸化触媒8のNO転化率が50%となる温度を設定してある。例えば、図2に示す転化率特性を有する強力酸化触媒の場合には、転化率が50%となる排気ガス温度としては約230℃と約390℃の2つの温度が存在するが、最も低い温度である約230℃を所定温度とする。
【0036】
すなわち、切替制御手段は、強力酸化触媒8のNO転化率が50%以上となるような排気ガス温度(図2に示す強力酸化触媒では約230℃以上)である場合には、切替弁16によりエンジン2からの排気ガスを酸化触媒バイパス15へ流入させると共に、強力酸化触媒8のNO転化率が50%より低くなるような排気ガス温度(図2に示す強力酸化触媒では約230℃より低温)である場合には、切替弁16により排気ガスが強力酸化触媒8を通過するように制御する。
【0037】
この結果、強力酸化触媒8のNO転化率が50%より低い排気ガス温度である場合には、排気ガスを強力酸化触媒8を流通させることにより、より多くのNOをNOへ酸化してSCR触媒7におけるNOx浄化効率を向上させることができる。この際には、過剰のNO2が生成していないため、SCR触媒7上では比較的反応速度の速い上記(1)、(2)式による浄化反応が行われる。
【0038】
一方、強力酸化触媒8のNO2転化率が50%以上となるような排気ガス温度である場合には、排気ガスを酸化触媒バイパス15を流通させてNOの生成を抑制することにより、SCR触媒7におけるNOx浄化率の低下を防止することができる。この際には、排気ガス中にNOはほとんど含まれていないため、SCR触媒7上では主として上記(1)式による浄化反応が行われるが、排気ガスが高温状態となっているためSCR触媒7は十分に活性化されており、強力酸化触媒を介さずとも高いNOx浄化効率を得ることができる。
【0039】
<第2の実施形態>
次に、第2の実施形態について説明する。本実施形態では、図1に示した第1の実施形態に係る排気浄化装置における酸化触媒バイパス15の代わりに第2酸化触媒としての「弱力酸化触媒」を設けて(すなわち、排気系において強力酸化触媒8と並列に弱力酸化触媒を設置する)、強力酸化触媒8のNO転化率が50%以上となるような排気ガス温度である場合には、切替弁16によりエンジン2からの排気ガスを「弱力酸化触媒」へ流入させると共に、強力酸化触媒8のNO転化率が50%より低くなるような排気ガス温度である場合には、切替弁16により排気ガスが強力酸化触媒8を通過するように、切替制御手段により制御する。
【0040】
ここで、弱力酸化触媒とは担持させる触媒量を減少させるなどして、強力酸化触媒8よりも酸化力を弱めた触媒であり、例えば、図2に示す転化率特性を有する弱力酸化触媒を用いる。
【0041】
同図に示すように、弱力酸化触媒の一例に係るNO転化率は、排気ガス温度が約300℃までは温度の上昇に従い高くなり、排気ガス温度が300℃付近で約50%の転化率となり、さらに排気ガス温度が高くなると転化率が低下していくという、排気ガス温度に対して転化率がやまなりに変化する関係を有する。なお、同図に示す転化率特性は、弱力酸化触媒の一例を示すものであり、酸化触媒に担持させるPt等の触媒量で調整することができる。
【0042】
この結果、強力酸化触媒8のNO2転化率が50%以上となるような排気ガス温度である場合には、排気ガスを弱力酸化触媒を流通させてNOの生成を抑制することにより、SCR触媒7におけるNOx浄化率の低下を防止することができる。
【0043】
この際には、排気ガス中のNOは弱力酸化触媒により酸化され、上記(2)式による反応速度の最も速い浄化反応を利用することができるため、単に酸化触媒バイパスを流通させるよりも更に高いNOx浄化効率を得ることができる。また、弱力酸化触媒は、転化率が50%以上とならないように酸化力を調整した酸化触媒であるため、過剰のNOを生成することがなく、NOx浄化効率が低下するおそれもない。
【0044】
第1、第2の実施形態では、切替制御手段により、所定温度を境にして排気ガス流路を強力酸化触媒8側または酸化触媒バイパス15(又は弱力酸化触媒)側へ変更する構成としたが、切替弁16の開度を調整することにより、強力酸化触媒8側と酸化触媒バイパス15(又は弱力酸化触媒)側とを流れる排気ガスの流量比を制御するようにしてもよい。
【0045】
流量比を制御する際には、排気ガスの温度が所定温度以上であるときに、例えば、SCR触媒に流入する排気ガス中のNOとNOとの比が略1対1となるように制御することにより、最も効率よくNOxを浄化することができる排気浄化装置とすることができる。排気ガス中のNOとNOとの比率は、例えば、排気ガスの状態(排気ガス温度、酸化触媒におけるNO→NO転化率及び各流路を通過する排気ガス流量等)から推測することができる。
【0046】
【発明の効果】
第1の発明では、排気ガスの温度が所定温度以上の場合には、排気ガスの流路を第1酸化触媒側から酸化触媒バイパス側へ切り替えて、排気ガス中のNOを酸化することなくSCR触媒へ送ることとしたので、SCR触媒においてNOx浄化効率を低下させる原因である過剰なNOの生成を防止して、NOx浄化効率を低下させることを防止することができる。
【0047】
第2の発明では、排気ガスの温度が所定温度以上の場合には、排気ガスの流路を第1酸化触媒側から酸化力が弱い第2酸化触媒側へ切り替えて、NOxの酸化(NOの生成)効率を下げることにより、SCR触媒においてNOx浄化効率を低下させる原因である過剰なNOの生成を抑制して、NOx浄化効率を高い状態で維持することができる。
【0048】
第3の発明では、第2の発明に係る内燃機関の排気浄化装置において、第2酸化触媒として、NO→NO転化率の最大値が50%以下の酸化触媒を採用することにより、第1酸化触媒におけるNO過剰酸化(NOの50%より多くが酸化されてしまう状態)を回避する役割を有する第2酸化触媒においてNOの過剰酸化を起こさないようにして、SCR触媒におけるNOx浄化効率の低下を防止することができる。
【0049】
第4の発明では、第1ないし第3のいずれかの発明に係る内燃機関の排気浄化装置において、所定温度を第1酸化触媒のNO→NO転化率が50%となる温度に設定することにより、排気ガスの温度が当該所定温度以上となったときに、排気ガスの流路を第2酸化触媒側又は酸化触媒バイパス側に切替えて、効果的にNOの過剰生成を抑制して、SCR触媒におけるNOx浄化性能の低下を防止することができる。
【0050】
第5の発明では、第1ないし第4のいずれかの発明に係る内燃機関の排気浄化装置において、種々のNOx浄化反応のうち反応速度の速い浄化反応である下記(1)式又は(2)式の少なくとも一方により排気ガス中のNOxを浄化するように制御することとしたので、SCR触媒におけるNOx浄化性能を効果的に向上させることができる。
4NO+4NH+O → 4N+6HO (1)
NO+NO+2NH → 2N+3HO (2)
【0051】
第6の発明では、第1ないし第4のいずれかの発明に係る内燃機関の排気浄化装置において、排気ガスの温度が所定温度以上であるときに、NOx触媒に流入する排気ガス中のNOとNOとの比が略1対1となるように排気系の流路を制御することにより、最も効率よくNOxを浄化することができる排気浄化装置とすることができる。
【図面の簡単な説明】
【図1】本発明の実施形態に係る内燃機関の排気浄化装置の概略構成図である。
【図2】酸化触媒のNO→NO転化率と排気ガス温度との関係図である。
【符号の説明】
1 排気浄化装置
2 エンジン
3 エアクリーナー
4 ターボチャージャー
5 インタークーラー
7 SCR触媒
8 強力酸化触媒(前段)
9 尿素水添加装置
10 尿素水タンク
12 尿素水噴射ノズル
13 触媒温度センサ
14 酸化触媒(後段)
15 酸化触媒バイパス
16 切替弁
17 排気ガス温度センサ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an exhaust emission control device for an internal combustion engine.
