[go: up one dir, main page]

JP2005024193A - Waste gas processing method for waste treatment furnace - Google Patents

Waste gas processing method for waste treatment furnace

Info

Publication number
JP2005024193A
JP2005024193A JP2003191389A JP2003191389A JP2005024193A JP 2005024193 A JP2005024193 A JP 2005024193A JP 2003191389 A JP2003191389 A JP 2003191389A JP 2003191389 A JP2003191389 A JP 2003191389A JP 2005024193 A JP2005024193 A JP 2005024193A
Authority
JP
Japan
Prior art keywords
gas
waste
char
desalted
treatment furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003191389A
Other languages
Japanese (ja)
Other versions
JP4077772B2 (en
Inventor
Norio Fukinaka
範生 吹中
Kazutake Murahashi
一毅 村橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003191389A priority Critical patent/JP4077772B2/en
Publication of JP2005024193A publication Critical patent/JP2005024193A/en
Application granted granted Critical
Publication of JP4077772B2 publication Critical patent/JP4077772B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/20Waste processing or separation

Landscapes

  • Industrial Gases (AREA)
  • Incineration Of Waste (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Processing Of Solid Wastes (AREA)
  • Filtering Materials (AREA)
  • Gas Separation By Absorption (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)

Abstract

【課題】より簡易な装置構成で廃棄物をガス化し、精製されたガス化ガスと脱塩処理された残さを化石燃料の代替品として使用することで化石燃料との混焼率を増加させると同時にダイオキシン類の排出を未然に防ぐこと。
【解決手段】廃棄物を廃棄物処理炉1にてガス化し、チャーおよびガス化ガスを含む生成ガスをサイクロン2で粗集じんし、粗集じん後のガス化ガスを脱塩処理3して得られた清浄ガスと、脱塩処理3で得られたチャーを含む脱塩残さ8および粗集じん後のチャー21とを洗浄処理9して得られる脱塩ケーキ14とを化石燃料の代替品として事業用発電ボイラー7に供給し、化石燃料と混焼させる廃棄物処理炉の生成ガス処理方法。
【選択図】 図1
At the same time as increasing the co-firing rate with fossil fuel by gasifying waste with a simpler device configuration and using purified gasified gas and desalted residue as substitutes for fossil fuel Prevent discharge of dioxins.
SOLUTION: Waste is gasified in a waste treatment furnace 1, a produced gas containing char and gasified gas is coarsely collected in a cyclone 2, and the gasified gas after the coarse collection is subjected to desalination treatment 3. An alternative to fossil fuel is the obtained clean gas and the desalted cake 14 obtained by washing 9 the desalted residue 8 containing the char obtained in the desalting process 3 and the char 21 after the coarse dust collection. As a generated gas treatment method in a waste treatment furnace that is supplied to a commercial power generation boiler 7 and co-fired with fossil fuel.
[Selection] Figure 1

