【0001】
【発明の属する技術分野】
本発明は、リードフレーム上に半導体素子を実装し、該半導体素子上に電極を接続して構成したモールド型の半導体モジュールの電極構造に関する。
【0002】
【従来の技術】
従来から、リードフレーム上に半導体素子を実装し、該半導体素子上に電極を接続するとともに、半導体素子及びその周域を封止樹脂にてモールドして構成したモールド型の半導体モジュールが知られている。
モールド型の半導体モジュールのうち、特にインバータ用モジュールなどのパワーモジュールでは、動作時に発熱するため放熱性を確保することが重要である。
このような、発熱性の半導体モジュールの放熱性を高めるため、半導体素子が実装されるリードフレームのダイパッド部の厚みをリード部よりも厚く形成し、該ダイパッド部にヒートシンクとしての機能を備えさせる技術が考案されている。例えば、特許文献1に記載されている如くである。
【0003】
【特許文献1】
特開平6−244334号公報
【0004】
【発明が解決しようとする課題】
前述のように、ダイパッド部がリード部よりも厚くなるようにリードフレームを形成する場合、ダイパッド部とリード部との板厚の差が大きすぎると、両者間に加工度合の差が生じて、薄板部となるリード部に波打ちが発生したり、ダイパッド部とリード部との境界にくびれ等の欠陥が発生したりするため、ダイパッド部をあまり厚くすることができなかった。
従って、ダイパッド部のヒートシンクとしての容量が制限され、充分な放熱性を確保することが困難な場合があった。
【0005】
また、半導体素子に接続される電極は、半導体素子とリードフレームのリード部とを接続しているが、ボンディングワイヤにて構成されていたためヒートマスが殆どなく、放熱性向上の効果を有していなかった。
そこで、本発明においては、従来は放熱性が何ら考慮されていなかった、半導体素子に接続されている電極を用いて、半導体モジュールの放熱性を充分に確保することを可能とする半導体モジュールの電極構造を提供するものである。
【0006】
【課題を解決するための手段】
上記課題を解決する本発明の半導体モジュールの電極構造は、以下の特徴を有する。
即ち、請求項1においては、リードフレーム上に半導体素子を実装し、半導体素子上に電極を接続して構成したモールド型の半導体モジュールにおいて、
前記電極は、板状に形成され、その一端部を折り曲げて複数層に重ね合わせた状態で半導体素子に面接続される。
これにより、電極の半導体素子との接続部のヒートマスを大きくすることができて、該接続部にヒートシンクとしての機能を備えさせることができ、半導体素子で発生した熱の放熱性を高めることができる。
また、電極と半導体素子との接合面積が増加して、両者の密着性を確保することができ、伝熱効率の向上が図れる。
そして、電極の半導体素子との接続部を複数層に重ね合わせることで得た、ヒートマスの効果を十分に発揮することが可能となる。
【0007】
また、請求項2においては、前記電極の半導体素子との接続部は、その厚みが2.0mm以下である。
これにより、ヒートマスの効果の増加なしに、半導体モジュールのサイズアップや生産性の悪化等の悪影響が出ることを防止でき、効果的にヒートマスの効果を得ることができる。
【0008】
また、請求項3においては、前記電極の表面にははんだめっきが施され、該電極の一端部と半導体素子とは、はんだ接合される。
これにより、複数層に重ね合わせられた電極の一端部の各層が、互いに広範囲にわたって接続されることとなり、半導体素子と電極の一端部との接合部に流れる大電流による発熱を抑えることができる。
また、この一端部の各層の接合を、電極の一端部と半導体素子とをはんだ接合する際に同時に行うことが可能であり、接合工程を簡素化することができる。
【0009】
【発明の実施の形態】
次に、本発明の実施の形態を添付の図面を用いて説明する。
【0010】
本発明にかかる半導体モジュールの電極構造の実施形態について説明する。
図1、図2に示すように、半導体モジュール1は、ダイパッド部2aとリード部2b・2c・2dとで構成されるリードフレーム2と、リードフレーム2のダイパッド部2a上にはんだ4を介して実装される半導体素子3と、半導体素子3とリードフレーム2のリード部2bとを接続する電極5と、半導体素子3とリードフレーム2のリード部2cとを接続するボンディングワイヤ7と、半導体素子3及びその周域(電極5やリードフレーム2のダイパッド部2a等)をモールドする封止樹脂6とで構成されている。
【0011】
半導体素子3の上面には、ソース電極3a及びゲート電極3bが形成されており、板状に形成される電極5は、その一端部51がはんだ4を介してソース電極3aと接続され、他端部52がリードフレーム2のリード部2bと接続されている。
また、ボンディングワイヤ7は半導体素子3のゲート電極3bとリード部2cとを接続している。
さらに、ダイパッド部2aとリード部2dとは一体的に形成されており、ドレイン電極に形成される半導体素子3の下面をダイパッド部2aにはんだ接合することで、該ドレイン電極とリード部2dとが接続されている。
【0012】