[0002]
[Prior art]
Exhaust gas discharged from an internal combustion engine such as a diesel engine contains pollutants such as HC (hydrocarbon), CO (carbon monoxide), NOx (nitrogen oxide), and PM (Particulate Matter). . Among these pollutants, NOx is difficult to purify with oxidation catalysts and three-way catalysts put to practical use in gasoline automobiles, and a selective reduction type NOx catalyst (SCR catalyst) is developed as a promising catalyst that can purify NOx. Has been done.
[0003]
The SCR catalyst is a catalyst that purifies NOx in the presence of a reducing agent such as ammonia. The urea water added from the urea water tank to the exhaust system upstream of the SCR catalyst is hydrolyzed by the heat of the exhaust gas to generate ammonia. This ammonia acts as a reducing agent and reacts with NOx in the exhaust gas to purify NOx in the exhaust gas.
[0004]
Regarding this NOx purification, it is known that the purification reaction proceeds by the reactions shown in the following formulas (1) to (4).
4NO + 4NH 3 + O 2 → 4N 2 + 6H 2 O (1)
NO + NO 2 + 2NH 3 → 2N 2 + 3H 2 O (2)
2NO 2 + 4NH 3 + O 2 → 3N 2 + 6H 2 O (3)
6NO 2 + 8NH 3 → 7N 2 + 12H 2 O (4)
[0005]
Further, it is known that the purification reactions of the above formulas (1) to (4) have different reaction rates. The purification reaction according to the formula (2) has the fastest reaction rate, and then the formula (1) It has been found that the purification reaction according to (3) is fast, and the purification reaction of formula (3) or (4) is slower than other reactions. Equation (2), which has the fastest reaction rate, is a purification reaction in which NO (nitrogen monoxide) and NO 2 (nitrogen dioxide) coexist on a one-to-one basis and react with the same amount of ammonia. the ratio of NO to NO 2 in the NOx in the gas is 1: when 1, most NOx purification reaction is improved (below, see Patent Document 1.).
[0006]
On the other hand, most of NOx discharged from the internal combustion engine is NO. Thus, by oxidizing a portion of NO is provided an oxidation catalyst on the upstream side of the SCR catalyst NO 2, the ratio of NO to NO 2 in the exhaust gas 1: as close to 1. However, in this purification system using an oxidation catalyst in combination, the oxidation capability of the oxidation catalyst becomes too strong when the temperature of the exhaust gas is high, and NO is excessively oxidized and a large amount of NO 2 is generated. As a result, the purification reaction according to the above formula (3) or (4) with a slow reaction rate occurs, and the NOx purification performance by the SCR catalyst is reduced.
[0007]
In the purification reactions of the above formulas (1) and (2), the ratio between NH 3 and NOx to be purified (total amount of NO and NO 2 ) is in a one-to-one relationship (NH 3 / NOx = 1). However, in the purification reactions of the above formulas (3) and (4), more NH 3 is required (NH 3 / NOx> 1) with respect to the total amount of NOx to be purified. For this reason, even if the urea water to be added is controlled initially assuming the purification reaction of formulas (1) and (2), the amount of ammonia is insufficient due to the purification reaction of formulas (3) and (4). As a result, the NOx purification performance of the SCR catalyst is reduced.
[0008]
[Patent Document 1]
JP 2001-525902 A [0009]
[Problems to be solved by the invention]
The present invention has been made in view of the above situation, and does not perform excessive NO oxidation (NO 2 generation), and coexists with NO and NO 2 so as to be in an ideal 1: 1 relationship for NOx purification. An object of the present invention is to provide an exhaust emission control device for an internal combustion engine.
[0010]
[Means for solving the problems]
A first invention that solves the above-described problems includes a NOx catalyst that is provided in an exhaust system of an internal combustion engine and selectively reduces NOx in exhaust gas using ammonia as a reducing agent, and is located upstream of the NOx catalyst in the exhaust system. In an exhaust gas purification apparatus for an internal combustion engine having a first oxidation catalyst provided,
An oxidation catalyst bypass for bypassing the first oxidation catalyst;
Switching means for switching the flow path of the exhaust gas from the internal combustion engine to either the first oxidation catalyst or the oxidation catalyst bypass;
Exhaust gas temperature detection means for detecting or estimating the temperature of the exhaust gas from the internal combustion engine;
Switching control for controlling the switching means so that the exhaust gas from the internal combustion engine passes through the oxidation catalyst bypass when the temperature of the exhaust gas detected or estimated by the exhaust gas temperature detection means is equal to or higher than a predetermined temperature. And an exhaust gas purifying device for an internal combustion engine.
[0011]
To improve the NOx purification rate of the SCR catalyst, but by installing the catalytic oxidation upstream of the NOx catalyst (first oxidation catalyst) which oxidizes part of NOx in NO 2, the temperature of the exhaust gas is a predetermined temperature In the above case, the production of NO 2 becomes excessive, and the NOx purification performance is lowered. Therefore, in the first invention, when the temperature of the exhaust gas is equal to or higher than the predetermined temperature, the exhaust gas flow path is switched from the first oxidation catalyst side to the oxidation catalyst bypass side to oxidize NOx (generate NO 2 ). To suppress.