Description

【0001】
【発明の属する技術分野】
本発明は、事業用発電ボイラー、例えば石炭焚きあるいは石油焚きボイラーに廃棄物処理炉の生成ガスを処理して化石燃料の代替品として事業用発電ボイラーに供給して化石燃料と混焼させる、廃棄物処理炉の生成ガスの処理方法に関するものである。
【0002】
【従来の技術】
近年、地球環境問題、特にCOによる地球温暖化現象が一段と注目されている。このため、化石燃料からの燃焼に由来するCOを削減することが目標として掲げられることとなった。
【0003】
このような状況下において化石燃料の燃焼に由来するCO 排出量を低減させる技術として化石燃料を「カーボンニュートラル」なバイオマスエネルギーで一部代替すること、具体的には化石燃料と廃棄物(バイオマスまたはバイオマスを一部含んだ都市ごみ)を事業用発電ボイラーで混焼する技術が広く注目され始めている。
【0004】
一方、上記の視点とは別に、可燃分を含みながらも通常埋立処分されていた産業廃棄物を化石燃料と混焼させることで積極的にエネルギー回収する技術も広まりつつある。
【0005】
しかしながら本技術では一般的に以下のような課題がある。
【0006】
(1)廃棄物を燃焼する際に廃棄物中のNaCl、KCl等の塩化物が飛散し、かつ混在している塩化ビニル等の有機物中塩素から高濃度のHClガスが発生する。ボイラーで廃棄物を化石燃料と混焼する場合、これら塩化物がボイラー管に付着すると同時に高濃度のHClガスがボイラー管群を通過するため、ボイラー管の高温腐食が進行する可能性が高い。この高温腐食を回避するために廃棄物を混焼する場合、その化石燃料に対する混焼比率に制限が設けられている。
【0007】
一般的な発電用ボイラーの主蒸気温度は500℃以上、主蒸気圧力は 100ata以上であるが、この蒸気条件下において過熱蒸気管の高温腐食を回避するためには廃棄物と化石燃料との混合燃料中のNa、Kの合計濃度を0.1%以下、また塩素濃度を0.3%以下にする必要がある。
【0008】
(2)廃棄物中に塩素が存在するため、多量に混焼した場合、ボイラーのガス温度300〜500℃の冷却部分でダイオキシン類が発生する可能性が高い。このダイオキシン類の排出を抑制するためには高度な排ガス処理設備や灰処理設備を既設のボイラーに追加して設置する必要がある。
【0009】
これらの課題に対処するために、例えば特許文献1では廃棄物を破砕した上で乾燥炉、熱分解炉で処理することで熱分解ガスとチャーを生成させ、そのうちのチャーのみを燃料として使用する方法が提示されている。この方法では熱分解ガスはガスバーナで燃焼され、熱分解炉及び乾燥炉の熱源として利用される。その排ガスはボイラーの排ガス処理系とは別に単独で排ガス処理された上で大気中に排出される。
【0010】
また、特許文献2は特許文献1と同様に廃棄物を破砕した上で乾燥炉、熱分解炉で処理することで熱分解ガスとチャーを生成させる方法をとっており、このうちのチャーを粉砕、水洗することで塩化物等の可溶性成分を分離し更に乾燥させた上で燃料として使用する方法が提示されている。
【0011】
更に特許文献3ではガス化装置により生成されるガスについてセラミックフィルター、酸性ガスの中和器、集じん器を通過させることで精製、無害化される方法が提示されている。
【0012】
【特許文献1】
特開2000−283431号公報
【0013】
【特許文献2】
特開2001−327950号公報
【0014】
【特許文献3】
特開2003−159508号公報
【0015】
【発明が解決しようとする課題】
しかしながら特許文献1の方法では塩化物を含有したチャーを直接ボイラーで燃焼させるため上記の高温腐食やダイオキシン類の生成という課題が残り、化石燃料との混焼率が向上する可能性は低い。
【0016】
また特許文献1,2の方法は共に廃棄物を化石燃料と混焼するまでの前処理工程に廃棄物の破砕機、乾燥炉、熱分解炉が必要となり設備構成が極めて複雑である。更に熱分解ガスを十分に精製することなく直接燃焼し、その燃焼排ガスで熱分解炉と乾燥炉を加熱する前提であるが、燃焼排ガスに随伴されるダストが各炉の外壁面に付着し伝熱効率が低下することやダスト中の塩化物に起因した高温腐食が進行し長期運転が困難となることも懸念される。
【0017】
また該燃焼排ガスのために単独の排ガス処理設備が必要である。その上、熱分解炉は間接加熱式のロータリーキルンが前提であるため熱分解炉で生成されたチャーの粒径は大きく、ボイラーに利用するためには別途粉砕処理する手段が必要である。
【0018】
特許文献2の方法では熱分解炉から排出されたチャーを粉砕した上で水洗及び脱水処理することでチャー中の塩化物を除去する方法を取っている。しかしながらチャーには熱分解ガス中のタール分が付着しているため、疎水性であり、単純な水洗処理では含有している塩化物の抽出率は低いままの可能性が高い。
【0019】
特許文献3の方法ではガス化装置から生成されたガス中の塩化物やHClの除去率は高いことが想定されるが、ガスから除去されたダストの処理について方法が提示されておらず、ダスト中に含まれるチャーが燃料として有効利用されない可能性が高い。また高度な集塵手段であるセラミックフィルターと集じん器(バグフィルターまたはセラミックフィルターで構成)を併用しているためガス精製の過程でガスの圧力損失が高まり操業に支障が生ずる懸念もある。
【0020】
本発明は以上の課題を解決するものであり、より簡易な装置構成で廃棄物をガス化し、精製されたガス化ガスと脱塩処理された残さを化石燃料の代替品として使用することで化石燃料との混焼率を増加させると同時にダイオキシン類の排出を未然に防ぐことを目的としたものである。
【0021】
【課題を解決するための手段】
本発明の廃棄物処理炉の生成ガス処理方法は、廃棄物を廃棄物処理炉にて部分燃焼を伴いながらガス化し、生成されたチャーおよびガス化ガスを含む生成ガスをサイクロンで粗集じんし、該粗集じん後のガス化ガスを脱塩処理して得られた清浄ガスと、前記脱塩処理で得られたチャーを含む脱塩残渣および前記粗集じん後のチャーを洗浄処理して得られる脱塩ケーキとを化石燃料の代替品として事業用発電ボイラーに供給し、化石燃料と混焼させることを特徴とする。
【0022】
特徴とする。
【0023】
【発明の実施の形態】
図1は本発明の1実施例を示すフロー図である。廃棄物はまず廃棄物処理炉1にてガス化される。なお、ここで言う廃棄物とは都市ごみに限定されず、樹皮、廃木材チップ、籾殻、藁、草、厨芥、コーヒー滓、食品残さ、パルプスラッジや畜産廃棄物等のバイオマスも含むものであり、また廃プラスチック、廃タイヤ、廃電線ケーブル、カーシュレッダーダスト等の産業廃棄物も含むものである。
【0024】
本発明が対象とする廃棄物処理炉は部分燃焼を伴いながら廃棄物をガス化するシャフト炉、流動層炉、循環流動層炉である。シャフト炉においては、炉内に投入された廃棄物が順次、乾燥、乾留、部分燃焼という過程を経てガス化される。この過程において廃棄物中の固定炭素分は充填層自体の荷重によって圧縮されると同時に、部分燃焼の結果生成する高温ガスに曝されるため粒径100μm以下のチャーとなって炉外へ排出される。
【0025】
また流動層炉及び循環流動層炉において、炉内に投入された廃棄物は瞬時に乾燥、乾留、部分燃焼されガス化される。廃棄物中の固定炭素分は流動砂によって細かく粉砕され、シャフト炉同様に粒径100μm以下のチャーとなって炉外へ排出される。従って、これらサイズのチャーであれば何等粉砕手段を講ずることなく、そのまま燃料として使用することが可能となる。
【0026】
一方、廃棄物処理炉が特許文献1,2に示すロータリーキルンの場合、まずガス化性能を向上させるために前段の乾燥炉で廃棄物を乾燥処理している。続いて廃棄物処理炉内で廃棄物はガス化し、縮小していくが、物理的な粉砕力を殆ど受けないため固定炭素分の粒径が大きく、例えば4〜5cm角のサイズのチャーが排出される。その結果、このチャーを燃料として事業用ボイラーに供給するためには別途破砕手段が必要となる。これらの手段を省略するためにも廃棄物処理炉はシャフト炉、流動層炉、循環流動層炉であることが好ましい。
【0027】
ガス化の操作条件としてシャフト炉、流動層炉、循環流動層炉ともに空気比は0.15〜0.7であり、ガス化剤としては空気を主体とするが必要に応じて予熱空気や酸素、水蒸気が使用される。廃棄物に混入している金属類やガレキ等の異物はシャフト炉の場合、溶融物として排出され、流動層炉及び循環流動層炉の場合、その形状を保ったまま排出される。
【0028】
ガス化処理によって廃棄物中の塩素のうち、NaCl、KCl等の無機塩素は塩化物としてガス化ガス中のチャーに移行する。有機塩素分は主としてガス化ガス中のHClに移行する。
【0029】
ガス化ガスは続いてサイクロン2で粗除じんされた上で脱塩装置3に導入される。脱塩装置3は主としてセラミックフィルター4で構成されている。脱塩剤5としてはアルカリ系薬剤である石灰石、消石灰、生石灰、重曹等が使用され、これらの脱塩剤5がセラミックフィルター上で脱塩ケーキ層6を形成する。この脱塩ケーキ層6でガス化ガス中のHClガスが中和除去される。またセラミックフィルター4でろ過されることでガス化ガス中のチャーが除去され、清浄なガス化ガスが得られる。脱塩装置3前後でのガス性状の比較例を表1に示す。
【0030】
【表1】

