[go: up one dir, main page]

JP2005016819A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP2005016819A
JP2005016819A JP2003181240A JP2003181240A JP2005016819A JP 2005016819 A JP2005016819 A JP 2005016819A JP 2003181240 A JP2003181240 A JP 2003181240A JP 2003181240 A JP2003181240 A JP 2003181240A JP 2005016819 A JP2005016819 A JP 2005016819A
Authority
JP
Japan
Prior art keywords
heat transfer
transfer tube
container
tube group
temperature side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003181240A
Other languages
Japanese (ja)
Inventor
Chikako Iwaki
智香子 岩城
Seiichi Yokobori
誠一 横堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003181240A priority Critical patent/JP2005016819A/en
Publication of JP2005016819A publication Critical patent/JP2005016819A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

【課題】熱交換器内で発生する蒸気の合体を抑制し、気泡を小径化し、均質に分布させるための構造とし、これによって熱交換効率を向上させる。
【解決手段】鉛直方向ではない向きに互いにほぼ平行に配列されて内部を高温側流体が流れる複数の伝熱管2からなる伝熱管群と、伝熱管群を収容する容器1とを有し、伝熱管の外側の前記容器内に低温側流体を収容して、伝熱管の外表面で前記低温側流体に沸騰が生じるように構成された熱交換器において、伝熱管相互の間の、沸騰が生じると想定される部分の少なくとも一部に、伝熱管の方向に広がるワイヤメッシュ3を配置した。
【選択図】 図1
A structure for suppressing the coalescence of steam generated in a heat exchanger, reducing the diameter of bubbles and distributing them uniformly, thereby improving the heat exchange efficiency.
A heat transfer tube group including a plurality of heat transfer tubes 2 arranged in substantially parallel to each other in a non-vertical direction and in which a high-temperature fluid flows therein, and a container 1 that accommodates the heat transfer tube group. Boiling occurs between heat transfer tubes in a heat exchanger configured to contain the low temperature side fluid in the container outside the heat tube and cause the low temperature side fluid to boil on the outer surface of the heat transfer tube. The wire mesh 3 that spreads in the direction of the heat transfer tube was disposed in at least a part of the assumed portion.
[Selection] Figure 1