[0012]
In the first invention in which the oxidation catalyst bypass is installed, when the exhaust gas temperature is equal to or higher than the predetermined temperature, NO in the exhaust gas is sent to the SCR catalyst without being oxidized, but the exhaust gas is already in a high temperature state. Since the cage SCR catalyst has high activity, NOx purification can be sufficiently performed without using an oxidation catalyst (first oxidation catalyst).
[0013]
The exhaust gas temperature detecting means has a function of detecting or estimating the temperature of the exhaust gas from the internal combustion engine, and the effect of the present invention can be obtained regardless of the location of the exhaust system. Preferably, a position where the exhaust gas temperature immediately after being discharged from the internal combustion engine can be detected, a position immediately upstream of the first oxidation catalyst, or a position immediately upstream of the switching means is preferable.
[0014]
The switching means has a function of switching the flow path of the exhaust gas from the internal combustion engine to either the first oxidation catalyst or the oxidation catalyst bypass. The function includes the first function in addition to the function of completely switching the flow path. The function of controlling the flow rate ratio of the exhaust gas flowing through the oxidation catalyst and the oxidation catalyst bypass may be used.
[0015]
A second invention that solves the above-described problem is a NOx catalyst that is provided in an exhaust system of an internal combustion engine and selectively reduces NOx in exhaust gas using ammonia as a reducing agent, and is located upstream of the NOx catalyst in the exhaust system. In an exhaust gas purification apparatus for an internal combustion engine having a first oxidation catalyst provided,
A second oxidation catalyst provided in parallel with the first oxidation catalyst in the exhaust system and having a relatively weak oxidizing power than the first oxidation catalyst;
Switching means for switching the flow path of the exhaust gas from the internal combustion engine to either the first oxidation catalyst or the second oxidation catalyst;
Exhaust gas temperature detection means for detecting or estimating the temperature of the exhaust gas from the internal combustion engine;
Switching for controlling the switching means so that the exhaust gas from the internal combustion engine passes through the second oxidation catalyst when the temperature of the exhaust gas detected or estimated by the exhaust gas temperature detection means is equal to or higher than a predetermined temperature. An exhaust emission control device for an internal combustion engine, comprising: a control means.
[0016]
When the temperature of the exhaust gas is equal to or higher than the predetermined temperature, NO 2 is excessively generated by the oxidation catalyst (first oxidation catalyst), and the NOx purification performance is deteriorated. Therefore, in the second invention, when the temperature of the exhaust gas is equal to or higher than the predetermined temperature, the exhaust gas flow path is switched from the first oxidation catalyst side to the second oxidation catalyst side having a weak oxidizing power to oxidize NOx ( NO 2 production) Reduce efficiency.
[0017]
The strength of the oxidizing power of the first oxidation catalyst and the second oxidation catalyst is adjusted by the amount of catalyst such as Pt to be supported, for example. For example, since the first oxidation catalyst is given a high activity from a low temperature, the amount of the catalyst is made relatively strong to make it a strong oxidation catalyst, while the second oxidation catalyst starts from around the temperature at which an excessive oxidation reaction starts in the first oxidation catalyst. A weak oxidation catalyst is prepared by adjusting the amount of the catalyst so as to be activated.
[0018]
A third invention for solving the above-described problems is an internal combustion engine exhaust gas purification apparatus according to the second invention.
The second oxidation catalyst is an exhaust gas purification apparatus for an internal combustion engine, wherein a conversion rate for oxidizing NO in the exhaust gas and converting it into NO 2 is 50% or less at the maximum.
[0019]
The NO → NO 2 conversion rate indicating the performance of the oxidation catalyst varies depending on the temperature of the exhaust gas. By employing an oxidation catalyst having a maximum NO → NO 2 conversion rate of 50% or less as the second oxidation catalyst, NO excessive oxidation in the first oxidation catalyst (a state where more than 50% of NO is oxidized) In the second oxidation catalyst having a role of avoiding NO, excessive oxidation of NO is prevented.
[0020]
According to a fourth aspect of the present invention for solving the above problems, in the exhaust gas purification apparatus for an internal combustion engine according to any one of the first to third aspects of the invention,
The predetermined temperature is an exhaust gas purification apparatus for an internal combustion engine, wherein a conversion rate at which the first oxidation catalyst oxidizes NO in the exhaust gas and converts it into NO 2 is 50%.
[0021]
The predetermined temperature is set to a temperature at which the NO → NO 2 conversion rate of the first oxidation catalyst becomes 50%. By switching to the bypass side or the second oxidation catalyst side, excessive generation of NO 2 is suppressed to prevent the NOx purification performance of the SCR catalyst from being lowered. The NO → NO 2 conversion rate of the oxidation catalyst varies depending on the temperature of the exhaust gas, but the relationship between the conversion rate and the exhaust gas temperature becomes a graph with a lot of difference, and there are two exhaust gas temperatures at which the conversion rate becomes 50%. If there is more than one, the lowest temperature is set as the predetermined temperature.
[0022]
A fifth invention for solving the above-described problems is an internal combustion engine exhaust gas purification apparatus according to any one of the first to fourth inventions,
The NOx catalyst is an exhaust gas purification apparatus for an internal combustion engine that purifies NOx in exhaust gas mainly by at least one of the following formulas (1) and (2).
4NO + 4NH 3 + O 2 → 4N 2 + 6H 2 O (1)
NO + NO 2 + 2NH 3 → 2N 2 + 3H 2 O (2)
[0023]
By controlling the exhaust purification device of the internal combustion engine so as to mainly use a reaction with a relatively high NOx purification rate in the SCR catalyst, the reaction rate shown in the following formulas (3) and (4) is relatively slow, and the NOx purification performance. To prevent reactions that cause a decrease in
2NO 2 + 4NH 3 + O 2 → 3N 2 + 6H 2 O (3)
6NO 2 + 8NH 3 → 7N 2 + 12H 2 O (4)
[0024]
According to a sixth aspect of the present invention for solving the above problems, in the exhaust gas purification apparatus for an internal combustion engine according to any one of the first to fourth aspects of the invention,
When the exhaust gas temperature detected or estimated by the exhaust gas temperature detection means is equal to or higher than a predetermined temperature, the switching control means is configured to switch the exhaust gas flowing through the first oxidation catalyst and the second oxidation by the switching means. The flow rate ratio with the exhaust gas flowing through the catalyst or the oxidation catalyst bypass is adjusted to control the ratio of NO and NO 2 in the exhaust gas flowing into the NOx catalyst to be approximately 1: 1. An exhaust purification device for an internal combustion engine.