Figure 2005024193
このガス化ガスはボイラー7に送られ燃料として燃焼される。脱塩装置3の内部温度は300〜750℃の温度範囲で管理される。300℃以下ではガス化ガス中に含まれる微量なタール分がフィルター上で固着する可能性がある。一方、750℃以上では塩化カルシウム等の中和生成物が分解し、HClガスが再放出される可能性がある。ガス化ガスの温度がこの領域を下回った場合、廃棄物処理炉1の空気比を上げるか、あるいは予熱空気の温度を上げる措置をとりガス化ガスの温度を上昇させる。また上回った場合、廃棄物処理炉1の空気比を下げるか或いは必要に応じて水噴射することによって冷却する手段を取る。
【0031】
セラミックフィルター4上の脱塩ケーキ層6はボイラー7の高圧蒸気または窒素ガスで間欠的に逆洗されるため圧力損失は一定に保持される。逆洗の結果、脱塩ケーキ層6から剥離したチャーと中和生成物の混合物が脱塩残さ8として排出される。
【0032】
脱塩装置3によってガス化ガスから除去された脱塩残さ8は洗浄装置9に移さる。またサイクロン2によって粗除塵されたチャー21も篩い10によって異物11が除去された上で洗浄装置9に移送される。洗浄装置9に界面活性剤22を添加した上で水洗されることで混合物中の塩化物が抽出される。続いて混合物のスラリー12は脱水装置13にて脱水され、脱塩ケーキ14と洗浄排水15に分離される。表2に脱塩ケーキ14の組成例を示す。また本処理過程による脱塩残さ8中のNa、K、Clの除去率の例を図2に示す。
【0033】
【表2】
Figure 2005024193
脱塩ケーキ14はそのままボイラー7に移送される。ボイラー7の型式が微粉ボイラーや石油焚きボイラーの場合は高圧蒸気または圧縮空気で微粒化されて炉内に噴霧される。流動層または循環流動層ボイラーの場合、ケーキ状態のままで炉内に供給可能である。炉内温度は通常800℃以上あるため、脱塩ケーキ14中の水分は瞬時に乾燥し、また脱塩ケーキ14中の可燃分も化石燃料の火炎帯を通過する際に瞬時に燃焼される。ボイラー7の排ガスは排ガス処理装置18、IDF19を経て煙突20から放散される。
【0034】
塩化物を含んだ洗浄排水は無害化装置16にて処理された上で放流される。上記のように脱塩装置3によって清浄化されたガス化ガスと塩化物を抽出除去した脱塩ケーキ14を混焼するため、ボイラー7の過熱蒸気管の高温腐食やボイラーの300ないし500℃温度雰囲気におけるダイオキシン類生成の可能性を著しく低減でき、その結果、混焼率も向上できる。
【0035】
図3は化石燃料の一つである石炭と都市ごみとの重量ベースの混合率と混合燃料中の塩化物中Na、K濃度及び塩素濃度の対比例である。都市ごみを脱塩処理していない場合、混合率 20%でNa、Kの合計濃度が0.1%に達するためこれ以上混焼率を上げられないが、脱塩処理した場合、混合率を50%まで上げられる。
【0036】
【発明の効果】
本発明の効果は次の通りである。
【0037】
(1)都市ごみやバイオマス、産業廃棄物をガス化炉にてガス化し、生成したガス化ガスやチャー中の塩素分を除去する結果、化石燃料焚きボイラーに適用可能な燃料を取得することが可能である。
【0038】
(2)上記の結果、ボイラーにおける化石燃料との混焼比率の制約が緩和され、化石燃料使用量が低減でき、化石燃料由来のCOも低減できる。
【0039】
(3)有機塩素分や塩化物が除去された清浄ガスや脱塩ケーキを化石燃料と混焼するためボイラー管の高温腐食を回避でき、化石燃料を単独で使用した場合と同じ蒸気条件で運転可能である。
【0040】
(4)既に存在しているボイラーの近傍で都市ごみやバイオマスをガス化し、その結果得られた燃料をボイラーで混焼するため、都市ごみやバイオマスを単独で燃料として使用するボイラーを新規に設置するよりも設備費を低減できる。
【0041】
(5)上記の燃料を化石燃料と混焼するため、燃焼の結果発生するダイオキシン類が少なく活性炭吸着層や飛灰の加熱脱塩素装置等の高度な排ガス、灰処理設備を設置する必要がない。
【0042】
(6)本方式は石炭焚きボイラーのうち、微粉炭ボイラー、流動層ボイラー、循環流動層ボイラーのいずれの型式にも適用可能であり、重油を燃料とする石油ボイラーにも適用可能である。
【図面の簡単な説明】
【図1】本発明の1実施例を示すフロー図である。
【図2】本処理過程による脱塩残さ中のNa、K、Clの除去率の例を示すグラフである。
【図3】化石燃料の一つである石炭と都市ごみとの重量ベースの混合率と混合燃料中の塩化物中Na、K濃度及び塩素濃度の対比例である。
【符号の説明】
1:廃棄物処理炉
2:サイクロン
3:脱塩装置
4:セラミックフィルター
5:脱塩剤
6:脱塩ケーキ層
7:ボイラー
8:脱塩残さ
9:洗浄装置
10:篩い
11:異物
12:スラリー
13:脱水装置
14:脱塩ケーキ
15:洗浄排水
16:無害化装置
17:化石燃料
18:排ガス処理装置
19:IDF
20:煙突
21:チャー
22:界面活性剤[0001]
BACKGROUND OF THE INVENTION
The present invention is a waste generator for treating a power generation boiler for business use, for example, a coal-fired or oil-fired boiler, processing the generated gas of a waste treatment furnace and supplying it to a business power generation boiler as a substitute for fossil fuel and co-firing with fossil fuel. The present invention relates to a method for processing a generated gas in a processing furnace.
[0002]
[Prior art]
In recent years, global environmental problems, particularly the global warming phenomenon due to CO 2, has attracted more attention. For this reason, reduction of CO 2 derived from combustion from fossil fuel has been set as a goal.
[0003]
Under such circumstances, as a technology for reducing CO 2 emissions derived from the combustion of fossil fuels, the fossil fuels are partially replaced with “carbon neutral” biomass energy, specifically fossil fuels and waste (biomass). Also, technology that co-fires municipal waste that contains a portion of biomass) with commercial power boilers has begun to attract widespread attention.
[0004]
On the other hand, apart from the above point of view, a technology for actively recovering energy by co-combusting industrial waste, which contains combustible components but is normally disposed of in landfill, with fossil fuels is also spreading.
[0005]
However, this technique generally has the following problems.
[0006]
(1) When burning waste, chlorides such as NaCl and KCl in the waste are scattered, and high-concentration HCl gas is generated from chlorine in organic matters such as vinyl chloride. When waste is mixed with fossil fuel in a boiler, the chlorides adhere to the boiler tube and at the same time high-concentration HCl gas passes through the boiler tube group, so there is a high possibility that high-temperature corrosion of the boiler tube will proceed. When the waste is mixed to avoid this high temperature corrosion, there is a limit on the ratio of the mixed combustion to the fossil fuel.
[0007]
The main steam temperature of a general boiler for power generation is 500 ° C or higher and the main steam pressure is 100ata or higher. To avoid high temperature corrosion of superheated steam pipes under this steam condition, mixing waste with fossil fuel The total concentration of Na and K in the fuel must be 0.1% or less, and the chlorine concentration must be 0.3% or less.
[0008]
(2) Since chlorine is present in the waste, there is a high possibility that dioxins are generated at the cooling portion of the boiler at a gas temperature of 300 to 500 ° C. when a large amount of co-firing occurs. In order to suppress the emission of dioxins, it is necessary to install advanced exhaust gas treatment equipment and ash treatment equipment in addition to the existing boiler.