リードフレーム2のリード部2b・2c・2dとダイパッド部2aとは、リード部2b・2c・2dが高位置となるように段差を有して配置されており、半導体素子3とリード部2bとを接続する電極5も、他端部52が一端部51よりも高位置に位置するように、途中部で屈曲されている。
【0013】
また、電極5の一端部51は、途中で折り曲げられて、複数層に重ね合わせた状態で半導体素子3に接続されている。
例えば、図2における一端部51は、途中で屈曲されて、下方に位置する下層51aと上方に位置する上層51bとを重ね合わせた状態で、下層51aがはんだ4を介して半導体素子3と面接続されている。
【0014】
電極5は、その表面にはんだめっきが施されている。
従って、電極5の一端部51と半導体素子3のソース電極3aとをはんだ接合する際に、電極5表面にめっきされたはんだが溶融して、重ね合わせられた状態の下層51aの上面と上層51bの下面とが接合される。
【0015】
このように、半導体素子3と接続される電極5の一端部51を、折り曲げて複数層に重ね合わせることで、該一端部51の厚みが電極5の他部に比べて厚くなる。(例えば、下層51aと上層51bの2層を重ね合わせた場合は、他端部52等の厚さと比べて、2倍の厚さとなる)。
これにより、半導体素子3と接続される電極5の一端部51のヒートマスを大きくすることができて、該一端部51にヒートシンクとしての機能を持たせることができ、半導体素子3で発生した熱の放熱性を高めることが可能となる。
【0016】
また、電極における半導体素子3との接続部のヒートマスを大きくするためには、図3に示す半導体モジュール60の電極65のように、電極65全体の厚みを厚くすることも考えられる。
しかし、電極65を全体的に厚くすると、一端部66と他端部67との段差部分における屈曲部65aで生じるR形状(円弧形状)部分が大きくなってしまう。
また、モールド型に構成される半導体モジュール1・60では、モジュール全体のサイズの制限等により、リードフレーム2のリード2b・2c・2dと、半導体素子3との距離W0が小さくしかとれない。
従って、前記屈曲部65aで生じるR形状部分が大きくなってしまうと、電極65の一端部66の半導体素子3と接続される範囲R0が小さくなってしまう。
【0017】
つまり、リード2c・2dの端部と半導体素子3の端部との間隔が小さいため、電極65の厚みや屈曲部65aのR形状部分の影響により、一端部66と半導体素子3のソース電極3aとの接合面積を大きく確保することができない。
これにより、半導体素子3から電極65への伝熱面積が減少することとなって、電極65の厚みを増したことにより得たヒートマスの効果を十分に発揮することができなくなってしまう。
【0018】
これに対して、図2に示す半導体モジュール1ように、電極5の一端部51を途中で屈曲し、複数層に重ね合わせた状態で半導体素子3と接続した場合は、一端部51と他端部52との段差部分における屈曲部5aの下方に、一端部51の下層51aの端部を配置することができる。
さらに、下層51aの端部を、屈曲部5aよりも他端部52側にまで延出することも可能である。
下層51aの端部はR形状ではなく角張った形状に形成されているので、半導体素子3との接合面積を広く確保することが可能であり、半導体素子3から電極5への伝熱効率が向上することができる。
【0019】
このように、電極5の屈曲部5aの下方若しくはその他端部5側にまで下層51aを配置することで、電極5の一端部51と半導体素子3とが接続される範囲R1を大きくとることができる。
これにより、電極5の一端部51と半導体素子3との接合面積が増加して、両者の密着性を確保することができ、伝熱効率の向上が図れる。
そして、電極5の一端部51を下層51aと上層51bの複数層に重ね合わせることで得た、ヒートマスの効果を十分に発揮することが可能となる。
【0020】
また、電極5の一端部51と半導体素子3との接合面積を大きく確保することに加えて、一端部51の下層51aと上層51bとが、電極5表面にめっきされたはんだにより広範囲に接続されているので、半導体素子3と一端部51との接合部に流れる大電流による発熱を抑えることもできる。
【0021】
また、前記電極5は、下層51aと上層51bとを重ね合わせて構成した一端部51の厚みtを2.0mm程度以下の厚みとしているが、これは以下の理由による。
【0022】
即ち、電極5の半導体素子3との接続部である一端部51を厚くしていくと、それに従って前述のヒートマスの効果が増加すると考えられるが、一端部51の厚みを厚くすることには、半導体モジュール1のサイズや生産性に与える影響(サイズが大きくなったり、生産性が悪くなったりすること)により、限界がある。
【0023】
そこで、一端部51の板厚に対する半導体素子3の放熱効果特性を測定し、ヒートマスの効果と半導体モジュール1のサイズや生産性に与える影響とを考慮した、好適な一端部51の板厚を求めた。
図4に、一端部51の板厚に対する半導体素子3の電極5の一端部51の板厚に対する半導体素子3の温度上昇値の測定結果を示す。
【0024】
図4によれば、一端部51の板厚が薄いときには半導体素子3の温度上昇値は高く、一端部51の板厚が厚くなるに従って、半導体素子3の温度上昇値が低くなるという結果が得られた。