[0025]
By controlling the flow path of the exhaust system so that the ratio of NO to NO 2 in the exhaust gas flowing into the NOx catalyst is approximately 1: 1 when the temperature of the exhaust gas is equal to or higher than a predetermined temperature, An exhaust purification device capable of efficiently purifying NOx is provided. As a means for detecting the ratio of NO to NO 2 in the exhaust gas, a means using a NOx sensor that can be directly detected, a state of the exhaust gas (exhaust gas temperature, NO → NO 2 conversion rate in the oxidation catalyst, and each flow) And a means for inferring from the exhaust gas flow rate passing through the road.
[0026]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
[0027]
<First Embodiment>
FIG. 1 is a configuration diagram showing an exhaust emission control device for an internal combustion engine according to a first embodiment of the present invention. As shown in the figure, the exhaust purification device 1 is provided on the upstream side of the SCR catalyst 7 in the exhaust system, and the SCR catalyst 7 as the NOx catalyst provided in the exhaust system of the engine 2 as the internal combustion engine. A strong oxidation catalyst 8 as a first oxidation catalyst, a urea water addition device 9 for supplying ammonia as a reducing agent upstream of the SCR catalyst 7 and downstream of the strong oxidation catalyst 8 in the exhaust system, etc. An oxidation catalyst bypass 15 that bypasses the strong oxidation catalyst 8, and a strong oxidation catalyst 8 or an oxidation catalyst bypass 15 that is provided at a branch portion between the strong oxidation catalyst 8 and the oxidation catalyst bypass 15 as an exhaust gas flow path from the engine 2. A switching valve 16 as a switching means for selecting the above, an exhaust gas temperature sensor 17 as an exhaust gas temperature detection means for detecting the temperature of the exhaust gas upstream of the switching valve 16, and urea water Composed of the switching control means for controlling the switching valve 16 by a predetermined condition is incorporated in the pressure device 9. The switching control of the switching valve 16 may be performed by an engine ECU (not shown).
[0028]
The air sucked from the air cleaner 3 is supercharged by the turbocharger 4, supplied to the engine 2 through the intercooler 5, burns with fuel in the engine 2, and is discharged to the exhaust system as exhaust gas.
[0029]
The unit for supplying the reducing agent includes a urea water tank 10 for storing urea water as a raw material of ammonia as a reducing agent, a catalyst temperature sensor 13 for detecting or estimating the temperature of the SCR catalyst 7, and an urea water exhaust system. The urea water injection nozzle 12 supplied to the upstream side of the SCR catalyst 7 and the urea water addition device 9 that controls the amount of urea water to be added according to the temperature estimated by the catalyst temperature sensor 13.
[0030]
The catalyst temperature sensor 13 is provided on the upstream side and the downstream side of the SCR catalyst 7, and estimates the average value of the exhaust gas temperature at the two points as the temperature of the SCR catalyst 7. The catalyst temperature sensor may be a sensor that can directly detect the temperature of the SCR catalyst 7.
[0031]
Further, an oxidation catalyst 14 is provided on the downstream side of the SCR catalyst 7 to decompose excess ammonia (generation of ammonia slip) due to addition of excess urea water. Note that the oxidation catalyst 14 can be omitted if it is a unit that supplies a reducing agent capable of performing urea water addition control that does not generate ammonia slip.
[0032]
The urea water addition device 9 also has a function as a switching control means. When the temperature of the exhaust gas detected by the exhaust gas temperature sensor 17 is equal to or higher than a predetermined temperature, the urea water addition device 9 controls the switching valve 16 to The exhaust gas is caused to flow into the oxidation catalyst bypass 15 and the switching valve 16 is controlled so that the exhaust gas passes through the strong oxidation catalyst 8 when the temperature of the exhaust gas is lower than a predetermined temperature.
[0033]
FIG. 2 is a graph showing the relationship between the NO → NO 2 conversion rate and the exhaust gas temperature according to an example of the strong oxidation catalyst. In addition, the same figure also shows the relationship between the NO 2 conversion rate of the weak oxidation catalyst described in the second embodiment below and the exhaust gas temperature.
[0034]
As shown in the figure, the NO 2 conversion rate according to an example of the strong oxidation catalyst increases as the exhaust gas temperature rises to about 300 ° C., and the conversion is about 70% or more when the exhaust gas temperature is around 300 ° C. The conversion rate decreases with increasing exhaust gas temperature, and the conversion rate decreases with increasing exhaust gas temperature. Further, when the exhaust gas temperature is in the range of about 230 ° C. to about 390 ° C., the conversion rate is 50% or more, which is a temperature range in which excessive NO 2 is generated and NOx purification efficiency is lowered. The conversion characteristics shown in the figure show an example of a strong oxidation catalyst, and can be adjusted by the amount of catalyst such as Pt supported on the oxidation catalyst.
[0035]
The urea water addition device 9 as the switching control means controls the switching valve 16 depending on whether or not the temperature of the exhaust gas flowing immediately upstream of the strong oxidation catalyst 8 detected by the exhaust gas temperature sensor 17 is equal to or higher than a predetermined temperature. As the predetermined temperature, a temperature at which the NO 2 conversion rate of the strong oxidation catalyst 8 becomes 50% is set. For example, in the case of the strong oxidation catalyst having the conversion rate characteristic shown in FIG. 2, there are two exhaust gas temperatures of about 230 ° C. and about 390 ° C. at which the conversion rate is 50%, but the lowest temperature The predetermined temperature is about 230 ° C.
[0036]
In other words, the switching control means switches the switching valve 16 when the exhaust gas temperature is such that the NO 2 conversion rate of the strong oxidation catalyst 8 is 50% or more (about 230 ° C. or more for the strong oxidation catalyst shown in FIG. 2). As a result, exhaust gas from the engine 2 flows into the oxidation catalyst bypass 15 and the exhaust gas temperature at which the NO 2 conversion rate of the strong oxidation catalyst 8 becomes lower than 50% (from about 230 ° C. in the strong oxidation catalyst shown in FIG. 2). If the temperature is low), the switching valve 16 controls the exhaust gas to pass through the strong oxidation catalyst 8.
[0037]
As a result, when the NO 2 conversion rate of the strong oxidation catalyst 8 is lower than 50%, the exhaust gas is passed through the strong oxidation catalyst 8 to oxidize more NO to NO 2 . The NOx purification efficiency in the SCR catalyst 7 can be improved. At this time, since excessive NO2 is not generated, the purification reaction according to the above equations (1) and (2) is performed on the SCR catalyst 7 at a relatively high reaction rate.