[0009]
In order to deal with these problems, for example, in Patent Document 1, the waste is crushed and then processed in a drying furnace and a pyrolysis furnace to generate pyrolysis gas and char, and only the char is used as fuel. A method is presented. In this method, the pyrolysis gas is burned by a gas burner and used as a heat source for the pyrolysis furnace and the drying furnace. The exhaust gas is exhausted to the atmosphere after being exhausted separately from the boiler exhaust gas treatment system.
[0010]
Patent Document 2 uses a method of generating pyrolysis gas and char by crushing waste and treating it in a drying furnace and pyrolysis furnace in the same manner as Patent Document 1, and crushing char among these. In addition, a method is proposed in which soluble components such as chlorides are separated by washing with water and further dried and used as fuel.
[0011]
Further, Patent Document 3 proposes a method for purifying and detoxifying the gas generated by the gasifier by passing it through a ceramic filter, an acid gas neutralizer, and a dust collector.
[0012]
[Patent Document 1]
JP 2000-283431 A [0013]
[Patent Document 2]
JP 2001-327950 A
[Patent Document 3]
Japanese Patent Laid-Open No. 2003-159508
[Problems to be solved by the invention]
However, in the method of Patent Document 1, char containing chloride is directly combusted in a boiler, so that the problems of high temperature corrosion and dioxin generation remain, and the possibility of improving the co-firing rate with fossil fuel is low.
[0016]
Further, both of the methods of Patent Documents 1 and 2 require a waste crusher, a drying furnace, and a pyrolysis furnace in the pretreatment process until the waste is co-fired with fossil fuel, and the equipment configuration is extremely complicated. Furthermore, it is assumed that the pyrolysis gas is directly combusted without sufficient purification, and the pyrolysis furnace and drying furnace are heated with the combustion exhaust gas. However, the dust accompanying the combustion exhaust gas adheres to the outer wall of each furnace and is transmitted. There is also a concern that the thermal efficiency is lowered and high-temperature corrosion due to chloride in the dust proceeds and long-term operation becomes difficult.
[0017]
In addition, a single exhaust gas treatment facility is required for the combustion exhaust gas. In addition, since the pyrolysis furnace is premised on an indirect heating type rotary kiln, the particle size of the char generated in the pyrolysis furnace is large, and a separate pulverization means is required for use in a boiler.
[0018]
In the method of Patent Document 2, the char in the char is removed by washing and dewatering after pulverizing the char discharged from the pyrolysis furnace. However, since the tar content in the pyrolysis gas is attached to the char, it is hydrophobic, and it is highly possible that the extraction rate of the contained chloride remains low in a simple water washing treatment.
[0019]
In the method of Patent Document 3, it is assumed that the removal rate of chloride and HCl in the gas generated from the gasifier is high, but no method is presented for the treatment of dust removed from the gas, There is a high possibility that the char contained therein will not be effectively used as fuel. In addition, since a ceramic filter, which is an advanced dust collecting means, and a dust collector (consisting of a bag filter or a ceramic filter) are used in combination, there is a concern that the pressure loss of the gas increases during the gas purification process and the operation is hindered.
[0020]
The present invention solves the above-mentioned problems, and gasifies waste with a simpler device configuration, and uses the purified gasification gas and the desalted residue as a substitute for fossil fuel. The purpose is to increase the co-firing rate with fuel and to prevent dioxins from being discharged.
[0021]
[Means for Solving the Problems]
The method for treating generated gas of a waste treatment furnace according to the present invention gasifies waste with partial combustion in the waste treatment furnace, and coarsely collects the produced gas containing the generated char and gasification gas with a cyclone. Cleaning the clean gas obtained by desalting the gasified gas after the coarse dust collection, the desalting residue containing the char obtained by the desalting treatment, and the char after the coarse dust collection; The obtained desalted cake is supplied to a commercial power generation boiler as a substitute for fossil fuel and mixed with fossil fuel.
[0022]