なお、半導体素子3の温度上昇値が低い程、放熱効果が大きいことを示している。
【0025】
しかし、一端部51の板厚が厚くなるにつれて、半導体素子3の温度上昇値の変化度合いは減少していき、一端部51の板厚が1.5mm程度になると変化度合いはかなり小さくなり、2.0mm程度にまでなると半導体素子3の温度上昇値の変化は殆ど見られず、ほぼ一定となる。
これは、一端部51の板厚が1.5mmを超えると、さらには2.0mmまで達すると、一端部51におけるヒートマスの効果の増加が殆ど無くなることを示している。
【0026】
このように、一端部51の板厚が1.5mmを超えるとヒートマスの効果は殆ど増加せず、特に2.0mmを超えるとヒートマスの効果は増加しないが、半導体モジュール1のサイズや生産性に及ぼす悪影響は板厚が増加すると増すため、本発明では、モールドタイプの半導体モジュール1に好適な一端部51の板厚を、ヒートマスの効果の増加が見られる2.0mm以下としている。
これにより、ヒートマスの効果の増加なしに、半導体モジュールのサイズアップや生産性の悪化等の悪影響が出ることを防止でき、効果的にヒートマスの効果を得ることができる。
【0027】
なお、ヒートマスの効果の増加が見られなくなる一端部51の板厚は、半導体モジュール1に流れる電流量によっても若干異なるため、一端部51の板厚の最大値を、半導体モジュール1に流れる電流量に応じて2.0mm〜1.5mmの範囲で適宜決定することが可能である。
即ち、電流量がさほど多くなくて、板厚が1.5mmを超えるとヒートマス効果の増加が見られなくなる場合には、一端部51の板厚を1.5mm以下とすることもできる。
【0028】
また、半導体素子3のゲート電極3bとリード部2cとの接続は、本実施形態ではボンディングワイヤ7にて行っているが、ソース電極3aとリード部2bとを接続する板状部材の電極5と同様の部材にて接続することも可能である。
【0029】
【発明の効果】
以上のように、本発明によれば、
電極の半導体素子との接続部のヒートマスを大きくすることができて、該接続部にヒートシンクとしての機能を持たせることができるとともに、ヒートマスの効果を十分に発揮することができ、半導体素子で発生した熱の放熱性を高めることができる。また、効果的にヒートマスの効果を得ることができるとともに、半導体素子と電極との接合部の発熱を抑えることができる。
【図面の簡単な説明】
【図1】本発明の電極構造を備える半導体モジュールを示す平面図である。
【図2】同じく半導体モジュールのモールド内部を示す側面断面図である。
【図3】電極自体の厚みを厚く形成した半導体モジュールのモールド内部を示す側面断面図である。
【図4】電極板厚と半導体素子の放熱効果特性との関係を示す図である。
【符号の説明】
1 半導体モジュール
2 リードフレーム
2a ダイパッド部
2b・2c・2d リード部
3 半導体素子
5 電極
51 一端部
52 他端部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrode structure of a mold type semiconductor module configured by mounting a semiconductor element on a lead frame and connecting an electrode on the semiconductor element.
[0002]
[Prior art]
Conventionally, there has been known a mold type semiconductor module in which a semiconductor element is mounted on a lead frame, an electrode is connected to the semiconductor element, and the semiconductor element and its peripheral area are molded with a sealing resin. Yes.
Among power semiconductor modules, especially power modules such as inverter modules, it is important to ensure heat dissipation because they generate heat during operation.
In order to enhance the heat dissipation of such a heat-generating semiconductor module, the die pad part of the lead frame on which the semiconductor element is mounted is formed thicker than the lead part, and the die pad part has a function as a heat sink. Has been devised. For example, it is as described in Patent Document 1.