Description

【0001】
【発明の属する技術分野】
本発明は、シェル/チューブ型の熱交換器に関し、特に、シェル側で沸騰が生じる熱交換器に関する。
【0002】
【従来の技術】
熱交換器は、化学工業、発電プラント、食品工業など様々な分野において重要な役割を果たしている。熱交換器は種々のタイプがあるが、シェル/チューブ型の熱交換器は最も一般的であり、ケトル式リボイラ、給水加熱器、蒸発器、換気空調器などとして幅広く利用されている。この熱交換器は、多管式伝熱管(チューブ)束を円筒胴に挿入した形式のもので、管板と胴(シェル)との取り合い構造により円筒管板形、Uチューブ形、浮動頭形、バヨネット・チューブ形などに分類される(特許文献1参照)。
【0003】
シェル側の流動は、熱交換器の使用目的によって異なるが、蒸発器、リボイラとして使用する場合には、液体を加熱して蒸発させるため、シェル内は沸騰二相流となる。実際、すべての熱交換器の少なくとも60%は、シェル内の流れが二相流であるとされている。
【0004】
図10に従来のシェル/チューブ型の熱交換器の概略図を示す。主に、円筒形の容器1と容器1内に配置された伝熱管2群によって構成される。容器1には低温液体が満たされており、伝熱管2内には高温流体が流れる。図10の例では、互いに平行な多数の伝熱管2が水平方向に延びるように配置され、伝熱管2同士が水平方向および高さ方向に揃うように正方格子状に配列されている。
【0005】
伝熱管2内の高温流体の熱は伝熱管2壁を通して伝熱管2外側の低温側流体に伝えられ、伝熱管2の外表面では低温側の液体が沸騰を起こし、容器1内の流れが気液二相流となる。このとき、加熱された容器1内の流体は密度差と、発生した気泡の上昇によって自然循環流が形成される。
【0006】
伝熱管群の下部の段においては液単相か気泡がごく少ないが、上段にいくにしたがって気泡の発生量が多くまた発生した気泡が蓄積されるため、上段ほど気泡の体積割合(ボイド率)が大きくなる。しかしながら、ボイド率は、上段にいくについて徐々に増加するわけではなく、上部/中央部でボイド率が大きく、下部/周辺部でボイド率が小さくなり、高ボイド率領域18と低ボイド率領域19の二つの領域に分かれることが従来の研究から指摘されている。
【0007】
気泡の局所的な分布についてみると、図11に示される一般的な格子配列では、伝熱管2の間の鉛直方向のギャップにおいて流れのはく離によって流れが逆流、停滞するため気泡が集積しやすく、伝熱管2の背後でボイド率が大きく、主流領域でボイド率が小さいといった気泡分布が生じる。
【0008】
自然循環流が大きく流れの乱れが大きくなるほど、伝熱管2の背後への流れが強くなり、より伝熱管2の背後のボイド率が大きくなる。こうした伝熱管2同士のギャップにおける気泡の集積は、伝熱を劣化させ、ドライアウトを生じやすくさせる。熱交換器が、特に発電プラントの安全にかかわる冷却設備として使用される場合には、ドライアウトによる急激な除熱の劣化は、安全性に大きく影響を及ぼす可能性がある。
【0009】
【特許文献1】
特開平6−147406号公報
【0010】
【発明が解決しようとする課題】
このように、熱交換器においては、より熱交換率が良く、またドライアウトなどによる急激な伝熱劣化を生じることなく所定の熱交換性能を維持することが求められる。しかしながら、熱交換器内に発生する蒸気が伝熱管の周囲に停滞することによって著しく伝熱を劣化させ、またドライアウトを発生しやすくする。
【0011】
そこで、本発明では、熱交換器内で発生する蒸気の合体を抑制し、気泡を小径化し、均質に分布させるための構造とし、これによって熱交換効率を向上させた熱交換器を提供することを目的とする。
【0012】
【課題を解決するための手段】
本発明は上記目的に沿うものであって、請求項1に記載の発明は、鉛直方向とは異なる向きに互いにほぼ平行に配列されて内部を高温側流体が流れる複数の伝熱管からなる伝熱管群と、前記伝熱管群を収容する容器とを有し、前記伝熱管の外側の前記容器内に低温側流体を収容して、前記伝熱管の外表面で前記低温側流体に沸騰が生じるように構成された熱交換器において、前記伝熱管相互の間の、沸騰が生じると想定される部分の少なくとも一部に、前記伝熱管の方向に広がるワイヤメッシュを配置したこと、を特徴とする。
【0013】
また、請求項2に記載の発明は、鉛直方向とは異なる向きに互いにほぼ平行に配列されて内部を高温側流体が流れる複数の伝熱管からなる伝熱管群と、前記伝熱管群を収容する容器とを有し、前記伝熱管の外側の前記容器内に低温側流体を収容して、前記伝熱管の外表面で前記低温側流体に沸騰が生じるように構成された熱交換器において、前記伝熱管相互の水平方向の間隔を部分的に他の伝熱管相互の水平方向の間隔よりも大きくすることにより、前記伝熱管群を上下方向に横切る流路が、前記伝熱管群のほぼ中央を通る位置に形成されていること、を特徴とする。
【0014】
また、請求項3に記載の発明は、鉛直方向とは異なる向きに互いにほぼ平行に配列されて内部を高温側流体が流れる複数の伝熱管からなる伝熱管群と、前記伝熱管群を収容する容器とを有し、前記伝熱管の外側の前記容器内に低温側流体を収容して、前記伝熱管の外表面で前記低温側流体に沸騰が生じるように構成された熱交換器において、前記伝熱管群の上部の中央で、前記伝熱管相互の間隔が、伝熱管群の他の部分の伝熱管相互の間隔よりも広くなるように構成されていること、を特徴とする。
【0015】
また、請求項4に記載の発明は、鉛直方向とは異なる向きに互いにほぼ平行に配列されて内部を高温側流体が流れる複数の伝熱管からなる伝熱管群と、前記伝熱管群を収容する容器とを有し、前記伝熱管の外側の前記容器内に低温側流体を収容して、前記伝熱管の外表面で前記低温側流体に沸騰が生じるように構成された熱交換器において、前記伝熱管群の上部の中央から斜め上方に向かって、前記伝熱管相互の間隔を他の伝熱管相互の間隔よりも大きくすることにより、前記伝熱管群を横切る流路が、形成されていること、を特徴とする。
【0016】
また、請求項5に記載の発明は、鉛直方向とは異なる向きに互いにほぼ平行に配列されて内部を高温側流体が流れる複数の伝熱管からなる伝熱管群と、前記伝熱管群を収容する容器とを有し、前記伝熱管の外側の前記容器内に低温側流体を収容して、前記伝熱管の外表面で前記低温側流体に沸騰が生じるように構成された熱交換器において、前記伝熱管群は、ほぼ水平方向に相互に間隔をあけて並べられた複数の伝熱管からなる段を、上下方向に互いに間隔をあけて並べた複数段の伝熱管からなり、相互に隣接する前記伝熱管の段の上下方向に隣接する個々の伝熱管の位置が互いに水平方向にずれて配置されていること、を特徴とする。
【0017】
また、請求項6に記載の発明は、鉛直方向とは異なる向きに互いにほぼ平行に配列されて内部を高温側流体が流れる複数の伝熱管からなる伝熱管群と、前記伝熱管群を収容する容器とを有し、前記伝熱管の外側の前記容器内に低温側流体を収容して、前記伝熱管の外表面で前記低温側流体に沸騰が生じるように構成された熱交換器において、前記複数の伝熱管の横断面形状が上下方向に長い楕円形であること、を特徴とする。
【0018】
また、請求項7に記載の発明は、鉛直方向とは異なる向きに互いにほぼ平行に配列されて内部を高温側流体が流れる複数の伝熱管からなる伝熱管群と、前記伝熱管群を収容する容器とを有し、前記伝熱管の外側の前記容器内に低温側流体を収容して、前記伝熱管の外表面で前記低温側流体に沸騰が生じるように構成された熱交換器において、前記複数の伝熱管の横断面の外表面下端部に突起が形成されていること、を特徴とする。
【0019】
また、請求項8に記載の発明は、互いにほぼ平行に配列されて内部を高温側流体が流れる複数の伝熱管からなる伝熱管群と、前記伝熱管群を収容する容器とを有し、前記伝熱管の外側の前記容器内に低温側流体を収容して、前記伝熱管の外表面で前記低温側流体に沸騰が生じるように構成された熱交換器において、前記複数の伝熱管が、水平方向でも鉛直方向でもない向きに配置されていること、を特徴とする。
【0020】
また、請求項9に記載の発明は、互いにほぼ平行に配列されて内部を高温側流体が流れる複数の伝熱管からなる伝熱管群と、前記伝熱管群を収容する容器とを有し、前記伝熱管の外側の前記容器内に低温側流体を収容して、前記伝熱管の外表面で前記低温側流体に沸騰が生じるように構成された熱交換器において、前記低温側流体に界面活性剤が含まれていること、を特徴とする。
【0021】
【発明の実施の形態】
以下、図1〜図9を参照して、本発明に係る熱交換器の実施の形態を説明する。ここで、従来技術と共通もしくは類似の部分、または相互に共通または類似の部分には共通の符号を付し、重複説明は省略する。
【0022】
図1および図2に、本発明に係る熱交換器の第1の形態を示す。この熱交換器は、円筒形容器(胴)1と、容器1内に配置された多数の伝熱管2から構成され、伝熱管2同士の間にワイヤメッシュ3が設置されている。伝熱管2は水平方向に、互いに平行に延び、互いに上下左右方向に揃うように正方格子状に配列されている。ワイヤメッシュ3は、伝熱管2同士の間を水平方向に、容器1内を横断するように延びている。
【0023】
容器1内で伝熱管2外側の冷媒(低温側流体)は、伝熱管2内部の高温流体との熱交換によって温度上昇し、やがて沸騰が開始する。この容器1内の冷媒の温度上昇による対流と発生した蒸気の浮力により、容器1内の伝熱管群の間では流体が上昇し、伝熱管群の外で容器1内壁に沿って下降する自然対流が生じ、冷却が促進される。伝熱管群の間では、このような上昇流のため、上部ほど気泡が蓄積されて蒸気の体積割合(ボイド率)が大きくなり、ボイド率が大きくなると蒸気が伝熱管2の前面や背面で集積し、停滞することによって伝熱が劣化する。
【0024】
図2に示すように、ワイヤメッシュ3を伝熱管2と伝熱管2の間に設置することによって、発生した蒸気の気泡を小径化することができる。これによって、径の大きい気泡が伝熱管2の側面近傍に停滞することを防止することができる。ワイヤメッシュ3は、図1に示すように、ボイド率の大きい上部に設置することが効果的である。
【0025】
図3は、本発明に係る熱交換器の第2の実施の形態を示す。容器1内のボイド率は、上部ほど大きいが、必ずしも伝熱管群の下部から上部にかけて順に増大するわけではなく、図10に示すように、中央/上部に高ボイド率領域18が形成され、周辺/下部に低ボイド率領域19が形成されるというように、二つの領域に分けられることが分かっている。特に、中央部で蒸気が排出されにくいことがこの領域を高ボイド率化させる。そこで、図3のように中央部の伝熱管2の横方向のピッチを大きくとり、鉛直方向の流路6を形成する。これにより、中央部の伝熱管群からの蒸気が排出されやすくなり、伝熱管群の中に蒸気が停滞することを抑制することができる。
【0026】
次に、図4は、本発明に係る熱交換器の第3の実施の形態を示す。これは、中央/上部におけるピッチd2を大きくし、周辺/下部でのピッチd1を小さくして伝熱管群を配置するものである。これにより、ボイド率の小さい周辺/下部で伝熱面積を増やし、中央/上部の伝熱管2の背後に気泡が集積することを防止することで、熱伝達を向上することができる。
【0027】
また、図5は、本発明に係る熱交換器の第4の実施の形態を示す。これは、管群の中央/上部から斜め上方に向かって伝熱管2を設置しない部分、すなわちV字形流路30を設けるものである。これにより、第2の実施の形態(図3)と同様に、伝熱管2外側の蒸気の流れを促進する効果が期待できる。
さらに、図6は、本発明に係る熱交換器の第5の実施の形態を示す。図示のように、各段の伝熱管群を水平方向に交互にずらして配置する。
【0028】
従来の伝熱管群配列には、格子配列のほかに、前段の配列における伝熱管2と伝熱管2の中央に配列する千鳥配列(三角配列)がある。冷媒が単相の場合、一般的に千鳥配列は格子配列に比べて乱れが強いため熱伝達率は大きいが、圧力損失も大きいことが分かっている。一方、冷媒が二相流の場合は、熱伝達率は乱流強度のみならず、蒸気の割合と分布にも大きく影響される。図11に示すように、一般的に良く用いられる格子配列では、伝熱管2は背後にウェーク11が形成され気泡12が巻き込まれ、下流の管でブロックされることによって、伝熱管2と伝熱管2の間に気泡が集積しやすい。このことが、伝熱管2の前面と背面での熱伝達率を低下させている。
【0029】
本実施の形態では、図7に示すように伝熱管2背後の気泡12が上方に排出されやすくなり、圧力損失をそれほど増大させることなく、千鳥配列と同様に蒸気の背後での蓄積による高ボイド率化を防ぎ、熱伝達率を増大することができる。
【0030】
さらに、図8は、本発明に係る熱交換器の第6の実施の形態を示す。図示のように、伝熱管2の形状を主流方向(鉛直方向)に径の大きい楕円形とする。このことにより、同一伝熱面積の円形伝熱管に比べて気泡が伝熱管の背後に集積しにくくなる。また、はく離点が後方に移動し、逆流域が減少することによって、圧力損失が低減されるという効果も期待できる。
【0031】