Features.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a flowchart showing one embodiment of the present invention. The waste is first gasified in the waste treatment furnace 1. The waste mentioned here is not limited to municipal waste, but also includes biomass such as bark, waste wood chips, rice husk, firewood, grass, firewood, coffee straw, food residue, pulp sludge and livestock waste. It also includes industrial waste such as waste plastic, waste tires, waste cable and car shredder dust.
[0024]
The waste treatment furnace targeted by the present invention is a shaft furnace, a fluidized bed furnace, or a circulating fluidized bed furnace that gasifies waste with partial combustion. In a shaft furnace, wastes put into the furnace are sequentially gasified through processes such as drying, dry distillation, and partial combustion. In this process, the fixed carbon in the waste is compressed by the load of the packed bed itself, and at the same time it is exposed to the high-temperature gas generated as a result of partial combustion, so it is discharged out of the furnace as char with a particle size of 100 μm or less The
[0025]
In the fluidized bed furnace and the circulating fluidized bed furnace, the waste introduced into the furnace is instantly dried, dry-distilled, partially burned and gasified. The fixed carbon content in the waste is finely pulverized by the fluidized sand, and is discharged to the outside of the furnace as char having a particle size of 100 μm or less like the shaft furnace. Therefore, if it is char of these sizes, it becomes possible to use it as fuel without taking any pulverizing means.
[0026]
On the other hand, when the waste treatment furnace is the rotary kiln shown in Patent Documents 1 and 2, first, waste is dried in the preceding drying furnace in order to improve the gasification performance. Subsequently, the waste is gasified and reduced in the waste treatment furnace, but the particle size of the fixed carbon is large because it receives almost no physical crushing force, for example, 4 to 5 cm square size char is discharged. Is done. As a result, a separate crushing means is required to supply this char as fuel to a business boiler. In order to omit these means, the waste treatment furnace is preferably a shaft furnace, a fluidized bed furnace, or a circulating fluidized bed furnace.
[0027]
As the operating conditions for gasification, the air ratio is 0.15 to 0.7 in all of the shaft furnace, fluidized bed furnace, and circulating fluidized bed furnace, and the gasifying agent is mainly air, but if necessary, preheated air or oxygen Steam is used. Foreign matters such as metals and debris mixed in the waste are discharged as a melt in the case of a shaft furnace, and are discharged while maintaining the shape in the case of a fluidized bed furnace and a circulating fluidized bed furnace.
[0028]
Of the chlorine in the waste, inorganic chlorine such as NaCl and KCl is transferred to char in the gasification gas as chloride. The organic chlorine content is mainly transferred to HCl in the gasification gas.
[0029]
The gasified gas is then roughly removed by the cyclone 2 and then introduced into the demineralizer 3. The desalting apparatus 3 is mainly composed of a ceramic filter 4. As the desalting agent 5, limestone, slaked lime, quicklime, baking soda or the like, which is an alkaline agent, is used, and these desalting agents 5 form a desalting cake layer 6 on the ceramic filter. The desalted cake layer 6 neutralizes and removes the HCl gas in the gasification gas. Moreover, the char in gasification gas is removed by filtering with the ceramic filter 4, and clean gasification gas is obtained. Table 1 shows a comparative example of gas properties before and after the desalting apparatus 3.
[0030]
[Table 1]
Figure 2005024193
This gasified gas is sent to the boiler 7 and burned as fuel. The internal temperature of the desalting apparatus 3 is controlled within a temperature range of 300 to 750 ° C. If it is 300 ° C. or less, a trace amount of tar contained in the gasification gas may be fixed on the filter. On the other hand, neutralization products such as calcium chloride are decomposed at 750 ° C. or higher, and HCl gas may be re-released. When the temperature of the gasification gas falls below this range, the temperature of the gasification gas is increased by taking measures to increase the air ratio of the waste treatment furnace 1 or to increase the temperature of the preheated air. In the case of exceeding the above, the air ratio of the waste treatment furnace 1 is lowered, or a cooling means is taken by spraying water as necessary.
[0031]
Since the desalted cake layer 6 on the ceramic filter 4 is intermittently backwashed with the high-pressure steam or nitrogen gas of the boiler 7, the pressure loss is kept constant. As a result of backwashing, the mixture of char and neutralized product peeled from the desalted cake layer 6 is discharged as a desalted residue 8.
[0032]