[0003]
[Patent Document 1]
JP-A-6-244334
[Problems to be solved by the invention]
As described above, when the lead frame is formed so that the die pad portion is thicker than the lead portion, if the difference in plate thickness between the die pad portion and the lead portion is too large, a difference in processing degree occurs between the two, Since the undulation is generated in the lead portion which is a thin plate portion, or a defect such as a constriction is generated at the boundary between the die pad portion and the lead portion, the die pad portion cannot be made too thick.
Therefore, the capacity of the die pad portion as a heat sink is limited, and it may be difficult to ensure sufficient heat dissipation.
[0005]
In addition, the electrode connected to the semiconductor element connects the semiconductor element and the lead portion of the lead frame. However, since the electrode is composed of bonding wires, there is almost no heat mass and there is no effect of improving heat dissipation. It was.
Therefore, in the present invention, the electrode of the semiconductor module that can sufficiently secure the heat dissipation of the semiconductor module by using the electrode connected to the semiconductor element, in which heat dissipation is not considered in the past. Provide structure.
[0006]
[Means for Solving the Problems]
The electrode structure of the semiconductor module of the present invention that solves the above problems has the following characteristics.
That is, in claim 1, in a mold type semiconductor module configured by mounting a semiconductor element on a lead frame and connecting an electrode on the semiconductor element,
The electrode is formed in a plate shape and is surface-connected to the semiconductor element in a state where one end of the electrode is bent and superimposed on a plurality of layers.
Thereby, the heat mass of the connection part with the semiconductor element of an electrode can be enlarged, the function as a heat sink can be provided in this connection part, and the heat dissipation of the heat which generate | occur | produced in the semiconductor element can be improved. .
Further, the bonding area between the electrode and the semiconductor element is increased, the adhesion between the two can be ensured, and the heat transfer efficiency can be improved.
And it becomes possible to fully exhibit the effect of the heat mass obtained by superimposing the connection part of an electrode with the semiconductor element on multiple layers.
[0007]
According to a second aspect of the present invention, the connecting portion between the electrode and the semiconductor element has a thickness of 2.0 mm or less.
Thereby, it is possible to prevent adverse effects such as an increase in the size of the semiconductor module and a deterioration in productivity without increasing the effect of the heat mass, and the effect of the heat mass can be obtained effectively.
[0008]
According to a third aspect of the present invention, the surface of the electrode is subjected to solder plating, and one end of the electrode and the semiconductor element are soldered together.
Thereby, each layer of the one end part of the electrode superimposed on the plurality of layers is connected to each other over a wide range, and heat generation due to a large current flowing in the junction between the semiconductor element and the one end part of the electrode can be suppressed.
In addition, the bonding of the layers at the one end can be performed at the same time when the one end of the electrode and the semiconductor element are solder-bonded, and the bonding process can be simplified.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described with reference to the accompanying drawings.
[0010]
An embodiment of an electrode structure of a semiconductor module according to the present invention will be described.
As shown in FIGS. 1 and 2, the semiconductor module 1 includes a lead frame 2 composed of a die pad portion 2 a and lead portions 2 b, 2 c, and 2 d, and solder 4 on the die pad portion 2 a of the lead frame 2. A semiconductor element 3 to be mounted; an electrode 5 that connects the semiconductor element 3 and the lead portion 2b of the lead frame 2; a bonding wire 7 that connects the semiconductor element 3 and the lead portion 2c of the lead frame 2; And a sealing resin 6 for molding the peripheral region (electrode 5, die pad portion 2 a of lead frame 2, etc.).
[0011]
A source electrode 3 a and a gate electrode 3 b are formed on the upper surface of the semiconductor element 3. One end 51 of the electrode 5 formed in a plate shape is connected to the source electrode 3 a through the solder 4, and the other end The part 52 is connected to the lead part 2 b of the lead frame 2.
The bonding wire 7 connects the gate electrode 3b of the semiconductor element 3 and the lead portion 2c.
Further, the die pad portion 2a and the lead portion 2d are integrally formed. By soldering the lower surface of the semiconductor element 3 formed on the drain electrode to the die pad portion 2a, the drain electrode and the lead portion 2d are connected. It is connected.
[0012]
The lead portions 2b, 2c, and 2d of the lead frame 2 and the die pad portion 2a are arranged with a step so that the lead portions 2b, 2c, and 2d are in a high position, and the semiconductor element 3 and the lead portion 2b Is also bent at the middle so that the other end 52 is positioned higher than the one end 51.
[0013]
In addition, one end 51 of the electrode 5 is bent in the middle and connected to the semiconductor element 3 in a state of being superimposed on a plurality of layers.
For example, one end 51 in FIG. 2 is bent in the middle, and the lower layer 51 a faces the semiconductor element 3 via the solder 4 in a state where the lower layer 51 a positioned below and the upper layer 51 b positioned above are overlapped. It is connected.
[0014]
The electrode 5 is solder-plated on its surface.
Therefore, when the one end portion 51 of the electrode 5 and the source electrode 3a of the semiconductor element 3 are solder-joined, the solder plated on the surface of the electrode 5 is melted, and the upper surface and the upper layer 51b of the lower layer 51a in an overlapped state. Are joined to the lower surface.
[0015]
In this way, the one end 51 of the electrode 5 connected to the semiconductor element 3 is bent and overlapped with a plurality of layers, so that the thickness of the one end 51 becomes thicker than the other part of the electrode 5. (For example, when two layers of the lower layer 51a and the upper layer 51b are overlapped, the thickness is twice as large as the thickness of the other end portion 52).
Thereby, the heat mass of the one end portion 51 of the electrode 5 connected to the semiconductor element 3 can be increased, and the one end portion 51 can have a function as a heat sink, and the heat generated in the semiconductor element 3 can be increased. It becomes possible to improve heat dissipation.
[0016]
Further, in order to increase the heat mass of the connection portion of the electrode with the semiconductor element 3, it is conceivable to increase the thickness of the entire electrode 65 like the electrode 65 of the semiconductor module 60 shown in FIG. 3.
However, when the electrode 65 is thickened as a whole, the R-shaped (arc-shaped) portion generated at the bent portion 65a at the step portion between the one end portion 66 and the other end portion 67 becomes large.
Further, in the semiconductor modules 1 and 60 configured as molds, the distance W0 between the leads 2b, 2c, and 2d of the lead frame 2 and the semiconductor element 3 can only be small due to restrictions on the size of the entire module.
Therefore, when the R-shaped portion generated in the bent portion 65a is increased, the range R0 connected to the semiconductor element 3 at the one end portion 66 of the electrode 65 is decreased.
[0017]
That is, since the distance between the ends of the leads 2c and 2d and the end of the semiconductor element 3 is small, the one end 66 and the source electrode 3a of the semiconductor element 3 are affected by the thickness of the electrode 65 and the R-shaped portion of the bent portion 65a. It is not possible to ensure a large joint area.
As a result, the heat transfer area from the semiconductor element 3 to the electrode 65 decreases, and the effect of the heat mass obtained by increasing the thickness of the electrode 65 cannot be fully exhibited.
[0018]
On the other hand, as in the semiconductor module 1 shown in FIG. 2, when one end 51 of the electrode 5 is bent in the middle and connected to the semiconductor element 3 in a state of being stacked on a plurality of layers, the one end 51 and the other end The end portion of the lower layer 51a of the one end portion 51 can be disposed below the bent portion 5a in the stepped portion with the portion 52.
Furthermore, it is possible to extend the end portion of the lower layer 51a to the other end portion 52 side than the bent portion 5a.
Since the end portion of the lower layer 51a is formed in an angular shape instead of an R shape, it is possible to secure a wide bonding area with the semiconductor element 3, and the heat transfer efficiency from the semiconductor element 3 to the electrode 5 is improved. be able to.
[0019]
Thus, by arranging the lower layer 51a below the bent portion 5a of the electrode 5 or on the other end 5 side, the range R1 in which the one end portion 51 of the electrode 5 and the semiconductor element 3 are connected can be increased. it can.
Thereby, the junction area of the one end part 51 of the electrode 5 and the semiconductor element 3 increases, both adhesiveness can be ensured, and the improvement of heat-transfer efficiency can be aimed at.
And it becomes possible to fully exhibit the effect of the heat mass obtained by superimposing the one end part 51 of the electrode 5 on the plurality of layers of the lower layer 51a and the upper layer 51b.
[0020]
Further, in addition to ensuring a large bonding area between the one end portion 51 of the electrode 5 and the semiconductor element 3, the lower layer 51 a and the upper layer 51 b of the one end portion 51 are connected over a wide range by solder plated on the surface of the electrode 5. Therefore, heat generation due to a large current flowing at the junction between the semiconductor element 3 and the one end 51 can be suppressed.
[0021]
In addition, the electrode 5 has a thickness t of about 2.0 mm or less at the one end 51 formed by superposing the lower layer 51a and the upper layer 51b, for the following reason.
[0022]
That is, it is considered that the effect of the heat mass increases according to the increase in the thickness of the one end portion 51 that is the connection portion of the electrode 5 to the semiconductor element 3, but in order to increase the thickness of the one end portion 51, There is a limit due to the influence on the size and productivity of the semiconductor module 1 (the size increases or the productivity deteriorates).
[0023]
Therefore, the heat radiation effect characteristic of the semiconductor element 3 with respect to the thickness of the one end portion 51 is measured, and a suitable thickness of the one end portion 51 is obtained in consideration of the effect of the heat mass and the influence on the size and productivity of the semiconductor module 1. It was.
FIG. 4 shows the measurement result of the temperature rise value of the semiconductor element 3 with respect to the plate thickness of the one end portion 51 of the electrode 5 of the semiconductor element 3 with respect to the plate thickness of the one end portion 51.
[0024]
According to FIG. 4, the temperature rise value of the semiconductor element 3 is high when the plate thickness of the one end portion 51 is thin, and the temperature rise value of the semiconductor element 3 decreases as the plate thickness of the one end portion 51 increases. It was.
In addition, it has shown that the heat dissipation effect is so large that the temperature rise value of the semiconductor element 3 is low.
[0025]
However, as the plate thickness of the one end portion 51 increases, the degree of change in the temperature rise value of the semiconductor element 3 decreases. When the plate thickness of the one end portion 51 reaches about 1.5 mm, the change degree becomes considerably small. When it reaches about 0.0 mm, the temperature rise value of the semiconductor element 3 hardly changes and becomes almost constant.
This indicates that when the plate thickness of the one end portion 51 exceeds 1.5 mm and further reaches 2.0 mm, the effect of the heat mass at the one end portion 51 is hardly increased.
[0026]
As described above, when the thickness of the one end portion 51 exceeds 1.5 mm, the effect of the heat mass hardly increases, and when the thickness exceeds 2.0 mm, the effect of the heat mass does not increase, but the size and productivity of the semiconductor module 1 increase. Since the adverse effect increases as the plate thickness increases, in the present invention, the plate thickness of the one end portion 51 suitable for the mold type semiconductor module 1 is set to 2.0 mm or less at which an increase in the effect of the heat mass is observed.
Thereby, it is possible to prevent adverse effects such as an increase in the size of the semiconductor module and a deterioration in productivity without increasing the effect of the heat mass, and the effect of the heat mass can be obtained effectively.
[0027]
Note that the thickness of the one end portion 51 at which the increase in the effect of the heat mass is not observed differs slightly depending on the amount of current flowing through the semiconductor module 1, so It is possible to determine appropriately in the range of 2.0 mm to 1.5 mm depending on.
That is, if the amount of current is not so large and if the plate thickness exceeds 1.5 mm, an increase in the heat mass effect cannot be seen, the plate thickness of the one end 51 can be made 1.5 mm or less.
[0028]
The gate electrode 3b of the semiconductor element 3 and the lead portion 2c are connected by the bonding wire 7 in this embodiment, but the plate-like member electrode 5 that connects the source electrode 3a and the lead portion 2b It is also possible to connect with the same member.
[0029]
【The invention's effect】
As described above, according to the present invention,
It is possible to increase the heat mass of the connection portion between the electrode and the semiconductor element, and to provide the connection portion with a function as a heat sink and to sufficiently exhibit the effect of the heat mass. Heat dissipation can be enhanced. In addition, it is possible to effectively obtain a heat mass effect and to suppress heat generation at the joint between the semiconductor element and the electrode.
[Brief description of the drawings]
FIG. 1 is a plan view showing a semiconductor module having an electrode structure of the present invention.
FIG. 2 is a side sectional view showing the inside of the mold of the semiconductor module.
FIG. 3 is a side sectional view showing the inside of a mold of a semiconductor module in which the electrode itself is formed thick.
FIG. 4 is a diagram showing a relationship between an electrode plate thickness and a heat dissipation effect characteristic of a semiconductor element.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Semiconductor module 2 Lead frame 2a Die pad part 2b * 2c * 2d Lead part 3 Semiconductor element 5 Electrode 51 One end part 52 Other end part