また、図9は、本発明に係る熱交換器の第7の実施の形態を示す。これは、伝熱管2の下面に突起物15を設けたものである。これにより、伝熱管2下面で気泡が停滞することを抑制することができる。
以上説明した各実施の形態では、伝熱管2の方向は水平としたが、必ずしも水平方向でなくとも、鉛直方向と異なれば、同様の効果が得られる。
【0032】
また、本発明に係る熱交換器の第8の実施の形態は、伝熱管2を水平に対して傾けて配置する(図示せず)。このことにより、伝熱管2の下面に付着した気泡が管壁に沿って浮上し離脱するため、管壁での停滞を防ぐことができる。
【0033】
さらに本発明に係る熱交換器の第9の実施の形態は、容器1内の冷媒に少量の界面活性剤を混入させるものである。界面活性剤は、主に二つの物質の境界面を活性化(表面張力を低下させる等)することができる物質である。したがって、これを冷媒の中に混入させることにより気泡が合体しなくなるため気泡が小径のまま維持されると同時に、気体と液体の分布が均一化する。これによって、特定の部分への蒸気の集積を抑制することができる。
【0034】
【発明の効果】
以上説明したように本発明によれば、シェル/チューブ型の熱交換器において、発生した蒸気を小径化し、均一に分布させることにより、伝熱管群内への気泡の蓄積を抑制することによって、流れが二相流の場合の熱交換効率を向上させることができる。また、蒸気を伝熱管群の間から排出されやすくすることによって伝熱管群内のボイド率を低下させ、熱交換率を向上させると同時に、伝熱管がドライアウトし、ヒートアップすることを防ぎ、安全性を向上することができる。
【図面の簡単な説明】
【図1】本発明に係る熱交換器の第1の実施の形態の横断面図。
【図2】図1の熱交換器の伝熱管付近の部分斜視図。
【図3】本発明に係る熱交換器の第2の実施の形態の横断面図。
【図4】本発明に係る熱交換器の第3の実施の形態の伝熱管配列を示す横断面図。
【図5】本発明に係る熱交換器の第4の実施の形態の伝熱管配列を示す横断面図。
【図6】本発明に係る熱交換器の第5の実施の形態の伝熱管配列を示す横断面図。
【図7】図6の熱交換器の伝熱管配列の部分拡大横断面図。
【図8】本発明に係る熱交換器の第6の実施の形態の伝熱管配列を示す部分拡大横断面図。
【図9】本発明に係る熱交換器の第7の実施の形態の伝熱管の横断面図。
【図10】従来の熱交換器の横断面図。
【図11】従来の熱交換器の伝熱管配列の部分拡大横断面図。
【符号の説明】
1…容器、2…伝熱管、3…ワイヤメッシュ、5…気泡、6…流路、11…ウェーク、12…気泡、15…突起物、18…高ボイド領域、19…低ボイド領域、30…V字形流路。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a shell / tube type heat exchanger, and more particularly to a heat exchanger in which boiling occurs on the shell side.
[0002]
[Prior art]
Heat exchangers play an important role in various fields such as the chemical industry, power plant, and food industry. There are various types of heat exchangers, but shell / tube type heat exchangers are the most common, and are widely used as kettle reboilers, feed water heaters, evaporators, ventilation air conditioners and the like. This heat exchanger is a type in which a bundle of multi-tube heat transfer tubes (tubes) is inserted into a cylindrical body. Cylindrical tube plate type, U tube type, floating head type due to the connection structure of tube plate and shell (shell) And bayonet tube type (see Patent Document 1).
[0003]
The flow on the shell side varies depending on the purpose of use of the heat exchanger, but when used as an evaporator or reboiler, the liquid is heated to evaporate, so that the inside of the shell becomes a boiling two-phase flow. In fact, at least 60% of all heat exchangers are said to have a two-phase flow in the shell.
[0004]
FIG. 10 shows a schematic view of a conventional shell / tube heat exchanger. It is mainly composed of a cylindrical container 1 and a group of heat transfer tubes 2 arranged in the container 1. The container 1 is filled with a low-temperature liquid, and a high-temperature fluid flows in the heat transfer tube 2. In the example of FIG. 10, a large number of heat transfer tubes 2 parallel to each other are arranged so as to extend in the horizontal direction, and the heat transfer tubes 2 are arranged in a square lattice so as to be aligned in the horizontal direction and the height direction.
[0005]
The heat of the high-temperature fluid in the heat transfer tube 2 is transferred to the low-temperature side fluid outside the heat transfer tube 2 through the wall of the heat transfer tube 2, and the liquid on the low-temperature side boils on the outer surface of the heat transfer tube 2. It becomes a liquid two-phase flow. At this time, the fluid in the heated container 1 forms a natural circulation flow by the density difference and the rising of the generated bubbles.
[0006]
In the lower stage of the heat transfer tube group, there is very little liquid single phase or bubbles, but as the upper stage goes, more bubbles are generated and the generated bubbles are accumulated, so the volume ratio (void ratio) of bubbles in the upper stage Becomes larger. However, the void ratio does not gradually increase toward the upper stage, the void ratio is large at the upper / center portion, and the void ratio is decreased at the lower / peripheral portion, and the high void ratio region 18 and the low void ratio region 19. It has been pointed out from previous studies that it is divided into two areas.
[0007]
With regard to the local distribution of the bubbles, in the general lattice arrangement shown in FIG. 11, the bubbles are likely to accumulate because the flow backs up and stagnates due to the separation of the flow in the vertical gap between the heat transfer tubes 2, Bubble distribution occurs such that the void ratio is large behind the heat transfer tube 2 and the void ratio is small in the mainstream region.
[0008]
The larger the natural circulation flow and the greater the turbulence of the flow, the stronger the flow behind the heat transfer tube 2 and the higher the void ratio behind the heat transfer tube 2. The accumulation of bubbles in the gap between the heat transfer tubes 2 deteriorates heat transfer and easily causes dryout. When the heat exchanger is used as a cooling facility particularly related to the safety of a power plant, the rapid deterioration of heat removal due to dry-out may greatly affect the safety.
[0009]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 6-147406
[Problems to be solved by the invention]
As described above, the heat exchanger is required to have a higher heat exchange rate and to maintain a predetermined heat exchange performance without causing rapid heat transfer deterioration due to dryout or the like. However, the steam generated in the heat exchanger stagnates around the heat transfer tube, so that the heat transfer is remarkably deteriorated and dryout is easily generated.
[0011]
Therefore, the present invention provides a heat exchanger that suppresses coalescence of steam generated in the heat exchanger, reduces the diameter of bubbles, and distributes them uniformly, thereby improving the heat exchange efficiency. With the goal.