The desalting residue 8 removed from the gasification gas by the desalting apparatus 3 is transferred to the cleaning apparatus 9. The char 21 roughly removed by the cyclone 2 is also transferred to the cleaning device 9 after the foreign matter 11 is removed by the sieve 10. By adding the surfactant 22 to the cleaning device 9 and washing with water, the chloride in the mixture is extracted. Subsequently, the slurry 12 of the mixture is dehydrated by a dehydrator 13 and separated into a desalted cake 14 and a washing drain 15. Table 2 shows a composition example of the desalted cake 14. Moreover, the example of the removal rate of Na, K, and Cl in the desalination residue 8 by this process is shown in FIG.
[0033]
[Table 2]
Figure 2005024193
The desalted cake 14 is transferred to the boiler 7 as it is. When the type of the boiler 7 is a fine powder boiler or an oil fired boiler, it is atomized with high-pressure steam or compressed air and sprayed into the furnace. In the case of a fluidized bed or circulating fluidized bed boiler, it can be fed into the furnace in a cake state. Since the furnace temperature is usually 800 ° C. or higher, the moisture in the desalted cake 14 is instantly dried, and the combustible matter in the desalted cake 14 is instantly burned when passing through the fossil fuel flame zone. The exhaust gas of the boiler 7 is diffused from the chimney 20 through the exhaust gas treatment device 18 and the IDF 19.
[0034]
Washing waste water containing chlorides is treated by the detoxification device 16 and then discharged. In order to co-fire the desalted cake 14 from which the gasified gas and chlorides extracted and removed by the desalting apparatus 3 as described above are mixed, high-temperature corrosion of the superheated steam pipe of the boiler 7 and the temperature atmosphere of the boiler at 300 to 500 ° C. The possibility of dioxin formation in the can be significantly reduced, and as a result, the mixed firing rate can be improved.
[0035]
FIG. 3 is a comparison of the weight-based mixing ratio of coal and municipal waste, which is one of fossil fuels, with Na, K concentration and chlorine concentration in chloride in the mixed fuel. When municipal waste is not desalted, the combined ratio of Na and K reaches 0.1% at a mixing rate of 20%, so the mixed firing rate cannot be increased any more. However, when desalted, the mixing rate is 50 It is raised to%.
[0036]
【The invention's effect】
The effects of the present invention are as follows.
[0037]
(1) As a result of gasification of municipal waste, biomass, and industrial waste in a gasification furnace and removing the chlorine content in the generated gasification gas and char, it is possible to obtain fuel applicable to fossil fuel-fired boilers Is possible.
[0038]
(2) As a result, the restriction on the ratio of co-firing with fossil fuel in the boiler is relaxed, the amount of fossil fuel used can be reduced, and the CO 2 derived from fossil fuel can also be reduced.
[0039]
(3) Since clean gas and desalted cake from which organic chlorine and chlorides have been removed are co-fired with fossil fuel, high temperature corrosion of boiler tubes can be avoided, and operation is possible under the same steam conditions as when fossil fuel is used alone. It is.
[0040]
(4) In order to gasify municipal waste and biomass in the vicinity of existing boilers and co-fire the resulting fuel in the boiler, a new boiler will be installed that uses municipal waste and biomass alone as fuel. The equipment cost can be reduced.
[0041]
(5) Since the above fuel is co-fired with fossil fuel, there are few dioxins generated as a result of combustion, and it is not necessary to install advanced exhaust gas and ash treatment facilities such as an activated carbon adsorption layer and a fly ash heat dechlorination device.
[0042]
(6) Among the coal-fired boilers, this method can be applied to any type of pulverized coal boiler, fluidized bed boiler, and circulating fluidized bed boiler, and can also be applied to oil boilers using heavy oil as fuel.
[Brief description of the drawings]
FIG. 1 is a flowchart showing one embodiment of the present invention.
FIG. 2 is a graph showing an example of a removal rate of Na, K, and Cl in a desalted residue obtained by this treatment process.
FIG. 3 is a comparison of the weight-based mixing ratio of coal, which is one of fossil fuels, with municipal waste, and the Na, K concentration and chlorine concentration in chloride in the mixed fuel.
[Explanation of symbols]
1: Waste treatment furnace 2: Cyclone 3: Desalination unit 4: Ceramic filter 5: Desalting agent 6: Desalination cake layer 7: Boiler 8: Desalination residue 9: Cleaning unit 10: Sieve 11: Foreign matter 12: Slurry 13: Dehydration device 14: Desalted cake 15: Washing drainage 16: Detoxification device 17: Fossil fuel 18: Exhaust gas treatment device 19: IDF
20: Chimney 21: Char 22: Surfactant