[0038]
On the other hand, when the NO2 conversion of strong oxidation catalyst 8 is an exhaust gas temperature such that 50% or more, by the exhaust gas is passed through an oxidation catalyst bypass 15 to suppress the formation of NO 2, SCR catalyst 7 can be prevented from lowering the NOx purification rate. At this time, since NO 2 is hardly contained in the exhaust gas, the purification reaction according to the above equation (1) is mainly performed on the SCR catalyst 7, but the SCR catalyst is in a high temperature state because the exhaust gas is in a high temperature state. 7 is sufficiently activated, and high NOx purification efficiency can be obtained without using a strong oxidation catalyst.
[0039]
<Second Embodiment>
Next, a second embodiment will be described. In the present embodiment, a “weak oxidation catalyst” as a second oxidation catalyst is provided instead of the oxidation catalyst bypass 15 in the exhaust gas purification apparatus according to the first embodiment shown in FIG. If the exhaust gas temperature is such that the NO 2 conversion rate of the strong oxidation catalyst 8 is 50% or more, an exhaust gas from the engine 2 is exhausted by the switching valve 16. When the gas flows into the “weak oxidation catalyst” and the exhaust gas temperature is such that the NO 2 conversion rate of the strong oxidation catalyst 8 is lower than 50%, the switching valve 16 causes the exhaust gas to flow into the strong oxidation catalyst 8. Is controlled by the switching control means.
[0040]
Here, the weak oxidation catalyst is a catalyst whose oxidizing power is weaker than that of the strong oxidation catalyst 8 by reducing the amount of the catalyst to be supported. For example, the weak oxidation catalyst having the conversion rate characteristic shown in FIG. Is used.
[0041]
As shown in the figure, the NO 2 conversion rate according to an example of the weak oxidation catalyst increases as the temperature rises until the exhaust gas temperature reaches about 300 ° C, and the conversion is about 50% when the exhaust gas temperature is around 300 ° C. The conversion rate decreases with increasing exhaust gas temperature, and the conversion rate decreases with increasing exhaust gas temperature. The conversion characteristics shown in the figure show an example of a weak oxidation catalyst, and can be adjusted by the amount of catalyst such as Pt supported on the oxidation catalyst.
[0042]
As a result, when the exhaust gas temperature is such that the NO 2 conversion rate of the strong oxidation catalyst 8 is 50% or more, the exhaust gas is allowed to flow through the weak oxidation catalyst to suppress the generation of NO 2. A reduction in the NOx purification rate in the catalyst 7 can be prevented.
[0043]
In this case, NO in the exhaust gas is oxidized by the weak oxidation catalyst, and the purification reaction having the fastest reaction rate according to the above equation (2) can be used, so that it is more than simply circulating the oxidation catalyst bypass. High NOx purification efficiency can be obtained. Moreover, since the weak oxidation catalyst is an oxidation catalyst whose oxidizing power is adjusted so that the conversion rate does not become 50% or more, it does not generate excessive NO 2 and the NOx purification efficiency does not decrease.
[0044]
In the first and second embodiments, the switching control means changes the exhaust gas flow path to the strong oxidation catalyst 8 side or the oxidation catalyst bypass 15 (or weak oxidation catalyst) side at a predetermined temperature. However, the flow rate ratio of the exhaust gas flowing through the strong oxidation catalyst 8 side and the oxidation catalyst bypass 15 (or weak oxidation catalyst) side may be controlled by adjusting the opening degree of the switching valve 16.
[0045]
When controlling the flow ratio, when the temperature of the exhaust gas is equal to or higher than a predetermined temperature, for example, the control is performed so that the ratio of NO to NO 2 in the exhaust gas flowing into the SCR catalyst is approximately 1: 1. By doing so, it is possible to provide an exhaust purification device capable of purifying NOx most efficiently. The ratio of NO to NO 2 in the exhaust gas can be estimated from, for example, the state of the exhaust gas (exhaust gas temperature, NO → NO 2 conversion rate in the oxidation catalyst, exhaust gas flow rate passing through each flow path, etc.). it can.
[0046]
【The invention's effect】
In the first invention, when the temperature of the exhaust gas is equal to or higher than the predetermined temperature, the flow path of the exhaust gas is switched from the first oxidation catalyst side to the oxidation catalyst bypass side, and the SCR is oxidized without oxidizing NO in the exhaust gas. Since it is sent to the catalyst, it is possible to prevent the NOx purification efficiency from being lowered by preventing the generation of excessive NO 2 that is the cause of the NOx purification efficiency being lowered in the SCR catalyst.
[0047]
In the second invention, when the temperature of the exhaust gas is equal to or higher than the predetermined temperature, the flow path of the exhaust gas is switched from the first oxidation catalyst side to the second oxidation catalyst side having a weak oxidizing power to oxidize NOx (NO 2 By reducing the production efficiency, it is possible to suppress the production of excess NO 2 that is a cause of lowering the NOx purification efficiency in the SCR catalyst and maintain the NOx purification efficiency in a high state.
[0048]
In the third invention, in the exhaust gas purification apparatus for an internal combustion engine according to the second invention, as the second oxidation catalyst, an oxidation catalyst having a maximum value of NO → NO 2 conversion of 50% or less is adopted. Reduction of NOx purification efficiency in the SCR catalyst by preventing excessive oxidation of NO in the second oxidation catalyst having a role of avoiding NO excessive oxidation (a state in which more than 50% of NO is oxidized) in the oxidation catalyst Can be prevented.
[0049]
In a fourth invention, in the exhaust gas purification apparatus for an internal combustion engine according to any one of the first to third inventions, the predetermined temperature is set to a temperature at which the NO → NO 2 conversion rate of the first oxidation catalyst becomes 50%. Thus, when the temperature of the exhaust gas becomes equal to or higher than the predetermined temperature, the exhaust gas flow path is switched to the second oxidation catalyst side or the oxidation catalyst bypass side, effectively suppressing excessive generation of NO 2 , A decrease in the NOx purification performance of the SCR catalyst can be prevented.
[0050]
In a fifth aspect of the invention, in the exhaust gas purification apparatus for an internal combustion engine according to any one of the first to fourth aspects of the present invention, the following (1) or (2) Since control is performed so as to purify NOx in the exhaust gas by at least one of the equations, the NOx purification performance of the SCR catalyst can be effectively improved.
4NO + 4NH 3 + O 2 → 4N 2 + 6H 2 O (1)
NO + NO 2 + 2NH 3 → 2N 2 + 3H 2 O (2)
[0051]
According to a sixth invention, in the exhaust gas purification apparatus for an internal combustion engine according to any one of the first to fourth inventions, when the temperature of the exhaust gas is equal to or higher than a predetermined temperature, NO in the exhaust gas flowing into the NOx catalyst By controlling the flow path of the exhaust system so that the ratio with NO 2 is approximately 1: 1, it is possible to provide an exhaust purification device that can purify NOx most efficiently.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of an exhaust emission control device for an internal combustion engine according to an embodiment of the present invention.