[0012]
[Means for Solving the Problems]
The present invention is in accordance with the above object, and the invention according to claim 1 is a heat transfer tube comprising a plurality of heat transfer tubes arranged in parallel to each other in a direction different from the vertical direction and through which the high temperature fluid flows. A low-temperature side fluid is stored in the container outside the heat transfer tube, and the low-temperature side fluid is boiled on the outer surface of the heat transfer tube. The heat exchanger configured as described above is characterized in that a wire mesh extending in the direction of the heat transfer tube is disposed at least at a part of the portion where boiling between the heat transfer tubes is assumed to occur.
[0013]
According to a second aspect of the present invention, a heat transfer tube group comprising a plurality of heat transfer tubes arranged in substantially parallel to each other in a direction different from the vertical direction and through which the high temperature side fluid flows, and the heat transfer tube group are accommodated. A heat exchanger configured to contain a low-temperature fluid in the container outside the heat transfer tube and to cause boiling of the low-temperature fluid on an outer surface of the heat transfer tube, By partially setting the horizontal interval between the heat transfer tubes partially larger than the horizontal interval between the other heat transfer tubes, the flow path traversing the heat transfer tube group in the vertical direction extends substantially at the center of the heat transfer tube group. It is formed at a passing position.
[0014]
According to a third aspect of the present invention, there is provided a heat transfer tube group comprising a plurality of heat transfer tubes arranged in substantially parallel to each other in a direction different from the vertical direction and through which a high temperature fluid flows, and the heat transfer tube group. A heat exchanger configured to contain a low-temperature fluid in the container outside the heat transfer tube and to cause boiling of the low-temperature fluid on an outer surface of the heat transfer tube, In the center of the upper portion of the heat transfer tube group, the interval between the heat transfer tubes is configured to be wider than the interval between the heat transfer tubes in the other part of the heat transfer tube group.
[0015]
According to a fourth aspect of the present invention, there is provided a heat transfer tube group comprising a plurality of heat transfer tubes arranged in substantially parallel to each other in a direction different from the vertical direction and through which a high temperature side fluid flows, and the heat transfer tube group. A heat exchanger configured to contain a low-temperature fluid in the container outside the heat transfer tube and to cause boiling of the low-temperature fluid on an outer surface of the heat transfer tube, A flow passage crossing the heat transfer tube group is formed by making the interval between the heat transfer tubes larger than the interval between the other heat transfer tubes from the upper center of the heat transfer tube group obliquely upward. It is characterized by.
[0016]
According to a fifth aspect of the present invention, a heat transfer tube group comprising a plurality of heat transfer tubes arranged in substantially parallel to each other in a direction different from the vertical direction and through which a high temperature fluid flows, and the heat transfer tube group are accommodated. A heat exchanger configured to contain a low-temperature fluid in the container outside the heat transfer tube and to cause boiling of the low-temperature fluid on an outer surface of the heat transfer tube, The heat transfer tube group is composed of a plurality of heat transfer tubes arranged in a substantially horizontal direction with a space between each other, and a plurality of heat transfer tubes arranged in the vertical direction with a space between each other, and adjacent to each other. The positions of the individual heat transfer tubes adjacent to each other in the vertical direction of the stage of the heat transfer tubes are arranged so as to be shifted from each other in the horizontal direction.
[0017]
According to a sixth aspect of the present invention, a heat transfer tube group comprising a plurality of heat transfer tubes arranged in substantially parallel to each other in a direction different from the vertical direction and through which a high-temperature fluid flows, and the heat transfer tube group are accommodated. A heat exchanger configured to contain a low-temperature fluid in the container outside the heat transfer tube and to cause boiling of the low-temperature fluid on an outer surface of the heat transfer tube, The cross-sectional shape of the plurality of heat transfer tubes is an ellipse that is long in the vertical direction.
[0018]
The invention according to claim 7 accommodates the heat transfer tube group including a plurality of heat transfer tubes arranged in parallel to each other in a direction different from the vertical direction and through which the high temperature fluid flows, and the heat transfer tube group. A heat exchanger configured to contain a low-temperature fluid in the container outside the heat transfer tube and to cause boiling of the low-temperature fluid on an outer surface of the heat transfer tube, The protrusion is formed in the lower end part of the outer surface of the cross section of a some heat exchanger tube, It is characterized by the above-mentioned.