Claims (3)

廃棄物を廃棄物処理炉にて部分燃焼を伴いながらガス化し、生成されたチャーおよびガス化ガスを含む生成ガスをサイクロンで粗集じんし、該粗集じん後のガス化ガスを脱塩処理して得られた清浄ガスと、前記脱塩処理で得られたチャーを含む脱塩残渣および前記粗集じん後のチャーを洗浄処理して得られる脱塩ケーキとを化石燃料の代替品として事業用発電ボイラーに供給し、化石燃料と混焼させることを特徴とする廃棄物処理炉の生成ガスの処理方法。Waste is gasified in a waste treatment furnace with partial combustion, and the generated gas containing the generated char and gasification gas is roughly collected in a cyclone, and the gasified gas after the coarse collection is desalted. As a substitute for fossil fuels, the clean gas obtained in this way, the desalted residue containing the char obtained in the desalting process, and the desalted cake obtained by washing the char after the coarse dust collection are used. A method for treating a generated gas in a waste treatment furnace, characterized in that it is supplied to a power generator boiler and co-fired with fossil fuel. 前記脱塩処理がセラミックフィルターをろ過材とし、脱塩剤としてアルカリ系薬剤を使用してフィルター表面に形成されたケーキ層にてガス化ガス中のHClを中和し、ガス化ガス中のチャーを除去することで清浄ガスを生成する脱塩装置を使用し、この脱塩装置の内部温度を300〜750℃に管理することを特徴とする請求項1に記載の廃棄物処理炉の生成ガスの処理方法。The desalting treatment uses a ceramic filter as a filter medium and an alkaline chemical as a desalting agent to neutralize HCl in the gasification gas with a cake layer formed on the filter surface. 2. The produced gas of the waste treatment furnace according to claim 1, wherein a demineralizer that generates clean gas by removing water is used, and an internal temperature of the demineralizer is controlled at 300 to 750 ° C. 3. Processing method. 前記洗浄処理が、前記脱塩残さを水洗浄する過程において、脱塩残さ1kgに対し、0.1〜100gの界面活性剤を添加することで脱塩残さ中塩化物の洗浄液への抽出率を高めることを特徴とする請求項1に記載の廃棄物処理炉の生成ガスの処理方法。In the process of washing the desalted residue with water, 0.1 to 100 g of a surfactant is added to 1 kg of the desalted residue to increase the extraction rate of chloride in the desalted residue into the washing solution. The method for treating a product gas in a waste treatment furnace according to claim 1, wherein the treatment gas is increased.
JP2003191389A 2003-07-03 2003-07-03 Waste gas processing method for waste treatment furnace Expired - Fee Related JP4077772B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003191389A JP4077772B2 (en) 2003-07-03 2003-07-03 Waste gas processing method for waste treatment furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003191389A JP4077772B2 (en) 2003-07-03 2003-07-03 Waste gas processing method for waste treatment furnace