FIG. 2 is a graph showing the relationship between the NO → NO 2 conversion rate of the oxidation catalyst and the exhaust gas temperature.
[Explanation of symbols]
1 Exhaust Purification Device 2 Engine 3 Air Cleaner 4 Turbocharger 5 Intercooler 7 SCR Catalyst 8 Powerful Oxidation Catalyst (front)
9 Urea water addition device 10 Urea water tank 12 Urea water injection nozzle 13 Catalyst temperature sensor 14 Oxidation catalyst (rear stage)
15 Oxidation catalyst bypass 16 Switching valve 17 Exhaust gas temperature sensor

Claims (6)

内燃機関の排気系に設けられアンモニアを還元剤として排気ガス中のNOxを選択還元するNOx触媒と、前記排気系のうち当該NOx触媒よりも上流側に設けられる第1酸化触媒とを有する内燃機関の排気浄化装置において、
前記第1酸化触媒をバイパスする酸化触媒バイパスと、
前記内燃機関からの排気ガスの流路を前記第1酸化触媒または前記酸化触媒バイパスのいずれかに切り替える切替手段と、
前記内燃機関からの排気ガスの温度を検出又は推測する排気ガス温度検出手段と、
前記排気ガス温度検出手段により検出又は推測される排気ガスの温度が所定温度以上であるときに、前記内燃機関からの排気ガスが前記酸化触媒バイパスを通過するように前記切替手段を制御する切替制御手段とを備えたことを特徴とする内燃機関の排気浄化装置。
An internal combustion engine having an NOx catalyst provided in an exhaust system of the internal combustion engine for selectively reducing NOx in exhaust gas using ammonia as a reducing agent, and a first oxidation catalyst provided upstream of the NOx catalyst in the exhaust system. In the exhaust purification device of
An oxidation catalyst bypass for bypassing the first oxidation catalyst;
Switching means for switching the flow path of the exhaust gas from the internal combustion engine to either the first oxidation catalyst or the oxidation catalyst bypass;
Exhaust gas temperature detection means for detecting or estimating the temperature of the exhaust gas from the internal combustion engine;
Switching control for controlling the switching means so that the exhaust gas from the internal combustion engine passes through the oxidation catalyst bypass when the temperature of the exhaust gas detected or estimated by the exhaust gas temperature detection means is equal to or higher than a predetermined temperature. And an exhaust emission control device for an internal combustion engine.
内燃機関の排気系に設けられアンモニアを還元剤として排気ガス中のNOxを選択還元するNOx触媒と、前記排気系のうち当該NOx触媒よりも上流側に設けられる第1酸化触媒とを有する内燃機関の排気浄化装置において、
前記排気系のうち前記第1酸化触媒と並列に設けられ、前記第1酸化触媒よりも比較的酸化力が弱い第2酸化触媒と、
前記内燃機関からの排気ガスの流路を前記第1酸化触媒または前記第2酸化触媒のいずれかに切り替える切替手段と、
前記内燃機関からの排気ガスの温度を検出又は推測する排気ガス温度検出手段と、
前記排気ガス温度検出手段により検出又は推測される排気ガスの温度が所定温度以上であるときに、前記内燃機関からの排気ガスが前記第2酸化触媒を通過するように前記切替手段を制御する切替制御手段とを備えたことを特徴とする内燃機関の排気浄化装置。
An internal combustion engine having an NOx catalyst provided in an exhaust system of the internal combustion engine for selectively reducing NOx in exhaust gas using ammonia as a reducing agent, and a first oxidation catalyst provided upstream of the NOx catalyst in the exhaust system. In the exhaust purification device of
A second oxidation catalyst provided in parallel with the first oxidation catalyst in the exhaust system and having a relatively weak oxidizing power than the first oxidation catalyst;
Switching means for switching the flow path of the exhaust gas from the internal combustion engine to either the first oxidation catalyst or the second oxidation catalyst;
Exhaust gas temperature detection means for detecting or estimating the temperature of the exhaust gas from the internal combustion engine;
Switching for controlling the switching means so that the exhaust gas from the internal combustion engine passes through the second oxidation catalyst when the temperature of the exhaust gas detected or estimated by the exhaust gas temperature detection means is equal to or higher than a predetermined temperature. An exhaust emission control device for an internal combustion engine, comprising: a control means.
請求項2に記載する内燃機関の排気浄化装置において、
前記第2酸化触媒は、前記排気ガス中のNOを酸化してNOに転化する転化率が最大でも50%以下であることを特徴とする内燃機関の排気浄化装置。
The exhaust gas purification apparatus for an internal combustion engine according to claim 2,
The second oxidation catalyst, the exhaust gas purifying apparatus for an internal combustion engine conversion to convert by oxidizing NO in the exhaust gas to NO 2 is equal to or less than 50% at maximum.
請求項1ないし3のいずれかに係る内燃機関の排気浄化装置において、
前記所定温度は、前記第1酸化触媒が前記排気ガス中のNOを酸化してNOに転化する転化率が50%となる温度であることを特徴とする内燃機関の排気浄化装置。
The exhaust gas purification apparatus for an internal combustion engine according to any one of claims 1 to 3,
The exhaust gas purification apparatus for an internal combustion engine, wherein the predetermined temperature is a temperature at which a conversion rate at which the first oxidation catalyst oxidizes NO in the exhaust gas and converts it into NO 2 is 50%.
請求項1ないし4のいずれかに係る内燃機関の排気浄化装置において、
前記NOx触媒は、主として下記(1)式又は(2)式の少なくとも一方により排気ガス中のNOxを浄化することを特徴とする内燃機関の排気浄化装置。
4NO+4NH+O → 4N+6HO (1)
NO+NO+2NH → 2N+3HO (2)
The exhaust gas purification apparatus for an internal combustion engine according to any one of claims 1 to 4,
The exhaust gas purification apparatus for an internal combustion engine, wherein the NOx catalyst purifies NOx in exhaust gas mainly by at least one of the following formulas (1) and (2).
4NO + 4NH 3 + O 2 → 4N 2 + 6H 2 O (1)
NO + NO 2 + 2NH 3 → 2N 2 + 3H 2 O (2)
請求項1ないし4のいずれかに係る内燃機関の排気浄化装置において、
前記切替制御手段は、前記排気ガス温度検出手段により検出又は推測される排気ガスの温度が所定温度以上であるときに、前記切替手段により、前記第1酸化触媒を流れる排気ガスと前記第2酸化触媒又は前記酸化触媒バイパスを流れる排気ガスとの流量比を調整して、前記NOx触媒に流入する排気ガス中のNOとNOとの比が略1対1となるように制御することを特徴とする内燃機関の排気浄化装置。
The exhaust gas purification apparatus for an internal combustion engine according to any one of claims 1 to 4,
When the exhaust gas temperature detected or estimated by the exhaust gas temperature detection means is equal to or higher than a predetermined temperature, the switching control means is configured to switch the exhaust gas flowing through the first oxidation catalyst and the second oxidation by the switching means. The flow rate ratio with the exhaust gas flowing through the catalyst or the oxidation catalyst bypass is adjusted to control the ratio of NO and NO 2 in the exhaust gas flowing into the NOx catalyst to be approximately 1: 1. An exhaust purification device for an internal combustion engine.
JP2003170244A 2003-06-16 2003-06-16 Exhaust emission control device of internal combustion engine Withdrawn JP2005002968A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003170244A JP2005002968A (en) 2003-06-16 2003-06-16 Exhaust emission control device of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003170244A JP2005002968A (en) 2003-06-16 2003-06-16 Exhaust emission control device of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2005002968A true JP2005002968A (en) 2005-01-06

Family

ID=34095096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003170244A Withdrawn JP2005002968A (en) 2003-06-16 2003-06-16 Exhaust emission control device of internal combustion engine

Country Status (1)

Country Link
JP (1) JP2005002968A (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007010664A1 (en) * 2005-07-15 2007-01-25 Nissan Diesel Motor Co., Ltd. Exhaust purification apparatus
WO2007077919A1 (en) * 2006-01-06 2007-07-12 Mitsui Engineering & Shipbuilding Co., Ltd. Method of denitration of exhaust gas and apparatus therefor
WO2007077921A1 (en) * 2006-01-06 2007-07-12 Mitsui Engineering & Shipbuilding Co., Ltd. Process for denitration of exhaust gas
EP1837076A1 (en) 2006-03-20 2007-09-26 Ford Global Technologies, LLC Diesel particulate filter catalyst with low no2 emissions
JP2007275705A (en) * 2006-04-03 2007-10-25 Mitsui Eng & Shipbuild Co Ltd Denitration method of exhaust gas
WO2008114834A1 (en) * 2007-03-16 2008-09-25 Toyota Jidosha Kabushiki Kaisha Exhaust purification device for internal combustion engine
AT501066B1 (en) * 2006-03-02 2008-11-15 Avl List Gmbh EXHAUST SYSTEM FOR A COMBUSTION ENGINE
WO2009001623A1 (en) 2007-06-26 2008-12-31 Isuzu Motors Limited Nox purification system, and method for control of nox purification system
JP2009047138A (en) * 2007-08-22 2009-03-05 Toyota Motor Corp Internal combustion engine
US7678734B2 (en) 2007-03-14 2010-03-16 Ford Global Technologies, Llc Oxidation catalysts
JP2010519458A (en) * 2007-02-21 2010-06-03 ボルボ ラストバグナー アーベー Control method for controlling exhaust aftertreatment system and exhaust aftertreatment system
US7799289B2 (en) 2007-07-31 2010-09-21 Caterpillar Inc Exhaust treatment system with NO2 control
FR2952674A1 (en) * 2009-11-17 2011-05-20 Peugeot Citroen Automobiles Sa METHOD FOR CONTROLLING A SYSTEM FOR TREATING EXHAUST GASES OF AN INTERNAL COMBUSTION ENGINE
JP2011102573A (en) * 2009-11-12 2011-05-26 Ud Trucks Corp Exhaust emission control device
US8151558B2 (en) 2008-01-31 2012-04-10 Caterpillar Inc. Exhaust system implementing SCR and EGR
US8166751B2 (en) 2007-07-31 2012-05-01 Caterpillar Inc. Particulate filter
DE102012201809A1 (en) * 2011-02-09 2012-09-13 Honda Motor Co., Ltd. EXHAUST GAS CLEANING SYSTEM FOR A COMBUSTION ENGINE
JP2013002283A (en) * 2011-06-10 2013-01-07 Hitachi Constr Mach Co Ltd Exhaust emission control device
CN104081015A (en) * 2012-01-27 2014-10-01 斗山英维高株式会社 Post-processing system apparatus and control method
KR101474281B1 (en) 2012-12-13 2014-12-18 한국에너지기술연구원 Application and Control Method of Aftertreatment System for Vehicle/Engine to Reduce Ammonia Slip using AOC
EP2261477A4 (en) * 2008-03-11 2015-08-26 Isuzu Motors Ltd METHOD FOR CONTROLLING NOX PURIFICATION SYSTEM AND NOX PURIFICATION SYSTEM
WO2017078377A3 (en) * 2015-11-05 2017-06-29 한국기계연구원 Apparatus for removing contaminant in process discharge gas, which includes means for regenerating contaminated oxidation catalyst
KR101767157B1 (en) * 2015-11-05 2017-08-10 한국기계연구원 Co and polluted material removal device with regenerating means of polluted catalyst and co and polluted material removal method with regenerating of polluted catalyst
KR101828458B1 (en) * 2016-04-05 2018-02-13 한국기계연구원 NOx REDUCTION DEVICE WITH REGENERATING MEANS OF POLLUTED OXIDATION CATALYST
DE112007000322B4 (en) * 2006-03-02 2019-04-18 Avl List Gmbh Exhaust system for an internal combustion engine
EP3409345B1 (en) 2007-12-12 2020-09-30 BASF Corporation Emission treatment system
CN112241609A (en) * 2020-10-15 2021-01-19 吉林大学 Real-time estimating system for NOx emission of diesel engine

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007010664A1 (en) * 2005-07-15 2007-01-25 Nissan Diesel Motor Co., Ltd. Exhaust purification apparatus
JP2007023872A (en) * 2005-07-15 2007-02-01 Nissan Diesel Motor Co Ltd Exhaust emission control device
US7700058B2 (en) 2006-01-06 2010-04-20 Mitsui Engineering & Shipbuilding Co., Ltd. Process for denitration of exhaust gas
JP2007182812A (en) * 2006-01-06 2007-07-19 Mitsui Eng & Shipbuild Co Ltd Denitration method of exhaust gas
WO2007077921A1 (en) * 2006-01-06 2007-07-12 Mitsui Engineering & Shipbuilding Co., Ltd. Process for denitration of exhaust gas
WO2007077919A1 (en) * 2006-01-06 2007-07-12 Mitsui Engineering & Shipbuilding Co., Ltd. Method of denitration of exhaust gas and apparatus therefor
AT501066B1 (en) * 2006-03-02 2008-11-15 Avl List Gmbh EXHAUST SYSTEM FOR A COMBUSTION ENGINE
DE112007000322B4 (en) * 2006-03-02 2019-04-18 Avl List Gmbh Exhaust system for an internal combustion engine
EP1837076A1 (en) 2006-03-20 2007-09-26 Ford Global Technologies, LLC Diesel particulate filter catalyst with low no2 emissions
JP2007275705A (en) * 2006-04-03 2007-10-25 Mitsui Eng & Shipbuild Co Ltd Denitration method of exhaust gas
JP2010519458A (en) * 2007-02-21 2010-06-03 ボルボ ラストバグナー アーベー Control method for controlling exhaust aftertreatment system and exhaust aftertreatment system
US7678734B2 (en) 2007-03-14 2010-03-16 Ford Global Technologies, Llc Oxidation catalysts
WO2008114834A1 (en) * 2007-03-16 2008-09-25 Toyota Jidosha Kabushiki Kaisha Exhaust purification device for internal combustion engine
US8713916B2 (en) 2007-06-26 2014-05-06 Isuzu Motors Limited NOx purification system and method for control of NOx purification system
WO2009001623A1 (en) 2007-06-26 2008-12-31 Isuzu Motors Limited Nox purification system, and method for control of nox purification system
US8166751B2 (en) 2007-07-31 2012-05-01 Caterpillar Inc. Particulate filter
US7799289B2 (en) 2007-07-31 2010-09-21 Caterpillar Inc Exhaust treatment system with NO2 control
JP2009047138A (en) * 2007-08-22 2009-03-05 Toyota Motor Corp Internal combustion engine
EP3409345B1 (en) 2007-12-12 2020-09-30 BASF Corporation Emission treatment system
US8151558B2 (en) 2008-01-31 2012-04-10 Caterpillar Inc. Exhaust system implementing SCR and EGR
EP2261477A4 (en) * 2008-03-11 2015-08-26 Isuzu Motors Ltd METHOD FOR CONTROLLING NOX PURIFICATION SYSTEM AND NOX PURIFICATION SYSTEM
JP2011102573A (en) * 2009-11-12 2011-05-26 Ud Trucks Corp Exhaust emission control device
WO2011061424A1 (en) * 2009-11-17 2011-05-26 Peugeot Citroën Automobiles SA Method for controlling a system for the treatment of exhaust gases from an internal combustion engine
US9051865B2 (en) 2009-11-17 2015-06-09 Peugeot Citroen Automobilies SA. Method for controlling a system for the treatment of exhaust gases from an internal combustion engine
FR2952674A1 (en) * 2009-11-17 2011-05-20 Peugeot Citroen Automobiles Sa METHOD FOR CONTROLLING A SYSTEM FOR TREATING EXHAUST GASES OF AN INTERNAL COMBUSTION ENGINE
DE102012201809A1 (en) * 2011-02-09 2012-09-13 Honda Motor Co., Ltd. EXHAUST GAS CLEANING SYSTEM FOR A COMBUSTION ENGINE
JP2013002283A (en) * 2011-06-10 2013-01-07 Hitachi Constr Mach Co Ltd Exhaust emission control device
CN104081015A (en) * 2012-01-27 2014-10-01 斗山英维高株式会社 Post-processing system apparatus and control method
EP2808512A4 (en) * 2012-01-27 2015-10-07 Doosan Infracore Co Ltd Post-processing system apparatus and control method
US9597637B2 (en) 2012-01-27 2017-03-21 Doosan Infracore Co., Ltd. Exhaust gas post-processing apparatus and control method thereof
KR101474281B1 (en) 2012-12-13 2014-12-18 한국에너지기술연구원 Application and Control Method of Aftertreatment System for Vehicle/Engine to Reduce Ammonia Slip using AOC
CN108472585A (en) * 2015-11-05 2018-08-31 韩国机械研究院 The process gases contaminated materials eliminating equipment of regenerating unit with pollution oxidation catalyst
KR101767157B1 (en) * 2015-11-05 2017-08-10 한국기계연구원 Co and polluted material removal device with regenerating means of polluted catalyst and co and polluted material removal method with regenerating of polluted catalyst
WO2017078377A3 (en) * 2015-11-05 2017-06-29 한국기계연구원 Apparatus for removing contaminant in process discharge gas, which includes means for regenerating contaminated oxidation catalyst
US11135550B2 (en) 2015-11-05 2021-10-05 Korea Institute Of Machinery & Materials Process discharge gas polluted material removal device with regenerating means of polluted oxidation catalyst
KR101828458B1 (en) * 2016-04-05 2018-02-13 한국기계연구원 NOx REDUCTION DEVICE WITH REGENERATING MEANS OF POLLUTED OXIDATION CATALYST
CN112241609A (en) * 2020-10-15 2021-01-19 吉林大学 Real-time estimating system for NOx emission of diesel engine

Similar Documents

Publication Publication Date Title
JP2005002968A (en) Exhaust emission control device of internal combustion engine
JP4274270B2 (en) NOx purification system and control method of NOx purification system
US8356470B2 (en) Method of controlling NOx purification system and NOx purification system
US8056323B2 (en) Method of controlling exhaust gas purification system and exhaust gas purification system
EP2261477B1 (en) Method of controlling nox purification system, and nox purification system
JP4715581B2 (en) Exhaust gas purification system control method and exhaust gas purification system
JP2010265862A (en) Exhaust emission control device
JP4952645B2 (en) Exhaust gas purification device for internal combustion engine
KR101158816B1 (en) Exhaust Device Of Diesel Vehicle
JP5804544B2 (en) Exhaust treatment device for internal combustion engine
JP4509495B2 (en) Exhaust gas purification device for internal combustion engine
JP2010180861A (en) Exhaust emission control device
JP2010209783A (en) Exhaust emission control device
JP5338973B2 (en) Exhaust gas purification device for internal combustion engine
JP2007205267A (en) Exhaust emission control device
JP5672328B2 (en) Exhaust gas purification device for internal combustion engine
JP2018145869A (en) Exhaust emission control system and sulfur poisoning restriction method for exhaust emission control system
JP5003042B2 (en) Exhaust gas purification system
JP2012031787A (en) Device and method for exhaust emission control of internal combustion engine
JP2004204700A (en) Exhaust gas purification device
US20200123957A1 (en) Exhaust gas purification system for vehicle,
JP2009264284A (en) Exhaust emission control device of internal combustion engine
US11499465B2 (en) Exhaust gas purification system for vehicle
JP5476770B2 (en) Exhaust gas purification system and control method of exhaust gas purification system
JP2010116803A (en) Exhaust emission control system and exhaust emission control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050826

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070806