[0019]
The invention according to claim 8 has a heat transfer tube group composed of a plurality of heat transfer tubes arranged in parallel to each other and through which the high temperature side fluid flows, and a container for housing the heat transfer tube group, In the heat exchanger configured to accommodate the low temperature side fluid in the container outside the heat transfer tube and to cause boiling of the low temperature side fluid on the outer surface of the heat transfer tube, the plurality of heat transfer tubes are arranged horizontally. It is characterized by being arranged in a direction that is neither a direction nor a vertical direction.
[0020]
The invention according to claim 9 includes a heat transfer tube group composed of a plurality of heat transfer tubes arranged in parallel to each other and through which a high-temperature side fluid flows, and a container accommodating the heat transfer tube group, In the heat exchanger configured to accommodate the low temperature side fluid in the container outside the heat transfer tube and to cause boiling of the low temperature side fluid on the outer surface of the heat transfer tube, a surfactant is added to the low temperature side fluid. Is included.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, with reference to FIGS. 1-9, embodiment of the heat exchanger which concerns on this invention is described. Here, parts common or similar to the prior art, or parts common or similar to each other are denoted by common reference numerals, and redundant description is omitted.
[0022]
1 and 2 show a first embodiment of a heat exchanger according to the present invention. This heat exchanger is composed of a cylindrical container (body) 1 and a large number of heat transfer tubes 2 arranged in the container 1, and a wire mesh 3 is installed between the heat transfer tubes 2. The heat transfer tubes 2 extend in parallel to each other in the horizontal direction, and are arranged in a square lattice so as to be aligned in the vertical and horizontal directions. The wire mesh 3 extends between the heat transfer tubes 2 so as to cross the container 1 in the horizontal direction.
[0023]
The temperature of the refrigerant (low temperature side fluid) outside the heat transfer tube 2 in the container 1 rises due to heat exchange with the high temperature fluid inside the heat transfer tube 2, and eventually begins to boil. Due to the convection due to the temperature rise of the refrigerant in the container 1 and the buoyancy of the generated steam, the fluid rises between the heat transfer tube groups in the container 1 and falls down along the inner wall of the container 1 outside the heat transfer tube group. And cooling is promoted. Because of the upward flow between the heat transfer tube groups, bubbles accumulate in the upper part, and the volume ratio (void ratio) of the steam increases. When the void ratio increases, the steam accumulates on the front and rear surfaces of the heat transfer tube 2. However, heat transfer deteriorates due to stagnation.
[0024]
As shown in FIG. 2, by installing the wire mesh 3 between the heat transfer tube 2 and the heat transfer tube 2, the generated steam bubbles can be reduced in diameter. Thereby, it is possible to prevent bubbles having a large diameter from staying near the side surface of the heat transfer tube 2. As shown in FIG. 1, it is effective to install the wire mesh 3 on an upper portion having a large void ratio.
[0025]
FIG. 3 shows a second embodiment of the heat exchanger according to the present invention. The void ratio in the container 1 is larger at the upper part, but does not necessarily increase in order from the lower part to the upper part of the heat transfer tube group. As shown in FIG. 10, a high void ratio region 18 is formed at the center / upper part, / It has been found that a low void ratio region 19 is formed in the lower part, so that it can be divided into two regions. In particular, it is difficult for steam to be discharged at the central portion, which increases the void ratio. Therefore, as shown in FIG. 3, the horizontal pitch of the heat transfer tubes 2 at the center is increased to form the vertical flow paths 6. Thereby, it becomes easy to discharge | evaporate the steam from the heat exchanger tube group of a center part, and it can suppress that a vapor | steam stagnates in a heat exchanger tube group.
[0026]
Next, FIG. 4 shows a third embodiment of the heat exchanger according to the present invention. This is to arrange the heat transfer tube group by increasing the pitch d2 at the center / upper part and decreasing the pitch d1 at the periphery / lower part. Thus, heat transfer can be improved by increasing the heat transfer area at the periphery / lower part where the void ratio is small and preventing bubbles from accumulating behind the heat transfer tube 2 at the center / upper part.
[0027]
FIG. 5 shows a fourth embodiment of the heat exchanger according to the present invention. This is a portion in which the heat transfer tube 2 is not installed from the center / upper part of the tube group toward the oblique upper side, that is, the V-shaped flow path 30 is provided. Thereby, the effect which accelerates | stimulates the flow of the vapor | steam outside the heat exchanger tube 2 can be anticipated similarly to 2nd Embodiment (FIG. 3).
Furthermore, FIG. 6 shows a fifth embodiment of the heat exchanger according to the present invention. As shown in the figure, the heat transfer tube groups at the respective stages are alternately shifted in the horizontal direction.
[0028]
In addition to the lattice arrangement, the conventional heat transfer tube group arrangement includes a heat transfer tube 2 in the preceding arrangement and a staggered arrangement (triangular arrangement) arranged in the center of the heat transfer tube 2. When the refrigerant is a single phase, it is generally known that the staggered arrangement is more turbulent than the lattice arrangement and thus has a high heat transfer coefficient but also a large pressure loss. On the other hand, when the refrigerant is a two-phase flow, the heat transfer coefficient is greatly influenced not only by the turbulent flow intensity but also by the vapor ratio and distribution. As shown in FIG. 11, in a generally well-used grid arrangement, the heat transfer tube 2 is formed with a wake 11 at the back, bubbles 12 are entrained, and blocked by a downstream tube, so that the heat transfer tube 2 and the heat transfer tube Air bubbles tend to accumulate between the two. This reduces the heat transfer coefficient at the front surface and the back surface of the heat transfer tube 2.
[0029]
In the present embodiment, as shown in FIG. 7, the bubbles 12 behind the heat transfer tube 2 are easily discharged upward, and the high voids due to the accumulation behind the steam as in the staggered arrangement without increasing the pressure loss so much. The rate can be prevented and the heat transfer rate can be increased.
[0030]
Further, FIG. 8 shows a sixth embodiment of the heat exchanger according to the present invention. As illustrated, the shape of the heat transfer tube 2 is an ellipse having a large diameter in the main flow direction (vertical direction). This makes it difficult for bubbles to accumulate behind the heat transfer tube as compared to a circular heat transfer tube having the same heat transfer area. Moreover, the effect that pressure loss is reduced can be expected because the separation point moves rearward and the backflow region decreases.
[0031]
FIG. 9 shows a seventh embodiment of the heat exchanger according to the present invention. This is a projection 15 provided on the lower surface of the heat transfer tube 2. Thereby, it can suppress that a bubble stagnates in the heat exchanger tube 2 lower surface.
In each of the embodiments described above, the direction of the heat transfer tube 2 is horizontal, but the same effect can be obtained if the direction is different from the vertical direction, not necessarily the horizontal direction.
[0032]
In the eighth embodiment of the heat exchanger according to the present invention, the heat transfer tubes 2 are arranged to be inclined with respect to the horizontal (not shown). As a result, the bubbles adhering to the lower surface of the heat transfer tube 2 rise and detach along the tube wall, thereby preventing stagnation on the tube wall.
[0033]
Furthermore, in the ninth embodiment of the heat exchanger according to the present invention, a small amount of a surfactant is mixed in the refrigerant in the container 1. A surfactant is a substance that can mainly activate the interface between two substances (reducing the surface tension, etc.). Therefore, by mixing this in the refrigerant, the bubbles do not merge, so that the bubbles are maintained at a small diameter, and at the same time, the distribution of gas and liquid is made uniform. Thereby, accumulation of steam in a specific portion can be suppressed.
[0034]
【The invention's effect】
As described above, according to the present invention, in the shell / tube heat exchanger, the generated steam is reduced in diameter and uniformly distributed, thereby suppressing the accumulation of bubbles in the heat transfer tube group, The heat exchange efficiency when the flow is a two-phase flow can be improved. In addition, by reducing the void rate in the heat transfer tube group by facilitating the discharge of steam from between the heat transfer tube groups, while improving the heat exchange rate, the heat transfer tubes are prevented from drying out and heating up, Safety can be improved.
[Brief description of the drawings]
FIG. 1 is a transverse cross-sectional view of a first embodiment of a heat exchanger according to the present invention.
FIG. 2 is a partial perspective view of the vicinity of a heat transfer tube of the heat exchanger of FIG.
FIG. 3 is a cross-sectional view of a second embodiment of a heat exchanger according to the present invention.
FIG. 4 is a cross-sectional view showing a heat transfer tube arrangement of a third embodiment of a heat exchanger according to the present invention.
FIG. 5 is a cross-sectional view showing a heat transfer tube arrangement of a fourth embodiment of a heat exchanger according to the present invention.
FIG. 6 is a cross-sectional view showing a heat transfer tube arrangement of a fifth embodiment of a heat exchanger according to the present invention.
7 is a partially enlarged cross-sectional view of a heat transfer tube array of the heat exchanger of FIG. 6;
FIG. 8 is a partial enlarged cross-sectional view showing a heat transfer tube arrangement of a sixth embodiment of a heat exchanger according to the present invention.
FIG. 9 is a cross-sectional view of a heat transfer tube of a seventh embodiment of a heat exchanger according to the present invention.
FIG. 10 is a cross-sectional view of a conventional heat exchanger.
FIG. 11 is a partial enlarged cross-sectional view of a heat transfer tube array of a conventional heat exchanger.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Container, 2 ... Heat transfer tube, 3 ... Wire mesh, 5 ... Bubble, 6 ... Flow path, 11 ... Wake, 12 ... Bubble, 15 ... Projection, 18 ... High void area, 19 ... Low void area, 30 ... V-shaped channel.

Claims (9)

鉛直方向とは異なる向きに互いにほぼ平行に配列されて内部を高温側流体が流れる複数の伝熱管からなる伝熱管群と、前記伝熱管群を収容する容器とを有し、前記伝熱管の外側の前記容器内に低温側流体を収容して、前記伝熱管の外表面で前記低温側流体に沸騰が生じるように構成された熱交換器において、
前記伝熱管相互の間の、沸騰が生じると想定される部分の少なくとも一部に、前記伝熱管の方向に広がるワイヤメッシュを配置したこと、を特徴とする熱交換器。
A heat transfer tube group composed of a plurality of heat transfer tubes arranged in substantially parallel to each other in a direction different from the vertical direction and through which the high-temperature fluid flows, and a container for housing the heat transfer tube group, the outer side of the heat transfer tube In the heat exchanger configured to accommodate the low temperature side fluid in the container of the heat transfer tube and to cause boiling of the low temperature side fluid on the outer surface of the heat transfer tube,
The heat exchanger characterized by arrange | positioning the wire mesh which spreads in the direction of the said heat exchanger tube in at least one part of the part assumed that a boiling occurs between the said heat exchanger tubes.
鉛直方向とは異なる向きに互いにほぼ平行に配列されて内部を高温側流体が流れる複数の伝熱管からなる伝熱管群と、前記伝熱管群を収容する容器とを有し、前記伝熱管の外側の前記容器内に低温側流体を収容して、前記伝熱管の外表面で前記低温側流体に沸騰が生じるように構成された熱交換器において、
前記伝熱管相互の水平方向の間隔を部分的に他の伝熱管相互の水平方向の間隔よりも大きくすることにより、前記伝熱管群を上下方向に横切る流路が、前記伝熱管群のほぼ中央を通る位置に形成されていること、を特徴とする熱交換器。
A heat transfer tube group composed of a plurality of heat transfer tubes arranged in substantially parallel to each other in a direction different from the vertical direction and through which the high-temperature fluid flows, and a container for housing the heat transfer tube group, the outer side of the heat transfer tube In the heat exchanger configured to accommodate the low temperature side fluid in the container of the heat transfer tube and to cause boiling of the low temperature side fluid on the outer surface of the heat transfer tube,
By making the horizontal interval between the heat transfer tubes partially larger than the horizontal interval between the other heat transfer tubes, the flow path traversing the heat transfer tube group in the vertical direction is substantially at the center of the heat transfer tube group. It is formed in the position which passes through, The heat exchanger characterized by the above-mentioned.
鉛直方向とは異なる向きに互いにほぼ平行に配列されて内部を高温側流体が流れる複数の伝熱管からなる伝熱管群と、前記伝熱管群を収容する容器とを有し、前記伝熱管の外側の前記容器内に低温側流体を収容して、前記伝熱管の外表面で前記低温側流体に沸騰が生じるように構成された熱交換器において、
前記伝熱管群の上部の中央で、前記伝熱管相互の間隔が、伝熱管群の他の部分の伝熱管相互の間隔よりも広くなるように構成されていること、を特徴とする熱交換器。
A heat transfer tube group composed of a plurality of heat transfer tubes arranged in substantially parallel to each other in a direction different from the vertical direction and through which the high-temperature fluid flows, and a container for housing the heat transfer tube group, the outer side of the heat transfer tube In the heat exchanger configured to accommodate the low temperature side fluid in the container of the heat transfer tube and to cause boiling of the low temperature side fluid on the outer surface of the heat transfer tube,
A heat exchanger characterized in that, in the center of the upper part of the heat transfer tube group, the interval between the heat transfer tubes is configured to be wider than the interval between the heat transfer tubes in the other part of the heat transfer tube group. .
鉛直方向とは異なる向きに互いにほぼ平行に配列されて内部を高温側流体が流れる複数の伝熱管からなる伝熱管群と、前記伝熱管群を収容する容器とを有し、前記伝熱管の外側の前記容器内に低温側流体を収容して、前記伝熱管の外表面で前記低温側流体に沸騰が生じるように構成された熱交換器において、
前記伝熱管群の上部の中央から斜め上方に向かって、前記伝熱管相互の間隔を他の伝熱管相互の間隔よりも大きくすることにより、前記伝熱管群を横切る流路が、形成されていること、を特徴とする熱交換器。
A heat transfer tube group composed of a plurality of heat transfer tubes arranged in substantially parallel to each other in a direction different from the vertical direction and through which the high-temperature fluid flows, and a container for housing the heat transfer tube group, the outer side of the heat transfer tube In the heat exchanger configured to accommodate the low temperature side fluid in the container of the heat transfer tube and to cause boiling of the low temperature side fluid on the outer surface of the heat transfer tube,
A flow path crossing the heat transfer tube group is formed by making the interval between the heat transfer tubes larger than the interval between the other heat transfer tubes, obliquely upward from the center of the upper portion of the heat transfer tube group. A heat exchanger characterized by that.
鉛直方向とは異なる向きに互いにほぼ平行に配列されて内部を高温側流体が流れる複数の伝熱管からなる伝熱管群と、前記伝熱管群を収容する容器とを有し、前記伝熱管の外側の前記容器内に低温側流体を収容して、前記伝熱管の外表面で前記低温側流体に沸騰が生じるように構成された熱交換器において、
前記伝熱管群は、ほぼ水平方向に相互に間隔をあけて並べられた複数の伝熱管からなる段を、上下方向に互いに間隔をあけて並べた複数段の伝熱管からなり、相互に隣接する前記伝熱管の段の上下方向に隣接する個々の伝熱管の位置が互いに水平方向にずれて配置されていること、を特徴とする熱交換器。
A heat transfer tube group composed of a plurality of heat transfer tubes arranged in substantially parallel to each other in a direction different from the vertical direction and through which the high-temperature fluid flows, and a container for housing the heat transfer tube group, the outer side of the heat transfer tube In the heat exchanger configured to accommodate the low temperature side fluid in the container of the heat transfer tube and to cause boiling of the low temperature side fluid on the outer surface of the heat transfer tube,
The heat transfer tube group is composed of a plurality of heat transfer tubes arranged in a vertical direction with a plurality of heat transfer tubes arranged in a substantially horizontal direction and spaced apart from each other, and adjacent to each other. The heat exchanger is characterized in that the positions of the individual heat transfer tubes adjacent to each other in the vertical direction of the stage of the heat transfer tubes are shifted from each other in the horizontal direction.
鉛直方向とは異なる向きに互いにほぼ平行に配列されて内部を高温側流体が流れる複数の伝熱管からなる伝熱管群と、前記伝熱管群を収容する容器とを有し、前記伝熱管の外側の前記容器内に低温側流体を収容して、前記伝熱管の外表面で前記低温側流体に沸騰が生じるように構成された熱交換器において、
前記複数の伝熱管の横断面形状が上下方向に長い楕円形であること、を特徴とする熱交換器。
A heat transfer tube group composed of a plurality of heat transfer tubes arranged in substantially parallel to each other in a direction different from the vertical direction and through which the high-temperature fluid flows, and a container for housing the heat transfer tube group, the outer side of the heat transfer tube In the heat exchanger configured to accommodate the low temperature side fluid in the container of the heat transfer tube and to cause boiling of the low temperature side fluid on the outer surface of the heat transfer tube,
A heat exchanger characterized in that the cross-sectional shape of the plurality of heat transfer tubes is an ellipse that is long in the vertical direction.
鉛直方向とは異なる向きに互いにほぼ平行に配列されて内部を高温側流体が流れる複数の伝熱管からなる伝熱管群と、前記伝熱管群を収容する容器とを有し、前記伝熱管の外側の前記容器内に低温側流体を収容して、前記伝熱管の外表面で前記低温側流体に沸騰が生じるように構成された熱交換器において、
前記複数の伝熱管の横断面の外表面下端部に突起が形成されていること、を特徴とする熱交換器。
A heat transfer tube group composed of a plurality of heat transfer tubes arranged in substantially parallel to each other in a direction different from the vertical direction and through which the high-temperature fluid flows, and a container for housing the heat transfer tube group, the outer side of the heat transfer tube In the heat exchanger configured to accommodate the low temperature side fluid in the container of the heat transfer tube and to cause boiling of the low temperature side fluid on the outer surface of the heat transfer tube,
A protrusion is formed at the lower end of the outer surface of the transverse section of the plurality of heat transfer tubes.
互いにほぼ平行に配列されて内部を高温側流体が流れる複数の伝熱管からなる伝熱管群と、前記伝熱管群を収容する容器とを有し、前記伝熱管の外側の前記容器内に低温側流体を収容して、前記伝熱管の外表面で前記低温側流体に沸騰が生じるように構成された熱交換器において、
前記複数の伝熱管が、水平方向でも鉛直方向でもない向きに配置されていること、を特徴とする熱交換器。
A heat transfer tube group composed of a plurality of heat transfer tubes arranged in parallel with each other and through which a high temperature side fluid flows, and a container for housing the heat transfer tube group, and the low temperature side in the container outside the heat transfer tube In a heat exchanger configured to contain a fluid and to cause boiling of the low temperature side fluid on the outer surface of the heat transfer tube,
The heat exchanger is characterized in that the plurality of heat transfer tubes are arranged in directions that are neither horizontal nor vertical.
互いにほぼ平行に配列されて内部を高温側流体が流れる複数の伝熱管からなる伝熱管群と、前記伝熱管群を収容する容器とを有し、前記伝熱管の外側の前記容器内に低温側流体を収容して、前記伝熱管の外表面で前記低温側流体に沸騰が生じるように構成された熱交換器において、
前記低温側流体に界面活性剤が含まれていること、を特徴とする熱交換器。
A heat transfer tube group composed of a plurality of heat transfer tubes arranged in parallel with each other and through which a high temperature side fluid flows, and a container for housing the heat transfer tube group, and the low temperature side in the container outside the heat transfer tube In a heat exchanger configured to contain a fluid and to cause boiling of the low temperature side fluid on the outer surface of the heat transfer tube,
A heat exchanger characterized in that a surfactant is contained in the low temperature side fluid.
JP2003181240A 2003-06-25 2003-06-25 Heat exchanger Withdrawn JP2005016819A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003181240A JP2005016819A (en) 2003-06-25 2003-06-25 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003181240A JP2005016819A (en) 2003-06-25 2003-06-25 Heat exchanger

Publications (1)

Publication Number Publication Date
JP2005016819A true JP2005016819A (en) 2005-01-20

Family

ID=34182001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003181240A Withdrawn JP2005016819A (en) 2003-06-25 2003-06-25 Heat exchanger

Country Status (1)

Country Link
JP (1) JP2005016819A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007183062A (en) * 2006-01-10 2007-07-19 Sanden Corp Heat exchanger
JP2007198701A (en) * 2006-01-30 2007-08-09 Hitachi Zosen Corp Multi-effect water freshener evaporator
JP2008224205A (en) * 2007-03-09 2008-09-25 Sulzer Chemtech Ag Device for heat exchange and mixing of fluid medium
JP2011122499A (en) * 2009-12-10 2011-06-23 Hino Motors Ltd Egr cooler
WO2012132113A1 (en) * 2011-03-30 2012-10-04 三菱重工業株式会社 Reboiler
CN107860254A (en) * 2017-12-23 2018-03-30 湖南创化低碳环保科技有限公司 A kind of unitized exchanger
CN108801036A (en) * 2018-06-22 2018-11-13 沈阳汇博热能设备有限公司 A kind of kettle type reboiler tube bank limiting device
JP2021037455A (en) * 2019-09-02 2021-03-11 株式会社東芝 Carbon dioxide capture system and its operation method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007183062A (en) * 2006-01-10 2007-07-19 Sanden Corp Heat exchanger
JP2007198701A (en) * 2006-01-30 2007-08-09 Hitachi Zosen Corp Multi-effect water freshener evaporator
JP2008224205A (en) * 2007-03-09 2008-09-25 Sulzer Chemtech Ag Device for heat exchange and mixing of fluid medium
JP2011122499A (en) * 2009-12-10 2011-06-23 Hino Motors Ltd Egr cooler
EP2693147A4 (en) * 2011-03-30 2015-03-18 Mitsubishi Heavy Ind Ltd reboiler
JP2012207874A (en) * 2011-03-30 2012-10-25 Mitsubishi Heavy Ind Ltd Reboiler
WO2012132113A1 (en) * 2011-03-30 2012-10-04 三菱重工業株式会社 Reboiler
AU2011364036B2 (en) * 2011-03-30 2015-06-18 Mitsubishi Heavy Industries, Ltd. Reboiler
US10151540B2 (en) 2011-03-30 2018-12-11 Mitsubishi Heavy Industries Engineering, Ltd. Reboiler with void within the heat transfer tube group
CN107860254A (en) * 2017-12-23 2018-03-30 湖南创化低碳环保科技有限公司 A kind of unitized exchanger
CN108801036A (en) * 2018-06-22 2018-11-13 沈阳汇博热能设备有限公司 A kind of kettle type reboiler tube bank limiting device
JP2021037455A (en) * 2019-09-02 2021-03-11 株式会社東芝 Carbon dioxide capture system and its operation method
JP7278908B2 (en) 2019-09-02 2023-05-22 株式会社東芝 CO2 RECOVERY SYSTEM AND METHOD OF OPERATION THEREOF

Similar Documents

Publication Publication Date Title
JP4607471B2 (en) Heat exchanger
RU2603508C1 (en) Heat exchanger with ribbed tubes
JP4376276B2 (en) Heat exchange coil
JP6239159B2 (en) Refrigeration cycle equipment
JP2005016819A (en) Heat exchanger
KR101146105B1 (en) Heat plate for heat exchanger
US8347826B2 (en) Heat exchanger, water heater and water tube
JP4213504B2 (en) Evaporator
CN101031767B (en) Steam condenser with two channels
KR100345156B1 (en) Modular condensing heat exchanger for latent heat recovery
US8881690B2 (en) Steam generator
CN108847292A (en) A kind of plug-in type heat pipe evaporator section heat exchanger for the passive cooling in spentnuclear fuel pond
JP4646302B2 (en) Shell and tube heat exchanger
JP2001147292A (en) Steam generator provided with flow distribution partition wall
US20240210116A1 (en) Vertical vapor generator
JPH0573961B2 (en)
JP2008292059A (en) Heat exchanger and water heater
CN209071001U (en) A kind of plug-in type heat pipe evaporator section heat exchanger for the passive cooling in spentnuclear fuel pond
CN110530066B (en) Low pressure refrigerant flooded evaporator
JP2005300072A (en) Evaporator
JP4577908B2 (en) Absorption chiller / heater regenerator
CN220089415U (en) Condensation diversion structure of dish washer
CN112944974A (en) Falling film heat exchange tube, falling film heat exchanger and air conditioner
CN211198614U (en) Energy-conserving phosphoric acid concentration system
KR101318624B1 (en) Heat Exchanger

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060905