Publications (2)

Publication Number Publication Date
JP2005024193A true JP2005024193A (en) 2005-01-27
JP4077772B2 JP4077772B2 (en) 2008-04-23

Family

ID=34189016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003191389A Expired - Fee Related JP4077772B2 (en) 2003-07-03 2003-07-03 Waste gas processing method for waste treatment furnace

Country Status (1)

Country Link
JP (1) JP4077772B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7369799B2 (en) 2005-01-31 2008-05-06 Brother Kogyo Kabushiki Kaisha Developing cartridge and image forming apparatus
JP2009263498A (en) * 2008-04-24 2009-11-12 Central Res Inst Of Electric Power Ind Coal-gasification power generation system and method for eliminating mercury in coal-gasification power generation system
WO2010047042A1 (en) * 2008-10-22 2010-04-29 新日本製鐵株式会社 Apparatus for utilizing biomass using pulverized coal firing boiler, and method for utilizing biomass using the apparatus
JP2011505540A (en) * 2007-12-06 2011-02-24 イテア エス.ピー.エー. Combustion method
JP2011505541A (en) * 2007-12-06 2011-02-24 イテア エス.ピー.エー. Combustion method
AT504862B1 (en) * 2007-01-24 2012-04-15 Urbas Maschinenfabrik Gesellschaft M B H WOOD GASIFICATION SYSTEM
CN113403120A (en) * 2021-06-18 2021-09-17 吉林省电力科学研究院有限公司 Pretreatment method for biomass recycling before biomass combustion
JP2023116154A (en) * 2022-02-09 2023-08-22 株式会社神鋼環境ソリューション Method for producing fuel composition, waste gasification equipment and method for operating the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7369799B2 (en) 2005-01-31 2008-05-06 Brother Kogyo Kabushiki Kaisha Developing cartridge and image forming apparatus
AT504862B1 (en) * 2007-01-24 2012-04-15 Urbas Maschinenfabrik Gesellschaft M B H WOOD GASIFICATION SYSTEM
JP2011505540A (en) * 2007-12-06 2011-02-24 イテア エス.ピー.エー. Combustion method
JP2011505541A (en) * 2007-12-06 2011-02-24 イテア エス.ピー.エー. Combustion method
JP2009263498A (en) * 2008-04-24 2009-11-12 Central Res Inst Of Electric Power Ind Coal-gasification power generation system and method for eliminating mercury in coal-gasification power generation system
WO2010047042A1 (en) * 2008-10-22 2010-04-29 新日本製鐵株式会社 Apparatus for utilizing biomass using pulverized coal firing boiler, and method for utilizing biomass using the apparatus
CN102187152A (en) * 2008-10-22 2011-09-14 新日本制铁株式会社 Biomass Utilization Device Using Micropowdered Charcoal Combustion Boiler and Biomass Utilization Method Using It
JP4855539B2 (en) * 2008-10-22 2012-01-18 新日本製鐵株式会社 Biomass utilization apparatus using pulverized coal combustion boiler and biomass utilization method using the same
CN113403120A (en) * 2021-06-18 2021-09-17 吉林省电力科学研究院有限公司 Pretreatment method for biomass recycling before biomass combustion
JP2023116154A (en) * 2022-02-09 2023-08-22 株式会社神鋼環境ソリューション Method for producing fuel composition, waste gasification equipment and method for operating the same

Also Published As

Publication number Publication date
JP4077772B2 (en) 2008-04-23

Similar Documents

Publication Publication Date Title
JP4995812B2 (en) Integrated process for waste treatment by pyrolysis and related plants
JP2009028672A (en) Treatment method of high water-content waste and treatment apparatus
CN102061196A (en) Power generation method and device adopting plasma gasification of household garbage and biomass
CN108443889B (en) Waste metal catalyst and organic sludge co-treatment device and method
CN113234490A (en) Gasification-based sludge comprehensive utilization system and treatment method
JP4077772B2 (en) Waste gas processing method for waste treatment furnace
CN112779057A (en) Comprehensive oil sludge treatment system and comprehensive oil sludge treatment method
JP5852491B2 (en) Waste treatment system and treatment method
JP2012107110A (en) Method for treating gas-treatment drainage, gasification apparatus of carbonaceous material, and method for treating carbonaceous material
JP3707754B2 (en) Waste treatment system and method and cement produced thereby
JP5279062B2 (en) Combustion exhaust gas treatment method and combustion exhaust gas treatment apparatus
JP4358095B2 (en) Method for treating combustible waste and water-containing organic sludge
CN101451708A (en) Subcritical damp steam generating system by petroleum sludge innoxious energy-gathering treatment
JP4089079B2 (en) Waste treatment method and waste treatment system
JP2004210904A (en) Gasification system of biomass
JP2000283434A (en) Waste treatment method and waste treatment system
JPH0361085B2 (en)
CN217763445U (en) Industry is useless admittedly and mud processing system
JPS5844112B2 (en) Deep fluidized bed pyrolysis equipment
JP3827816B2 (en) Method for recovering active ingredient from desalting residue and waste treatment apparatus
JPH1129779A (en) Power generation method using waste plastic gasification and ash melting
JP4089080B2 (en) Waste treatment method and waste treatment system
JPH11325425A (en) Method and apparatus for treating waste material
JPH10323647A (en) Apparatus for thermally decomposing and gasifying and melting waste and method for thermally decomposing and gasifying and melting treatment
JPH09112863A (en) Power generating apparatus combined with incinerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050914

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060817

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080201

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140208

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees